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G. dos Santos,1, 2 F. Romá,3 J. Tranchida,4 S. Castedo,5 L. F. Cugliandolo,6, 7 and E. M. Bringa1, 2, 8

1CONICET, Mendoza, 5500, Argentina
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et Hautes Energies, 4 Place Jussieu, 75252 Paris Cedex 05, France

7Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
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We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hys-
teresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical
degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops
are calculated for different angles between the external field and the magnetocrystalline anisotropy
axes. The influence of several relevant parameters is studied, including the field frequency, magnetic
damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The
role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find
that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the
field frequency and magnetic damping have a large effect on it. The influence of the anisotropy
magnitude and symmetry are found to follow the expected behavior. We show that a careful choice
of simulation parameters allows for an excellent agreement between the spin-lattice dynamics mea-
surements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to
intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with
and without defects, reaching values close to the Curie temperature. In this temperature range, we
find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of
the defective samples. The present study opens the possibility for more accurate inclusion of lattice
defects and thermal effects in hysteresis simulations.

Keywords Hysteresis, spin-lattice dynamics, ferromag-
netic, Fe

I. INTRODUCTION

For basic research and applications, magnetic studies
are of fundamental relevance as they are an important
tool for revealing otherwise hidden structural, thermody-
namic and physicochemical properties of a material. Hys-
teresis loops are usually measured to characterize the dy-
namic behavior of bulk samples that exhibit microstruc-
tures like grain boundaries, defects, etc, and multiple do-
mains [1, 2]. Furthermore, such measurements are also
performed for low-dimensional magnets such as magnetic
nanoparticles (NPs) or thin films [3].
The power generated by a sample subject to an alter-

nating magnetic field can be directly determined from
the shape of a hysteresis loop. In fact, the Specific Ab-
sorption Rate (SAR), defined as the absorbed energy per
unit of mass, is proportional to the area of this curve
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[4]. In magnetic hyperthermia [5–7], for instance, SAR
provides the heating efficiency of a specific type of mag-
netic nanoparticle. Furthermore, the magnetization of
nanoparticles is of great interest for many other techno-
logical applications [8, 9]. Magnetization in small NPs is
expected to flip due to thermal fluctuations during the
time scale of a few seconds in typical experiments, giving
rise to superparamagnetic behavior below some critical
size, which for Fe is close to 20 nm. However, hysteresis
loops with ferromagnetic blocked behavior have been ob-
served for relatively simple Fe NPs, indicating complex
magnetic behavior, which is not fully understood [10–12].
Some of this behavior might be related to lattice defects
[11, 12]. It has been emphasized that defect engineer-
ing will allow novel future technological applications of
magnetic nanoparticles [13, 14], pointing out the need to
model defective magnetic nanosystems.

Different classical models are used to describe mag-
netic hysteresis [1, 15]. Possibly, the most popular one
is that of Stoner-Wohlfarth (SW) [16, 17]. This model is
relatively simple to evaluate numerically, allowing easy
comparison with experimental results. However, the
SW model assumes an important number of approxima-
tions. Among them, it is considered that the material
behaves as a single magnetic domain. This is known
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as the macrospin approximation, which implies that be-
low a certain length scale, typically on the order of a
few nanometers, the internal structure of the material
is neglected. In the SW model the Hamiltonian is the
sum of a Zeeman term and an uniaxial anisotropy term.
Hysteretic behavior arises as a consequence of a simple
zero-temperature dynamic protocol: as the external field
varies in time, the magnetization can either change con-
tinuously while the system remains at an energy mini-
mum, or it can jump abruptly to another value when that
minimum becomes unstable. Usually the SW model is
employed to compare with experiments for a large collec-
tion of randomly oriented NP, and obtain relevant phys-
ical quantities [10]. In addition, although in the original
SW model thermal fluctuations were not considered, fur-
ther approaches have attempted to incorporate temper-
ature effects [18].

Fortunately, micromagnetic simulations allow one to
overcome many of these limitations [19, 20]. Thus, it
is possible to study a system made up of a large num-
ber of interacting macrospins with a Hamiltonian in-
cluding any complex energetic term. In particular, the
equilibrium or nonequilibrium magnetization dynamics
of such a model can be calculated by numerically solving
either the stochastic Landau-Lifshitz-Gilbert (sLLG) or
the stochastic Landau-Lifshitz (sLL) phenomenological
equations [21, 22]. From first principles it can be proved
that this same theoretical framework is valid to carry out
atomistic spin dynamic (ASD) simulations [23, 24]. This
simulation method has been successfully applied to the
modeling of hysteresis loops [25–28]. Another alterna-
tive to include temperature effects in hysteresis loops is
to use Metropolis Monte Carlo simulations for a fixed
lattice [29, 30].

