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We present a formalism for the resonant inelastic x-ray scattering (RIXS) cross section. The
resulting compact expression in terms of polarizability matrix elements, particularly lends itself to
the implementation in an all-electron many-body perturbation theory (MBPT) framework, which is
realized in the full-potential package exciting. With the carbon K edge RIXS of diamond and the
oxygen K edge RIXS of β − Ga2O3, respectively, we demonstrate the importance of electron-hole
correlation and atomic coherence in the RIXS spectra.

I. INTRODUCTION

Resonant inelastic x-ray scattering (RIXS) is a
”photon-in-photon-out” scattering process, consisting
of a coherent x-ray absorption and x-ray emission
process.[1, 2] The energy difference between the absorbed
and emitted x-ray photons is transferred to the system.
Being bulk-sensitive, element- and orbital-specific and
giving access to a large scattering phase space, RIXS
has become a widely used experimental probe of elemen-
tary excitations in molecules [3–5] and solids.[1, 2, 6, 7]
Accurate ab initio simulations can provide insight into
the complex RIXS process and predict the corresponding
spectra. In this context, the electron-hole correlations of
the x-ray absorption and emission processes as well as
the quantum coherence between them is a challenge for
ab initio approaches.

For the first-principles calculations of both valence and
core excitations in solids, the Bethe-Salpeter equation
(BSE) formalism [8–13] has become the state of the art
in recent decades. However, only few applications of the
BSE formalism to RIXS [14–20] have been presented so
far. All of them relied on the pseudopotential approxi-
mation where only selected valence and conduction or-
bitals are explicitly included in the calculation, while
more strongly-bound electrons are only treated implic-
itly through the pseudopotential. The wavefunctions re-
quired for the calculations of x-ray absorption and scat-
tering in these BSE implementations [14, 18, 21–23]rely
on the pseudopotential approximations via the projector
augmented-wave method.[24–27]

In this work, we go beyond by presenting an all-
electron full-potential BSE approach to RIXS. We derive
a compact analytical expression of the RIXS cross section
within many-body perturbation theory (MBPT) that
contains both the effects of electron-hole correlation and
of the quantum coherence of the resonant scattering. We
have implemented this novel expression in the all-electron
many-body perturbation theory code exciting,[28–30]
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where we make use of consistent BSE calculations of core
and valence excitations, based on the explicit access to
core, valence, and conduction orbitals and matrix ele-
ments between them. To demonstrate our approach, we
have chosen two representative examples: In the carbon
K edge of diamond, we particularly study the influence of
electron-hole correlation, while in the oxygen K edge of
β −Ga2O3, we show how the coherence between excita-
tions at different atomic sites impacts the RIXS spectra.

II. THEORY

The double-differential cross section (DDCS)
d2σ/dΩ2dω2 for the scattering of a photon with
energy ω1, polarization e1, and momentum K1 into a
photon with energy ω2, polarization e2, and momentum
K2 is given by the generalized Kramers-Heisenberg [31]
formula

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)∑
f

∣∣∣∣∣∣〈f |e1 · e∗2
∑
j

eiQrj |0〉

+
∑
n

〈f |
∑
j e−iK2rje∗2 · pj |n〉〈n|eiK1rje1 · pj |0〉

ω1 − En

∣∣∣∣∣
2

× δ((ω1 − ω2)− Ef ),
(1)

where |0〉 and |f〉 are the initial and final electronic state
with energy E0 = 0 and Ef , respectively. Equation 1
includes both the non-resonant scattering (NRIXS), in
which the momentum transfer Q = K1−K2 appears ex-
plicitly, and the resonant scattering (RIXS). If the pho-
ton energy ω1 is in resonance with the excitation energies
En of the electronic system, the second, resonant term
dominates and the non-resonant part can be neglected,
leading to

d2σ

dΩ2dω2
=α4

(
ω2

ω1

)∑
f

∣∣∣∣∑
n

〈f |T̂ †(e2)|n〉〈n|T̂ (e1)|i〉
ω1 − En + iη

∣∣∣∣2
× δ(ω1 − ω2 − Ef ),

(2)

where we have introduced the transition operator T̂ (e) in

the dipole approximation, i.e. T̂ (e) ≈
∑
j e · pj . Micro-
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scopically, the resonant scattering process is as follows:
The absorption of the initial x-ray photon with energy
ω1 excites a core electron into the conduction band, leav-
ing a core hole behind. The intermediate system, after
the excitation, is in an excited many-body state |n〉. The
core hole can now be filled by a valence electron, which
loses the energy ω2 by emitting an x-ray photon. This
process is known as direct RIXS. Alternatively, the pres-
ence of the core-hole and excited electron can lead to
the formation of a secondary electron-hole pair in the in-
termediate state. The initially excited can then fill the
core hole. This process is known as indirect RIXS.[2, 32]
Involving excited states beyond singlet excitations, its
contribution is neglected in the following. We recall that
indirect RIXS is mostly devoted to magnetic excitations,
like magnon scattering.

