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THE HOMOGENEOUS CAUSAL ACTION PRINCIPLE

ON A COMPACT DOMAIN IN MOMENTUM SPACE

FELIX FINSTER, MICHELLE FRANKL, AND CHRISTOPH LANGER

MAY 2022

Abstract. The homogeneous causal action principle on a compact domain of mo-
mentum space is introduced. The connection to causal fermion systems is worked
out. Existence and compactness results are reviewed. The Euler-Lagrange equations
are derived and analyzed under suitable regularity assumptions.
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1. Introduction

The theory of causal fermion systems is a recent approach to fundamental physics
(see the reviews [8, 10], the introduction [17], the textbooks [6, 9] or the website [1]). In
this approach, spacetime and all objects therein are described by a measure ρ on a set F
of linear operators on a Hilbert space (H, 〈.|.〉H). The physical equations are formulated
by means of the so-called causal action principle, a nonlinear variational principle
where an action S is minimized under variations of the measure ρ. The homogeneous
causal action principle was introduced in 2008 in [5, Section 4] as a formulation of the
causal action principle for systems which are invariant under translations in space and

http://arxiv.org/abs/2205.04085v2


2 F. FINSTER, M. FRANKL, AND C. LANGER

time. Such translation invariant causal fermion systems are of interest because they
provide candidates for vacuum spacetimes involving a regularization on a microscopic
scale, typically associated to the Planck length ℓP ≈ 10−35 meters. Therefore, the
study of the homogeneous causal action principle should give insight into the structure
of physical spacetime on the Planck scale.

In the past years, the theory of causal fermion systems was developed further, and
the mathematical setting evolved. Therefore, we take the present article as an oppor-
tunity for giving a coherent introduction to the homogeneous causal action principle,
which makes the connection to the modern formulation and terminology and gives an
up-to date review of the present status of this nonlinear variational principle. More-
over, our main concern is the derivation of the Euler-Lagrange equations. Here we face
the main difficulty that the homogeneous causal action principle involves nonlinear
constraints (both equality and inequality constraints) which cannot be treated with
the standard Lagrange multiplier method. The results and methods underlying the
present paper are based on more detailed expositions in [15, 16, 12].

In order to motivate the problem starting from the physical applications, we first
note that the causal fermion system describing the vacuum in Minkowski space may
be described by the unregularized kernel of the fermionic projector P (x, y), being a
tempered distribution defined as a Fourier transform,

P (x, y) =

ˆ

R4

d4p

(2π)4
(/p+m) δ(p2 −m2) Θ(−p0) e−ik(x−y) (1.1)

(here /p = γjpj denotes the contraction with the Dirac matrices, Θ is the Heaviside
function, and k(x− y) denotes the Minkowski inner product of signature (+,−,−,−);
for the physical background and the notation see for example the textbooks [6, 9]). In
order to make mathematical sense of the causal action principle, one needs to introduce
a regularization (for details and the underlying physical concepts see for example [6,
Section 1.2]). As a simple example, one may regularize by inserting a convergence-

generating factor eεp
0

into the integrand in (1.1), which mollifies the kernel on a mi-
croscopic length scale ε (which can be thought of as the Planck length). The basic
concept behind causal fermion systems is that the regularized objects are the physical
objects. In particular, the regularized kernel of the fermionic projector describes the
structure of spacetime on microscopic scales where Minkowski space is no longer the
appropriate mathematical model. With this in mind, it is an important task to under-
stand how the regularization looks like for minimizers of the causal action principle.
In order to address this problem in the simplest possible setting, in [5, Section 4] an
a-priori momentum cutoff was introduced. To this end, one restricts attention to a
compact subset K̂ of momentum space which is chosen at the very beginning. Thus,
instead of (1.1), one considers the kernel

P reg(x, y) =

ˆ

K̂

d4p

(2π)4
P̂ (p) e−ik(x−y) (1.2)

involving an arbitrary matrix-valued distribution P̂ (p). By suitably varying P̂ (p)

one gets a well-posed variational principle, meaning that a minimizer P̂ (p) exists (for

more details see below). It is conjectured that in a suitable limit K̂ ր R
4 when K̂

exhausts R
4, the corresponding sequence of minimizers P̂ (p) should go over to the

integrand in (1.1). This conjecture is underpinned by the so-called continuum limit
analysis as carried out in [6], which shows that, expanding asymptotically for small
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values of the regularization length ε and disregarding certain contributions of higher
order in ε, the unregularized kernel (1.1) indeed arises as a minimizer of the causal
action principle. Proving the above conjecture without using the formalism of the
continuum limit is a challenging open problem, which we will not address here (see
however the discussion in the outlook in Section 10). Instead, as a preparation for

the limit K̂ ր R
4, the main part of the present paper is devoted to analyzing the

variational principle on a compact domain K̂ of momentum space. Our main goal
is to clarify the structure of the resulting minimizers by deriving the corresponding
Euler-Lagrange equations.

Before stating our results, we need to make the setting mathematically precise. To
this end, it is useful to combine the factor P̂ (p) in (1.1) with the integration measure of
the Fourier integral to an object which we shall give a precise mathematical meaning
as a measure ν in momentum space, i.e. symbolically

dν(p) := −P̂ (p) d4p

(2π)4
. (1.3)

In the example of the unregularized kernel (1.1), this measure takes the form

dν(p) = −(/p+m) δ(p2 −m2) Θ(−p0) d4p

(2π)4
, (1.4)

where the right side denotes a measure which is singular with respect to the Lebesgue
measure, with support on the lower mass shell. Moreover, in view of the Dirac matrices,
this measure is matrix-valued. The matrix /p is not Hermitian, but it is symmetric with

respect to the indefinite inner product on spinors, which is often denoted by ψφ with
the adjoint spinor ψ := ψ†γ0 (and the dagger denotes complex conjugation and trans-
position). Here we denote the corresponding indefinite inner product space abstractly
by (V,≺.|.≻); it is a four-dimensional complex inner product space of signature (2, 2).
By “symmetry” of the operator /p we mean that

≺/pψ|φ≻ = ≺ψ|/pφ≻ for all ψ, φ ∈ V .

The matrix in (1.4) has the additional property that it is positive semi-definite in the
sense that

≺ψ |
(

− (/p +m)
)

ψ≻ ≥ 0 for all ψ ∈ V

(and all p in the support of ν). It turns out that this positivity property is intimately
related to the Hilbert space structure of the solution space of the Dirac equation.
It is also crucial for getting into the setting of causal fermion systems (for details
see Section 3 below) and for getting a well-posed variational problem (as was first
noted in [4]). For the more general measure ν in (1.3), this positivity property is

incorporated by the concept of a positive definite measure on K̂ with values in L(V )
(see Definition 2.1).

Working with such positive definite measures ν on K̂, one can adapt the general
causal action principle as introduced for example in [6, Section 1.1] to homogeneous
kernels of the form (1.2) and (1.3). The resulting homogeneous causal action principle
is introduced in Section 2. In this variational principle, one minimizes the causal
action 2.4 under variations of ν in the class of positive definite regular Borel measures
on K̂, under the trace constraint (2.5) and the dimension constraint (2.6). After
reviewing compactness and existence results, our main concern is the derivation of the
corresponding Euler-Lagrange (EL) equations. These are variational inequalities of a
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novel type, as we now briefly summarize. Under suitable regularity assumptions, the
first variation of the causal action can be written as (for details see Proposition 6.1)

δS = 2

ˆ

K̂
Tr
(

Q̂(p) d
(

δν
)

(p)
)

with a matrix-valued kernel Q̂ ∈ C0(K̂,L(V )). The EL equations as formulated in
Theorem 8.5 state that, for suitable real parameters α and β (which can be thought of
as the Lagrange parameters corresponding to the trace constraint and the dimension
constraint, respectively) and a suitable signature operator S (see (4.3) and the remark
after Theorem 5.3), the operator

Q̂(p)− α 11− β S is positive semi-definite on (V,≺.|.≻)

for all p ∈ K̂. Moreover, this operator has a non-trivial kernel on the support of the
measure ν, and the measure ν vanishes except on this kernel in the sense that

(

Q̂(p)− α 11− β S
)

dν(p) = 0 = dν(p)
(

Q̂(p)− α 11 − β S
)

(here the product denotes the multiplication of a function with a measure; for example,

Q̂(p) dν(p) could be written in a shorter form as Q̂ ν). These EL equations, which are
formulated in terms of positivity properties of linear operators and the vanishing of
certain operator products, have a novel structure which is quite different from that
for classical variational principles or for the general causal action principle for causal
fermion systems (cf. for example [9, Chapter 7]). The form of our EL equations reflects
the specific structure of the homogeneous causal action principle. Our derivation
requires new mathematical methods which will be developed in Sections 7 and 8.

The paper is organized as follows. After introducing the homogeneous action prin-
ciple (Section 2), the connection to causal fermion systems is worked out (Section 3).
In Section 4 it is shown how a positive definite measure ν can be decomposed into
what we refer to as the sea measure and the particle measure. Section 5 is devoted
to an outline of compactness and existence results; the existence result relevant for
our purposes is stated in Theorem 5.3. In Section 6 first variations of the causal
action are computed. As a simplification, in Section 7 the first variations and the
constraints are formulated with a positive definite measure on the set Symm(V ) of
symmetric linear operators on the indefinite inner product space (V,≺.|.≻). In Sec-
tion 8 the Euler-Lagrange equations are worked out. The main difficulty is to preserve
the trace constraint and the dimension constraint in the variation; this is achieved
by a suitable transformation of the positive semi-definite operators on V (see (8.1)).
Having treated the constraints, variations which change the support of ν give rise
to variational inequalities (Subsection 8.2), whereas variations preserving the support
yield variational equations (Subsection 8.3). Combining these results with a variant of
the Cauchy-Schwarz inequality for positive semi-definite operators on indefinite inner
product spaces (Lemma 8.3), we obtain the general form of our EL equations (The-
orem 8.5). In Section 9 we analyze a variational principle for linear operators on V
which clarifies the role of the Lagrange parameters α and β in our EL equations. In
Section 10 we conclude the paper with a brief outlook.

2. The Homogeneous Causal Action Principle

The homogeneous causal action principle was introduced in [5, Section 4]. We
now recall the setting in a slightly modified form which is most convenient for our
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purposes. Given a parameter n ≥ 1 (the spin dimension), we let (V,≺.|.≻) be a
complex indefinite inner product space of dimension 2n and signature (n, n). We
let M be a four-dimensional real vector space (“position space”) and µ a translation
invariant Borel measure (i.e., the Haar measure corresponding to the translation group;
in a basis, this measure is a positive constant times the Lebesgue measure on R

4).

