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Abstract

The presence of point defects such as vacancies plays an important role in material

design. Here, we demonstrate that a graph neural network (GNN) model trained only

on perfect materials can also be used to predict vacancy formation energies (Evac)

of defect structures without the need for additional training data. Such GNN-based

predictions are considerably faster than density functional theory (DFT) calculations

with reasonable accuracy and show the potential that GNNs are able to capture a

functional form for energy predictions. To test this strategy, we developed a DFT

dataset of 508 Evac consisting of 3D elemental solids, alloys, oxides, nitrides, and 2D

monolayer materials. We analyzed and discussed the applicability of such direct and

fast predictions. We applied the model to predict 192494 Evac for 55723 materials in

the JARVIS-DFT database.

Defects play an important role in our pursuit to engineer performance of a material. Va-

cancies are a type of defects which are ubiquitous and their presence can significantly alter
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catalytic, electronic, optoelectronic, electrochemical, diffusion, and neuromorphic proper-

ties.1–10 Experimentally vacancy formation energies can be determined using positron annihi-

lation experiments.11 Theoretically, they can be computed using classical force-field (FF)12,13

and density functional theory (DFT)2,14–17 calculations. However, such computation can be

very computationally expensive and non-generalizable for DFT and FF based calculations

respectively.

Recently, machine learning techniques have been proposed as a faster method for pre-

dicting defect energetics, but so far they still require time-consuming defect data generation

for model training and limit the applicability and generalizability of the defect energetic pre-

dictions.18–23 Especially, graph neural network based deep-learning models24–27 have become

very popular for predicting materials properties and have been used for several bulk property

predictions and their applicability needs to be tested for defect property predictions. Two

key ingredients needed for accomplishing this task are: 1) a pretrained deep-learning model

that can directly predict the total energy of perfect and defect structures, 2) a test DFT

dataset of vacancy formation energies on which the DL model could be applied.

In this work, we demonstrate that the atomistic line graph neural network (ALIGNN)28

based total energy prediction model (trained on the JARVIS-DFT29 OptB88vdW energy per

atom data for perfect bulk materials29) can be directly used to predict vacancy formation en-

ergy of an arbitrary material with reasonable accuracy without requiring additional training

data. The performance in terms of mean absolute error for the energy per atom model was

reported as 0.037 eV in ref.28 Note that we do not train any machine learning/deep learning

model in this work for defects and just used the model parameters for energy prediction that

was developed and shared publicly in ref.28

Developing a vacancy formation energy dataset can be extremely time-consuming and

depends on several computational setup parameters such as supercell-size, choice of k-points,

considering neutral vs. charged defects and selection of appropriate chemical potentials. For

testing the strategy adopted in this work, we generated a DFT dataset of 508 entries with
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charge neutral defects using a high-throughput approach. The dataset consists of elemental

solids, oxide, alloy and 2D materials. In addition to predicting the vacancy formation ener-

gies, we analyze the trends, strengths and limitations of such predictions. Lastly, we used

this strategy to develop a database of vacancy formation energies for all the materials in

the JARVIS-DFT database. The deep-learning model, the DFT dataset and the workflow

are made publicly available through the JARVIS (Joint Automated Repository for Various

Integrated Simulations) infrastructure.29

First, we discuss the generation of vacancy formation energy dataset that is used for

testing the deep-learning model. We obtained stable elemental solids, binary alloys, oxides

and 2D materials from the JARVIS-DFT dataset. We used at least 8 Å lattice parameter

constraints in x,y,z directions to build the supercell. We removed an atom with a unique

Wyckoff position to generate the vacancy structure using the JARVIS-Tools package (https:

//github.com/usnistgov/jarvis). The defect structures were then subjected to energy

minimization using Optb88vdW functional30 and projected augmented wave formalism31 in

Vienna Ab initio Simulation Package (VASP) package.32,33 Please note commercial software

is identified to specify procedures. Such identification does not imply recommendation by

National Institute of Standards and Technology (NIST). We used the converged k-point

and cut-off from the JARVIS-DFT dataset based on total energy convergence.34 We used

an energy convergence of 10−6 eV for energy convergence during the self-consistent cycle.

Currently, we have 508 entries for the vacancies and the dataset is still growing.

