
Quadrupole topological insulators in Ta2M3Te5 (M = Ni, Pd) monolayers

Zhaopeng Guo,1 Junze Deng,1, 2 Yue Xie,1, 2 and Zhijun Wang1, 2, ∗

1Beijing National Laboratory for Condensed Matter Physics,
and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
(Dated: September 8, 2022)

Higher-order topological insulators have been introduced in the precursory Benalcazar-Bernevig-
Hughes quadrupole model, but no electronic compound has been proposed to be a quadrupole
topological insulator (QTI) yet. In this work, we predict that Ta2M3Te5 (M = Pd, Ni) monolayers
can be 2D QTIs with second-order topology due to the double-band inversion. A time-reversal-
invariant system with two mirror reflections (Mx and My) can be classified by Stiefel-Whitney
numbers (w1, w2) due to the combined symmetry TC2z. Using the Wilson loop method, we compute
w1 = 0 and w2 = 1 for Ta2Ni3Te5, indicating a QTI with qxy = e/2. Thus, gapped edge states
and localized corner states are obtained. By analyzing atomic band representations, we demonstrate
that its unconventional nature with an essential band representation at an empty site, i.e., Ag@4e, is
due to the remarkable double-band inversion on Y-Γ. Then, we construct an eight-band quadrupole
model with Mx and My successfully for electronic materials. These transition-metal compounds of
A2M1,3X5 (A = Ta, Nb; M = Pd, Ni; X = Se, Te) family provide a good platform for realizing the
QTI and exploring the interplay between topology and interactions.

Introduction. In higher-order topological insulators,
the ingap states can be found in (d−n)-dimensional edges
(n > 1), such as the corner states of two-dimensional
(2D) systems or the hinge states of three-dimensional
systems1–12. Different from topological insulators with
(d − 1)-dimensional edge states, the Chern numbers or
Z2 numbers in higher-order topological insulators are
zero. The higher-order topology can be captured by
topological quantum chemistry13–18, nested Wilson loop
method1,8 and second Stiefel-Whitney (SW) class19–25.
Using topological quantum chemistry13, the higher-order
topological insulator can be diagnosed by the decompo-
sition of atomic band representations (aBRs) as an un-
conventional insulator (or obstructed atomic insulator)
with mismatching of electronic charge centers and atomic
positions16–18,26. In contrast to dipoles (Berry phase)
for topological insulators, the higher-order topological in-
sulators can be understood by multipole moments1. In
a 2D system, the second-order topology corresponds to
the quadrupole moment, which can be diagnosed by the
nested Wilson loop method1,8,23. When the system con-
tains space-time inversion symmetries, such as PT and
C2zT , where the P and T represent inversion and time-
reversal symmetries, the second-order topology can be
described by the second SW number (w2)23,27. The sec-
ond SW number w2 is a well-defined 2D topological in-
variant of an insulator only when the first SW number
w1 = 0. Usually, a 2D quadrupole topological insulator
(QTI) with w1 = 0, w2 = 1 has gapped edge states and
degenerate localized corner states, which are pinned at
zero energy (being topological) in the presence of chiral
symmetry. When the degenerate corner states are in the
energy gap of bulk and edge states, the fractional corner
charge can be maintained due to filling anomaly28.

So far, various 2D systems are proposed to be SW in-
sulators with second-order topology, such as monolayer
graphdiyne29,30, liganded Xenes25,31, β-Sb monolayer18

and Bi/EuO32. However, no compound has been pro-
posed to be a QTI with Mx and My symmetries. After
considering many-body interactions in transition-metal
compounds, superconductivity, exciton condensation and
Luttinger liquid could emerge in a transition-metal QTI.
In recent years, van der Waals layered materials of
A2M1,3X5 (A = Ta, Nb; M = Pd, Ni; X = Se, Te) family
have attracted attentions because of their special prop-
erties, such as quantum spin Hall effect in Ta2Pd3Te5

monolayer33,34, excitons in Ta2NiSe5
35–37, and supercon-

ductivity in Nb2Pd3Te5 and doped Ta2Pd3Te5
38. In par-

ticular, the monolayers of A2M1,3X5 family can be ex-
foliated easily, serving as a good platform for studying
topology and interactions in lower dimensions.