In the final many-body state |f〉, a hole is present in
a valence state and an excited electron in a conduction
state. While both the absorbed and emitted photon have
energies in the x-ray region, the difference between them,
the energy loss ω1 − ω2, is typically in the range of sev-
eral eV. The final excited many-body state of the RIXS
process corresponds to an excited state as typically cre-
ated by optical absorption. The intricacy of the RIXS
formalism, described in Eq. 2, arises from the transi-
tions between three many-body states, i.e. |0〉 → |n〉 and
|n〉 → |f〉 and from the coherent summation over all pos-
sible intermediate and final many-body states. This in-
herent complexity of the microscopic RIXS process poses
challenges for any theoretical description, as both the ef-
fects of electron-hole interaction, as well as the coherence
of the RIXS process have to be included.

A. Independent-Particle Approximation to RIXS

It is instructive to discuss the RIXS process within
the independent-particle approximation (IPA) before the
scattering in the fully interactive system is considered.
In the IPA, the many-body groundstate wavefunction is
given by a single Slater determinant, and both the inter-
mediate many-body state |n〉 and the final one |f〉 are
singlet excitations of the groundstate without any relax-
ation of the system. We know a priori that the interme-
diate states contain a core hole µk and an excited elec-
tron in a conduction state ck, such that we can express

them in second quantization as |n〉 = |cµk〉 = ĉ†ckĉµk|0〉
with energy En = εck − εµk. Furthermore, the final
states contain an excited electron in a specific conduc-
tion state c′k′ and a valence hole in the state vk′, such

that |f〉 = |c′k′vk′〉 = ĉ†c′k′ ĉvk′ |0〉 and Ef = εc′k′ − εvk′ .
Then, Eq. 2 becomes

d2σ

dΩ2dω2

∣∣∣∣
IP

=

α4

(
ω2

ω1

) ∑
c′vk′︸︷︷︸
f

∣∣∣ ∑
cµk︸︷︷︸
n

〈c′vk′|T̂ †(e2)|cµk〉〈cµk|T̂ (e1)|0〉
ω1 − (εck − εµk) + iη

∣∣∣2×
× δ(ω − (εc′k′ − εvk′)),

(3)
In second quantization, we express the transition oper-

ator as T̂ =
∑
mn

∑
k e1 · Pmnkĉ

†
mkĉnk, where Pmnk =

〈mk|p|nk〉 are the momentum matrix elements. Insert-
ing these operators in Eq. 3 yields

d2σ

dΩ2dω2

∣∣∣∣
IP

=

∑
c′vk′

∣∣∣∣∑
cµk

∑
mnk′′

∑
pqk′′′

[e∗2 ·Pmnk′′ ]×

×
〈c′vk′|ĉ†mk′′ ĉnk′′ |cµk〉〈cµk|ĉ

†
pk′′′ ĉqk′′′ |0〉

ω1 − (εck − εµk) + iη
[Ppqk′′′ · e1]

∣∣∣∣∣
2

×

× δ(ω − (εc′k′ − εvk′)).
(4)

We note that the summations over p and q in Eq. 4
are not restricted to either core, valence, or conduction
states. Restrictions to these indices can be inferred from
the matrix elements of the creation and annihilation op-
erators. We find that

〈cµk|ĉ†pk′′′ ĉqk′′′ |0〉 = δµqδcpδkk′′′ . (5)

The term 〈c′vk′|ĉ†mk′′ ĉnk′′ |cµk〉 requires a more careful
treatment. Applying Wick’s theorem and restricting only
to terms that correspond to the RIXS process, we obtain

〈cvk|ĉ†mk′′ ĉnk′′ |c
′µk′〉 = −δcc′δµmδvnδkk′δkk′′ . (6)

A more detailed derivation of Eq. 6 is provided in the
Appendix. Inserting Eqs. 5 and 6 into Eq. 4 yields

d2σ

dΩ2dω2

∣∣∣∣
IP

=α4

(
ω2

ω1

)∑
cvµk

∣∣∣∣ e∗2 ·PµvkPcµk · e1
ω1 − (εck − εµk) + iη

∣∣∣∣2×
× δ(ω − (εck − εvk))

=− α4

π

(
ω2

ω1

)
Im

∑
cvk

∣∣∣∑µ
e∗2 ·PµvkPcµk·e1

ω1−(εck−εµk)+iη

∣∣∣2
ω − (εck − εvk) + iη

.

(7)
This equation has been widely applied to calculate the
RIXS cross section in solids.[33–38]

B. RIXS beyond the Independent-Particle
Approximation

The neglected electron-hole interaction is the reason
for the poor performance of the IPA for optical and x-
ray excitation spectra in crystalline semiconductors and
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insulators. A more accurate approach is provided by
many-body perturbation theory based on solutions of the
BSE.[10, 39, 40] This approach is now the state of the art
to determine optical [9, 11, 39, 41–43] and x-ray absorp-
tion spectra [22, 25, 29, 44–55] in solids. In the following,
we derive an analytical expression for RIXS that takes
the electron-hole interaction into account.