For the deep-learning predictions, we used the recently developed atomistic line graph

neural network (ALIGNN),28 which is publicly available at https://github.com/usnistgov/

alignn. ALIGNN has been used to train fast and accurate models for more than 65 prop-

erties of solids and molecules with high accuracy.25,28,35,36 In ALIGNN, a crystal structure

is represented as a graph using atomic elements as nodes and atomic bonds as edges. Each

node in the atomistic graph is assigned 9 input node features based on its atomic species:

electronegativity, group number, covalent radius, valence electrons, first ionization energy,
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electron affinity, block and atomic volume. The inter-atomic bond distances are used as edge

features with radial basis function up to 8 Å cut-off and a 12-nearest-neighbor (N). This

atomistic graph is then used for constructing the corresponding line graph using interatomic

bond-distances as nodes and bond-angles as edge features. ALIGNN uses edge-gated graph

convolution for updating nodes as well as edge features using a propagation function (f) for

layer (l), atom features (h), and node (i), details of which can be found in Ref.:28

h
(l+1)
i = f(hli{hlj}i) (1)

Unlike many other conventional GNNs, ALIGNN uses bond-distances as well as bond-

angles to distinguish atomic structures. The ALIGNN model is implemented in PyTorch37

and deep graph library (DGL).38 A model to predict energy per atom was developed in Ref28

which will be used as an energy predictor for both perfect and defect structures in this work.
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Figure 1: Analysis of vacancy formation energy dataset generated in this work. a) comparison
of a subset of vacancy formation energy with respect to available experimental and previous
DFT calculations from literature. Our dataset agrees very well with previously reported
values. b) Data distribution of all the vacancy formation energy values. Most of the values
are below 3 eV.

In Fig. 1 we analyzed the DFT database for vacancy formation energies developed in
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this work. We used this dataset for testing purposes only. Although there have been several

studies in generating vacancy formation energy dataset, a fully atomistic dataset consistent

with bulk and vacancy energetics information is not available to our knowledge. Hence, we

generated a DFT dataset for vacancies consisting of a wide variety of material classes such as

elemental solids, 2D materials, oxides, and metallic alloys. We visualize the defect formation

energies of materials in Fig. 1. As mentioned above, we only considered the charge neutral

vacancies within a finite 8 Å cell size with OptB88vdW functional. The vacancy formation

energy was calculated as

Evacancy = Edefect − Eperfect + µ (2)

where, Evacancy is the vacancy formation energy, Edefect is the energy of the defect structure

with an atom missing, Eperfect is the energy of the perfect structure, µ is the chemical

potential used as energy per atom of the most stable structure of an element. The chemical

potentials used in this work are provided in the supplementary information.

Currently, the vacancy formation energy dataset consists of 508 entries. We compare a

subset of this dataset with available data from previous experimental and DFT-studies14,39–43

in Fig. 1a. We find an excellent agreement between our dataset and that from literature

with a mean absolute error (MAE) of 0.3 eV. In Fig. 1b, we show the histogram of all the

vacancy formation energy data. We find that most of the vacancy formation energy data

lie below 3 eV. Depending on the type of engineering applications, either a high or low Evac

could be desirable.

Next, we used ALIGNN based pretrained total energy per atom model trained on the

JARVIS-DFT dataset for predicting defect energy and perfect energy required for vacancy

formation energy following Eq. 2. This model was trained using bulk energies for 55723

solids.28 The defect structures were generated by deleting an atom with a unique Wyckoff

position without optimizing the atomic positions of other atoms in the defect structures.

We used the same chemical potential for elements from the JARVIS-DFT as given in the

supporting information. The comparison of ALIGNN based prediction with respect to DFT
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Figure 2: Comparison of DFT and ALIGNN based vacancy formation energy predictions
with (Scissor-shift) and without (Original) correction. In Fig. a, we show the performance
on the entire DFT dataset generated in this work. Fig.b,c,d show the comparisons for
elemental solids, oxides and 2D monolayers respectively.

data is shown with blue dots in Fig. 2a. Interestingly, we observed that there is a noticeable

correlation between the ALIGNN direct predictions and DFT data with a mean absolute

error of 1.51 eV. However, we found that the ALIGNN based predictions were usually un-

derestimated. To circumvent this issue, we applied a scissor shift by adding 1.3 eV to all the

ALIGNN based predictions represented by green dots. Using such a shift, we were able to

lower the MAE to 1.0 eV i.e., leading to an overall 33.8 % improvement. The value of 1.3

eV was chosen such that overall MAE is minimized. We noted that the previous reports on

machine learning for vacancy formation energies resulted in mean absolute error values of
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Figure 3: Periodic table trend of 192494 vacancy formation energies predicted from scissor-
shifted ALIGNN based predictions. We visualize the probability that compounds with va-
cancy of a given element have vacancy formation energy more than 2 eV.