In this work, we predict that based on first-principles
calculations, Ta2Ni3Te5 monolayer is a 2D QTI. Using
the Wilson-loop method, we show that its SW numbers
are w1 = 0 and w2 = 1, corresponding to the second-
order topology. We also solve the aBR decomposition for
Ta2Ni3Te5 monolayer, and find that it is unconventional
with an essential band representation (BR) at an empty
Wykoff position (WKP), Ag@4c, which origins from the
remarkable double-band inversion on Y–Γ line. To ver-
ify the QTI phase, we compute the energy spectrum of
Ta2Ni3Te5 monolayer with open boundary conditions in
both x and y directions and obtain four degenerate cor-
ner states. Then, we construct an eight-band quadrupole
model with Mx and My successfully. The double-band-
inversion picture widely happens in the band structures
of A2M1,3X5 family. The Ta2M3Te5 monolayers are 2D
QTI candidates for experimental realization in electronic
systems.

Band structures. The band structure of Ta2Ni3Te5

monolayer suggests that it is an insulator with a band
gap of 65 meV. We have checked that spin-orbit cou-
pling (SOC) has little effect on the band structure
(Fig. S2(b)). We also checked the band structures
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FIG. 1. (a) The crystal structure, Wyckoff positions and
Brillouin zone (BZ) of Ta2Ni3Te5 monolayer. (b) Band struc-
ture and irreps at Y and Γ of Ta2Ni3Te5 monolayer. (c) The
1D ky-direct Wilson bands as a function of kx calculated in
the DFT code. (d) Close-up of the green region in (c), with
one crossing of Wilson bands at θ = π indicating the second
SW class w2 = 1.

using GW method and SCAN method, and we find
that the band gap remains using these methods (the
corresponding band structures are shown in Appendix
A). As shown in the orbital-resolved band structures of
Fig. 3(a-c), although low-energy bands near the Fermi
level (EF ) are mainly contributed by Ta-dz2 orbitals
(two conduction bands) and NiA-dxz orbitals (two va-
lence bands), the inverted bands of {Y2; GM1−,GM3−}
come from Te-px orbitals. The irreducible represen-
tations (irreps)39 at Y and Γ are denoted for the in-
verted bands in Fig. 1(b). We notice that the double-
band inversion between {Y2; GM1−,GM3−} bands and
{Y1; GM1+,GM3+} bands is remarkable, about 1 eV.

Atomic band representations. To analyze the band
topology, the decomposition of aBR is performed. In
a unit cell of Ta2Ni3Te5 monolayer in Fig. 1(a), four
Ta atoms, four NiB atoms and eight Te atoms are lo-
cated at different 4e WKPs. The rest two Te atoms
and two NiA atoms are located at 2a and 2b WKPs
respectively. The aBRs are obtained from the crys-
tal structure by pos2aBR 16–18, and irreps of occupied
states are calculated by IRVSP 39 at high-symmetry k-
points. Then, the aBR decomposition is solved online –
http://tm.iphy.ac.cn/UnconvMat.html. The results are
listed in Table S2 of Appendix B. Instead of being a sum
of aBRs, we find that the aBR decomposition of the oc-
cupied bands has to include an essential BR at an empty
WKP, i.e., Ag@4c. As illustrated in Fig. 1(a), the charge
centers of the essential BR are located at the middle of
NiB-NiB bonds (i.e., the 4c WKP), indicating that the
Ta2Ni3Te5 monolayer is a 2D unconventional insulator
with second-order topology.
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FIG. 2. (a) The diagram of double-band inversion along Y–Γ
line. The schematic band structures of (b) 215-type semimetal
and (c) 235-type insulator. The double-band inversion hap-
pens in both cases. The crossing points on the Γ–X line are
part of the nodal line.

Double-band inversion. In an ideal atomic limit, Te-
p orbitals and Ni-d orbitals are occupied, while Ta-d
orbitals are fully unoccupied. Thus, all the occupied
bands are supposed to be the aBRs of Te-p and Ni-d
orbitals, as shown in the left panel of Fig. 2(a). How-
ever, in the monolayers of A2M1,3X5 family (see their
band structures in Appendix A), a double-band inver-
sion happens between the occupied aBR A′′@4e (Te-px
and Ni-d) and unoccupied aBR A′@4e (Ta-dz2), as shown
in the right two panels of Fig. 2(a). When the double-
band inversion happens between {Y2; GM1−,GM3−}
and {Y1; GM2−,GM4−} on Y–Γ line, it results in
a semimetal for Ta2NiSe5 monolayer (215-type; Fig.
2(b)). When it happens between {Y2; GM1−,GM3−}
and {Y1; GM1+,GM3+} in Fig. 2(c), the system be-
comes a 2D QTI for Ta2Ni3Te5 monolayer (235-type),
resulting in the essential BR of Ag@4c.

