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Layered van der Waals (vdW) topological materials, especially the recently discovered MnBi2Te4-
family magnetic topological insulators (TIs), have aroused great attention. However, there has
been a serious debate about whether the surface states are gapped or gapless for antiferromagnetic
(AFM) TI MnBi2Te4, which is crucial to the prospect of various magnetic topological phenomena.
Here, a minimal three-Dirac-fermion approach is developed to generally describe topological
surface states of nonmagnetic/magnetic vdW TIs under the modulation of the interlayer vdW
gap. In particular, this approach is applied to address the controversial issues concerning the
surface states of vdW AFM TIs. Remarkably, topologically protected gapless Dirac-cone surface
states are found to arise due to a small expansion of the interlayer vdW gap on the surface,
when the Chern number equals zero for the surface ferromagnetic layer; while the surface states
remain gapped in all other cases. These results are further confirmed by our first-principles
calculations on AFM TI MnBi2Te4. The theorectically discovered gapless Dirac-cone states
provide a unique mechanism for understanding the puzzle of the experimentally observed gapless
surface states in MnBi2Te4. This work also provides a promising way for experiments to real-
ize the intrinsic magnetic quantum anomalous Hall effect in MnBi2Te4 films with a large energy gap.

Keywords: magnetic topological insulator, van der Waals gap, Dirac-fermion
model, gapless surface state
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I. INTRODUCTION

Three-dimensional topological insulators (TIs) are
characterized by gapless Dirac-cone surface states in the
bulk band gap [1, 2]. However, breaking the time-reversal
symmetry (TRS) leads to an energy gap at the Dirac
point of these surface states [3]. Such gapped Dirac-
cone surface states play a crucial role in a series of ex-
otic topological quantum phenomena [4], including the
topological magnetoelectric effect [5, 6] and the quantum
anomalous Hall effect (QAHE) [7, 8]. While magnetic
doping has conventionally been used to induce gapped
Dirac-cone surface states in TIs [8], this method is in-
evitably subject to complex and detrimental effects, such
as magnetic inhomogeneity and disorder effects. Re-
cently, MnBi2Te4-family intrinsic magnetic TIs were dis-
covered [9–45], which offers a promising alternative play-
ground. These materials not only increase the tempera-
ture of the QAHE [46], but also enable the study of axion
electrodynamics [47–52]. However, there is still a signif-
icant controversy on the surface states of MnBi2Te4, as
both gapped and gapless surface states were experimen-
tally observed [10, 53–59].

Meanwhile, most nonmagnetic/magnetic TIs are lay-
ered materials with an interlayer van der Waals (vdW)
gap, such as Bi2Se3-family TIs [60] and MnBi2Te4-family

magnetic TIs [9–12]. These materials are composed
of covalent-bonding layers held together by weak vdW
forces. The interlayer vdW gap plays a crucial role in
the electronic structures of both bulk and surface states
of these materials. However, the vdW gap is sensitive
to impurities or intercalated atoms in fabrication pro-
cesses, and even a small concentration of impurities can
significantly expand the vdW gap. Moreover, the surface-
induced symmetry breaking may also cause a consider-
able expansion of the topmost vdW gap. Previous studies
have shown that an expansion of the topmost vdW gap
can lead to a relocation of surface states in Bi2Se3-family
TIs [61].

In this work, we develop a three-Dirac-fermion model
that can generally describe the surface states of layered
nonmagnetic/magnetic TIs under the modulation of the
interlayer vdW gap. We apply this model to investi-
gate the evolution of the surface states of layered A-
type AFM TIs [62], as the topmost vdW gap expands
from the bulk value (d = d0) to the surface layer decou-
pled limit (d = ∞), as illustrated in Fig. 1. The surface
layer can be regarded as either an effective ferromagnetic
(FM) block consisting of an odd number of septuple-
layers (SLs) of MnBi2Te4 [11], as schematically shown
in Fig. 1(i,ii), or an effective AFM block consisting of an
even number of SLs of MnBi2Te4, as schematically shown
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FIG. 1: Evolution of surface states of an AFM TI with an
expansion of the topmost vdW gap. The AFM TI consists
of FM or AFM block layers (colored in blue) held together
by weak vdW forces. In the unexpanded case (d0), the AFM
TI has gapped Dirac-cone surface states. With increasing
the topmost vdW gap (d = d0 + δd) between a surface layer
(colored in pink) and the below bulk (colored in blue), if the
surface layer is FM, two cases will occur, depending on its
Chern number C: (i) When |C| = 1, the surface states remain
gapped. (ii) When C = 0, the energy gap of surface states has
a topologically protected gapless transition point. In contrast,
(iii) if the surface layer is AFM, the surface states always keep
gapped.

in Fig. 1(iii). For the FM surface layer, we find that if
the surface layer has a zero Chern number, unexpected
topologically protected gapless Dirac-cone surface states
will arise at the topological transition point [see (ii) in
Fig. 1], while the gapped surface states persist if the sur-
face layer has a nonzero Chern number [see (i) in Fig. 1].
On the other hand, for the AFM surface layer, the en-
ergy gap of surface states is always maintained [see (iii)
in Fig. 1]. These findings are further confirmed by our
first-principles calculations on AFM TI MnBi2Te4, which
may solve the puzzle of the angle resolved photoelectron
spectroscopy (ARPES) observations of both gapless and
gapped surface states of MnBi2Te4. Notably, the three-
Dirac-fermion approach provides a unified description of
surface states of layered TIs, indicating that engineering
the interlayer vdW gap can provide a new route for de-
veloping the applications of nonmagnetic/magnetic TIs.

II. EFFECTIVE MODEL ANALYSIS

The surface states of the nonmagnetic/magnetic TIs
under an expansion of the interlayer vdW gap can be cap-
tured by a simple low-energy effective model composed of
three helical Dirac fermions. As illustrated in Fig. 2(a),
two of the Dirac fermions, labelled as D1 and D2, re-

spectively, come from top and bottom surface states of
the surface layer. The third Dirac fermion, labelled D3,
comes from the top surface state of the below bulk. Nor-
mally, D1, D2, and D3 are local Dirac states with a typ-
ical spread (1 ∼ 2 nm). With magnetic moments along
the out-of-plane direction (the z direction), each Dirac
fermion can be described by the low-energy Hamiltonian