More recently, there has been increased interest in
studying more realistic models that take into account
both spin and lattice degrees of freedom, and the cou-
pling between them. Most of these methods are based
on coupled Spin Dynamics (SD) and Molecular Dynam-
ics (MD) simulations [31–35]. This is commonly known
as spin-lattice dynamics (SLD) simulations. Other first-
principle based methods combine atomistic spin dynam-
ics with ab initio molecular dynamics (ASD-AIMD) [36],
but this is limited to systems with a few atoms due to the
high computational cost of calculating interatomic forces
via ab initio methods.

SLD simulations are typically based on a Langevin ap-
proach that allows one to describe the evolution of both
lattice and spin degrees of freedom [37]. Although this
method is very powerful, its implementation can be com-
putationally demanding and, as the complexity of a sys-
tem increases, the number of parameters that charac-
terize it also increases. Therefore, the practical use of
this numerical scheme for calculation of hysteresis loops
requires a deep exploration. In this work, we use SLD
calculations with sLL spin dynamics to simulate the hys-
teretic behavior of a ferromagnetic material. We use
physical parameters that are typical for bulk bcc iron.

We focus on determining optimal simulation parameters
that allow one to obtain reliable results at low temper-
atures. Also, we explore how the hysteresis loops de-
pend on the different physical properties that character-
ize these magnetic systems: anisotropy, exchange, damp-
ing, and lattice vibrations. The paradigmatic SW model
is taken as a reference to achieve this goal. Additional
simulations are carried out to analyze the importance
of SLD simulation at higher temperatures. Finally, we
present NP hysteresis loops simulations, including defects
like the ones found in experiments.
We explore the possibility of using a high damping pa-

rameter in order to reduce the relaxation time and speed
up the calculations. The use of strong damping led us to
revise the definition of the noise-noise correlations in the
sLL equations and find the correct parameter dependence
that lets the systems thermalize with their equilibrium
environments at long times. In this work, we perform
SLD simulations using the SPIN package of the software
LAMMPS [37–39].In order to enable its use in this study
with relatively large damping, the software was modified
accordingly.
The paper is organized as follows. In Sec. II, the the-

oretical models used and the simulation details are pre-
sented. In Sec. III, the main results of this study are
shown. A summary and the conclusions of the work are
drawn in Sec. V. In order to simplify several parametric
studies, as a first approach we run spin dynamics simula-
tions with the positions of the atoms fixed at their ideal
equilibrium values. The influence of the spin-lattice cou-
pling is explored and discussed in the last part of Sec.
III. Finally, in an Appendix we derive the Fokker-Planck
equation associated to the SLD dynamics and from it, we
fix the noise-noise correlations that ensure the asymptotic
approach to equilibrium. We confirmed, with simulations
not shown here, that these do indeed take the systems to
equilibrium even at large values of the damping factor,
very convenient to reduce the simulation time.

II. METHODS

In Sec. IIA we describe the main characteristics of the
SLD model from LAMMPS[37–39], and in Sec. II B we
give some simulation details.

A. SLD Model

Let us consider an ensemble of N atoms each endowed
with a classical magnetic moment. The Hamiltonian of
the model is

H =

N∑
i=1

|pi|2

2mi
+

N∑
i,j,i ̸=j

V (rij) +Hmag. (1)

The first term in Eq. (1) accounts for the kinetic en-
ergy of the N atoms where pi and mi represent, respec-
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tively, the linear momentum and mass of the i-th atom
(mi = 55.845 u for iron). The second term is the in-
teratomic potential describing the interactions between
pairs of atoms at positions ri and rj separated by a dis-
tance rij ≡ |ri − rj |. As usual in molecular dynamics
simulations of metals, we use a classical embedded atom
model (EAM) potential which describes well a broad
spectrum of iron properties [40, 41]. The interatomic
cutoff distance for this potential was set to 0.57 nm.
The coupling among the spin and lattice degrees of

freedom is provided through the last term in Eq. (1), a
magnetic Hamiltonian defined as