Second Stiefel-Whitney class w2 = 1. To identify the
second-order topology of the monolayers, we compute the
second SW number by the Wilson-loop method. The first
SW class (w1) is,

w1

∣∣∣∣
C

=
1

π

∮
C

dk · TrA(k) (1)

where Amn(k) = 〈um(k)|i∇k|un(k)〉22. The second SW
class (w2) can be computed by the nested Wilson-loop
method, or simply by m module 2, where m is the num-
ber of crossings of Wilson bands at θ = π. It should be
noted that w2 is well-defined only when w1 = 0. With
w1 = 0, w2 can be unchanged when choosing the unit cell
shifting a half lattice constant. The 1D Wilson-loops are
computed along ky. The computed phases of the eigen-
values of Wilson-loop matrices Wy(kx) (Wilson bands)
are shown in Fig. 1(c) as a function of kx. The results

https://github.com/zjwang11/UnconvMat/blob/master/src_pos2aBR.tar.gz
https://github.com/zjwang11/irvsp
http://tm.iphy.ac.cn/UnconvMat.html
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FIG. 3. The orbital-resolved band structures of (a) dz2 orbitals of Ta atoms, (b) dxz orbitals of NiA atoms, and (c) px orbitals
of Te atoms. (d) The comparison between band structures of maximally localized Wannier functions and DFT results. (e)
(01)-edge states around Γ. (f) The charge distribution of four corner states. The insert shows the energy spectrum of the
tight-binding model with open boundaries in x and y directions.

show that the first SW class is w1 = 0. In addition, there
is one crossing of Wilson bands at θ = π [Fig. 1(d)], in-
dicating the second SW class w2 = 1. The quadruple
moment qxy = e/2 calculated by the nested Wilson-loop
method in Appendix C. Therefore, the Ta2Ni3Te5 mono-
layer is a QTI with a nontrivial second SW number.

Edge spectrum and corner states. From the orbital-
resolved band structures (Fig. 3), the maximally local-
ized Wannier functions of Ta-dz2 , NiA-dxz and Te-px or-
bitals are extracted, to construct a 2D tight-binding (TB)
model of Ta2Ni3Te5 monolayer. As shown in Fig. 3(d),
the obtained TB model fits the density functional theory
(DFT) band structure well. First, we compute the (01)-
edge spectrum with open boundary condition along y.
Instead of gapless edge states for a 2D Z2-nontrivial in-
sulator, gapped edge states are obtained for the 2D QTI
[Fig. 3(e)]. Then, we explore corner states as the hall-
mark of the 2D QTI. We compute the energy spectrum
for a nanodisk. For concreteness, we take a rectangular-
shaped nanodisk with 50× 10 unit cells, preserving both
Mx and My symmetries in the 0D geometry. The ob-
tained discrete spectrum for this nanodisk is plotted in
the inset of Fig. 3(f). Remarkably, one observes four de-
generate states near EF . The spatial distribution of these
four-fold modes can be visualized from their charge dis-
tribution, as shown in Fig. 3(f). Clearly, they are well
localized at the four corners, corresponding to isolated
corner states.

Minimum model for the 2D QTI. As shown in Fig. 2,
the minimum model for the 2D QTI should be consisted

of two BRs of A′@4e and A′′@4e. Based on the situa-
tion of Ta2Ni3Te5 monolayer in Fig. 2(c), the minimum
effective model is derived as below,

HTB(k) =

(
HTa(k) Hhyb(k)

Hhyb(k)
†
HNi(k)

)
(2)

The terms of HTa(k), HNi(k) and Hint(k) are 4× 4 ma-
trices, which read

HTa(k) = [εs + 2ts1 cos(kx)]σ0τ0 + ts2γ1(k) + ts3σ0τx,

HNi(k) = [εp + 2tp1 cos(kx)]σ0τ0 + tp2γ2(k) + tp3σ0τx,

Hhyb(k) = 2itsp sin(kx)γ3(k).
(3)