Moreover, we denote the dual space of M by M̂ (“momentum space”). Let K̂ ⊂ M̂

be a compact subset of momentum space. For the sake of simplicity, we change the
conventions in [5, 16] and consider positive (instead of negative) definite measures.

Definition 2.1. Consider a regular Borel measure ν on a compact set K̂ ⊂ M̂ taking
values in L(V ) with the following properties:

(i) For every v ∈ V , the measure ≺v|νv≻ is a finite signed measure.

(ii) For every Borel set Ω ⊂ K̂, the operator ν(Ω) ∈ L(V ) is positive in the sense that

≺v | ν(Ω) v≻ ≥ 0 for all v ∈ V .

Then ν is called a positive definite measure on K̂ with values in L(V ).

Positivity of the operator ν(Ω) implies in particular that this operator is symmetric
with respect to the indefinite inner product, i.e.

≺u | ν(Ω) v≻ = ≺ν(Ω)u | v≻ for all u, v ∈ V . (2.1)

Moreover, the operator has a real spectrum and (counting algebraic multiplicities) at
most n positive and at most n negative eigenvalues (for details see [4, Lemma 4.2]).

Given a positive definite measure on K̂, we introduce the kernel of the fermionic
projector P (ξ) by

P (ξ) := −
ˆ

K̂
eipξ dν(p) . (2.2)

Lemma 2.2. The kernel of the fermionic projector is continuous,

P ∈ C0
(

M,L(V )
)

.

Proof. In view of the polarization formula, it suffices to consider the expectation val-
ues ≺v|P (ξ)v≻. Continuity follows from the estimate

∣

∣

∣
≺v |P (ξ) v≻ −≺v |P (ξ′) v≻

∣

∣

∣
=

∣

∣

∣

∣

ˆ

K̂

(

eipξ − eipξ
′)

d≺v|νv≻(p)

∣

∣

∣

∣

≤ sup
p∈K̂

∣

∣eipξ − eipξ
′
∣

∣

∣

∣≺v|νv≻
∣

∣

ξ′→ξ−−−→ 0 ,

where in the last step we used that the exponential converges uniformly for p in a
compact set. Here |.| denotes the total variation of a signed measure, which is finite in
view of Definition 2.1 (i) (we remark that the signed measure ≺v|νv≻ is even positive

by Definition 2.1 (ii), so that |≺v|νv≻| = ≺v|ν(K̂)v≻). �

Moreover, as a consequence of (2.1), the kernel of the fermionic projector is symmetric
in the sense that

P (ξ)∗ = P (−ξ)
(where the star is the adjoint with respect to the indefinite inner product ≺.|.≻). We
introduce the closed chain A(ξ) by

A(ξ) := P (ξ)P (ξ)∗
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and denote its eigenvalues (counting algebraic multiplicities) by λξ1, · · · , λ
ξ
2n. We in-

troduce the Lagrangian L (which clearly depends on ν) and the homogeneous causal
action by

Lagrangian: L(ξ) = 1

4n

2n
∑

i,j=1

(

∣

∣λξi
∣

∣−
∣

∣λξj
∣

∣

)2
(2.3)

homogeneous causal action: S(ν) =
ˆ

M

L(ξ) dµ(ξ) . (2.4)

Moreover, we introduce the following constraints. The operator ν(K̂) has real eigen-
values (see Lemma 4.1 below). Counting multiplicities, we denote these eigenvalues
by α1, . . . , α2n. Given real parameters c and f , we define the following constraints,

trace constraint: Tr
(

ν(K̂)
)

=

2n
∑

ℓ=1

αℓ = c (2.5)

dimension constraint:

2n
∑

ℓ=1

∣

∣αℓ

∣

∣ ≤ f . (2.6)

The homogeneous causal action principle is to minimize the causal action (2.4) under

variations of ν within the class of positive definite regular Borel measures on K̂ with
values in L(V ), subject to the constraints (2.5) and (2.6).

Clearly, the constraints (2.5) and (2.6) can be fulfilled only if |c| ≤ f . By flipping
the signs of both ν and 〈.|.〉, we can change the sign of c arbitrarily. With this in
mind, it is no loss of generality to assume that c ≥ 0. The cases c = 0 and c = f are
uninteresting limiting cases. Therefore, we shall assume throughout this paper that

0 < c < f . (2.7)

3. The Underlying Causal Fermion System

Before entering the analysis of the homogeneous causal action principle, in this
section we clarify the connection to causal fermion systems as defined abstractly as
follows (for details see for example [6, Section 1.1]).

Definition 3.1. (causal fermion system) Given a separable complex Hilbert space H
with scalar product 〈.|.〉H and a parameter n ∈ N (the “spin dimension”), we let F ⊂
L(H) be the set of all self-adjoint operators on H of finite rank, which (counting
multiplicities) have at most n positive and at most n negative eigenvalues. On F we
are given a positive measure ρ (defined on a σ-algebra of subsets of F). We refer
to (H,F, ρ) as a causal fermion system.

Making this connection precise consists of two steps. First, we will show how, given a
positive definite measure ν, one can construct a corresponding causal fermion system.
The second step is to show that, starting from a causal fermion system, one gets
a positive definite measure ν by a suitable symmetry reduction (this will be done in
Remark 3.3 below). Moreover, we will also explain how the homogeneous causal action
principle relates to the general causal action principle for causal fermion systems.

Let ν be a positive definite measure on K̂ with values in L(V ). We consider contin-

uous and compactly supported test functions on M̂ with values in V , denoted by

û, v̂ ∈ C0
0 (M̂, V ) .
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On such functions we introduce the positive semi-definite inner product

〈.|.〉H : C0
0 (M̂, V )× C0

0 (M̂, V ) → C , 〈û|v̂〉H :=

ˆ

K̂
d≺û(p) | ν(p) v̂(p)≻ . (3.1)

Dividing out the null space and taking the completion gives a Hilbert space (H, 〈.|.〉H)

(details can be found in [15]). A Hilbert space vector û ∈ C0
0 (M̂, V ) can be represented

by a canonical wave function in M, referred to as the physical wave function. It is
obtained by taking the Fourier transform with respect to the measure ν,

ψû(x) =

ˆ

K̂
e−ipx dν(p) û(p) . (3.2)

Now we adapt the standard construction of a causal fermion system from the physi-
cal wave functions using the local correlation operators (as introduced in [7, Section 1]
and explained in more detail for example in [6, Section 1.2] or [9, Chapter 5]). Note

that, since K̂ is compact, the physical wave functions defined by (3.2) are continu-
ous (as one immediately verifies as in the proof of Lemma 2.2 above). Therefore, for
any x ∈ M we may evaluate pointwise and define the sesquilinear form

bx : C0
0 (M̂, V )× C0

0 (M̂, V ) → C , bx(û, v̂) := −≺ψû(x)|ψv̂(x)≻ .

Lemma 3.2. The sesquilinear form bx is bounded with respect to the scalar prod-
uct 〈.|.〉H, i.e. there is a constant c > 0 such that

∣

∣bx(û, v̂)
∣

∣ ≤ c ‖û‖H ‖v̂‖H for all û, v̂ ∈ C0
0 (M̂, V ) .

Proof. Since the measure ν is positive definite, the Cauchy-Schwarz inequality
∣

∣

∣

∣

ˆ

K̂
d≺f̂(p) | ν(p) ĝ(p)≻

∣

∣

∣

∣

≤
(
ˆ

K̂
d≺f̂(p) | ν(p) f̂ (p)≻

)
1

2
(
ˆ

K̂
d≺ĝ(p) | ν(p) ĝ(p)≻

)
1

2

holds. In order to estimate ψû pointwise in terms of the Hilbert space norm, we apply
this inequality for

f̂(p) = ζ ∈ V and ĝ(p) = û(p) e−ipx .

We thus obtain
∣

∣≺ζ|ψû(x)≻
∣

∣

2 ≤ ≺ζ|ν(K̂)ζ≻
ˆ

K̂
d≺û(p) | ν(p) û(p)≻ = ≺ζ|ν(K̂)ζ≻ ‖û‖2H .

Choosing a basis of V , this inequality gives an estimate of each component of ψû(x).

Therefore, there is a constant c (which depends only on n and ν(K̂)) such that for

all û, v̂ ∈ C0
0 (M̂, V ),

∣

∣≺ψû(x)|ψv̂(x)≻
∣

∣ ≤ c ‖û‖H ‖v̂‖H .

This concludes the proof. �

This lemma shows that the sesquilinear form bx can be continuously extended to a
bounded sesquilinear form

bx : H ×H → C .

Using the Fréchet-Riesz theorem, we can represent this sesquilinear form by a sym-
metric linear operator F (x), which is uniquely defined by the property that

〈û |F (x) v̂〉H = −≺ψû(x)|ψv̂(x)≻ ∈ F for all û, v̂ ∈ C0
0 (M̂, V ) .

This operator, referred to as the local correlation operator at x, has at most n positive
and at most n negative eigenvalues; thus it is an operator in F. Varying x, we obtain
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the local correlation map F : M → F. Taking the push-forward measure of the volume
measure dµ = d4x of M,

ρ := F∗µ , (3.3)

gives a causal fermion system (H,F, ρ).
In order to clarify the above structures, it is useful to rewrite the scalar prod-

uct (3.1) in position space. To this end, we introduce the kernel of the fermionic
projector P (x, y) for any x, y ∈ M by

P (x, y) := −
ˆ

M̂

eip(y−x) dν(p) ∈ L(V ) . (3.4)

Using Plancherel’s theorem, the physical wave function ψû can also be expressed by

ψû(x) = −
ˆ

M

P (x, y) u(y) dµ(y) ,

where u is the ordinary Fourier transform,

u(x) :=

ˆ

M̂

d4p

(2π)4
û(p) e−ipx .

Moreover, the scalar product (3.1) can be expressed in position space as

〈û|v̂〉H = −
ˆ

M

d4x

ˆ

M

d4y ≺u(x) |P (x, y)u(y)≻ .

We now show how to get from a causal fermion system to a positive definite mea-
sure ν by a suitable symmetry reduction (for further details see again [15]).

Remark 3.3. (homogeneous causal fermion systems) Let (H,F, ρ) be a causal
fermion system. A symmetry of the causal system is a group G together with a unitary
representation U on H which leaves the measure ρ invariant, i.e.

ρ
(

Ug ΩU
−1
g

)

= ρ(Ω) for all g ∈ G and all measurable Ω ⊂ F .