HDi
= sv(kxσy − kyσx) + hiσz, (1)

where i = 1, 2, 3, v is the Fermi velocity, s = +1(−1)
denotes the helicity of D1 and D3 (D2), the Pauli matri-
ces act on the spin subspace, and hi indicates the Zee-
man coupling. We further consider two couplings due to
finite wavefunction overlaps: ∆12 between D1 and D2,
∆23 between D2 and D3. Note that ∆12 depends on the
thickness of the surface layer, while ∆23 relys on the top-
most vdW gap. In the ordered basis of (|D1 ↑⟩, |D1 ↓⟩,
|D2 ↑⟩, |D2 ↓⟩, |D3 ↑⟩, |D3 ↓⟩), the total Hamiltonian of
the coupled three-Dirac-fermion model is given by

H =




HD1
∆12σ0 0

∆12σ0 HD2
∆23σ0

0 ∆23σ0 HD3


 , (2)

where σ0 is 2× 2 identity matrix in the spin subspace.
We first consider nonmagnetic TIs to see how surface

states change with an expansion of the topmost vdW
gap (d). With increasing d from the pristine bulk value
(d = d0), ∆23 gradually decreases to zero, while ∆12 re-
mains unchanged. Therefore, we treat ∆12 as the energy
unit hereinafter. Without the Zeeman term, the non-
magnetic three-Dirac-fermion model exhibits two linear

bands with dispersions ±vk, where k =
√
(k2x + k2y). Re-

gardless of ∆23/∆12, the two linear bands always meet
at Γ, forming a gapless Dirac cone, as reflected from the
doubly degenerate energy level at shown in Fig. 2(b).
However, the location of the gapless Dirac cone gradu-
ally changes from the top of the surface layer to the top
of the below bulk [see Fig. 2(a)]. The persistent gapless
Dirac cone in the nonmagnetic case can be understood
from the destructive interference behavior in a three-level
system.
When A-type AFM order is present, each of the three

Dirac fermions becomes gapped due to a mass term in-
duced by the Zeeman coupling. Interestingly, the compe-
tition between the Zeeman coupling h and the intralayer
coupling ∆12 leads to distinct results. We first con-
sider the surface layer as one FM block with h1 = h2 =
−h3 = h (where h denotes the Zeeman coupling strength
assumed to be positive). Intriguingly, if the condition
∆12 > h is satisfied, for example, for a sufficiently thin
surface layer, there is always an energy-gap-closing-and-
reopening process with a gapless Dirac-cone surface state,
when the interlayer coupling ∆23 is tuned by modulat-
ing the vdW gap, as shown in Fig. 2(e). In contrast,
if ∆12 < h, the energy gap remains open, as shown in
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FIG. 2: The three-Dirac-fermion model. (a,d) Schematic of the three-Dirac-fermion model of the nonmagnetic case (a), and
the AFM case (d), where the Dirac states (D1 and D2) correspond to the top and bottom surface states of the surface layer,
and D3 comes from the top surface states of the below bulk. ∆12 is the intralayer coupling between D1 and D2, while ∆23 is
the interlayer coupling between D2 and D3. (b,c,e,f) Bands at Γ as a function of ∆23/∆12, corresponding to increasing the
interlayer vdW gap, for the nonmagnetic case (b) and the AFM case hosting an AFM surface layer (c) and an FM surface layer
with ∆12 > h (e) and with ∆12 < h (f). The h represents the Zeeman coupling strength.

Fig. 2(f). We will show that the gapless surface state is
topologically protected by the Chern number transition
of the three-Dirac-fermion system from the weakly cou-
pled limit of ∆23 → 0 to the strongly coupled limit of
∆23 ≫ ∆12.

In the weakly coupled limit of ∆23 → 0, only D1 and
D2 are coupled through ∆12, while D3 is nearly isolated
with the Chern number C3 = sgn(h3)/2 = −1/2. For
the coupled D1 and D2, if ∆12 > h (∆12 < h), its Chern
number is C12 = 0 [C12 = sgn(h1) = 1] [7], and corre-
spondingly, the total Chern number is C = C12 + C3 =
−1/2 (C = 1/2). In the strongly coupled limit with
∆23 ≫ ∆12, and ∆23 ≫ h, D1 becomes nearly isolated,
and only D2 and D3 are coupled. Because of the PT
symmetry combining the spatial-inversion operation (P )
and the time-reversal operation (T ) [see the supplemen-
tary material (SM) [63] for details], the coupled D2 and
D3 give a zero Chern number. Therefore, the total Chern
number in the strongly coupled limit is equivalent to that
of D1, given by C1 = sgn(h1)/2 = 1/2. It follows that
if ∆12 > h is satisfied, the total Chern number of the
three-Dirac-fermion system changes by |∆C| = 1 from
the weakly coupled limit to the strongly coupled limit in
the vdW gap expansion process, ensuring the existence
of a topological transition shown in Fig. 2(e). Differ-
ently, for ∆12 < h, the total Chern number remains

unchanged and the energy gap of surface states stays
open [see Fig. 2(f)]. Therefore, we can conclude that the
gapless surface state is topologically protected and arises
from the competition between the Zeeman coupling and
the Dirac fermion couplings.
Secondly, we consider an AFM surface layer with

h1 = −h2 = h3 = h. In this case, there is no gap-
less transition with the interlayer vdW gap expansion,
shown in Fig. 2(c). Instead, the energy gap of the sur-
face state remains an almost constant magnitude 2h, irre-
spective of ∆23/∆12. Moreover, the total Chern number
remains unchanged as C = 1/2, which can be obtained
through similar arguments as above by taking two limits
of ∆23 ≪ ∆12 and ∆23 ≫ ∆12 into account.
Furthermore, it is worth mentioning that the three-

Dirac-fermion model can also be used to describe the
FM TIs, for example, by setting h1 = h2 = h3 = h.
However, in contrast to the A-type AFM TIs, in the FM
case, a topological transition with a gapless surface state
appears only when ∆12 < h is satisfied (see SM for more
details [63]).

III. MATERIAL REALIZATION

As a concrete example of the three-Dirac-fermion
model, in what follows we study the layered AFM TI
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FIG. 3: AFM TI MnBi2Te4 and nonmagnetic TI CaBi2Te4 with an expansion of the vdW gap. (a-d) Bands at Γ for (7+1)-SL
CaBi2Te4 (a), (7 + 1)-SL MnBi2Te4 (b), (7 + 2)-SL MnBi2Te4 (c), and (7 + 3)-SL MnBi2Te4 (d). The bands on the surface
layer and the top SL of the below bulk are highlighted in blue, red, orange, and green, respectively. (e) The corresponding
band gaps are presented. A gapless transition of the band gap arises at the vdW gap expansion δd = 0.18 Å for (7 + 1)-SL
MnBi2Te4, with the corresponding surface LDOS (f), where gapless Dirac-cone states can be seen.