Following Refs.[14, 17], we define an intermediate
many-body state as

|Y (ω1)〉 =
∑
n

|n〉〈n|
ω1 − En

T̂ (e1)|0〉. (8)

Similar intermediate states have been defined as re-
sponse vectors in the context of non-linear spectroscopy
in molecular systems.[56, 57] Inserting these intermediate
states into Eq. 2, the RIXS cross section becomes

d2σ

dΩ2dω2
=

α4

(
ω2

ω1

)∑
f

〈Y (ω1)|T̂ (e2)|f〉〈f |T̂ †(e2)|Y (ω1)〉×

× δ(ω − Ef ).

(9)

The intermediate states |Y (ω1)〉 contain the information
about all possible excitation processes and can be under-
stood as the excited many-body states produced by the
absorption of a photon with energy ω1. Inserting a finite
broadening η for the excited many-body states, the cross
section becomes

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)
Im
∑
f

〈Y (ω1)|T̂ (e2)|f〉〈f |T̂ †(e2)|Y (ω1)〉
ω − Ef + iη

.

(10)
Within the Tamm-Dancoff approximation, we assume
that both the intermediate and final states are linear
combinations of singlet excitations of the groundstate.
We can thus infer

1 ≈
∑
ik

∑
jk′

ĉ†jk′ ĉik|0〉〈0|ĉ
†
ikĉjk′ . (11)

While this approximation has been found to yield good
results for the excited states probed in both optical and x-
ray absorption spectroscopy of solids,[29, 30] it explicitly
limits our approach to direct RIXS, as the intermediate
states in indirect RIXS contain two electron-hole pairs
and therefore can not be expressed as a linear combina-
tion of singlet excitations of the groundstate. Inserting
Eq. 11 into Eq. 8 yields

|Y (ω1)〉 =∑
n

∑
cµk

∑
c′µ′k′

ĉ†ckĉµk|0〉
〈0|ĉ†µkĉck|n〉〈n|ĉ

†
c′k′ ĉµ′k′ |0〉

ω1 − En
[e1 ·Pc′µ′k′ ]

=
∑
cµk

∑
c′µ′k′

ĉ†ckĉµk|0〉χcµk,c′µ′k′(ω1) [e1 ·Pc′µ′k′ ] ,

(12)

where we have made use of the Lehmann representation
of the polarizability χ(ω). We can now evaluate the ex-
pectation value of the intermediate state

〈Y (ω1)|ĉ†jk′′ ĉik′′ ĉ
†
c′′′k′′′ ĉ

†
v′′′k′′′ |0〉

= −
∑
cµk

∑
c′µ′k′

χ∗cµk,c′µ′k′(ω1) [e1 ·Pc′µ′k′ ]∗ δcc′′′δv′′′jδµiδkk′′′δkk′′

(13)
where we have used Eq. 6. This eventually yields the
double-differential cross section as

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)
Im

∑
c,c′,c′′,c′′′

∑
µ,µ′,µ′′,µ′′′

∑
v,v′

∑
kk′k′′k′′′

[[e∗2 ·Pµvk]χcµk,c′µ′k′(ω1) [e1 ·Pc′µ′k′ ]]∗×
× χcvk,c′′v′k′′(ω) [[e∗2 ·Pµ′′v′k′′ ]χc′′µ′′k′′,c′′′µ′′′k′′′(ω1) ×
× [e1 ·Pc′′′µ′′′k′′′ ]] .

(14)

Equation 14 represents a main result of this paper: The
RIXS cross section is expressed solely in terms of the po-
larizability χ. The polarizability is evaluated twice, once
at the x-ray excitation energy ω1, and once at the energy
loss ω = ω1 − ω2. The cumbersome summations over
all intermediate and final many-body states are thus in-
cluded in the polarizability, and Eq. 14 avoids any explicit
summations over many-body states.

C. Many-Body Perturbation Theory Applied to
RIXS

Within MBPT, the polarizability is given by

χijk,i′j′k′(ω) =
∑
λ

[Xijk,λ]
∗
Xi′j′k′,λ

ω − Eλ + iη
, (15)

where Xijk,λ and Eλ are the eigenstates and -values of
the BSE equation

HBSEXλ = EλXλ, (16)

where the Hamiltonian is given by

HBSE = ∆EIP + 2V −W. (17)

Here, ∆EIP are the single-particle energy differences
which are taken from DFT Kohn-Sham calculations and
are corrected by a scissors operator. The correspond-
ing values for conduction states and core states are cho-
sen such to simulate the zero-order polarizability in the
BSE calculations.[59] V is the matrix elements of the
bare electron-hole exchange, and W those of the stati-
cally screened direct interaction.