Defining spacetime as usual by M := supp ρ, it follows that the representation U
leaves M invariant, i.e. UgMU−1

g =M . Moreover, the induced mapping

T : G×M →M , (g, x) 7→ Ug xU
−1
g

is an action of G on M .
We now restrict attention to a specific group: the group of translations in four-

dimensional space,

G = (R4,+) .

Moreover, we assume that the unitary representation U of G on H is strongly con-
tinuous. Then, denoting the canonical basis of R

4 by (e0, . . . , e3), the four opera-
tors Ue0 , . . . , Ue3 are unitary and mutually commute. To each one-parameter group Utei ,
we can apply Stone’s theorem to obtain a self-adjoint operator Ai with Utei = exp(itAi).
Then the resulting operators tanh(Ai) are bounded and mutually commute. The spec-
tral theorem for commuting operators gives a spectral measure E on [−1, 1]4. The
functional calculus yields a corresponding spectral measure on R

4 for the operators Ai,
i.e.

U(t,x,y,z) =

ˆ

R4

ei(p0t+p1x+p2y+p3z) dEp .
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We write this in the shorter form

Uξ =

ˆ

G∗

eipjξ
j

dEp where ξ = (t, x, y, z) . (3.5)

Note that, at this stage, we make no use of a scalar product on R
4. We can always

think of G∗ as momentum space, the dual space of the translations in position space G.
Next, we assume that the action of G on M is faithful and transitive. Then for

every x, y ∈M there is a unique ξ ∈ G such that y = Tξ x. Fixing x and varying y, we
obtain the identification M ≃ G. Moreover, we have the useful formula

y = Tξ x = Uξ xU
−1
ξ . (3.6)

Next, it is convenient to identify all the spin spaces. Recall that for every x ∈M , the
corresponding spin space (Sx,≺.|.≻x) is defined by

Sx = x(H) , ≺.|.≻x = −〈.|x.〉H
∣

∣

Sx×Sx
.

Thus the mapping Uξ gives an isomorphisms of the corresponding spin spaces,

Uξ : Sx → Sy .

Again fixing x, we obtain the identifications

Sy ≃ S := Sx given by Sy = Uξ Sx .

Using these identifications, we can simplify the formulas for the fermionic projector.
Namely,

P (x, y) := πxy : Sy → Sx

= πxy Uξ : Sx → Sx .

Using (3.6), we obtain

P (x, y) = πxUξ U
−1
ξ y Uξ = πx Uξ x .

Now we employ the spectral representation (3.5) to obtain

P (x, y) =

ˆ

G∗

eipjξ
j (

πx dEp x
)

. (3.7)

This formula resembles the Fourier representation (3.4) of the kernel of the fermionic
projector. In [5, Section 4], this formula was used as an ansatz for homogeneous
causal fermion systems. Now this ansatz has been derived by imposing the action of a
symmetry group.

We next prove that the measure −πx dEp x is a positive definite measure on G∗ with
values in L(Sx). To this end, for any u, v ∈ Sx ⊂ H and any measurable set V ⊂ G∗,

≺u |
(

− πxE(V )x
)

v≻ = 〈u |x
(

πxE(V )x
)

v〉H
= 〈u |xπx E(V )x v〉H = 〈xu |E(V )xv〉H .

Using that every projection operator is positive semi-definite, one concludes that this
measure is indeed positive definite.

Denoting the measure −πx dEp x by dν, the formula (3.7) agrees with (3.4). This
suggests that, taking this measure as the starting point, the construction leading
to (3.3) should give back our homogeneous causal fermion system. However, prov-
ing strong continuity of the resulting group representation is rather subtle. Sufficient
technical assumptions are discussed in [15]. ♦
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We finally explain the connection between the homogeneous causal action principle
and the general causal action principle for causal fermion systems as introduced for
example in [6, Section 1.1]. The Lagrangian L in (2.3) has the same form as in [6,
Section 1.1] if the vector ξ is regarded as the difference vector ξ = y−x (see also (3.4)).
The action (2.4) differs from the general causal action in that we integrate only over the
vector ξ (instead of over both x and y). This difference can be understood immediately
from the fact that, for homogeneous systems, the Lagrangian depends only on y − x.
Integrating over both x and y would give an irrelevant, but infinite prefactor. Similarly,
the trace constraint (2.5) is obtained from the general trace constraint by omitting
one spacetime integral. The dimension constraint, however, has no correspondence in
the setting of general causal fermion systems. It can be understood as replacing the
constraint that when varying a causal fermion system, the dimension of the Hilbert
space H is kept fixed. This is also the motivation for the name dimension constraint
(for more details see Remark 5.4 below). With the dimension constraint present, the
analog of the boundedness constraint can be left out. Working with the dimension
constraint also has the advantage that, just as the trace constraint, it is homogeneous
of degree one in ν(K̂). The resulting scaling freedom of minimizers may simplify the
construction of minimizers in non-compact domains of momentum space (for some
more details see Section 10).

4. Decomposition into the Sea Measure and the Particle Measure

We now explain that a positive definite measure ν on K̂ (see Definition 2.1) has a
canonical decomposition into a sum of measures which can be interpreted as describing
the particles and anti-particles. For the construction, we let ‖.‖V be an arbitrary norm
on the indefinite inner product space (V, 〈.|.〉). We let |ν| be the variation measure
of ν with respect to this norm, i.e.

|ν|(Ω) := sup
π

∑

A∈π

‖ν(A)‖V , (4.1)

where the supremum is taken over all at most countable partitions π of Ω into disjoint
ν-measurable subsets. Clearly, the measure ν is absolutely continuous with respect to
its variation measure. Therefore, we may form the Radon-Nikodym decomposition

dν(p) = A(p) d|ν|(p) with A ∈ L1
(

K̂, V ; d|ν|
)

. (4.2)

For almost all p ∈ K̂, the matrix A(p) is positive semi-definite on 〈.|.〉V in the sense
that

≺u|A(p)u≻ ≥ 0 for all u ∈ V .

Our goal is to form a spectral decomposition of the matrix A(p). In preparation,
we recall a basic result on positive operators on indefinite inner product spaces (more
details can be found in the textbooks [2, 13]). It is useful to work in a pseudo-
orthonormal basis. In this basis, the indefinite inner product can be represented as

≺.|.≻ = 〈 . , S . 〉C2n , (4.3)

where S is a diagonal matrix with entries ±1. We also refer to S as a signature
operator.

Lemma 4.1. Let A be a positive semi-definite linear operator on an indefinite inner
product space (V,≺.|.≻) of dimension 2n. Then the spectrum of A is real. Moreover, all
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the strictly positive (strictly negative) points in the spectrum correspond to eigenspaces
which are positive (respectively negative) definite.

Proof. In order to prove that the spectrum is real, we use the following perturbation
argument. For every ε > 0, the operator A+ εS is strictly positive. Therefore, we can
introduce a scalar product on V by

〈.|.〉ε := ≺ . | (A+ εS) .≻ .

Clearly, the operator A+ εS is symmetric with respect to this scalar product. Using
standard results from linear algebra, this operator is diagonalizable and has real eigen-
values. Since the eigenvalues of a matrix depend continuously on the matrix entries,
taking the limit εց 0, we conclude that also the operator A has a real spectrum.

Next, we use the spectral calculus to form an operator E+ which is symmetric,
idempotent and maps to the invariant subspaces corresponding to the strictly posi-
tive eigenvalues. This operator can be defined for example as being the identity on
all Jordan blocks corresponding to the strictly positive spectral points and being zero
otherwise. Let V+ := E+(V ) be the invariant subspace corresponding to all the strictly
positive eigenvalues. On this subspace, we introduce a positive semi-definite sesquilin-
ear form 〈.|.〉+ by

〈.|.〉+ := ≺ . |E+A .≻ .

Let us show that this sesquilinear form is even positive. To this end, let u be a non-zero
vector in V+. Since ≺.|.≻ is non-degenerate, there is a vector w ∈ V with ≺u |w≻ 6= 0.
Using that A is invariant on V+ and invertible, there is v ∈ V+ with Av = E+w. Then

〈u | v〉+ = ≺u |E+Av≻ = ≺u |E+w≻ = ≺u |w≻ 6= 0 ,

showing that 〈.|.〉+ is indeed a scalar product.
The operator E+A|V+

is symmetric with respect to the scalar product 〈.|.〉+. Hence
it can be diagonalized.

Repeating this argument on the invariant subspace V− corresponding to all the
strictly negative eigenvalues, we conclude that A is diagonalizable also on this invariant
subspace. It remains to show that these eigenspaces are definite. To this end, let u ∈
V+ ∪ V− be an eigenvector, i.e. Au = λu and u 6= 0. Then

0 < ≺u|Au≻ = λ≺u|u≻ .

Therefore, the eigenspaces corresponding to the strictly positive (strictly negative)
eigenvalues are indeed positive (respectively negative) definite. �

We note for clarity that the point zero in the spectrum in general does not correspond
to an eigenspace of a positive semi-definite operator. A simple counter example is to
choose n = 1 and

S =

(

1 0
0 −1

)

and A =

(

1 1
−1 −1

)

.

The matrix A is positive semi-definite on V , but it is nilpotent and not diagonalizable.
Applying Lemma 4.1 to the operator A(p) in (4.1), we obtain a decomposition

A(p) = A+(p) +A0(p) +A−(p) ,

where A± are the restrictions to the strictly positive respectively negative spectral
subspaces, and A0 is the restriction to the invariant subspace corresponding to the
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spectral point zero. The resulting decomposition of the measure ν is denoted by

ν = ν+ + ν0 + ν− . (4.4)

Note that this decomposition is independent of the choice of the norm ‖.‖V . Indeed,
choosing a different norm changes A(p) only by constant, which drops out when mul-
tiplying by d|ν|(p).
Definition 4.2. The measure ν+ in (4.4) is referred to as the particle measure.
Likewise, ν− is the sea measure, and ν0 is the neutral measure.

We finally explain these notions in the example of Dirac spinors mentioned in the
introduction. For the measure (1.4), the Radon-Nikodym decomposition gives (up to
an irrelevant constant depending on p) the matrix

A(p) = −(/p+m) .