MnBi2Te4. It is composed of FM SLs that are coupled
to each other through the vdW force, and it exhibits an
A-type AFM order in the magnetic ground state, with
out-of-plane FM coupling within each SL and AFM cou-
pling between neighboring SLs [11]. However, the exis-
tence of unavoidable MnBi and BiMn antisite defects and
Mn vacancies might lead to significant changes of the
vdW gap [18, 30, 64, 65]. The mechanical cleavage and
exfoliation processes of the sample preparation, and the
symmetry suddenly breaking on the surface may also re-
sult in a small expansion of the topmost interlayer vdW
gap [64]. Now, based on first-principles calculations, we
investigate the expansion effects of the topmost vdW gap
of MnBi2Te4.

We start from the nonmagnetic case of CaBi2Te4 where
Mn atoms in MnBi2Te4 are replaced with Ca atoms. For
our calculations, we take a (7+1)-SL CaBi2Te4 thin film
with gradually expanding the topmost vdW gap between
the first and second SL. The evolution of energy bands
at Γ with increasing δd = d−d0 is presented in Fig. 3(a),
where the bands locating at the first and second SLs are
highlighted in blue. The blue bands at the Fermi level are
doubly degenerate, indicating the persistent existence of
the gapless Dirac-cone surface states in the first and sec-
ond SLs, which is well consistent with the model analysis
in Fig. 2(b).

We now investigate the AFM TI MnBi2Te4. We take
(7+1)-SL and (7+3)-SL MnBi2Te4 films for our calcula-

tions. Here, 1 SL in (7+1)-SL film and 3 SLs in (7+3)-SL
film are effectively considered as the surface layer, while
the remaining 7 SLs are considered as the below bulk.
We make these choices based on the following consider-
ations. For the thickness of MnBi2Te4 thin film smaller
(greater) than 3 SLs, the coupling ∆12 between the two
Dirac-cone surface states (D1 and D2) is expected to be
greater (smaller) than the Zeeman coupling strength h,
thus leading to a Chern number of 0 (1) for the 1-SL (3-
SL) MnBi2Te4 film. In Figs. 3(b) and 3(d), we plot the
energy bands at Γ with increasing the vdW gap expansion
δd for (7+ 1)-SL and (7+ 3)-SL MnBi2Te4, respectively,
where red and green bands denote the bands from the
surface layer. As shown in Fig. 3(b), the energy gap closes
at a small expansion (δd = 0.18 Å) and then reopens (red
lines) in Fig. 3(e) with increasing δd. It is worth mention-
ing that this critical value of δd = 0.18 Å is stable and not
sensitive with the different functionals of first-principles
calculations (see SM [63]). In Fig. 3(f), we explicitly plot
the surface local density of states (LDOS) at the critical
value of δd = 0.18 Å, confirming the emergence of gap-
less Dirac-cone surface state. In contrast, for the case of
the (7 + 3)-SL MnBi2Te4 film, the band gap decreases
with increasing δd, as shown by green lines in Figs. 3(d)
and 3(e), but it tends to saturate for large δd and never
closes. We also present corresponding results for (7+ 2)-
SL MnBi2Te4 in Figs. 3(c) and 3(e) (orange lines), where
the energy gap of the surface states remains almost un-
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FIG. 4: Surface LDOSs and Fermi surfaces (FSs) of AFM MnBi2Te4 and nonmagnetic CaBi2Te4. The surface LDOS of
MnBi2Te4 (a,b) and FSs at energy levels E1 (e,f) and E2 (i,j) with the topmost vdW gap expansion δd = 0.18 Å. The surface
states are gapless in (a,b). Surface FSs show the three-fold rotation symmetry due to the broken TRS, while bulk FSs (e.g.
kz = 1.2π) interestingly show a six-fold-like rotation symmetry, because of the weak kz dependence of bulk bands due to the
PT symmetry [66]. The surface LDOS (c,d) and FSs at E1 (g,h) and E2 (k,l) of CaBi2Te4. The surface FSs show a six-fold
rotation symmetry, while bulk FSs (e.g. kz = 1.2π) clearly show a three-fold rotation symmetry. Moreover, notably, there are
a set of Rashba-type surface states at E2 due to breaking the inversion symmetry on the surface.

changed throughout the expansion process. Therefore,
our first-principles calculations for the (7+1)-SL, (7+2)-
SL, and (7 + 3)-SL MnBi2Te4 films are consistent with
the predictions of the three-Dirac-fermion model, corre-
sponding to Figs. 2(e), 2(c) and 2(f), respectively.

IV. DISCUSSION AND CONCLUSION

For the surface states of MnBi2Te4, there was a prob-
lem of experimental and theoretical incompatibility. Un-
expected gapless surface states were observed by many
ARPES experiments [54–56], contrary to gapped surface
states predicted by theories [11, 42]. Very encouragingly,
the mechanism of the vdW gap expansion, which we
proposed, can solve this problem. Taking a small ex-
pansion of the topmost vdW gap (e.g., δd = 0.18 Å)
for MnBi2Te4, the gapless Dirac-cone surface states of
MnBi2Te4 have been obtained by using the present three-
Dirac-fermion approach and first-principles calculations.

A previously proposed explanation for the gapless
Dirac-cone surface states is the reconstruction of the sur-
face magnetization, but it will break the three-fold rota-
tion symmetry, resulting in the loss of three-fold rotation

symmetry of the surface states [56, 67]. In contrast, un-
der the present mechanism of the vdW gap expansion, the
gapless surface states retain the original three-fold rota-
tion symmetry. In Fig. 4, we plot the calculated result
for the surface LDOS and Fermi surfaces (FSs) at two se-
lected energy levels for MnBi2Te4 with δd = 0.18 Å (first
and second columns). One can see that the surface states
are gapless and their FSs preserve the three-fold rotation
symmetry but break the six-fold rotation symmetry due
to the broken TRS. We also calculate the surface states
and FSs of CaBi2Te4 to exclude the possibility of gapless
surface states induced from nonmagnetic TIs, as shown
in Fig. 4 (third and fourth columns). Though the surface
states of CaBi2Te4 are gapless, they preserve the six-fold
rotation symmetry, which is essentially different from the
three-fold rotation symmetry in AFM TI MnBi2Te4. It is
worth mentioning that the gapped surface states were ob-
served in the recent point contact tunneling spectroscopy
on MnBi2Te4 [57], indicating that a moderate pressure on
the surface can reduce an expansion of the vdW gap to
obtain gapped surface states. Therefore, it is expected
that a moderate pressure will provide a promising way
to realize the QAHE with a large band gap in MnBi2Te4
films.
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Furthermore, we have applied the three-Dirac-fermion
model to other vdW magnetic TIs in the MnBi2Te4 fam-
ily, such as MnBi4Te7, MnBi6Te10, and MnSb4Te7 (see
SM [63]). It is found that the gapless surface states uni-
versally exist in all these materials under the expansion
of the topmost vdW gap, which is not only confirmed by
our first-principles calculations but also consistent with
most experimental observations [28, 68–71].
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Nature 595, 521 (2021).