The γ1,2,3(k) matrices are given explicitly in Appendix
D. We find that ts1 < 0 and tp1, tp2 > 0 for the A2M1,3X5

family (ts3 and tp3 are small). When εs + 2ts1 − 2|ts2| <
εp + 2tp1 + 2tp2, the double-band inversion happens in
the monolayers of this family. By fitting the DFT bands,
we obtain ts2 > 0 for the 215-type, while ts2 < 0 for the
235-type. When εp = −εs and tpi = −tsi(i = 1, 2, 3),
the model is chiral symmetric (i.e., δ = 0 in Table I).
Since the second SW insulator or QTI is topological in

TABLE I. Parameters of the TB model for the QTI with chiral
symmetry when δ = 0.

εs ts1 ts2 ts3 tsp εp tp1 tp2 tp3
2.05 -1 -0.8 -0.2 0.3 -2.05 1 0.8 0.2(1+δ)
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states in (c). (e) The diverse properties of A2M1,3X5 (A = Ta, Nb; M = Pd, Ni; X = Se, Te) family.

the presence of chiral symmetry, we would focus on the
model (almost respecting chiral symmetry) in the follow-
ing discussion.

Analytic solution of (01)-edge states As the remnants
of the QTI phase, the localized edge states can be solved
analytically for the minimum model. For the (01)-edge,
one can treat the model HTB(k) as two parts, H0(k) and
H ′(k),

H0(k) =

(
ts2γ1(k) + ts3σ0τx 0

0 tp2γ2(k) + tp3σ0τx

)
H ′(k) =

(
[εs + 2ts1 cos(kx)]σ0τ0 Hhyb(k)

Hhyb(k)
†

[εp + 2tp1 cos(kx)]σ0τ0

)
(4)

Note that there is a pair of Dirac points (±kDx , 0), with

kDx = arccos

[
1
2

(
ts3
ts2

)2

− 1

]
. Since kx is still a good quan-

tum number on the (01)-edge, expanding ky to the second
order, the zero-mode equation H0(kx,−i∂y)Ψ(kx, y) = 0
can be solved for y ∈ [0,+∞). Taking the trial solution
of Ψ(kx, y) = ψ(kx)eλy, we obtain the secular equation
and the solution of λ = ±λ±, where

λ± = 1±

√
t2s3

(1 + cos(kx))t2s2
− 1 (5)

With the boundary conditions Ψ(kx, 0) = Ψ(kx,+∞) =
0, only −λ± are permitted.

In the kx regime of
[
−kDx ,kDx

]
, the edge zero-mode

states are Ψ(kx, y) = [C1(kx)φ1(kx) + C2(kx)φ2(kx)](
e−λ+y − e−λ−y

)
with

φ1(kx) =
(
− (1+e−ikx )ts2

ts3
0 1 0 0 0 0 0

)T

φ2(kx) =
(

0 0 0 0 − tp3
(1+eikx )tp2

0 1 0
)T

(6)

The edge zero states are Fermi arcs that linking the pair
of projected Dirac points (±kDx , 0). Once H ′(k) included,

the effective (01)-edge Hamiltonian is,

Heff
01 = 〈Φ|H(k) |Φ〉

=

(
εs + 2ts1 cos(kx) 0

0 εp + 2tp1 cos(kx)

)
(7)

where |Φ〉 ≡ |φ1(kx), φ2(kx)〉. Two edge spectra are ob-
tained in Fig. 4 (a).

Effective SSH model on (10)-edge and corner
states Similarly, we derive the (10)-edge modes as
[F1(ky)ϕ1(ky) + F2(ky)ϕ2(ky)]

(
e−Λ+x − e−Λ−x

)
with

ϕ1 =



0
1−∆s

1−∆se
iky

0
−1 + ∆p

0
0

−1 + ∆pe
−iky


, ϕ2 =



e−iky (1−∆s)
0
0

1−∆se
−iky

0
−1 + ∆p

−e−iky + ∆p

0


. (8)

Here, Λ± =
2tsp±

√
4t2sp−2(2ts1+ts2)(2ts1+2ts2+εs)

2ts1+ts2
, ∆s =(

ts3
2ts2

)2

, and ∆p =
(
tp3
2tp2

)2

. Then we obtain the effective

Hamiltonian on (10) edge below,

Heff
10 =

(
0 v + we−iky

v + weiky 0

)
,

w = ts3 + tp3 − 4ts3∆s,

v = ts3 + tp3 − 4tp3∆p

(9)