0.40 eV and 0.67 eV in ref.18 and ref.21 respectively. These models were trained on specific

material classes such as GeTe system and 2D materials, while the approach used here acts as

a generalized application of the model with MAE closer to specific case studies. Additionally,

an MAE of 1.0 eV is arguably low considering the range of the vacancy formation energies

can be upto 10 eV.

To further analyze the predictions for different types of materials, we compared the DFT

and ALIGNN predictions for elemental solids, oxides and 2D monolayers in Fig. 2b, Fig. 2c

and Fig. 2d respectively. Corresponding original ALIGNN prediction based MAE and that

with scissor-shifted values are shown in Table 1. We found that the ALIGNN based models

perform well for 2D monolayer and oxide materials compared to elemental solids and alloys.

This behavior can be explained based on the fact that GNN architectures usually perform

message passing locally and may work well for insulting materials with fewer bonds rather

than for elemental solids and alloy systems which are usually metallic and have delocalized

7



Table 1: Analysis and comparison of ALIGNN based vacancy formation energy with respect
to DFT dataset. The mean absolute errors (MAE) are calculated for all the values as
well as elemental solid, oxide and 2D-monolayer subsets. The corresponding number of
entries (Count) are also provided. As the ALIGNN based vacancy formation energies could
be underestimated we apply scissor-shift and the improvement (% ∆) of predictions with
(Scissor-shifted) and without scissor shift (Original) are shown.

Sets Count Original MAE Scissor-shift MAE % ∆
All 508 1.51 1.0 33.8

Elements 117 1.53 1.2 21.6
Oxides 57 2.3 1.4 30.4

2D-mono 68 1.9 1.2 36.8

electronic structures leading to a higher number of interatomic bonds.

To analyze the effect of training dataset size of energy per atom ALIGNN model on

prediction of vacancy formation energies, we trained models for 20 %, 40 %, 60 %, 80 %

and 100 % of total energy per atom training data for perfect materials resulting in mean

absolute errors of 1.20 eV, 1.22 eV, 1.11 eV, 1.05 eV and 1.0 eV for vacancy formation dataset

respectively. Therefore, one possible way to further improve the model would be to include

more perfect structures that can have a varied number of bonds for various systems. As the

JARVIS-DFT dataset for perfect structures is still growing, we believe the defect property

prediction models should further improve in the future.

Now, we applied the above strategy to predict the vacancy formation energies of all the

55723 materials in the JARVIS-DFT leading to 192494 vacancy formation energies. In Fig.

3, we visualize the probability that compounds with the vacancy of a given element have va-

cancy formation energy of more than 2 eV as a threshold value. Interestingly, we found that

C,N,O,F are some of the common elements with high vacancy formation energies. Further-

more, we plot the ALIGNN based vacancy formation energy dataset against OptB88vdW

based formation energy available in the JARVIS-DFT database and color code with the cor-

responding OptB88vdW bandgaps in Fig. 4. We also provided the histogram distribution

of the formation energy per atom and vacancy formation energy per atom. Interestingly,

we found that high vacancy formation energies were favored by lower formation energies

8



Figure 4: Figure shows ALIGNN vacancy formation energy with scissor-shift (SS) dataset
(192494 entires) against OptB88vdW based formation energy available in the JARVIS-DFT
database and color coded with corresponding OptB88vdW bandgaps.

per atom and high electronic bandgaps. The vacancy formation energy histogram showed a

high peak around 2 eV which was similar to that observed in Fig. 1b. Such analysis helped

us understand the entire dataset in a nutshell and can further help in understanding de-

fect energetics for materials design for instance finding materials with high dopability, water

splitting etc.

In summary, we have developed a diverse dataset of vacancy formation energies using

density functional theory and demonstrate that the total energy per atom model using
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ALIGNN can be directly used for predicting vacancy formation energies without the need

for additional training data. The defect database can be highly useful for materials science

community as there is a strong demand for a benchmark dataset. We have discussed the

assumptions used in this work such as excluding charge defects and using finite cell sizes.

Also, our work has shown how a state of the art model performs on unseen data without

additional data. We have applied a heuristic scissor-shift of energy that further improves the

accuracy. Using the current strategy, we have predicted vacancy formation energies of around

55723 compounds with 192494 entries leading to the largest dataset of defect properties,

which could have been very expensive from DFT calculations. We provide data from this

work as well as machine learning models to help accelerate the design of new materials. Our

work has proven that GNN models can not only be useful for perfect materials but also

defect systems.
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