Inserting Eq. 15 into Eq. 14 allows for a significant
simplification of the RIXS cross section. We first consider
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FIG. 1. Normalized double-differential RIXS cross section of the carbon K edge in diamond as a function of excitation energy
and energy loss (center). On the top, the optical absorption spectrum obtained from BSE (red) and the IPA (gray) is shown,
compared to the experimental spectrum (black) from Ref. [58] On the right, the corresponding core excitation is depicted.

the last bracket of Eq. 14 and express it as∑
c′′′µ′′′k′′′

∑
µ′′

[e∗2 ·Pµ′′v′k′′ ]χc′′µ′′k′′,c′′′µ′′′k′′′(ω1)×

× [e1 ·Pc′′′µ′′′k′′′ ]

=
∑
µ′′

∑
λc

[e∗2 ·Pµ′′v′k′′ ]
[Xc′′µ′′k′′,λc ]

∗
t
(1)
λc

ω1 − Eλc + iη
,

(18)
where Xc′′µ′′k′′ and Eλc are the eigenvectors and -values
of the core-level BSE, respectively. We define the core-

excitation oscillator strength t
(1)
λc

as

t
(1)
λc

=
∑

c′′′µ′′′k′′′

Xc′′′µ′′′k′′′,λc [e1 ·Pc′′′µ′′′k′′′ ] (19)

and the excitation pathway t
(2)
λo,λc

as

t
(2)
λo,λc

=
∑
cvk

∑
µ

Xcvk,λo [e∗2 ·Pµvk] [Xcµk,λc ]
∗
, (20)

where Xcvk,λo and Eλo are the eigenvectors and -values
of the BSE Hamiltonian of the valence-conduction tran-
sitions, respectively. Here, we discern the index of the
valence-conduction excitations, λo, from the index λc of
the core-conduction ones.

Inserting Eqs. 18 and 20 into Eq. 14 yields

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)
Im
∑
λo

∣∣∣∣∑λc

t
(2)
λo,λc

t
(1)
λc

ω1−Eλc+iη

∣∣∣∣2
(ω1 − ω2)− Eλo + iη

. (21)

Finally, we define the RIXS oscillator strength t
(3)
λ (ω1)

as

t
(3)
λo

(ω1) =
∑
λc

t
(2)
λo,λc

t
(1)
λc

ω1 − Eλc + iη
. (22)

Using the definition of the oscillator strength t
(1)
λc

in

Eq. 19 and the excitation pathway t
(2)
λo,λc

in Eq. 20, allows
for the compact expression of the RIXS cross section as

d2σ

dΩ2dω2
= α4

(
ω2

ω1

)
Im
∑
λo

|t(3)λo (ω1)|2

(ω1 − ω2)− Eλo + iη
(23)

which closely resembles the BSE expression for optical
and x-ray absorption spectra. The cross section depends
explicitly on the energy loss ω = ω1 − ω2, while its de-
pendence on the excitation energy is contained in the

oscillator strength t
(3)
λo

(ω1). It has poles in the energy

loss at the optical excitation energies Eλo of the system,
independent of the excitation energy, while the oscilla-
tor strength of each of these excitations depends on it.
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The oscillator strength defined in Eq. 22, gives further in-
sight into the many-body processes that occur in RIXS.
The rate of the initial x-ray absorption event is given

by t
(1)
λc

, combined with the energy conservation rule (the

denominator ω1 − Eλc + iη in Eq. 22). The absorption
leads to an intermediate core-excited state, characterized
by the excitation index λc. The final RIXS spectrum is
then given by the rate of the absorption combined with

the pathway t
(2)
λo,λc

that describes the many-body tran-

sition |λc〉 → |λo〉. These pathways are far from obvi-

ous, as the mixing between t
(1)
λc

and t
(2)
λo,λo

can develop
in destructive or constructive interference, attesting the
many-body character of such process.

With Eq. 23, we have derived a compact analytical
expression for the double-differential RIXS cross sec-
tion with only two assumptions: First, we presume in
Eq. 11 that the intermediate and final states are sin-
glet excitations. While this assumption limits our ap-
proach to direct RIXS, it is consistent with the Tamm-
Dancoff approximation in the BSE formalism. Second,
we assume that the latter yield accurate core and va-
lence excited states. Therefore, these approximations
are interconnected. For systems, such as diamond and
Ga2O3 studied here, where BSE yields accurate absorp-
tion spectra, our approach yields accurate RIXS spectra
as well. For highly correlated states, BSE results may
strongly depend on the starting point, i.e. the underly-
ing one-particle states. It might happen, for instance,
that semilocal DFT leads to a poor representation of
the system. In this case, even the BSE result will be
poor. This is neither a problem of BSE nor of the RIXS
formulation. Here, one-particle wave functions coming
from hybrid functionals, or self-consistent COHSEX or
GW will be required, as shown for copper and vanadium
oxides.[60, 61] Such calculations are, however, not stan-
dard to date as they are numerically very involved. All
in all, the RIXS formulation provided here, is very gen-
eral and fully ab initio, and it applies to a large variety
of systems.

III. IMPLEMENTATION

The implementation of Eq. 23 requires explicit access
to the BSE eigenvectors Xcvkλo both in terms of valence-
conduction transitions Xcµkλc as well as core-conduction
transitions, while cross terms of the form Xvµkλ are not
needed. Thus, the calculation of the RIXS cross section
can be separated into three independent calculations, one
for the core-conduction, one for the valence-conduction
excitations, and finally a convolution step to obtain the
RIXS cross section. Overall, momentum matrix elements
Pcµk between core and conduction states and Pµvk be-
tween valence and core states determine the excitation
and de-excitation process, respectively. The coherence
between core and valence excitations in the RIXS pro-
cess is apparent in Eqs. 20 from the summation over k.