When δ = 0, the minimum QTI model is chiral sym-
metric and it is gapless on the (10) edge (preserving My

symmetry). When the chiral symmetry is slightly bro-

ken (δ 6= 0), the Heff
10 becomes an Su-Schrieffer-Heeger

model (δ < 0 nontrivial; δ > 0 trivial), as presented in
Fig. 4(b-d). As a result, we obtain a solution state on
the end of the edge mode, i.e., the corner. As long as the
energy of the corner state is located in the gap of bulk
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and edge states, the corner state is well localized at the
corners, as shown in Fig. 4(c,d).

Discussion. In Ta2NiSe5 monolayer, the double-band
inversion has also happened between Ta-dz2 and Te-px
states, about 0.4 eV, resulting in a semimetal with a
pair of nodal lines in the 215-type. The highest valence
bands on Y–Γ are from the inverted Ta-dz2 states. How-
ever, in Ta2Ni3Te5 monolayer, the double-band inversion
strength becomes remarkable, ∼ 1 eV, which is ascribed
to the filled B-type voids and more extended Te-p states.
On the other hand, the highest valence bands become
NiA-dxz states (slightly hybridized with Te-px states).
It is insulating with a small gap of 65 meV. When it
comes to A2Pd3Te5 monolayer, the remarkable inversion
strength is similar to that of Ta2Ni3Te5. But the PdA-
dxz states go upwards further due to more expansion of
the d-orbitals and the energy gap becomes almost zero
in Ta2Pd3Te5. In short, the double-band inversion hap-
pens in all these monolayers, while the band gap of the
235-type changes from positive (Ta2Ni3Te5), to nearly
zero (Ta2Pd3Te5 with a tiny band overlap), to nega-
tive (Nb2Pd3Te5), as shown in Fig. S1. Although the
band structure of Ta2Pd3Te5 bulk is metallic without
SOC33,34,38, the monolayer could become a QSH insula-
tor upon including SOC in Ref.33. Since their bulk ma-
terials are van der Waals layered compounds, the bulk
topology and properties strongly rely on the band struc-
tures of the monolayers in the A2M1,3X5 family.

As we find in Ref.33, the band topology of Ta2Pd3Te5

monolayer is lattice sensitive. By applying > 1% uni-
axial compressive strain along b, it becomes a Z2-trivial
insulator, being a QTI. On the other hand, due to the
quasi-1D crystal structure, the screening effect of carriers
is relatively weak and the electron-hole Coulomb inter-
action may be substantial for exciton condensation. The
1D in-gap edge states as remnants of the QTI are respon-
sible for the observed Luttinger-liquid behavior.

In conclusion, we predict that Ta2M3Te5 monolayers
can be QTIs by solving aBR decomposition and comput-
ing SW numbers. Through aBR analysis, we conclude
that the second-order topology comes from an essential

BR at the empty site (Ag@4c), and it origins from the
remarkable double-band inversion. The double-band in-
version also happens in the band structure of Ta2NiSe5

monolayer. The second SW number of Ta2Ni3Te5 mono-
layer is w2 = 1, corresponding to a QTI. Therefore,
we obtain edge states and corner states of the mono-
layer. The eight-band quadrupole model with Mx and
My has been constructed successfully for electronic ma-
terials. With the large double-band inversion and small
band energy gap/overlap, these transition-metal materi-
als of A2M1,3X5 family provide a good platform to study
the interplay between the topology and interactions (Fig.
4(e)).

Method. Our first-principles calculations were per-
formed within the framework of the DFT using the pro-
jector augmented wave method40,41, as implemented in
Vienna ab-initio simulation package (VASP)42,43. The
Perdew-Burke-Ernzerhof (PBE) generalized gradient ap-
proximation exchange-correlations functional44 was used.
SOC is neglected in the calculations except Supplemen-
tary Figure 2(b). We also used SCAN45 and GW46

method when checking the band gap. In the self-
consistent process, 16 × 4 × 1 k-point sampling grids
were used, and the cut-off energy for plane wave expan-
sion was 500 eV. The irreps were obtained by the program
IRVSP 39. The maximally localized Wannier functions
were constructed by using the Wannier90 package47. The
edge spectra are calculated using surface Green’s function
of semi-infinite system48,49.
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APPENDIX