[26] H. Fu, C.-X. Liu, and B. Yan, Sci. Adv. 6, eaaz0948
(2020).

[27] R. C. Vidal, A. Zeugner, J. I. Facio, R. Ray, M. H.
Haghighi, A. U. Wolter, L. T. C. Bohorquez, F. Caglieris,
S. Moser, T. Figgemeier, et al., Phys. Rev. X 9, 041065
(2019).

[28] C. Hu, K. N. Gordon, P. Liu, J. Liu, X. Zhou, P. Hao,
D. Narayan, E. Emmanouilidou, H. Sun, Y. Liu, et al.,
Nat. Commun. 11, 1 (2020).

[29] B. Lian, Z. Liu, Y. Zhang, and J. Wang, Phys. Rev. Lett.
124, 126402 (2020).

[30] A. Zeugner, F. Nietschke, A. U. Wolter, S. Gaß, R. C. Vi-
dal, T. R. Peixoto, D. Pohl, C. Damm, A. Lubk, R. Hen-
trich, et al., Chem. Mater. 31, 2795 (2019).

[31] J. Wu, F. Liu, M. Sasase, K. Ienaga, Y. Obata,
R. Yukawa, K. Horiba, H. Kumigashira, S. Okuma, T. In-
oshita, et al., Sci. Adv. 5, eaax9989 (2019).

[32] I. I. Klimovskikh, M. M. Otrokov, D. Estyunin, S. V.
Eremeev, S. O. Filnov, A. Koroleva, E. Shevchenko,
V. Voroshnin, A. G. Rybkin, I. P. Rusinov, et al., npj
Quantum Mater. 5, 1 (2020).

[33] M. Z. Shi, B. Lei, C. S. Zhu, D. H. Ma, J. H. Cui, Z. L.
Sun, J. J. Ying, and X. H. Chen, Phys. Rev. B 100,
155144 (2019).

[34] P. M. Sass, J. Kim, D. Vanderbilt, J. Yan, and W. Wu,
Phys. Rev. Lett. 125, 037201 (2020).

[35] Y. Yuan, X. Wang, H. Li, J. Li, Y. Ji, Z. Hao, Y. Wu,



7

K. He, Y. Wang, Y. Xu, et al., Nano. Lett. 20, 3271
(2020).

[36] H. Li, S. Liu, C. Liu, J. Zhang, Y. Xu, R. Yu, Y. Wu,
Y. Zhang, and S. Fan, Phys. Chem. Chem. Phys. 22, 556
(2020).

[37] S. Zhang, R. Wang, X. Wang, B. Wei, B. Chen, H. Wang,
G. Shi, F. Wang, B. Jia, Y. Ouyang, et al., Nano. Lett.
20, 709 (2019).

[38] Z. Ying, S. Zhang, B. Chen, B. Jia, F. Fei, M. Zhang,
H. Zhang, X. Wang, and F. Song, Phys. Rev. B 105,
085412 (2022).

[39] H. Xie, D. Wang, Z. Cai, B. Chen, J. Guo, M. Naveed,
S. Zhang, M. Zhang, X. Wang, F. Fei, et al., Appl. Phys.
Lett. 116, 221902 (2020).

[40] Y. Li, Y. Jiang, J. Zhang, Z. Liu, Z. Yang, and J. Wang,
Phys. Rev. B 102, 121107 (2020).

[41] H. Zhong, C. Bao, H. Wang, J. Li, Z. Yin, Y. Xu,
W. Duan, T.-L. Xia, and S. Zhou, Nano. Lett. 21, 6080
(2021).

[42] C. Liu, Y. Wang, M. Yang, J. Mao, H. Li, Y. Li, J. Li,
H. Zhu, J. Wang, L. Li, et al., Nat. Commun. 12, 1
(2021).

[43] Z. Xu, M. Ye, J. Li, W. Duan, and Y. Xu, Phys. Rev. B
105, 085129 (2022).

[44] W. Chen, Y. Zhao, Q. Yao, J. Zhang, and Q. Liu, Phys.
Rev. B 103, L201102 (2021).

[45] M. Garnica, M. M. Otrokov, P. C. Aguilar,
I. Klimovskikh, D. Estyunin, Z. S. Aliev, I. R.
Amiraslanov, N. A. Abdullayev, V. N. Zverev, M. B.
Babanly, et al., npj Quantum Mater. 7, 7 (2022).

[46] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H.
Chen, and Y. Zhang, Science 367, 895 (2020).

[47] J. Zhang, D. Wang, M. Shi, T. Zhu, H. Zhang, and
J. Wang, Chin. Phys. Lett. 37, 077304 (2020).

[48] H. Wang, D. Wang, Z. Yang, M. Shi, J. Ruan, D. Xing,
J. Wang, and H. Zhang, Phys. Rev. B 101, 081109
(2020).

[49] T. Zhu, H. Wang, H. Zhang, and D. Xing, npj Comput.
Mater. 7, 1 (2021).

[50] Z. Liu and J. Wang, Phys. Rev. B 101, 205130 (2020).
[51] Y. Xiao, H. Wang, D. Wang, R. Lu, X. Yan, H. Guo,

C.-M. Hu, K. Xia, H. Zhang, and D. Xing, Phys. Rev. B
104, 115147 (2021).

[52] A. Sekine and K. Nomura, J. Appl. Phys. 129, 141101
(2021).

[53] A. M. Shikin, D. A. Estyunin, N. L. Zaitsev, D. Glazkova,
I. I. Klimovskikh, S. O. Filnov, A. G. Rybkin, E. F.
Schwier, S. Kumar, A. Kimura, et al., Phys. Rev. B 104,
115168 (2021).

[54] Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang,
C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, et al.,
Phys. Rev. X 9, 041040 (2019).

[55] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-
J. Tian, J.-C. Gao, W.-H. Fan, Z.-C. Rao, J.-R. Huang,
et al., Phys. Rev. X 9, 041039 (2019).

[56] Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier,
M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, et al., Phys.
Rev. X 9, 041038 (2019).