Clearly, this matrix is positive semi-definite. The computation
(

− (/p+m)
)2

= p2 + 2m/p+m2 = −2m
(

− (/p+m)
)

(where we used that /p/p = p211 = m211) shows that the eigenvalues of the matrix A(p)
are negative. Moreover, in agreement with the general statement of Lemma 4.1, its
image is negative definite. Thus (1.4) is a sea measure. This is consistent with the
fact that this measure describes the so-called Dirac sea (for the physical concept of
the Dirac sea see for example [6, Section 1.2] or [9, Sections 1.5 and 5.8]). In order to
describe particles, one needs to occupy states on the upper mass shell by choosing

A(p) ∼ /p+m with p2 = m2 and p0 > 0 ,

giving rise to a particle measure. The neutral measure can be thought of as a degen-
erate case where the sea and particle subspaces have a non-trivial intersection. In a
physical example, this happens for massless Dirac particles, because in this case

A(p) ∼ /p and p2 = 0 .

Thus the matrix A(p) is nilpotent, giving rise to a neutral measure.
It is quite remarkable that already the abstract setup of the homogeneous causal

action principle incorporates a general notion of particles and anti-particles.

5. Compactness and Existence of Minimizers

The existence of minimizers was first proven in [5, Section 4] in a slightly different
setting (in particular, the dimension constraint was replaced by a variant of what is
now referred to as the boundedness constraint). More recently, existence and com-
pactness properties were established in [18]. Here we give a short review, keeping the
presentation as simple as possible by restricting attention to the methods and results
needed later on. We begin with a general compactness statement.

Theorem 5.1. (compactness) Let (νk)k∈N be a sequence of positive definite measures

on the compact subset K̂ ⊂ M̂ each of which satisfies the constraints (2.5) and (2.6).
Then there is a sequence of unitary transformations (Uk)k∈N on the indefinite inner
product space (V,≺.|.≻) such that a subsequence νkj of the unitarily transformed mea-
sures converge weakly (i.e. in the weak*-topology) to a positive definite measure ν,
i.e.

Ukj νkj U
∗
kj → ν .
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The limit measure ν again satisfies the constraints (2.5) and (2.6). Moreover, the
action and the boundedness constraint are lower semi-continuous,

S(ν) ≤ lim inf
k→∞

S
(

νk
)

and T (ν) ≤ lim inf
k→∞

T
(

νk
)

.

Proof. The method of proof is similar to that of [5, Theorem 4.2(I)]. We let ‖.‖V be
an arbitrarily chosen norm on V . Applying the perturbation argument in the proof of
Lemma 4.1, the operator ν(K̂) + εS is diagonalizable for any ε > 0. Therefore ν(K̂)
is diagonalizable up to an arbitrarily small error term. More precisely, we may choose
a pseudo-orthonormal basis of (V,≺.|.≻) and unitary operators Uk such that

Uk νk(K̂)U∗
k = diag

(

α
(k)
1 , . . . , α

(k)
2n

)

+∆Bn , (5.1)

where the α
(k)
ℓ are the eigenvalues of νk(K̂) and

‖∆Bk‖V ≤ 1

k
for all k ∈ N

(for more details see [5, Lemma 4.4] or [4, proof of Lemma 4.2]). The dimension con-
straint (2.6) gives uniform bounds for the diagonal matrix in (5.1). We conclude that
the operators on the left side of (5.1) are bounded uniformly in k. As a consequence,
for every u ∈ V , the positive definite measures d≺u|νku≻ are uniformly bounded.
Therefore, we can apply the Banach-Alaoglu theorem and the Riesz representation
theorem to conclude that a subsequence converges in the weak*-topology to a positive
definite measure d≺u|νu≻. Since the vector space V is finite-dimensional, choosing in-
ductive subsequences, one can arrange that the positive definite measures νkℓ converge
to a positive definite measure ν.

The convergence as positive definite measures ensures that the constraints (2.5)
and (2.6) also hold for the limit measure ν. The lower semi-continuity of the func-
tionals S and T is an immediate consequence of Fatou’s lemma for sequences of mea-
sures. �

Clearly, this compactness result also establishes the existence of minimizers. We
now state and prove the existence results needed here. We again choose a pseudo-
orthonormal basis (ei)i=1,...,2n of V , where the indefinite inner product takes the
form (4.3).

Lemma 5.2. The dimension constraint is bounded from above by

2n
∑

ℓ=1

∣

∣αℓ

∣

∣ ≤ Tr
(

S ν(K̂)
)

. (5.2)

Proof. Similarly to (5.1), we can diagonalize ν(K̂) up to an arbitrarily small error

term. More precisely, given ε > 0, we can diagonalize the matrix ν(K̂) + εS, i.e.

ν(K̂) + εS = UDU−1 , (5.3)

where D ∈ L(V ) is diagonal and U is unitary on (V,≺.|.≻). Since the eigenvalues
depend continuously on ε, we conclude that for any δ > 0 there is ε > 0 such that

2n
∑

ℓ=1

∣

∣αℓ

∣

∣ ≤ Tr(SD) + δ .
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Next, we use (5.3) to obtain

Tr
(

S ν(K̂)
)

= Tr
(

S (ν(K̂) + εS)
)

− 2nε = Tr
(

U−1SU D
)

− 2nε .

The unitarity of U can be written as

U−1 = SU †S ,

giving the identity
Tr
(

S ν(K̂)
)

= Tr
(

U †U DS
)

− 2nε . (5.4)

For every basis vector ei,

〈ei, U †Uei〉C2n = 〈Uei, Uei〉C2n ≥
∣

∣≺Uei |Uei≻
∣

∣ =
∣

∣≺ei | ei≻
∣

∣ = 1 .

Hence

Tr
(

U †U DS
)

≥ Tr
(

DS
)

= Tr
(

SD
)

≥
2n
∑

ℓ=1

∣

∣αℓ

∣

∣− δ . (5.5)

Combining (5.4) with (5.5), we conclude that

Tr
(

S ν(K̂)
)

≥
2n
∑

ℓ=1

∣

∣αℓ

∣

∣− δ − 2nε .

Since δ and ε can be chosen arbitrarily small, the result follows. �

Theorem 5.3. Assume that 0 < c < f . Let (νk)k∈N be a sequence of positive definite

measures on the compact subset K̂ ⊂ M̂, which is a minimizing sequence of the homo-
geneous causal action (2.4) and respects the trace constraint (2.5) as well as the dimen-
sion constraint (2.6). Then there is a sequence of unitary transformations (Uk)k∈N on
the indefinite inner product space (V,≺.|.≻) such that a subsequence νkj of the unitarily
transformed measures converge in the weak*-topology to a positive definite measure ν,

Ukj νkj U
∗
kj → ν . (5.6)

The limit measure ν is a minimizer of the causal action principle under the trace
constraint as well as the dimension constraint replaced by the

modified dimension constraint: Tr
(

S ν(K̂)
)

≤ f . (5.7)

Proof. As in the proof of Theorem 5.1, we diagonalize νk(K̂) up to an error of the

order 1/k. Then the limit measure ν has the property that ν(K̂) is diagonal and thus

2n
∑

ℓ=1

∣

∣αℓ

∣

∣ = Tr
(

S ν(K̂)
)

. (5.8)

In view of (5.2), the inequality (5.7) is stronger than (2.6). Therefore, ν remains a
minimizer if we replace the dimension constraint (2.6) by the constraint (5.7). �

We conclude with two remarks. First, we point out that the signature operator S
in the modified dimension constraint can be chosen arbitrarily, because the freedom
in choosing S can be absorbed into the unitary operators Uk in (5.6). On the other
hand, starting from a given minimizing measure ν, one obtains the corresponding
signature operator S satisfying (5.7) by choosing a pseudo-orthonormal basis which

diagonalizes ν(K̂) (such a pseudo-orthonormal basis exists in view of (5.8)). For this
choice of S, the modified dimension constraint (5.7) coincides with the dimension
constraint (2.6). We finally clarify the structure of the modified dimension constraint:
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Remark 5.4. (The modified dimension constraint) Using (2.2) in (5.7), the
modified dimension constraint can be written as

− Tr
(

S P (0)
)

≤ f . (5.9)

For a Dirac sea configuration (1.1) and its spherically symmetric regularizations,
the operator S coincides with the Dirac matrix γ0. Then the left side of (5.9) be-
comes −Tr(γ0P (x, x)), having the interpretation as the total charge density at the
spacetime point x (including the states of the Dirac sea). For homogeneous systems,
this charge density coincides, up to a multiplicative constant, with the total charge.
More precisely, this multiplicative constant is the total spatial volume of the system.
It could be infinite, in which case one needs to take a suitable infinite volume limit.
For our purposes, it suffices to consider the total spatial volume as an irrelevant con-
stant prefactor, making it possible to identify the charge density with the total charge.
Using that every Dirac particle of a given Dirac sea has the same electric charge, the
total charge coincides (again up to an irrelevant constant) with the number of occupied
states, which corresponds to the dimension of the Hilbert space H. In this way, one
gets a more direct connection between the dimension constraint and the dimension
of H. ♦

6. First Variations of the Homogeneous Causal Action

We now consider first variations of the homogeneous causal action. To this end,
we consider a variation (ν̃τ )τ∈[0,τmax) with τmax > 0 of the measure ν in the class of

positive definite measures on K̂, i.e.

(i) ν̃0 = ν

(ii) For every τ ∈ [0, τmax), ν̃τ is a positive definite measure on K̂ (see Definition 2.1).

First variations of the causal Lagrangian were computed in [6, §1.4.1]. Under the
assumption that the Lagrangian is differentiable in the direction of the variation, it
was shown that (see [eq. (1.4.16) and eq. (1.4.17)][6])

δL(ξ) = 2 ReTr
(

Q(−ξ) δP (ξ)
)

, (6.1)

where Tr denotes the trace on V , and Q(x, y) : V → V is a kernel which is symmetric
in the sense that

Q(ξ)∗ = Q(−ξ) . (6.2)

Integrating over ξ gives the variation of the homogeneous causal action (2.4). Before
going on, we point out that the causal Lagrangian (2.3) in general is not differentiable.
Therefore, the formula (6.1) poses an implicit condition on the admissible class of vari-
ations. Alternatively, one can proceed by approximating the causal Lagrangian (2.3)
by smooth Lagrangians (for example obtained by mollification) and take the limit of
the resulting EL equations when the mollifier is removed (see also the discussion in
Section 10).

For our purposes, it is most convenient to rewrite the first variation of the action in
momentum space:

Proposition 6.1. Assume that the kernel Q(ξ) defined by (6.1) is integrable,

Q ∈ L1(M, dν) . (6.3)



16 F. FINSTER, M. FRANKL, AND C. LANGER

Then the first variation of the homogeneous causal action is given by

δS :=
d

dτ
S
(

ν̃τ
)
∣

∣

τ=0
= 2

d

dτ

ˆ

K̂
Tr
(

Q̂(p) dν̃τ (p)
)

∣

∣

∣

∣

τ=0

(6.4)

with

Q̂(p) :=

ˆ

M

Q(ξ) e−ipξ dµ(ξ) ∈ C0(M̂,L(V )) .