260 265 270 275 280 285 290
Emission Energy [eV]

d2
/(d

2d
2)

[a
rb

.u
ni

ts
]

288.1 eV

289.4 eV

290.1 eV

290.8 eV

291.8 eV

295.2 eV

298.2 eV

302.2 eV

Exp.
BSE
IPA

FIG. 2. Double differential RIXS cross section (red) account-
ing for electron-hole interaction. The spectra calculated for
several excitation energies are offset for clarity. Experimen-
tal data from Ref. [62] are shown in black, the IPA results in
gray.

(For this reason, core and valence excitations are calcu-
lated on the same {k}-grid.) Coherence occurs, since the
absorption and emission processes conserve the crystal
momentum k.[1]

For the specific implementation, we make use of the
core-conduction and valence-conduction BSE eigenvec-
tors and corresponding matrix elements obtained from
the all-electron package exciting.[28–30] The output of
the two BSE calculations is evaluated by the BRIXS (BSE
for RIXS) code.[63, 64] In this step, the oscillator strength
t(1) of the core excitation and the excitation pathways t(2)

are determined. From these intermediate quantities, the
RIXS oscillator strength t(3)(ω1) is generated for a list
of excitation energies ω1 defined by the user. Execution
of BRIXS requires only a minimal number of input pa-
rameters: Besides {ω1}, the number of core-conduction
(Nλc) and valence-conduction excitations (Nλo), the life-
time broadening (η), and the polarization vector of the
x-ray beam (e1) are required. A detailed description of
the implementation is provided in Ref. [65]
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IV. RESULTS

A. Electron-hole Correlation in the RIXS of
Diamond

To demonstrate the importance of electron-hole cor-
relation in RIXS, we study the carbon K edge in dia-
mond. Both optical absorption[12, 58, 66–68] and core
excitations [62, 69, 70] have been investigated intensively
before. RIXS measurements [33, 62] and calculations
[14, 17] are also available for this edge. As such, this
material acts as a good example to demonstrate our ap-
proach and benchmark the resulting spectra.

In a first step, the optical and core spectra are
calculated from the solution of the BSE, as shown
in Fig. 1, both in excellent agreement with experi-
ment. In addition, we show the results obtained within
the independent-particle approximation (IPA). They are
blue-shifted relative to experiment, as electron-hole at-
traction is not included. Also the spectral shape of the
core spectra disagrees with the experimental one, as it
misses the peak at the absorption onset and shows too
much spectral weight at high energies.

From the BSE spectra, we determine the RIXS specr-
tra shown in Fig. 1. Following Eqs. 21 and 22, it comes
natural to display the RIXS double-differential cross sec-
tion d2σ/dΩ2dω2 as a function of the excitation energy ω1

and the energy loss ω = ω1 − ω2. For excitation energies
below the core absorption edge, i.e. at approximately
290 eV (see Fig. 2, right), the intensity is negligible, since
the excitation energy is not in resonance with any car-
bon 1s excitation. Once the excitation energy reaches
resonance with the absorption edge, the RIXS cross sec-
tion increases considerably. The emission occurs over a
wide range of the energy loss up to around 20 eV, but is
strongest at low emission at the onset of optical absorp-
tion (compare Fig. 1, top). With increasing excitation
energy, the emission reduces due to the reduced rate of
absorption beyond the onset. Furthermore, the emission
at low energy loss vanishes as the excitation energy in-
creases. At a value of about 295 eV (300 eV), no emission
with an energy loss below approximately 12 eV (20 eV)
is observed. Due to this linear dispersion of the energy
loss with the excitation energy, the emission energies stay
more or less constant, as can be seen in Fig. 2, where the
RIXS cross section is shown as a function of the emission
energy for selected excitation energies.

In Fig. 2, we also show the RIXS cross section obtained
within the IPA, following Eq. 7. Overall, the IPA spectra
exhibit lower emission energies due to the overestimation
of the excitation energies in the optical absorption (see
Fig. 1). Especially for lower excitation energies, there
are significant deviations. The intensity at higher emis-
sion energies is underestimated, and the spectra are too
broad. Both features are due to the neglect of electron-
hole interaction which increases the intensity at low en-
ergies, i.e. leads to a sharper absorption onsets. This
effect is especially pronounced for the core excitations.

522 523 524 525
Emission energy 2 [eV]

d2
/d

2d
2

[a
rb

.u
ni

ts
]

530.43 eV

530.93 eV

531.43 eV

531.93 eV

532.43 eV

532.93 eV

533.43 eV

533.93 eV

534.43 eV

534.93 eV
O1O2O3total

FIG. 3. Total O K edge RIXS in β-Ga2O3 as a function of
emission energy, ω2, for selected excitation energies, together
with the contributions from O1, O2, and O3. The spectra are
offset for clarity.