[57] H.-R. Ji, Y.-Z. Liu, H. Wang, J.-W. Luo, J.-H. Li, H. Li,
Y. Wu, Y. Xu, and J. Wang, Chin. Phys. Lett. 38, 107404
(2021).

[58] S. H. Lee, Y. Zhu, Y. Wang, L. Miao, T. Pillsbury, H. Yi,
S. Kempinger, J. Hu, C. A. Heikes, P. Quarterman, et al.,
Phys. Rev. Research 1, 012011 (2019).

[59] D. Nevola, H. X. Li, J.-Q. Yan, R. G. Moore, H.-N.
Lee, H. Miao, and P. D. Johnson, Phys. Rev. Lett. 125,
117205 (2020).

[60] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C.
Zhang, Nat. Phys. 5, 438 (2009).

[61] S. Eremeev, M. Vergniory, T. V. Menshchikova, A. Sha-
poshnikov, and E. V. Chulkov, New J. Phys. 14, 113030
(2012).

[62] R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev.
B 81, 245209 (2010).

[63] See the supplementary materials for the detailed deriva-
tion of the PT symmetry, results of the ferromagnetic
case, surface LDOS by 3-Dirac-fermion model, applica-
tion to other vdW magnetic TIs, and methods for first-
principles calculations, which include Refs. [72–77].

[64] A. M. Shikin, D. Estyunin, I. I. Klimovskikh, S. Fil-
nov, E. Schwier, S. Kumar, K. Miyamoto, T. Okuda,
A. Kimura, K. Kuroda, et al., Sci. Rep. 10, 13226 (2020).

[65] Z. Liang, A. Luo, M. Shi, Q. Zhang, S. Nie, J. J. Ying,
J.-F. He, T. Wu, Z. Wang, G. Xu, et al., Phys. Rev. B
102, 161115 (2020).

[66] J. Li, C. Wang, Z. Zhang, B.-L. Gu, W. Duan, and Y. Xu,
Phys. Rev. B 100, 121103 (2019).

[67] Z. Yang and H. Zhang, New Journal of Physics 24,
073034 (2022).

[68] X. Wu, J. Li, X.-M. Ma, Y. Zhang, Y. Liu, C.-S. Zhou,
J. Shao, Q. Wang, Y.-J. Hao, Y. Feng, et al., Phys. Rev.
X 10, 031013 (2020).

[69] R. C. Vidal, H. Bentmann, J. I. Facio, T. Heider,
P. Kagerer, C. I. Fornari, T. R. F. Peixoto, T. Figge-
meier, S. Jung, C. Cacho, et al., Phys. Rev. Lett. 126,
176403 (2021).

[70] Y. Hu, L. Xu, M. Shi, A. Luo, S. Peng, Z. Y. Wang, J. J.
Ying, T. Wu, Z. K. Liu, C. F. Zhang, et al., Phys. Rev.
B 101, 161113 (2020).

[71] X.-M. Ma, Z. Chen, E. F. Schwier, Y. Zhang, Y.-J. Hao,
S. Kumar, R. Lu, J. Shao, Y. Jin, M. Zeng, et al., Phys.
Rev. B 102, 245136 (2020).

[72] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
(1996).
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I. EMERGENT PT SYMMETRY IN COUPLED TWO-DIRAC-FERMION MODEL

Here, we show the existence of the combined symmetry of inversion P and time-reversal T in a coupled two-Dirac-
fermion system, where the two Dirac fermions have opposite T-breaking mass terms (induced by opposite magnetic
moments) and opposite helicities. For the three-Dirac-fermion model with h1 = h2 = −h3 = h in the main text, when
∆12 = 0, D1 is isolated from D2 and D3, and the coupled D2 and D3 subsystem can be exactly described by the
above model. In the ordered bases of (|D2↑⟩,|D2↓⟩,|D3↑⟩,|D3↓⟩), the four-band model Hamiltonian is given by

H(k) =




h ivk− ∆23 0
−ivk+ −h 0 ∆23

∆23 0 −h −ivk−
0 ∆23 ivk+ −h


 = −τz(kxσy − kyσx − hσz) + ∆23τx, (S1)

where k± = kx ± iky, v is the Fermi velocity, h represents the Zeeman coupling strength, and the Pauli matrices τi
and σi act in the orbital and spin subspaces. The inversion and time-reversal operators are given by τx and iσyK
(K mean complex conjugate), respectively. The combined PT operator is then simply obtained as iτxσyK. It is
straightforward to show that the above Hamiltonian satisfies the PT symmetry as
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Fig. S 1: Bands at the Γ point of the coupled three-Dirac model with FM moments and (a) ∆12 < h, (b) ∆12 > h in the
expansion process of the van der Waals gap between surface and layers, where ∆23/∆12 gradually decreases to zero in the
surface-detached limit. The gap closing-and-reopening process appears only when ∆12 < h, which is accompanied by a unit
change of the Chern number (C). In the numerical calculation, h/∆12 is chosen to be 1.2 and 0.8 in (a) and (b), respectively.
(c) Surface gap evolution from first-principles calculation of a (5+1)-SL (red lines) and (5+3)-SL (blue lines) FM MnBi2Te4
with out-of-plane FM moments.

PTH(k)(PT )−1 = H(k). (S2)

Since the antiunitary PT operator satisfies (PT )2 = −1, Kramers degeneracy is ensured at every momentum,
leading to doubly degenerate band structures with vanishing total Berry curvatures and thus zero Chern number for
the occupied bands.

II. FERROMAGNETIC CASE BY THREE-DIRAC-FERMION MODEL

Here, we present the detailed analysis of the ferromagnetic (FM) counterpart of three-Dirac-fermion model, where
the gapless transition point appears only when ∆12 < h is satisfied. For the coupled three-Dirac-fermion model with
FM moments, i.e., h1 = h2 = h3 = h (h > 0 is assumed), the Hamiltonian is given by

H =




h −ivk− ∆12 0 0 0
ivk+ −h 0 ∆12 0 0
∆12 0 h ivk− ∆23 0
0 ∆12 −ivk+ −h 0 ∆23

0 0 ∆23 0 h −ivk−
0 0 0 ∆23 ivk+ −h



. (S3)

The energy spectrum can be easily obtained as

E(k) = ±
√
h2 + k2,±

√
k2 + (

√
∆2

12 +∆2
23 − h)2,±

√
k2 + (

√
∆2

12 +∆2
23 + h)2. (1)

Obviously, the energy gap closes at the Γ point when
√
∆2

12 +∆2
23 = h is satisfied.