Proof. Using (2.2) in (6.1), we obtain

δL(ξ) = 2 Re

ˆ

K̂
e−ipξ Tr

(

Q(−ξ) dδν(p)
)

.

Integrating over ξ gives

δS = 2 Re

ˆ

M

dµ(ξ)

ˆ

K̂
e−ipξ Tr

(

Q(−ξ) dδν(p)
)

.

Using that Q is integrable, we may interchange the integrals to obtain

δS = 2 Re

ˆ

K̂
Tr
(

Q̂(p) dδν(p)
)

. (6.5)

The symmetry of the kernel Q, (6.2), implies that its Fourier transform is symmetric
(with respect to the inner product ≺.|.≻), i.e.

Q̂(p)∗ = Q̂(p) . (6.6)

Therefore, we may leave out the real part in (6.5), giving (6.4).

It remains to show that Q̂(p) is continuous. To this end, we estimate the difference
of Fourier integrals by

∥

∥Q̂(p′)− Q̂(p)
∥

∥

L(V )
≤
ˆ

M

‖Q(ξ)‖L(V )

∣

∣e−ip′ξ − e−ipξ
∣

∣ dµ(ξ)

Clearly, in the limit p′ → p the integrand converges to zero pointwise. Moreover, the
integrand is dominated by the integrable function 2 ‖Q(ξ)‖L(V ) ∈ L1(M). Therefore,
Lebesgue’s dominated convergence yields

lim
p′→p

∥

∥Q̂(p)− Q̂(p′)
∥

∥

L(V )
= 0 .

This concludes the proof. �

7. Reformulation in Terms of Measures on Q ⊂ Symm(V )

The remaining difficulty is that the first variations as computed in Proposition 6.1
must satisfy all the constraints. Due to this difficulty, it is not obvious what the vari-
ational formula in Proposition 6.1 tells us about Q̂(p). Before entering the detailed
analysis of this problem, in this section we simplify the variational formula (6.4). The

idea is to introduce q := Q̂(p) as a new integration variable. This has the advan-
tage that the integrand becomes particularly simple. This reformulation also has the
major advantage that it makes it possible to generalize our methods to situations in
which Q̂(p) is no longer continuous.

We denote the symmetric linear operators on V by Symm(V ) ⊂ L(V ), where “sym-
metric” refers to the inner product ≺.|.≻, i.e. to the condition

≺Au|v≻ = ≺u|Av≻ for all u, v ∈ V .
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In the proof of Proposition 6.1 we saw that Q̂(p) is symmetric, (6.6). We thus obtain
the continuous mapping

Q̂ ∈ C0
(

K̂,Symm(V )
)

.

Clearly, the image of this mapping is again compact; we denote it by

Q := Q̂
(

K̂
)

⊂ Symm(V ) compact .

We let µ be the push-forward of ν under the mapping Q̂. It is a positive definite
measure supported on Q,

µ := Q̂∗ν , suppµ ⊂ Q .

Moreover, by definition of the push-forward measure,
ˆ

K̂
Tr
(

Q̂(p) dν(p)
)

=

ˆ

Q
Tr
(

q dµ(q)
)

.

Therefore, Proposition 6.1 can be rephrased in terms of µ as follows.

Proposition 7.1. Assume that the kernel Q(ξ) is integrable, (6.3). Then the first
variation of the homogeneous causal action is given by

δS = 2
d

dτ

ˆ

Q
Tr
(

q dµ̃τ (q)
)

∣

∣

∣

∣

τ=0

.

Moreover, again by definition of the push-forward measure, we know that

µ(Q) = ν(K̂) ,

making it possible to formulate also the trace constraint (2.5) and the modified dimen-
sion constraint (5.7) in terms of µ by

Tr
(

µ(Q)
)

= c and Tr
(

S µ(Q)
)

≤ f . (7.1)

8. The Euler-Lagrange Equations

8.1. Treating the Scalar Constraints. The main difficulty in the derivation of
the Euler-Lagrange equations are the constraints. Apart from the trace and modified
dimension constraints (2.5) and (7.1), the measure ν must be positive definite (see Def-
inition 2.1), which can be understood as an infinite number of inequality constraints.
In view of these inequality constraints, the Lagrange multiplier method cannot be used
directly. Instead, our strategy is to satisfy the constraints (7.1) explicitly by variations
within the class of positive definite measures. For ease in notation, we refer to the
trace constraint and the modified dimension constraint as the scalar constraints. We
again work in the basis where S is diagonal and use the block matrix notation

S =

(

11 0
0 −11

)

.

For s1, s2 ∈ (−1, 1) we consider the family of measures

µs1,s2 :=

(

(1 + s1)11 0
0 (1 + s2)11

)

µ

(

(1 + s1)11 0
0 (1 + s2)11

)

. (8.1)
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Since we multiply from the left and right by a symmetric operator on (V,≺.|.≻), this
family of measures is again positive definite. The first variation of the scalar constraints
is computed by

∂

∂s1
Tr
(

S µs1,s2(Q)
)∣

∣

s1=s2=0
=

∂

∂s1
Tr
(

µs1,s2(Q)
)∣

∣

s1=s2=0
= Tr

(

S µ(Q)
)

+ c (8.2)

∂

∂s2
Tr
(

S µs1,s2(Q)
)∣

∣

s1=s2=0
= − ∂

∂s2
Tr
(

µs1,s2(Q)
)∣

∣

s1=s2=0
= Tr

(

S µ(Q)
)

− c . (8.3)

We now distinguish the following cases:

(a) c ≤ Tr
(

S µ(Q)
)

< f :

In this case, the dimension constraint can be disregarded. In order to satisfy the
trace constraint, it suffices to consider rescalings, i.e. variations of the form (8.1)
with s1 = s2.

(b) Tr
(

S µ(Q)
)

= f :

Since we assume c < f throughout this paper, it follows that

c = Tr
(

µ(Q)
)

< Tr
(

S µ(Q)
)

= f .

Therefore, we can preserve both equations Tr
(

µ(Q)
)

= c and Tr
(

S µ(Q)
)

= f in
the variation by choosing s1 and s2 appropriately.

8.2. Variations Changing the Support. An operator A ∈ Symm(V ) is said to be
positive semi-definite if

≺u|Au≻ ≥ 0 for all u ∈ V .

We denote the set of all positive semi-definite operators by Symm+(V ). We let q ∈ Q
and choose an arbitrary positive semi-definite operator A ∈ Symm+(V ). We consider
the variation (µ̃τ )τ∈[0,1) with

µ̃τ = µs1,s2 + τ A δq

with µs1,s2 as in (8.1), where s1 and s2 are linear functions in τ ,

s1 = κ1 τ , s1 = κ2 τ . (8.4)

Note that q does not need to be in the support of µ, in which case the support of
the measure changes in the variation. Using (8.2) and (8.3), the first variations of the
constraints are computed by

d

dτ
Tr
(

µ̃τ (Q)
)∣

∣

τ=0
=
(

κ1
∂

∂s1
+ κ2

∂

∂s2

)

Tr
(

µs1,s2(Q)
)∣

∣

s1=s2=0
+Tr(A)

= (κ1 + κ2) c+ (κ1 − κ2) Tr
(

S µs1,s2(Q)
)

+Tr(A)

d

dτ
Tr
(

S µ̃τ (Q)
)∣

∣

τ=0
=
(

κ1
∂

∂s1
+ κ2

∂

∂s2

)

Tr
(

S µs1,s2(Q)
)∣

∣

s1=s2=0
+Tr(SA)

= (κ1 + κ2) Tr
(

S µs1,s2(Q)
)

+ (κ1 − κ2) c+Tr(SA) .

Our strategy is to choose the parameters κ1 and κ2 such that the constraints are
preserved in first variations. More precisely, in case (a) on page 18, we only need to
satisfy the trace constraint. This can be arranged by choosing

κ1 = κ2 = − 1

2c
Tr(A) . (8.5)
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In case (b) on page 18, on the other hand, we need to arrange that both scalar
constraints are preserved in first variations. To this end, we choose

κ1 = −Tr(SA) + Tr(A)

f + c
, κ2 = −Tr(SA) + Tr(A)

f − c
. (8.6)

We remark that, having satisfied the constraints for first variations, they can also be
satisfied nonlinearly for small τ by employing the implicit function theorem.

Having satisfied the scalar constraints, the homogeneous action is minimal under
first variations of µ̃τ . A short computation yields

0 ≥ d

dτ

ˆ

Q
Tr
(

q̃ dµ̃τ (q̃)
)

∣

∣

∣

∣

τ=0

=
(

κ1
∂

∂s1
+ κ2

∂

∂s2

)

ˆ

Q
Tr
(

q̃ dµs1,s2(q̃)
)

+Tr(qA)

= (κ1 + κ2)

ˆ

Q
Tr
(

q̃ dµ(q̃)
)

+ (κ1 − κ2)

ˆ

Q
Tr
(1

2
{q̃, S} dµ(q̃)

)

+Tr(qA) .

Using the above form of the parameters κ1 and κ2, we obtain the following result:

Lemma 8.1. Let ν be a positive definite measure on K̂ which is minimizer of the
homogeneous causal action principle under the trace constraint (2.5) and the modified

dimension constraint (5.7). Moreover, let µ = Q̂∗ν be the corresponding measure
on Q ⊂ Symm(V ). Then, for a suitable choice of Lagrange parameters α, β ∈ R, the
following variational inequality holds,

Tr
(

(q − α 11 − β S)A
)

≥ 0 for all q ∈ Q and A ∈ Symm+(V ) .

More precisely, in case (a) on page 18, the Lagrange parameters are given by

α =
1

c

ˆ

Q
Tr
(

q̃ dµ(q̃)
)

, β = 0 , (8.7)

whereas in case (b) on page 18 they are given by

α =
1

f2 − c2

(

f

ˆ

Q
Tr
(1

2
{q̃, S} dµ(q̃)

)

− c

ˆ

Q
Tr
(

q̃ dµ(q̃)
)

)

, (8.8)

β =
1

f2 − c2

(

f

ˆ

Q
Tr
(

q̃ dµ(q̃)
)

− c

ˆ

Q
Tr
(1

2
{q̃, S} dµ(q̃)

)

)

. (8.9)

8.3. Variations With Fixed Support. Let q ∈ Q and U ⊂ Symm(V ) an open
neighborhood of q. We consider the variation (µ̃τ )τ∈(−1,1) with

µ̃τ = µs1,s2 + τ χUµ .