At higher excitation energies, the discrepancy between
IPA and BSE results decreases. While IPA reproduces
the spectral shape correctly, the spectrum is still blue-
shifted. Our BSE results are in excellent agreement with
experiment for all excitations energies, both in relative
position and spectral shape.

B. Atomic Coherence in the RIXS of Ga2O3

Now, we like to showcase the importance of atomic
coherence on RIXS spectra. Considering the coherent
sum over atomic excitations in Eq. 21, interference terms
appear when the crystal contains inequivalent atomic po-
sitions, i.e.

d2σ

dΩ2dω2
=

Natoms∑
a

M2
a

d2σa
dΩ2dω2

+
d2σinterf
dΩ2dω2

, (24)

where d2σa/dΩ2dω2 is the RIXS cross section for
the inequivalent atom a with multiplicity Ma and
d2σinterf/dΩ2dω2 is the interference term. Mathemati-
cally, the interference term originates from the square
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FIG. 4. Interference contribution to the O K edge RIXS of
β − Ga2O3 as a function of excitation energy compared to
the atomic contributions and the normalized total spectrum
(gray).

modulus of t
(3)
λ (ω1) in Eq. 21 that contains the sum of

the core excitations on all atoms in the unit cell. The O K
edge in the monoclinic β phase of Ga2O3 serves as an ex-
ample. The unit cell contains three inequivalent oxygen
sites denoted O1, O2, and O3, all of them with multiplic-
ity 1. The atomic positions are provided in the SI. Figure
3 shows that the RIXS spectrum shows pronounced flu-
orescence behavior,[71, 72] i.e. significant features occur
at basically constant emission energies. The contribu-
tions of all oxygen atoms are nearly identical for excita-
tion energies below 532 eV. Above that, the contribution
of O2 dominates the spectrum. For a quantitative analy-
sis, we define relative atomic contributions by integrating
the atomic RIXS spectra over the emission energies ω2

and normalizing with respect to the total spectrum. The
result, shown in Fig. 4, demonstrates that the relative
atomic contributions vary between 20 and 50%, depend-
ing on the excitation energy, and that none of the contri-
butions can be neglected even if one of them – here O2 –
dominates. The interference term contributes up to 15%
of the total RIXS spectrum, yet decreasing quickly as the
excitation energy increases beyond the absorption onset.
At higher excitation energies, it only contributes 5-7%.
The importance of interference at the absorption onset
indicates that it originates from electronic correlation.

V. CONCLUSIONS

We have derived a compact analytical expression for
the RIXS cross section within many-body perturbation
theory. This expression retains the intuitive interpre-
tation of the RIXS process as a coherent absorption-
emission process, while including the effects of electron-
hole correlation, which are paramount for an accurate de-
scription of excitations in semiconductors and insulators.
Our implementation in an all-electron BSE framework,
i.e. the exciting package, making use of BSE eigen-

states for core and valence excitations, introduces only
small computational overhead compared to valence and
core BSE calculations. For the example of the carbon
K edge RIXS in diamond, we demonstrate that our ap-
proach yields spectra in excellent agreement with avail-
able experimental spectra. We furthermore show that
electron-hole correlations not only shift spectral features
in energy but also affect their shape, especially in exci-
tations at the absorption edge. The influence of atomic
coherence is exemplified with the oxygen K edge in β-
Ga2O3, where it turns out non-negligible, especially close
to the absorption onset.
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APPENDIX

Derivation of Matrix Elements

In the following, we provide the derivation of Eq. 6.
We initially employ Wick’s theorem [73] to evaluate the
expectation value of the product of three pairs of annihi-
lation and creation operators, i.e.

〈cvk|ĉ†mk′′ ĉnk′′ |c
′µk′〉 = 〈0|

[
ĉ†vkĉck

] [
ĉ†mk′′ ĉnk′′

] [
ĉ†c′k′ ĉµk′

]
|0〉

= δvµδc′nδcmδkk′δkk′′

+ δcc′δmnδvµδkk′δkk′′

− δcc′δµmδvnδkk′δkk′′ ,
(25)

Each of the three contributions correspond to different
processes in the DDCS. To analyze them, we insert Eq. 25
into Eq. (7). Ignoring cross-terms, this yields the follow-
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ing expressions:

d2σ

dΩ2dω2

∣∣∣∣
IP

=

α4

(
ω2

ω1

)


∑
c′µk

∣∣∣∑c
e∗2 ·Pc′ckPcµk·e1

ω1−(εck−εµk)+iη

∣∣∣2×
×δ(ω − (εc′k − εµk))

(a)

+
∑
cµk

∣∣∣∑m
e∗2 ·PmmkPcµk·e1

ω1−(εck−εµk)+iη

∣∣∣2×
×δ(ω − (εck − εµk))

(b)

+
∑
cvk

∣∣∣∑µ
e∗2 ·PµvkPcµk·e1

ω1−(εck−εµk)+iη

∣∣∣2×
×δ(ω − (εck − εvk))

(c)

(26)
An intuitive interpretation of the three terms is obtained
by considering their poles: Term (a) has poles at the ex-
citation energies ω1 = εck− εµk, where a core state µk is
excited into a conduction state ck. Poles in the emission
energy occur at ω2 = εc′k − εck where the excited elec-
tron transitions to another conduction state c′k. Thus,
the final state of this scattering process contains a core
hole at µk and an excited electron in c′k. As such, this
scattering process does not correspond to the RIXS pro-
cess.