A. The band structures of the monolayers of A2M1,3X5 family

The space group of relaxed Ta2Ni3Te5 monolayer is Pmmn (No. 59). The symmetry operators are inversion,

C̃2x = {C2x|1/2, 0, 0}, C̃2y = {C2y|0, 1/2, 0} and C̃2z = {C2z|1/2, 1/2, 0}. Although P is weakly broken in the
exfoliated monolayer from the bulk, it will be regained after relaxation. The change of the band structure is minute,
as presented in Fig. S1(c-d). In a unit cell of Ta2Ni3Te5 monolayer in Fig. 1(a), four Ta atoms, four NiB atoms and
eight Te atoms are located at 4e WKPs. The rest two Te atoms and two NiA atoms are differently located at 2a and
2b WKPs respectively. They form 1D Ta2Te5 double chains. Unlike only A-type voids filled in Ta2NiSe5, both A-
and B-types of tetrahedral voids are filled by NiA and NiB respectively in Ta2Ni3Te5

33 (Fig. 1(a)).
There are two phases of bulk Ta2NiSe5, which are C2/c (No. 15, low-temperature phase) and Cmcm (No. 63,

high-temperature phase). The exfoliated Ta2NiSe5 monolayer of C2/c is insulator after relaxation (Fig. S1(a)). As
shown in Fig. S1(b), the exfoliated Ta2NiSe5 monolayer of Cmcm is semimetal, and the compatibility relationship is
consistent with band inversion process in Fig. 2(a). In addition, the Ta2NiSe5 is proposed to be an exciton insulator37.
In literature, there is another argument about the band gap opening, which is the single-particle band hybridization
after the structural phase transition (form high-temperature SG63 to low-temperature SG 15). The space group of
bulk Ta2M3Te5(M = Ni, Pd) is Pnma (No. 62), and space group of the corresponding exfoliated monolayer is Pmn21

(No. 31). However, the relaxed Ta2Ni3Te5 monolayer structure has inversion symmetry, and the corresponding space
group becomes Pmmn (No. 59). Thus, the inversion was imposed into Ta2M3Te5 monolayers with tiny atom positions
movements, and the corresponding band structures are also calculated, as shown in Fig. S1(c-h). In addition, with
inversion symmetry, the irreps can be distinguished by parity and the aBR decomposition can be done easily.
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FIG. S1. The comparisons of band structures of (a-b) Ta2NiSe5, (c-d) Ta2Ni3Te5, (e-f) Ta2Pd3Te5, (g-h) Nb2Pd3Te5
monolayers. The lower panels share the same space group #59. The 235-type band gap (Eg = EGM4− − EGM4+) changes for
0.068 eV for Ta2Ni3Te5, to -0.023 eV for Ta2Pd3Te5, to -0.124 eV for Nb2Pd3Te5 monolayers.
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B. The aBR decomposition of Ta2Ni3Te5

As shown in Table. S1, we find that A′@4e + A′′@4e = Ag@4c + Au@4c in aBRs for Pmmn space group. The
WKPs, aBRs and the aBR decomposition of Ta2Ni3Te5 monolayer are given in Table. S2.

TABLE S1. The aBRs for Pmmn space group at 4e and 4c WKPs, we can find A′@4e+A′′@4e = Ag@4c+Au@4c.

A′@4e A′′@4e Ag@4c Au@4c
Γ Γ1+ ⊕ Γ2− ⊕ Γ3+ ⊕ Γ4− Γ1− ⊕ Γ2+ ⊕ Γ3− ⊕ Γ4+ Γ1+ ⊕ Γ2+ ⊕ Γ3+ ⊕ Γ4+ Γ1− ⊕ Γ2− ⊕ Γ3− ⊕ Γ4−
S S1⊕S2 S1⊕S2 S1⊕S2 S1⊕S2

X X1⊕X2 X1⊕X2 X1⊕X2 X1⊕X2

Y 2Y1 2Y2 Y1⊕Y2 Y1⊕Y2

TABLE S2. The aBRs, BR decomposition for Pmmn Ta2Ni3Te5 monolayer.