In order to satisfy the scalar constraints, we choose s1 and s2 again as in (8.4) with κ1
and κ2 again according to (8.5) or (8.6), however with the obvious replacement

A→ µ(U) .

We point out that, in contrast to the variations in the previous section, now we may
choose τ negative, giving rise to a variational equality. Similar as explained at the
beginning of Section 4, we form the Radon-Nikodym decomposition

dµ(q) = A(q) d|µ|(q) with A(q) ∈ Symm+(V ) , (8.10)

where the absolute value again denotes the variation measure (4.1).
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Lemma 8.2. Under the assumptions of Lemma 8.1 and for the same values of the
Lagrange parameters α, β ∈ R, the matrix A(q) in the Radon-Nikodym representa-
tion (8.10) has the property

Tr
(

(q − α 11− β S)A(q)
)

= 0 for almost all q ∈ suppµ .

Proof. We have

0 =
d

dτ

(
ˆ

Q
Tr
(

q dµ̃τ (q)
)

− αTr
(

µ̃τ (Q)
)

− β Tr
(

Sµ̃τ (Q)
)

)∣

∣

∣

∣

τ=0

=

ˆ

U
Tr
(

q dµ(q)
)

+Tr
(

− αµ(U)− β Sµ(U)
)

.

Using the Radon-Nikodym decomposition (8.10), we obtain

0 =

ˆ

U
Tr
(

(q − α 11− β S)A(q)
)

d|µ|(q) .

Since U is arbitrary, the result follows. �

8.4. Statement of the Euler-Lagrange Equations. The Euler-Lagrange equations
are obtained by combining the inequality in Lemma 8.1 with the equality in Lemma 8.2.
The only shortcoming is that these lemmas make a statement only on the trace of the
operator product (q − α11 − βS)A(q). In order to get corresponding statements for
the operator product itself, we can use the following variant of the Cauchy-Schwarz
inequality.

Lemma 8.3. For every B ∈ Symm(V ), the following statement holds:

Tr(AB) ≥ 0 for all A ∈ Symm+(V ) ⇐⇒ B ∈ Symm+(V ) .

Moreover, for any A,B ∈ Symm+(V ),

Tr(AB) = 0 =⇒ AB = 0 .

Proof. In order to relate the statements to elementary results in linear algebra, it is con-
venient to again work in a pseudo-orthonormal basis where the indefinite inner product
is represented according to (4.3). Then A is symmetric on V if and only if SA is a Her-
mitian matrix. Likewise, A is positive on V if and only if SA is a positive semi-definite
matrix. Similarly B is symmetric and positive on V if and only if BS is a Hermitian
and positive semi-definite matrix, respectively. Using that Tr(AB) = Tr((SA)(BS)),
the claim follows immediately from corresponding statements for symmetric and pos-
itive matrices. �

Combining this lemma with the statements of Lemmas 8.1 and 8.2 gives the following
result.

Lemma 8.4. Let ν be a positive definite measure on K̂ which is a minimizer of the
homogeneous causal action principle under the trace constraint (2.5) and the modified

dimension constraint (5.7). Moreover, let µ = Q̂∗ν be the corresponding measure
on Q ⊂ Symm(V ). Then, for the Lagrange parameters α and β given by (8.7) or (8.8)
and (8.9) the following statements hold:

(i) For every q ∈ Q, the operator q − α11 − βS is positive semi-definite on V .
(ii) The matrix A(q) in the Radon-Nikodym representation (8.10) has the property

(q − α 11− β S)A(q) = 0 for almost all q ∈ suppµ .
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Our main theorem is obtained by rewriting the last result in terms of the minimizing
measure ν.

Theorem 8.5. Let ν be a positive definite measure on K̂ which is minimizer of the
homogeneous causal action principle under the trace constraint (2.5) and the modified

dimension constraint (5.7). Moreover, let µ = Q̂∗ν be the corresponding measure
on Q ⊂ Symm(V ). Then, for the Lagrange parameters α and β given by (8.7) or (8.8)
and (8.9) the following statements hold:

(i) For every p ∈ K̂, the operator Q̂(p)− α11 − βS is positive semi-definite on V .
(ii) The following measures vanish,

(

Q̂(p)− α 11− β S
)

dν(p) = 0 = dν(p)
(

Q̂(p)− α 11− β S
)

.

We finally formulate the EL equations in terms of a minimality property on the
support.

Corollary 8.6. For any p ∈ K̂, we define

g(p) := inf
{

λ ≥ 0
∣

∣Q̂(p)−α 11−β S−ν is positive semi-definite for all ν with |ν| ≤ λ
}

.

Then

g|supp ν ≡ inf
p∈K̂

g(p) = 0 .

Applying Lemma 4.1, the function g(p) can also be understood as the maximal size of
the interval [−λ, λ] with the properties that

(−λ, λ) ∩ σ
(

Q̂(p)− α 11− β S
)

= ∅ ,

and that all spectral points strictly larger than λ (strictly smaller than −λ) correspond
to positive definite (respectively negative definite) eigenspaces.

8.5. An Inequality for the Lagrange Parameters. In our method for treating the
scalar constraints introduced in Section 8.1 we arranged that the functionals in these
constraints were constant. In the case Tr(S µ(Q)) < f , we only took into account the
trace constraint, whereas in the case Tr(S µ(Q)) = f we arranged that both Tr(µ(Q))
and Tr(S µ(Q)) were kept fixed. The latter procedure does not take into account that
the dimension constraint is an inequality constraint. Thus, in the case Tr(S µ(Q)) = f
it is possible to consider variations which decrease Tr(S µ(Q)). Such variations reveal
that the Lagrange parameter β is always non-positive:

Proposition 8.7. Under the assumptions of Theorem 8.5, the Lagrange multiplier β
is always non-negative,

β ≤ 0 . (8.11)

Proof. In case (a) on page 18, the inequality (8.11) holds simply because the param-
eter β vanishes. Therefore, it remains to consider case (b) on page 18, i.e.

Tr
(

S µ(Q)
)

= f , (8.12)

We consider the variation

µ̃τ = µs1,s2

with µs1,s2 as in (8.1) and the parameters s1 and s2 given by

s1 = −τ
(

Tr
(

S µ(Q)
)

− c
)

, s2 = −τ
(

Tr
(

S µ(Q)
)

+ c
)

.
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This variation is admissible for sufficiently small τ ≥ 0, because the trace constraint
is respected, whereas the dimension constraint is decreased,

d

dτ
Tr
(

µ̃τ (Q)
)∣

∣

τ=0
= 0

d

dτ
Tr
(

S µ̃τ (Q)
)
∣

∣

τ=0
= −2

(

Tr
(

S µ(Q)
)2 − c2

)

= −2
(

f2 − c2
)

< 0

(in the last line we used (8.12) and (2.7)). Moreover,

0 ≤ d

dτ

ˆ

Q
Tr
(

q dµ̃τ (q)
)∣

∣

∣

τ=0

= −2f

ˆ

Q
Tr
(

q dµ(q)
)

+ c

ˆ

Q
Tr
(

{q S} dµ(q)
)

.

Using that
(

q − α 11− β S
)

dµ(q) = 0 ,

we conclude that

0 ≤ −2f

ˆ

Q
Tr
(

(α 11 + β S) dµ(q)
)

+ 2c

ˆ

Q
Tr
(

(αS + β) dµ(q)
)

= −2f
(

αc + βf
)

+ 2c
(

αf + βc
)

= −2β
(

f2 − c2
)

.

Since (f2 − c2) > 0, it follows that β ≤ 0. �

9. A Method for Computing the Lagrange Parameters

In the previous computations, the Lagrange parameters α and β were determined
by arranging the scalar constraints by a suitable variation of the measure (see the
variation (8.1) as well as (8.7) and (8.8), (8.9)).

We now explain that the Lagrange parameters are even determined “pointwise” in
the following sense:

Proposition 9.1. Let ν be a minimizing measure and p ∈ supp ν. We let A = A(p)
be the operator in the Radon-Nikodym decomposition (4.2). Assume that the strict
inequality

∣

∣Tr
(

A(p)
)∣

∣ < Tr
(

SA(p)
)

(9.1)

holds. Then the Lagrange parameters α and β in the statement of Theorem 8.5 are
uniquely determined by demanding that the conditions (i) and (ii) in this theorem hold
at p.

The proof of this proposition will be based on a variational principle which will be
introduced and studied in the next section. The proof will be completed at the end of
Section 9.1.

9.1. A Pointwise Variational Principle. For the proof of Proposition 9.1, we shall
set up and solve a variational principle defined pointwise at q := Q̂(p). This varia-
tional principle will also shed some light on the possible form of the operator A(p).
More generally, given q ∈ Symm(V ) and parameters a, b ∈ R, we consider the follow-
ing pointwise variational principle: It is convenient to work in a pseudo-orthonormal
basis (ei)i=1,...,2n of V . In this basis, the indefinite inner product can be represented
again in the form (4.3), where S is a diagonal matrix with entries ±1. We now

minimize Tr(qA) (9.2)
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under variations of A ∈ Symm+(V ) in the class of all positive semi-definite operators,
subject to the constraints

Tr(A) = a and Tr(SA) = b . (9.3)

Lemma 9.2. Given q ∈ Symm(V ), assume that a and b are in the range

|a| ≤ b . (9.4)

Then the variational problem (9.2) under the constraints (9.3) has a minimizer. This
minimizer has the property that for suitable α, β ∈ R,

A
(

q − α 11− β S
)

= 0 . (9.5)

Proof. In order to parametrize the positive semi-definite operators on V , it is most
convenient to write A as

A = SM †M , (9.6)

where M ∈ L(C2n) is any 2n × 2n-matrix, and the dagger denotes its Hermitian
conjugate (here we make use of the fact that SA is a positive semi-definite matrix,
making it possible to take its square root). Then the auxiliary variational principle
becomes

minimize Tr
(

q SM †M
)

, (9.7)

where we vary M ∈ L(C2n) under the only constraints

Tr
(

SM †M
)

= a and Tr
(

M †M
)

= b . (9.8)

Moreover, applying the Cauchy-Schwarz inequality
∣

∣Tr
(

SM †M
)
∣

∣ ≤ ‖S‖ Tr
(

M †M
)

≤ b , (9.9)

the left equation in (9.8) can be satisfied if and only if |a| ≤ b. We thus obtain
the admissible parameter range (9.4). For any admissible parameter values, the right
equation in (9.8) shows that M may be varied only inside a compact set. Therefore,
minima exist by continuity.