Term (b) does not describe a resonant scattering pro-
cess, as the emission energy ω2 vanishes (corresponding
to transitions mk → mk). However, for each state, the
momentum matrix element Pmmk = 0. Thus, term (b)
does not contribute to the DDCS.

Finally, term (c) corresponds to the RIXS process:
Poles occur at excitation energies ω1 = εck − εµk and
at emission energies ω2 = εvk− εµk. Thus, the scattering
consists of an excitation µk → ck and a subsequent de-
excitation vk → µk. The final state contains a valence
hole vk and an excited electron ck.

Overall, as long we only consider RIXS, we can neglect
terms (a) and (b), and we arrive at Eq. 14. The analysis
also justifies why the cross terms between the terms (a),
(b), and (c) can be neglected. The different terms have
poles in vastly different energy regions, thus making cross
terms small.

Numerical Parameters

Carbon K Edge in Diamond

The electronic structure is determined from DFT-PBE
calculations within the exciting code. All calculations
are performed for the experimental lattice parameter of
6.746 a0. The reciprocal space is sampled with a 9×9×9
k-grid, and we include basis functions up to a cut-off

of RmaxMT · |G + q|max = 8. To correct the electronic
structure, we apply a scissors operator ∆ω = 1.9 eV,
such to reproduce the measured indirect band gap of 5.48
eV.[74] Another scissors operator of 22 eV is employed to
correct the position of the 1s level.

Optical BSE spectra are calculated on a 13 × 13 × 13
k-grid, and local-field effects are included up to a cut-
off |G + q|max = 3.5 a−10 . The calculations include all
4 valence bands and 10 conduction bands. 100 conduc-
tion bands are included in the random-phase approxima-
tion (RPA) calculation to obtain the screened Coulomb
potential. The carbon K edge BSE is performed on
the same k-grid. The cut-off for local-field is chosen
|G + q|max = 5.5 a−10 such to provide a precise descrip-
tion of the more localized excitations. 40 unoccupied are
included in the BSE calculation. For the BRIXS calcula-
tion, the 8.000 lowest-energy valence and 20.000 carbon
1s excitations are taken into account.

Input and relevant output files of the electronic-
structure and BSE calculations can be downloaded from
the NOMAD Repository[75, 76] under the DOI provided
in Ref. [77].

O K Edge in β-Ga2O3

Calculations for β-Ga2O3 are performed using the ex-
perimental lattice parameters a = 12.233 �A, b = 3.038 �A,
c = 5.807 �A, and β = 103.82◦.[78] The electronic struc-
ture is determined on a 8× 8× 8 k-grid using basis func-
tions up to a cut-off ofRmaxMT ·|G+q|max = 8. Our calcula-
tions with the PBEsol functional [79] yield a Kohn-Sham
gap of 2.89 eV. To match the experimental fundamen-
tal gap of of 5.72 eV,[80] we apply a scissors operator of
∆ω = 2.6 eV. A scissors shift of ∆ω2 = 24.93 eV is ap-
plied to correct the position of the oxygen 1s state such
to align the calculated O K edge XAS with the experi-
mental one.[81]

The optical BSE spectra are obtained from calculations
on a 10×10×10 k-grid with a cut-off |G+q|max = 1.1 a−10

for local-field effects. The 10 highest valence bands and
10 lowest conduction bands form the transition space. 30
conduction bands are used in the RPA calculation of the
screened Coulomb potential.

The BSE calculation of the oxygen K edge are per-
formed on the same k-grid and using the identical
screened Coulomb potential as for the optical spectra. 20
conduction bands are used to form the transition space.

Input and relevant output files of the electronic-
structure and BSE calculations can be downloaded from
the NOMAD Repository[75, 76] under the DOI provided
in Ref. [82]
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P. Glans, J. Guo, K. Gunnelin, and J. Nordgren, Res-
onant x-ray scattering beyond the born–oppenheimer
approximation: Symmetry breaking in the oxygen
resonant x-ray emission spectrum of carbon dioxide,
J. Chem. Phys. 106, 3439 (1997).

[4] F. Hennies, S. Polyutov, I. Minkov, A. Pietzsch, M. Na-
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F. de Groot, P. Wernet, and M. Odelius, Ab initio cal-
culations of x-ray spectra: Atomic multiplet and molec-
ular orbital effects in a multiconfigurational scf approach
to the l-edge spectra of transition metal complexes,
J. Phys. Chem. Lett. 3, 3565 (2012).

[6] G. Ghiringhelli, M. Matsubara, C. Dallera, F. Fracassi,
R. Gusmeroli, A. Piazzalunga, A. Tagliaferri, N. B.
Brookes, A. Kotani, and L. Braicovich, Nio as a test case
for high resolution resonant inelastic soft x-ray scatter-
ing, J. Phys. Condens. Matter. 17, 5397–5412 (2005).