Hmag = −µ0µH ·
N∑
i=0

si −
N∑

i,j,i ̸=j

J(rij)si · sj +Hani. (2)

Here, si is a classical unitary vector representing the spin
of the i-th atom. The first term in Eq. (2) is the Zeeman
energy, the interaction of each spin with an external uni-
form magnetic field H, where µ = 2.2µB is the atomic
magnetic moment for iron (µB is the Bohr magneton)
and µ0 is the vacuum permeability constant. Note that
the Zeeman energy within LAMMPS is defined slightly
differently than in Eq. (2), and a re-scaling had to be
applied to recover our formulation. The second term is
just a Heisenberg Hamiltonian describing the interaction
between spins, where J(rij) is an interatomic distance-
dependent exchange coupling which is defined as the fol-
lowing Bethe-Slater curve [42, 43],

J(rij) = 4α
(rij

δ

)2
[
1− γ

(rij
δ

)2
]
e−(

rij
δ )

2

× Θ(Rc − rij), (3)

being Θ(Rc−rij) the Heaviside step function and Rc the
cutoff distance. The coefficients in Eq. (3) can be fitted
with ab-initio or experimental data. In the present work
we fit Eq. (3) to data by Ma et al. [44], as it was already
done in previous works [34, 45]. Specifically, we use the
following values: α = 96.0 meV, γ = 0.20, δ = 0.154 nm.
In addition, we choose Rc = 0.35 nm.
Finally, the last term in Eq. (2) is responsible for com-

puting the magneto-crystalline anisotropy. In this work
we consider one of two, either uniaxialHuni or cubicHcub

anisotropy. The corresponding expressions are given by

Huni = −K1

N∑
i=1

(si · n)2 (4)

and

Hcub =

N∑
i=1

{
K1 [(si · n1)

2(si · n2)
2

+(si · n2)
2(si · n3)

2

+(si · n1)
2(si · n3)

2]

−K2 (si · n1)
2(si · n2)

2(si · n3)
2
}
.(5)

Here, the unit vectors n1, n2, and n3 lie along the three
crystallographic directions [100], [010], and [001], respec-
tively. In Eq. (4), n is also a unit vector that in general
could point along any of these axes. The first term in
the cubic anisotropy energy above is defined with differ-
ent sign within LAMMPS. K1 and K2 are the magneto
crystalline anisotropy constants which we set to K1 = 35
µeV/atom and K2 = 3.6 µeV/atom (equivalents to vol-
umetric anisotropies K1V = 470 kJ/m3 and K2V = 46
kJ/m3). In order to make comparisons, we have used the
same value of K1 in both anisotropy equations. Since
this constant is positive (and also K2 > 0), then the easy
axes of magnetization in Eqs. (4) and (5) are given by the
unit vector defined above. Note that the values ofK1 and
K2 are ten times larger than those usually used to model
bulk bcc iron [3]. However, such larger anisotropy mag-
nitude has been considered for Fe nanoparticles [10, 46],
and we also consider bulk values for selected runs. As
we will discuss later, using a large anisotropy in the sim-
ulations helps to quickly stabilize the magnetization of
the system. Increasing anisotropy for numerical reasons
has been employed for other magnetic simulations, for in-
stance, to obtain domain walls with smaller widths [47]
or to confine the magnetization dynamics to a plane [48].
We note that an improved implementation of the

anisotropy would include a better description of the spin-
orbit coupling [49–51] and also a local variation of mag-
netic moments and couplings, for instance, depending
on atomic volume [52]. However, uniaxial and cubic
anisotropies are often used to interpret experimental re-
sults, for a number of models and simulations [10, 53–56].
We include a simple description of anisotropy within this
spirit and, in our simulations, lattice and spin dynam-
ics are coupled through the distance-dependent exchange
function J(rij) and by the spins Langevin thermostat set
at the same temperature as the lattice (see below). In
addition, to speed up our calculations we have neglected
long-range dipolar interactions in the magnetic Hamilto-
nian. Since we simulate small systems (see below), this
approximation should not affect the validity of our re-
sults.
The core of this simulation method, lattice and spin

coupling, is contained in the following coupled Langevin
equations [37],

dri
dt

=
pi

mi
, (6)

dpi

dt
=

N∑
i,j,i ̸=j

[
−dV (rij)

drij
+

dJ (rij)

drij
si · sj

]
eij

− γL
mi

pi + ξi , (7)

dsi
dt

=
1

1 + λ2
s

[(ωi + ζi)× si + λssi × (ωi × si)] .(8)