Let M be a minimizer. The corresponding EL equations can be obtained with the
help of the Lagrange multiplier rule. We first apply it naively and justify it afterward.
Adding multiples of the constraints to the first variation gives

0 = δTr
(

q SM †M
)

− α δTr
(

SM †M
)

− β δTr
(

M †M
)

= 2Re
(

Tr
(

(δM)†M q S
)

− α δTr
(

(δM †)M S
)

− β δTr
(

(δM †)M
)

)

(here we used that the matrix qS is Hermitian, because q ∈ Symm(V ) and (qS)† =
Sq† = SSq∗S = qS). Since δM can be chosen as an arbitrary (2n × 2n)-matrix, it
follows that

M q S − αMS − βM = 0 . (9.10)

Multiplying from the left by SM † and using (9.6) gives

Aq S − αAS − β A = 0 .

Finally, we multiply from the right by S to obtain (9.5).
It remains to justify the Lagrange multiplier method. Computing the first variations

of the constraints

δTr
(

M †M
)

= 2ReTr
(

(δM)†M
)

δTr
(

SM †M
)

= 2ReTr
(

(δM)†MS
)

,
(9.11)
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one sees that the constraints are regular unless M is a multiple of MS. Multiplying
the equation M = κMS by S, one sees that κ = ±1, so that

M = ±MS . (9.12)

Using this equation in (9.8), it follows that b = ±a. If b = a = 0, then M = 0 is the
trivial minimizer. In this case, also (9.5) holds trivially with A = 0. In the remaining
case b = ±a > 0, the inequality in (9.9) becomes an equality. This means that all
matrices satisfying the constraints (9.3) also satisfy the relation (9.12). Therefore,
the two constraints in (9.3) are multiples of each other. Thus we may drop the first
constraint. The remaining second constraint is regular, making it possible to apply
the Lagrange multiplier method. This gives (9.5) with α = 0. �

Lemma 9.3. The operator q − α11 − β S in (9.5) is positive semi-definite.

Proof. We again work in the pseudo-orthonormal basis of V where the indefinite inner
product has the representation (4.3). Then the claim is equivalent to the statement
that the matrix

N := q S − αS − β 11

is positive semi-definite on (C2n, 〈., .〉C2n ).
This statement is proved as follows. Noting that the variational principle considered

in the proof of Lemma 9.2 involves onlyM †M (see (9.7) and (9.8)), we can chooseM =√
M †M . For notational convenience, we unitarily transform C

2n such that this matrix
is diagonal. Using a block matrix notation in the image of M and its orthogonal
complement, we obtain

M =

(

X 0
0 0

)

,

where the matrix X is positive definite. With this notation, the identity (9.10) means
that N has the form

N =

(

0 0
0 Y

)

. (9.13)

We now vary M according to

M̃τ =M + τ eiϕ
(

0 D
D† 0

)

+
τ2

2

(

X−1E 0
0 0

)

.

As a consequence,

M̃ †
τ M̃τ =

(

X2 0
0 0

)

+ τ

(

0 eiϕXD
e−iϕD†X 0

)

+ τ2
(

DD† + E 0
0 D†D

)

.

Under this variation, the constraints (9.8) behave as follows,

Tr
(

S M̃ †
τ M̃τ

)

= a+ 2τ ReTr

{

eiϕ S

(

0 XD
0 0

)}

+ τ2Tr

{

S

(

DD† + E 0
0 D†D

)}

Tr
(

M̃ †
τ M̃τ

)

= b+ τ2Tr

(

DD† + E 0
0 D†D

)

.

We now choose the phase ϕ such that the linear term in τ vanishes. Moreover, we
choose E in such a way that the quadratic contributions in τ vanish (this can be done
in all cases as explained in the proof of Lemma 9.2 after (9.11)).
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We have thus arranged that the variation satisfies the constraints. Computing the
second variation of (9.7) gives

0 ≥ d

dτ2
Tr
(

q SM †M
)
∣

∣

τ=0
=

d

dτ2
Tr
(

N M †M
)
∣

∣

τ=0

= 2Tr

{

N

(

DD† + E 0
0 D†D

)}

= 2Tr
{

Y D†D
}

,

where in the last step we employed (9.13). Since D is arbitrary, we conclude that Y
and therefore also N are positive semi-definite. �

The result of this lemma can be understood in two ways, as a statement either on
symmetric operators on the indefinite inner product space (V,≺.|.≻) or on Hermit-
ian matrices on C

2n. We explain these different points of view after each other. A
positive semi-definite operator on an indefinite inner product space has a real spec-
trum (see Lemma 4.1). Moreover, the negative eigenvalues correspond to negative
definite eigenspaces, whereas the positive eigenvalues correspond to positive definite
eigenspaces (see again Lemma 4.1 or [13]). Interpreting the parameter α as the eigen-
value of the operator q − βS, we obtain the following result.

Lemma 9.4. The following statements hold:

(i) There is α0 ∈ R such that all eigenvalues of the operator q − βS which are
strictly smaller (strictly larger) than α0 correspond to a negative (positive) definite
eigenspace.

(ii) Denoting all the parameters α0 which satisfy (i) by A, the parameter α in (9.5)
is on its boundary, i.e.

α = minA or α = maxA .

Proof. This is an immediate consequence of Lemma 4.1. �

The alternative point of view is to multiply the operator q − α11− βS from the left
by S, giving rise to the positive semi-definite Hermitian matrix

q̂ − α 11S − β 11 ≥ 0 with q̂ := Sq . (9.14)

Moreover, we rewrite (9.5) as

Â
(

q̂ − αS − β 11
)

= 0 with Â := AS (9.15)

(the convention of multiplying by S from the left respectively right has the advan-

tage that Aq = Âq̂). Interpreting β as the spectral parameter, by combining (9.14)
with (9.15) one sees that β is the smallest eigenvalue of the matrix q̂ − αS,

β(α) = minσ
(

q̂ − αS
)

. (9.16)

This point of view also makes it possible to compute Â and to determine the parame-
ters a and b in (9.3) as follows.

Proposition 9.5. Choosing

b = Tr(Â) = 1 , (9.17)

the parameter a lies in the range

a(α) := Tr(SÂ) ∈ [−1, 1] .
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This function is monotone increasing and strictly monotone increasing except at the
boundary points, i.e.

α1 < α2 and |a(α1)|, |a(α2)| < 1 =⇒ a(α1) < a(α2) .

Proof. We form a spectral decomposition of the Hermitian matrix q̂ − αS,

q̂ − αS =
N
∑

i=1

λjFj , (9.18)

where Fj are spectral projection operators corresponding to the eigenvalues λj, which
we label the eigenvalues in increasing order, i.e.

β = λ1 < λ2 < · · · < λN

and N ≤ 2n. We begin with the case that the smallest eigenvalue is non-degenerate.
In this case, the kernel of q̂−αS−β11 is one-dimensional, and the operator Â coincides,
up to a prefactor, with the spectral projection operator F1. The normalization con-
dition (9.17) fixes the prefactor to be one. Hence, expressing the spectral projection
with contour integrals (see for example [14]), we obtain

Â = F1 = − 1

2πi

‰

Γ

(

q̂ − αS − λ
)−1

dλ , (9.19)

where the contour Γ encloses only the smallest eigenvalue with winding number one.
Multiplying by S and taking the trace, we obtain (the reader not familiar with the
perturbation theory for linear operators via contour integrals may find it helpful to
study [3, Appendix G.1])

a(α) = Tr(SÂ) = − 1

2πi

‰

Γ
Tr
(

S
(

q̂ − αS − λ 11
)−1
)

dλ . (9.20)

Differentiating with respect to α gives

a′(α) = − 1

2πi

‰

Γ
Tr
(

S
(

q̂ − αS − λ
)−1

S
(

q̂ − αS − λ
)−1
)

dλ .

Plugging in a spectral decomposition (9.18), the contour integral can be computed
with residues to obtain

a′(α) =
N
∑

j=2

2

λj − λ1
Tr
(

S F1 S Fj

)

dλ . (9.21)

For each summand, the term λj −λ1 is strictly positive. Moreover, the operator SFjS
is a projection operator and thus positive, implying that the trace in (9.21) is non-
negative. We conclude that a′(α) ≥ 0.

In order to prove the strict inequality, let us assume that α′(α) = 0. Then each
summand in (9.21) vanishes, implying that

F1 S Fj = 0 for all j = 2, . . . , 2n .

As a consequence, S maps the image of F1 to itself. In other words, the image of Â
is an eigenspace of S. This implies that a = Tr(SÂ) = ±Tr(Â) = ±1. This concludes
the proof in the case that the lowest eigenvalue of q̂ − αS is non-degenerate.
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Now assume that q̂−α0S is degenerate. In this case, we can use perturbation theory
with degeneracies. In the first step, we need to analyze the perturbation operator S
on the degenerate subspace, i.e. the operator

F1SF1 : F1(V ) → F1(V ) .

If this operator is a multiple of the identity, then we can use the perturbation theory
without degeneracies, and (9.21) remains valid. Otherwise, for α 6= α0 and α near α0,
the degeneracy of the lowest eigenvalue is removed. The eigenspaces coincide to first
order in α − α0 with those of the operator −ǫ(α − α0)F1SF1 (where ǫ is the sign

function). Consequently, if Â(α) is a family of symmetric operators of trace one with
(

q̂ − αS − β 11
)

Â(α) = 0 ,

then the functional Tr(SÂ) is discontinuous and monotone increasing at α0 in the
sense that

lim sup
αրα0

Tr
(

SÂ(α)
)

= minσ(F1SF1)
∣

∣

α0
< max σ(F1SF1)

∣

∣

α0
= lim inf

αցα0

Tr
(

SÂ(α)
)

.

This concludes the proof. �

We point out that this proposition makes a general statement on how the smallest
eigenvalue of the matrix q̂−αS depends on α. It applies independent of the context of
the pointwise variational principle. In particular, it can be used to prove the uniqueness
statement of Proposition 9.1:

Proof of Proposition 9.1. In view of the inequality (9.1), we are in the case |a| < b.
Therefore, by Proposition 9.5, the function a(α) is strictly monotone increasing. Con-
sequently, there is at most one α with a(α) = a. For this value of α, the parameter β
is uniquely determined by (9.16). �

9.2. Illustrating Examples. We conclude this section with two simple examples.
The first example deals with the typical smooth situation when no degeneracies occur.