[7] R.-P. Wang, B. Liu, R. J. Green, M. U. Delgado-Jaime,
M. Ghiasi, T. Schmitt, M. M. van Schooneveld, and
F. M. F. de Groot, Charge-transfer analysis of 2p3d
resonant inelastic x-ray scattering of cobalt sulfide and
halides, J. Phys. Chem. C 121, 24919 (2017).

[8] L. Hedin, New method for calculating the one-function
with application to the electron-gas problem, Phys. Rev.
139, A796 (1965).

[9] M. S. Hybertsen and S. G. Louie, First-principles theory
of quasiparticles: Calculation of band gaps in semicon-
ductor and insulators, Phys. Rev. Lett. 55, 1418 (1985).

[10] G. Strinati, Application of the green’s functions method
to the study of the optical properties of semiconductors,
Riv. Nuovo Cimento 11, 1 (1988).

[11] G. Onida, L. Reining, R. W. Godby, R. Del Sole, and
W. Andreoni, Ab initio calculations of the quasiparticle
and absorption spectra of clusters: The sodium tetramer,
Phys. Rev. Lett. 75, 818 (1995).

[12] L. X. Benedict, E. L. Shirley, and R. B. Bohn, Theory of
optical absorption in diamond, Si, Ge, and GaAs, Phys.
Rev. B 57, R9385 (1998).

[13] M. Rohlfing and S. G. Louie, Excitonic Effects and the
Optical Absorption Spectrum of Hydrogenated Si Clus-
ters, Phys. Rev. Lett. 80, 3320 (1998).

[14] E. L. Shirley, Core and final-state excitonic effects and
resonant inelastic X-ray scattering in s–p bonded solids,
J. Phys. Chem. Sol. 61, 445 (2000).

[15] E. L. Shirley, Theory and simulation of resonant inelas-
tic x-ray scattering in s–p bonded systems: Graphite,
hexagonal boron nitride, diamond, and cubic boron ni-
tride, J. Electron Spectrosc. Relat. Phenom. 110-111,
305 (2000).

[16] E. L. Shirley, J. A. Soininen, G. P. Zhang, J. A. Carlisle,
T. A. Callcott, D. L. Ederer, L. J. Terminello, and
R. C. C. Perera, Modeling final-state interaction effects in
inelastic X-ray scattering from solids: Resonant and non-
resonant, J. Electron Spectrosc. Relat. Phenom. 114-
116, 939 (2001).

[17] John Vinson, Bethe-Salpeter Equation Approach for Cal-

culations of X-ray Spectra, Ph.D. thesis, University of
Washington (2012).

[18] J. Vinson, T. Jach, M. Müller, R. Unterumsberger, and
B. Beckhoff, Resonant x-ray emission of hexagonal boron
nitride, Phys. Rev. B 96, 205116 (2017).

[19] J. Vinson, T. Jach, M. Müller, R. Unterumsberger, and
B. Beckhoff, Resonant x-ray emission and valence-band
lifetime broadening in LiNO3, Phys. Rev. B 100, 085143
(2019).

[20] A. Geondzhian and K. Gilmore, Demonstration of res-
onant inelastic x-ray scattering as a probe of exciton-
phonon coupling, Phys. Rev. B 98, 214305 (2018).

[21] E. L. Shirley, Ab initio inclusion of electron-hole attrac-
tion: Application to x-ray absorption and resonant in-
elastic x-ray scattering, Phys. Rev. Lett. 80, 794–797
(1998).

[22] K. Gilmore, J. Vinson, E. L. Shirley, D. Prender-
gast, C. D. Pemmaraju, J. J. Kas, F. D. Vila,
and J. J. Rehr, Efficient implementation of core-
excitation Bethe–Salpeter equation calculations, Com-
put. Phys. Commun. 197, 109 (2015).

[23] J. Vinson, T. Jach, M. Müller, R. Unterumsberger, and
B. Beckhoff, Quasiparticle lifetime broadening in res-
onant x-ray scattering of NH4NO3, Phys. Rev. B 94,
035163 (2016).

[24] J. A. Carlisle, E. L. Shirley, L. J. Terminello, J. J. Jia,
T. A. Callcott, D. L. Ederer, R. C. C. Perera, and F. J.
Himpsel, Band-structure and core-hole effects in resonant
inelastic soft-x-ray scattering: Experiment and theory,
Phys. Rev. B 59, 7433 (1999).

[25] J. Vinson, J. J. Rehr, J. J. Kas, and E. L. Shirley, Bethe-
salpeter equation calculations of core excitation spectra,
Phys. Rev. B 83, 115106 (2011).
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M. Feneberg, Band gap of corundumlike α − Ga2O3 de-
termined by absorption and ellipsometry, Phys. Rev. Ma-
terials 1, 024604 (2017).

[81] J. E. N. Swallow, C. Vorwerk, P. Mazzolini, P. Vogt,
O. Bierwagen, A. Karg, M. Eickhoff, J. Schörmann, M. R.
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