In the detaching process of the surface system with the van der Waals gap distance between surface and bulk layers
changing from d0 to ∞, as shown in Fig. 2(a) in the main text, ∆12 remains unchanged, while ∆23/∆12 gradually
decreases from a large value to zero. It follows that, when ∆12 < h, there exists a gap closing-and-reopening process
at a critical value of ∆23/∆12, as shown in Fig. S1(a). This is accompanied by a change of the total Chern number
from 1/2 to 3/2. In contrast, when ∆12 > h, the gap always keeps open, as shown in Fig. S1(b), and the Chern
number keeps unchanged as 1/2. Note that the condition for the mergence of gap closing in the FM case is opposite
to that in the antiferromagnetic (AFM) case in the main text.

To confirm the above analysis based on the three-Dirac-fermion model, we have carried out first-principles calcu-
lations of (5+1)-SL and (5+3)-SL FM MnBi2Te4 with out-of-plane magnetic moments, where the topmost 1 SL and
3SL are gradually detached from the the 5SL bulk. The evolutions of the surface gap size in the expansion process
of the vdW gap distance between the detached layer and the bulk are shown in Fig. S1(c), where a gapless point
emerges for the (5+3)-SL case with ∆12 < h, while the gap remains open for the (5+1)-SL case with ∆12 > h. These
results are consistent with the theoretical analysis of the FM case by the three-Dirac fermion model.
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Fig. S 2: Surface LDOS (first column) and corresponding Fermi contours in ascending order of the three energy cuts. The upper
three rows correspond to the three stages in the interlayer vdW gap expansion process of a layered AFM topological insulator,
which presents the gapless transition point in the expansion process. (First row) the unexpanded case with a representative
value of ∆23/∆12 = 2. (Second row) at the critical gap expansion value of ∆23/∆12 ≈ 0.95. (Third row) the surface-detached
limit with ∆23/∆12 = 0. The last row describes the nonmagnetic case with a representative ∆23/∆12 = 2. In the numerical
calculations, the Zeeman field strength is set as h/∆12 = 0.3, and the coefficient λ of the third-order terms in Eq. (S4) is chosen
as λ1 = −λ2 = λ3 with λ/∆12 = 0.2.

III. SURFACE LDOS AND FERMI CONTOURS BY THREE-DIRAC-FERMION MODEL

In this section, to further show the functionality of the three-Dirac model, we will use it to calculate the surface
local density of states (LDOS) and Fermi contours in the vdW gap expansion process for both the nonmagnetic case
and AFM case exhibiting a gapless transition point, corresponding to the (7+1)-SL nonmagnetic CaBi2Te4 and AFM
MnBi2Te4 films in the main text.

To reveal the trigonal or hexagonal structures of the surface states, we need to include symmetry-allowed higher-
order corrections up to third-order terms of k in the Hamiltonian of Eq. (2) in the main text. A nonmagnetic
Bi2Te3-type surface state satisfies the following three symmetries, namely, the time-reversal symmetry T , three-fold
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rotation symmetry C3z, and mirror symmetry Mx. In the presence of the out-of-plane magnetic order, both T and
Mx are broken, whereas the C3z symmetry and combined time-reversal and mirror symmetries MxT are preserved.
Through the method of invariant in the k ·p theory, all symmetry allowed terms up to third order in k can be obtained
(see, e.g., Ref. [1]). For simplicity, we consider the following symmetry allowed third-order correction for each of the
three Dirac fermions

H ′
Di

= λi(k
3
+ + k3−)σz, (S4)

where k± = kx ± iky. It is worth mentioning that this third-order correction term for Dirac surface states of TIs has
also been derived in Ref. [2]. The full Hamiltonian H ′ of the coupled three-Dirac-fermion system is then obtained by
combining the Hamiltonian in Eq. (2) of the main text with the above terms.

To calculate the LDOS and Fermi contours of the gradually detached surface composed of the two Dirac fermions,
D1 and D2, we resort to the Green’s function method, and the surface LDOS is given by

ρ(ω) = − 1

π
ImGr

11,σ(ω)−
1

π
ImGr

22,σ(ω), (S5)

where the retarded Green’s function Gr(ω) is given by Gr(ω) = (ω + iη −H ′)−1.
In Fig. S2, we present the results of surface LDOS (first column) and three representative Fermi contours in

ascending order of the three energy cuts in the LDOS for the nonmagnetic layered topological insulators (TIs) (last
row) and three stages in the interlayer vdW gap expansion process of layered AFM TIs, namely, without vdW
expansion (first row with a representative ∆23/∆12 = 2), at the critical gap expansion value exhibiting the gapless
Dirac cone (second row with ∆23/∆12 ≈ 0.95 for h/∆12 = 0.3), and, in the surface-detached limit with ∆23/∆12 = 0
(third row). From the third column [Figs. S2(c, g, k)], it can be clearly seen that, with increasing vdW gap
expansion, the Fermi contours gradually change from trigonal shape to hexagonal shape, which results from the
gradually recovered inversion symmetry of the detached surface system. It should be emphasized that the results
predicted by the effective three-Dirac-fermion model are in qualitative consistence with the first-principles results in
Fig. 4 in the main text.

We remark that, in real materials, there also exist Rashba-like bands on the surface, e.g., due to the broken
inversion symmetry on the surface. However, since we focus on the Dirac surface states originating from nontrivial
bulk topology, which suffice to explain the trigonal or hexagonal warping effect in magnetic TIs, we did not include
these Rashba surface bands in the above theoretical discussion by three-Dirac-fermion model.

IV. RESULTS FROM DIFFERENT VDW FUNCTIONALS

To further validate the emergence of a gapless point in the expansion process of the topmost interlayer vdW gap of
a (7 + 1)-SL MnBi2Te4, we have chosen different vdW functionals to plot the evolution of the surface gap, as shown
in Fig. S3. Obviously, the gapless point stably emerges in all cases.

V. RESULTS FOR OTHER VDW MAGNETIC TOPOLOGICAL INSULATORS

In this section, to further show the functionality and universality of the proposed three-Dirac-fermion model, we
apply it to some other representative examples of vdW magnetic TIs in the MnBi2Te4 family, namely, MnBi4Te7,
MnBi6Te10, MnSb2Te4 and MnSb4Te7. Since the basic physics is similar, we here focus on MnBi4Te7 and present
results from both first-principles calculations and three-Dirac-fermion model analysis, which are consistent with each
other. Whereas, we only present the first-principles results for the rest three materials.