Example 9.6. We consider the case n = 1 and choose

S =

(

1 0
0 −1

)

and q = iσ2 =

(

0 1
−1 0

)

(where σ2 is the second Pauli matrix). This is a simple example intended to illustrate
the case where the operators q and S do not commute and the Lagrange parameters
depend smoothly on a and b. Given a and b in the range (9.4), every symmetric
operator satisfying the constraints (9.3) can be written as

A =
1

2

(

a+ b −z
z a− b

)

(9.22)

with z ∈ C. In order for this matrix to be positive semi-definite, the determinant
of AS must be positive, meaning that

|z|2 ≤ b2 − a2 . (9.23)

The functional in the pointwise variational principle is computed by Tr(qA) = Re z.
Minimizing this functional in the region (9.23) gives a unique minimizer at z =
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−
√
b2 − a2. Hence the minimizer A takes the form

A =
1

2

(

a+ b
√
b2 − a2

−
√
b2 − a2 a− b

)

. (9.24)

The matrix q − α11 − βS in the statement of Lemma 9.2 takes the form

q − α 11− β S =

(

−α− β 1
−1 −α+ β

)

.

The image of this matrix must be in the kernel of the matrix A in (9.24). This is the
case if and only if

α =
a√

b2 − a2
and β = − b√

b2 − a2
, (9.25)

giving

q − α 11− β S =
1√

b2 − a2

(

−a+ b
√
b2 − a2

−
√
b2 − a2 −a− b

)

.

This matrix is indeed positive semi-definite.
In order to see the connection to the statement of Lemma 9.4, we first note that the

operator q − βS has the eigenvalues

α± = ±
√

β2 − 1 .

In order for the operator q−βS to be positive, we need to choose β < −2, in agreement
with the right equation in (9.25). The set A is computed by

A =
[

−
√

β2 − 1,
√

β2 − 1
]

.

The two boundary points of this interval give us back the values for α in (9.25) for
positive respectively negative a.

In order to get into the setting of Proposition 9.5, we compute the matrix q̂ − αS,

q̂ − αS =

(

−α 1
1 α

)

.

It has the spectral decomposition (9.18) with eigenvalues

λ1 = −
√

1 + α2 , λ2 =
√

1 + α2

and spectral projection operators

F1/2 =
1

2
√
1 + α2

(√
1 + α2 ± α ∓1

∓1
√
1 + α2 ∓ α

)

.

Using (9.16), (9.19) and (9.20), we obtain

β = λ1 = −
√

1 + α2

Â = F1 =
1

2
√
1 + α2

(
√
1 + α2 + α −1

−1
√
1 + α2 − α

)

a = Tr(SÂ) =
α√

1 + α2
.

These formulas agree with (9.24) and (9.25) if α and β are expressed in terms of a
and b.

Our findings are illustrated in Figure 1. We point out that, for all values of α, the
operator q − α11− βS has a one-dimensional kernel. Correspondingly, the operator A
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Figure 1. The Lagrange multipliers in the example q = iσ2.

has rank one. Its non-zero eigenvalue coincides with its trace a. Therefore, one can
immediately read off the decomposition of Definition 4.2: For negative a, one has a
sea measure, for positive a a particle measure, whereas the intermediate case a = 0
gives a neutral measure. ♦

The next example illustrates the case with degeneracies.

Example 9.7. We consider the case n = 1 and

q = S =

(

1 0
0 −1

)

.

Given a and b in the range (9.4), the symmetric matrices satisfying the constraints (9.3)
are again of the form (9.22) with z ∈ C in the region (9.23). Now the functional in
the pointwise variational principle is computed by Tr(qA) = b. This functional is
determined by the constraints. Therefore, there is nothing to vary, and every A of
the form (9.22) is a minimizer. This is consistent with the statement of Lemma 9.2,
leaving us some freedom to choose α and β. One choice is

α = 0, β = 1 =⇒ q − α 11− β S = 0 , (9.26)

giving us the freedom to choose A arbitrarily according to (9.22). Alternatively, one
can choose

α < 0, β = 1 + α =⇒ q − α11− β S =

(

−2α 0
0 0

)

, (9.27)

in which case in (9.22) we must choose a = −b and z = 0. Finally, one can also choose

α > 0, β = 1− α =⇒ q − α11− β S =

(

0 0
0 −2α

)

, (9.28)

in which case in (9.22) we must choose a = b and z = 0. Note that in (9.27) and (9.28),
the sign of α is determined by the requirement that the matrix q−α11−βS be positive
semi-definite with respect to ≺.|.≻.

These findings fit together with the statement of Lemma 9.4 as follows. The oper-
ator q − βS has the eigenvalues ±(1− β). In order for the smaller (larger) eigenvalue
to correspond to a negative (positive) definite eigenspace, we need to choose β ≤ 1. In
this case, the set A is given by

A =
[

− (1− β), 1− β
]

,

giving us the possible choices α = ±(1− β) in (9.27) and (9.28).
In the setting of Proposition 9.5, the matrix q̂ is the identity. In the spectral

decomposition of q̂ − αS in (9.18) we need to distinguish the following cases:
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α

β

α
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b
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1

1

Figure 2. The Lagrange multipliers in the example q = S.

◮ α = 0: In this case, N = 1 and

λ1 = 1 , F1 = 11 .

In this case, A can be any operator of the form (9.22), giving back case (9.26)
above.

◮ α < 0: In this case, N = 2 and

β = λ1 = 1 + α , F1 =

(

0 0
0 1

)

and λ2 = 1− α , F2 =

(

1 0
0 0

)

.

In order for A to be a multiple of F1, we need to choose a = −b and z = 0. This
corresponds precisely to case (9.27) above.

◮ α > 0: In this case, N = 2 and

β = λ1 = 1− α , F1 =

(

1 0
0 0

)

and λ2 = 1 + α , F2 =

(

0 0
0 1

)

.

In order for A to be a multiple of F1, we need to choose a = b and z = 0. This
corresponds precisely to case (9.28) above.

Our findings are illustrated in Figure 2. If α is non-zero, the operator q−α11−βS has
a one-dimensional kernel, and the operator A has rank one. From the sign of its trace
we can again read off the decomposition of Definition 4.2: For negative α, one has a
sea measure and for positive α a particle measure. The fact that the function a(α) is
locally constant means that, given a and b with |a| = b, the Lagrange parameters α
and β are not unique. In the case α = 0 and β = 1, the operator q−α11−βS vanishes.
As a consequence, the operator A can be chosen arbitrarily according to (9.22). This
means that the choice of Lagrange parameters α = 0 and β = 1 is admissible for
any a ∈ [−b, b]. ♦

10. Discussion and Outlook

In this paper we gave a detailed analysis of the homogeneous causal action principle
on a compact domain K̂ of momentum space. The derived EL equations have an
interesting mathematical structure. In order to put this result into context, we remark
that this structure has some similarity to the notion of state stability introduced in [3,
Section 5.6]. Indeed, if one restricts attention to sea measures (see Definition 4.2),

specifies to a vector-scalar structure of Q̂ and leaves out the dimension constraint,
then the minimality statement in Theorem 8.6 goes over to the minimality statement
in [3, Definition 5.6.2 (iii)]. Therefore, our results confirm the considerations on the
stability of the Minkowski vacuum in [3, Section 5.6] and put these considerations on
a solid mathematical basis.
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It is unknown whether the homogeneous causal action principle remains well-posed
if one removes the compactness assumption on K̂. In particular, it is an important
problem to understand the behavior in the case K̂ = R

4 where the measure ν can
be supported anywhere in Minkowski space. It is not clear whether this variational
principle is well-posed. The difficulties can be understood in analogy to the ultraviolet
problems in quantum field theory: Choosing a compact domain K̂ can be understood as
introducing an a-priori momentum cutoff. If this cutoff is removed, the homogeneous
variational principle might well develop singularities in analogy to the divergences
in quantum field theory. In this case, inspired by the renormalization procedure in
quantum field theory, the strategy would be to take the limit K̂ ր R

4 after suitably
rescaling the Lagrangian. We note for clarity that these divergences are a consequence
that the homogeneous causal action principle typically involves an infinite number of
particles. In contrast, the causal action principle in [6, Section 1.1] formulated on a
finite-dimensional Hilbert space is well-posed and finite. With this in mind, the non-
homogeneous causal action principle should be considered as being more fundamental,
whereas the homogeneous setting merely is an approximation valid on certain energy
scales.

We finally explain how the homogeneous causal action principle on the non-compact
domain K̂ = R

4 could be attacked starting from the methods and results presented
here. Choosing an exhaustion K̂n of R4,

K̂1 ⊂ K̂2 ⊂ · · · and
∞
⋃

ℓ=1

K̂ℓ = R
4 ,

one considers a sequence νℓ of minimizing measures on K̂ℓ. Then each measure νℓ
satisfies the EL equations on K̂ℓ. The hope is that a subsequence of these measures
converges in a suitable topology to a measure ν which satisfies the EL equations in
all of R4. This strategy was already implemented in position space in [11]. However,
making it work in momentum space is more challenging for several reasons. One
difficulty is that the EL equations of the homogeneous causal action principle (as
stated for example in Theorem 8.5) are more involved and seem to give less control of
the measure ν. One should also keep in mind that these EL equations require suitable
regularity assumptions (in particular, the Lagrangian must be differentiable in the
sense (6.1)), which might make it necessary to “regularize” the Lagrangian (i.e. to
replace the causal Lagrangian L by a smooth Lagrangian Lℓ which tends to L in the
limit ℓ→ ∞). Next, the homogeneous causal action principle involves a larger rescaling
freedom, which cannot be fixed in an obvious way. One freedom is to translate the
measure by a vector Λ ∈ R

4 by setting

νΛ(Ω) := ν(Ω− Λ) . (10.1)

Changing variables in (1.2), one sees that this translation in momentum space merely
gives rise to a phase factor e−iΛξ, which drops out of the Lagrangian. This phase
factor can be regarded as a gauge phase, and the freedom (10.1) can be understood
as a gauge freedom. Using the language of gauge theory, it is not clear how to fix the
gauge in a canonical way. Apart from this gauge freedom, one can also transform the
measure by a linear transformation A ∈ L(R4),

νA(Ω) := ν
(

A−1 Ω
)

. (10.2)
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Such a linear transformation maps a minimizer K̂ℓ to a minimizer on AK̂ℓ, with the
parameters c and f of the constraints unchanged. Finally, one can also rescale the
measure by a factor λ > 0,

νλ := λν .

This rescaling again maps minimizers to minimizers, with the constraints linearly
scaled,

cλ = λc and fλ = λf .

The hope is that, after suitably applying the above transformations to all the νℓ and
possibly after renormalizing the causal Lagrangian, one gets the desired convergence
to a solution ν of the EL equations.

Acknowledgments: We would like to thank the referee for helpful comments on the
manuscript.
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