Atom WKP(q) Symm. Orbital Irrep(ρ) aBR(ρ@q) Occ.
Ta 4e m dx2−y2 A′ A′@4e

dz2 A′′ A′@4e
dyz A′′ A′@4e
dxz A′′ A′′@4e
dxy A′′ A′′@4e

NiA 2b mm2 dz2 A1 A1@2b yes
dx2−y2 A1 A1@2b yes
dxy A2 A2@2b yes
dxz B1 B1@2b yes
dyz B2 B2@2b yes

NiB 4e m dz2 A′ A′@4e yes
dx2−y2 A′ A′@4e yes
dyz A′ A′@4e yes
dxz A′′ A′′@4e yes
dxy A′′ A′′@4e yes

Te1 2a mm2 pz A1 A1@2a yes
px B1 B1@2a yes
py B2 B2@2a yes

Te2 4e m pz A′ A′@4e yes
py A′ A′@4e yes
px A′′ A′′@4e yes

Te3 4e m pz A′ A′@4e yes
py A′ A′@4e yes
px A′′ A′′@4e

Ag@4c yes

C. Wilson-loop method

The Wilson-loop method is widely applied in identifying topology in bands. A Hamiltonian satisfies,

H(kx, ky) |un(kx, ky)〉 = En(kx, ky) |un(kx, ky)〉 (10)

with nocc occupied energy bands. We can define the overlap matrix,

Mmn
y (kx; kjy, k

j+1
y ) =

〈
um(kx, k

j
y)
∣∣un(kx, k

j+1
y )

〉
(11)

where kjy = 2πj/N , m,n = 1, 2, ..., nocc, and,

Wy(kx) =

N−1∏
j=0

My(kx; kjy, k
j+1
y ). (12)
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Diagonalizing Wy(kx), we can get the eigenvalues Wly(kx) = eiθl(kx) (l = 1, 2, ..., nocc) and the corresponding eigen-
vectors |wly(kx)〉. The phase is also called the Wannier charge center (WCC). In systems with PT symmetry or 2D
systems with C2zT symmetry, the Hamiltonian can be transformed to be real. In this condition, the system can be
classified using the SW class instead of the Chern class. And the second SW class can be determined by a Z2 number
w2, which is corresponding to the number of cross points at θ = π modulo 2. When calculating nested Wilson loop, we
define Mmn

xy (kjx, k
j+1
x ) =

〈
wmy(kjx)

∣∣wny(kj+1
x )

〉
(kjx = 2πj/N ; m,n = 1, 2, ..., n′). Similar to the Wilson-loop method,

Wxy =

N−1∏
j=0

Mxy(kjx, k
j+1
x ). (13)

Thus the final Berry phase of nested Wilson loop is,

Φ = − Im ln [det(Wxy)]. (14)

D. The Effective model for a 2D QTI

With unit cell defined in Fig. S3(a), basis chosen as

(|k,Ta1, dz2〉 , |k,Ta2, dz2〉 , |k,Ta3, dz2〉 , |k,Ta4, dz2〉 ,
|k,Ni1, dxz〉 , |k,Ni2, dxz〉 , |k,Ni3, dxz〉 , |k,Ni4, dxz〉) ,

(15)

hoppings considered listed in Fig. S3(b-h), and being Fourier transformed with atomic position τ excluded (i.e.,
lattice gauge; denoted as H(k)), the minimum effective eight-band tight-binding Hamiltonian of Ta2Ni3Te5 are given
as Eq. (3) in the main text, with γ-matrices defined as

γ1(k) =


0 0 0 e−iky

(
1 + e−ikx

)
0 0 1 + e−ikx 0
0 1 + eikx 0 0

eiky
(
1 + eikx

)
0 0 0

 (16a)

γ2(k) =


0 0 0 1 + e−ikx

0 0 eiky
(
1 + e−ikx

)
0

0 e−iky
(
1 + eikx

)
0 0

1 + eikx 0 0 0

 (16b)

γ3(k) =


0 e−iky 0 0
1 0 0 0
0 0 0 1
0 0 eiky 0

 (16c)

Therefore, the full tight-binding (TB) Hamiltonian is

HTB(k) =

(
HTa(k) Hhyb(k)

Hhyb(k)
†
HNi(k)

)
(17)
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(a) (b)  ts1 (c)  ts2 (d)  ts3
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+ +
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+
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+ +
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FIG. S3. (a) Unit cell of minimum effective model of Ta2Ni3Te5. (b)-(h) Hoppings considered in effective model. The hoppings
are represented by bonds between Ta and Ni atoms. And the plus and minus represent the positive and negative values of
hoppings.
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