A. MnBi4Te7

As shown in Fig. S4(a), MnBi4Te7 consists of one SL MnBi2Te4 and one quintuple-layer (QL) Bi2Te3 as the
building block. Similar to MnBi2Te4, the magnetic ground state features out-of-plane FM couplings within each SL,
and AFM couplings between adjacent SLs. MnBi4Te7 is proposed to be a nontrivial Z2 AFM TI, which is expected
to exhibit gapped Dirac surface states for boundaries along the out-of-plane (z-) direction. However, experimental
observations show that [3–6], depending on the surface terminations, there exist two types of topological surface states
for MnBi4Te7, namely, gapless (gapped) surface states for SL (QL) termination. The gapped surface states for the
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Fig. S 3: The evolution of the surface band gap in the expansion process of the topmost interlayer vdW gap of a (7+1)-SL
MnBi2Te4 with different vdW functionals. All curves exhibit a gapless point around 0.18 Å in the expansion process.

QL termination case have been explained to result from the hybridization between surface and bulk bands. However,
the gapless surface states for the SL termination still remain elusive.

Here, we will take advantage of the three-Dirac-fermion model to show that in the vdW expansion process of the
topmost vdW gap distance, a gapless transition point in the surface band structure can emerge only for the SL-
termination case, whereas the surface bands always remain gapped for the QL termination. It should be emphasized
that our results are in consistence with the experimental observations, and can provide further insight into the
properties of the surface state in MnBi4Te7.

1. SL termination case

We first consider the SL termination case, where the three-Dirac-fermion models consists of two Dirac surface states
from the topmost SL and the other from the top surface state from the QL below, as shown in Fig. S4(a). The model
Hamiltonian is then given by

H =




hSL −ivk− ∆12 0 0 0
ivk+ −hSL 0 ∆12 0 0
∆12 0 hSL ivk− ∆23 0
0 ∆12 −ivk+ −hSL 0 ∆23

0 0 ∆23 0 hQL −ivk−
0 0 0 ∆23 ivk+ −hQL



. (S6)

Here the Zeeman term hSL results from the magnetic moments within the SL, while the Zeeman term hQL comes from
the FM proximity effect on the QL from neighboring SLs. Note that hSL can be treated as a constant, whereas hQL

depends on the interlayer distance between the QL and neighboring SLs. Since a QL has two neighboring SLs, hQL in
Eq. (S6) consists of two contributions, hIQL and hIIQL, from the upper and lower SLs, respectively, which depend on the
distance between the QL and neighboring SLs. For simplicity and without loss of generality, in the unexpanded case,
we assume the proximity-induced Zeeman term for the top surface state of the QL to be hIQL = 0.5hSL (hIIQL = −0.3hSL)

from the upper (lower) SL. In the expansion process of the topmost interlayer vdW gap between the QL and the SL
above, hIIQL obviously keeps unchanged, while hIQL gradually decreases until it vanishes in the decoupled limit, which
can be assumed to be proportional to the distance-dependent coupling ∆23 between the QL and the SL. As a result,
hQL is then given by

hQL = hIQL + hIIQL = 0.5hSL(∆23/∆
0
23)− 0.3hSL, (2)

where ∆0
23 denote the coupling ∆23 in the unexpanded case with d = d0.
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Fig. S 4: Schematic of the three-Dirac model of the SL termination case (a), and QL termination case (d) of AFM MnBi4Te7.
Bands at Γ as a function of ∆23/∆12, corresponding to increasing the interlayer vdW gap from the three-Dirac-fermion model
for the SL termination case (b) and the QL termination case (e). First-principles results of the surface gap evolution in the
topmost vdW expansion process with increasing δd for a 4-(SL+QL) MnBi4Te7 with the SL termination case (c) and the QL
termination case (f). Gapless point only appears for the SL termination case.

With the above assumptions, the evolution of the SL-terminated surface band structure at the Γ point in the
topmost vdW gap expansion process can be obtained, as shown in Fig. S4(b), where ∆12 is chosen as the energy unit
and the other parameters are representatively set to be hSL/∆12 = 0.5 and ∆0

23/∆12 = 2. A gap closing-and-reopening
process is discernable with a gapless point separating two phases with C = 1/2 and C = −1/2, respectively. Similar
to the discussion in the main text, the C = 1/2 phase can be understood from the ∆23 ≫ ∆12 limit, where the total
Chern number is reduced to that of the gapped Dirac fermion D1 on top of the SL with C = (1/2) sgn(hSL) = 1/2.
Whereas C = −1/2 comes from the other limit of ∆23 = 0, where the total Chern number is given as the sum of the
isolated SL and the top surface state D3 of the QL. For the isolated SL with hSL < ∆12, its Chern number equals
zero, so the total Chern number is reduced to that of D3 with C = (1/2) sgn(hIIQL) = (1/2) sgn(−hSL) = −1/2.
Consequently, such a gapless point is topologically protected and thus inevitable for the SL termination case in the
vdW gap expansion process.

As a further evidence, in Fig. S4(c), we plot the surface band gap evolution from first-principles calculations of a
AFM MnBi4Te7 with 4 (SL+QL) layers and SL termination, where the topmost 1 SL is gradually detached from the
bulk. The emergence of the gap closing point in Fig. S4(c) is consistent with the above three-Dirac-fermion model
analysis.

2. QL termination case

For the QL termination case, as shown in Fig. S4(e), the three-Dirac-fermion model is composed of two Dirac
fermions D1 and D2 from the two surface states of the QL, and D3 from the top surface state of the SL. The
Hamiltonian can then be written as
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Fig. S 5: (a) Schematic of MnBi6Te10 with three different kinds of surface terminations. Surface band gap evolutions in the
expansion process of the topmost interlayer vdW gap from first-principles calculations for 3-(SL+QL+QL) AFM MnBi6Te10
with the three surface terminations (b), (5+1)-SL MnSb2Te4 with both FM and AFM configurations (c), and 4-(SL+QL) AFM
MnSb4Te7 with SL and QL terminations, respectively (d).

H =




htQL −ivk− ∆12 0 0 0
ivk+ −htQL 0 ∆12 0 0

∆12 0 hbQL ivk− ∆23 0

0 ∆12 −ivk+ −hbQL 0 ∆23

0 0 ∆23 0 hSL −ivk−
0 0 0 ∆23 ivk+ −hSL



. (S7)

Here, htQL and hbQL represent the proximity-effect-induced Zeeman term of the top and bottom surface states of

the topmost QL from the SL below. Similar to the discussion above, both htQL and hbQL depend on the interlayer
distance between the topmost QL and the below SL, and they are also proportional to the interlayer coupling ∆23.
For simplicity, htQL and hbQL are reasonably assumed to be 0.3hSL(∆23/∆

0
23) and 0.5hSL(∆23/∆

0
23), respectively. The

evolution of the band structure at Γ in the expansion process of the topmost interlayer vdW gap distance can then be
obtained, shown in Fig. S4(e). Obviously, the surface band gap remains open and the Chern number keeps unchanged
as 1/2. This result can also be understood by inspecting the two limits of ∆23/∆12 → ∞ and ∆23/∆12 → 0. In the
∆23/∆12 → ∞ (∆23/∆12 → 0) limit, the total Chern number is reduced to that of D1 (D3) on top of the QL (SL),
which is simply given as C = (1/2) sgn(0.3hSL) = 1/2 [C = (1/2) sgn(hSL) = 1/2]. It follows that the band gap
should remain open with no gapless transition point. This is also further confirmed by the first-principles calculation
of the surface gap evolution of a 4 (SL+QL) MnBi4Te7 with QL termination, as shown in Fig. S4(f).

B. MnBi6Te10, MnSb2Te4 and MnSb4Te7

Considering the similar underlying physics concerning the three-Dirac-fermion model, here, we only present the
results of the surface band gap evolutions in the topmost interlayer vdW gap expansion process from first-principles
calculations for MnBi6Te10, MnSb2Te4 and MnSb4Te7.

As schematically shown Fig. S5(a), MnBi6Te10 has three types of surface terminations, namely, SL-, QL1-, QL2-
terminations, respectively. In Fig. S5(b), we choose 3-(SL+QL+QL) AFM MnBi6Te10 with different surface termi-
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Fig. S 6: For the case of ∆12 > h in the three-Dirac fermion model illustrated in (a), wavefunction profile at Γ point of the
surface states for three representative cases, ∆23/∆12 = 2 (b), ∆23/∆12 = 0.92 (c), and ∆23/∆12 = 0.2 (d), in the vdW gap
expansion process with gradually increased d and decreased ∆23/∆12, corresponding to the the pristine case with strongly
coupled surface and bulk systems, the critical case near the gapless point with moderate expansion, and the significantly
expanded case with weakly coupled surface and bulk systems. h = 0.4 is chosen in the numerical calculations.

nations to plot the surface band gap as a function of the expansion δd of the topmost interlayer vdW gap. It can be
seen that similar to MnBi4Te7, only the SL termination of MnBi6Te10 exhibit a gapless point, while the gap remains
for both QL1 and QL2 terminations.

Figure S5(c) presents the results of the band gap evolution for both the AFM and FM cases of a (5+1)-SL MnSb2Te4.
Since MnSb2Te4 is topologically trivial without any Dirac surface states, the band gap persists in the topmost vdW
gap expansion process for both cases.

In fig. S5(d), we plot the evolutions of the surface band gap in the topmost vdW gap expansion process of a
4-(QL+SL) AFM MnSb4Te7 films with SL and QL terminations, respectively. Because MnSb2Te4 is topologically
nontrivial, analogous to MnBi4Te7, the gapless point appears only in the SL termination case.

VI. WAVEFUNCTION PROFILE OF TOPOLOGICAL SURFACE STATES

To further support the validity of the three-Dirac-fermion model in the description of layered TIs with vdW gap
modulation, we plot the wavefunction profile of the topological surface state in the vdW gap expansion process.
The wavefunction of the Dirac state at the Γ point is simply assumed as ψi (z) ∝ e−λi|z−zi| (1/λi characterizes the
material-dependent decay length and λi = 1 is chosen for simplicity in numerical calculations), with i = 1, 2, and 3
corresponding to D1, D2, and D3 Dirac states, respectively, and zi denotes the position of the peak of each Dirac
state. When there exist finite overlaps between wavefunctions of these Dirac states, e.g., when the surface layer is
sufficiently thin (e.g., a few SLs for MnBi2Te4), finite couplings will be induced between them. This underlies the
coupling terms of ∆12 between D1 and D2, and ∆23 between D2 and D3 in the construction of the coupled three-
Dirac-fermion model, shown in Fig. S6(a). From this coupling picture, it is obvious that the final topological surface
state should be formed by the hybridization of all the three Dirac states.

Here, we take the case of ∆12 > h as an example, corresponding to Fig. 2(e) in the main text, where the coupling
between D1 and D2 is significantly larger than the magnetic Zeeman coupling strength. We plot the wavefunction
profile of the final topological surface state (red lines) for three representative cases, namely, ∆23/∆12 = 2 [Fig. S6(b)],
∆23/∆12 = 0.92 [Fig. S6(c)], and ∆23/∆12 = 0.2 [Fig. S6(d)], at different expansion distances of the interlayer vdW
gap between the surface layer (shaded in pink) and blow bulk (shaded in blue), corresponding to the pristine case
with strongly-coupled surface and bulk systems, the critical case near the gapless point with moderate expansion, and
the significantly expanded case with weakly-coupled surface and bulk systems. As expected, in the strongly-coupled
(weakly-coupled) case, the wavefunction distribution of the topological surface state locates mainly within the surface
layer (around the top of the below bulk). Whereas for the moderate expansion case, the topological surface state
exhibit similar weights on the surface layer and the top of the below bulk. The overall feature of the above topological
surface state is consistent with previous works on MnBi2Te4.
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VII. FIRST-PRINCIPLES CALCULATION DETAILS

First-principles calculations were performed using the Vienna ab initio simulation package (VASP) [7]. The Perdew-
Burke-Ernzerhof (PBE) functional [8], within the projector augmented wave (PAW) [9] are used to describe the
exchange-correlation potential and energy. Lattice constants are adopted from experimental data, a = 4.334 Å and
c = 13.637 Å for each septuple layer. Then we relax atoms positions. A Hubbard-like U = 5 eV is used to account
for strongly localized Mn 3d orbitals. A kinetic cutoff energy of 410 eV and a 10×10×1 Γ-centered k points mesh
is used in a self-consistent field. The unit cells are stacked along c direction to generate multi-septuple layers films
with a 20 Å vacuum space for the thick slab system. In all calculations, we keep G-type AFM with a magnetic axis
along the c direction. By replacing Mn in MnBi2Te4 with Ca, and then relaxing the atoms positions, we simulate the
non-magnetic case in CaBi2Te4. To account for the surface layer vdW expansion effect, we construct the maximally
localized Wannier function (MLWF) [10] from first-principles calculations with Mn d, Bi p, and Te p orbitals. The
tight-binding Hamiltonian is divided into surface and bulk parts. The spectral functions and Fermi surface are
calculated with the surface Green’s functions of the semi-infinite system. Both spectral functions and the Fermi
surface are projected to the upmost septuple layer.
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