In Eq. (7), eij represents a unit vector along the line
connecting atoms i and j, γL is the lattice damping coef-
ficient, and ξ(t) is a random fluctuating force drawn from



4

a Gaussian distribution with

⟨ξ(t)⟩ = 0 ,

⟨ξa(t)ξb(t′)⟩ = 2DLδabδ(t− t′) , (9)

where the a and b subscripts indicate Cartesian vector
components, and the amplitude of the noise is

DL = γLkBT. (10)

Here, kB is the Boltzmann constant and T the thermo-
stat temperature. Equation (7) describes the atoms dy-
namic, which is affected by the spins motion and by the
functionality of the exchange function J(rij).
As shown in Eq. (8), the spin dynamics is modeled

through the sLL equation. Here, ωi = − 1
ℏ
∂Hmag

∂si
is the

effective field acting on spin i and λs is the spins damping
parameter. ζ(t) is the stochastic field which is also drawn
from a Gaussian probability distribution with

⟨ζ(t)⟩ = 0 ,

⟨ζa(t)ζb(t′)⟩ = 2DSδabδ(t− t′) . (11)

In this case, the fluctuation-dissipation relation for the
magnetic degrees of freedom is

DS =
λs(1 + λ2

s)kBT

ℏ
. (12)

In the Appendix, we formally derive Eqs. (10) and (12).
These are the parameter dependencies ofDL andDS that
allow for equilibration of the full system to a Boltzmann
distribution ∝ e−βH with H in Eq. (1), and the lattice
and magnetic contributions specified below this equation.

We note that the Langevin equation presented in
ref. [37], Eq. (8), does not have the stochastic field
in the relaxation term (the last term) and, following
ref. [37], we refer to it as the sLL equation (stochastic
Landau-Lifshitz). When the stochastic field is added to
both effective field terms the equation is usually called
the sLLG equation (stochastic Landau-Lifshitz-Gilbert
(sLLG). However, there is a small difference between the
typical sLL equation and Eq. (8): the latter has the
Gilbert factor included. Therefore, it is neither a typical
sLL nor a typical sLLG equation. Still, once the noise
parameters are well fixed, Eq. (8) also takes the system
to thermal equilibrium at long enough times.

B. Simulation details

As it was described in the previous subsection, in the
SLD implementation of the software LAMMPS [37–39],
the evolution of the system is described by two coupled
Langevin equations, one for the spins and another one
for the lattice degrees of freedom.

Each Langevin equation has a damping term and a
random force (or field) which are connected through the
“fluctuation-dissipation” theorem, see Eqs. (10) and (12).

We have chosen the damping constants equal to λs = 0.5
(for the spin degrees of freedom) and λL = 1.0 s−1 (for
the lattice). We use separate Langevin thermostats for
the lattice and spin subsystems, but both are set to the
same temperature. Most of the simulations were carried
out at T = 10 K but, as indicated in some cases, others
were performed at higher temperatures.

The hysteresis loops were calculated applying an alter-
nating magnetic field H, and averaging the curves over
up to ten different cycles. At low temperatures, the in-
dividual loops exhibit a small dispersion of a few percent
with respect to the average curve. A progressively larger
dispersion is observed at higher temperatures, resulting
in a dispersion of about 20% for the magnetization in
these cases. It is important to note that this variability,
being inherent to the stochastic nature of the simulation
method, does not alter the reported results nor the con-
clusions drawn from them. Instead, it reflects the com-
plexity of the system and the method´s capacity to effec-
tively capture temperature fluctuations, which provides
valuable insights into the behavior of the magnetization
dynamics across the temperature range studied.

The field amplitude is varied discretely: it remains con-
stant during certain simulation time, and then jumps to
reach the value given by a function H = Hmax cos(2πft).
Hmax is set to be larger than the expected saturation
field, and jumps do not have the same magnitude along
the entire field range, given that the simulation time at
each field value is kept constant.

Typical MD simulations use a time step of 1 fs. How-
ever, to capture spin dynamics, the time step has been
set in a range of 0.1 fs [37] to 10 fs [27]. Here we use 0.1 fs
but we have verified with several examples that using 1 fs
does not change our results within the statistical spread.
Each hysteresis cycle took around 2 − 8 ns, giving MHz
frequencies. In particular, we have simulated field fre-
quencies of f = f0, f0/2, f0/4, and f0/8, with f0 = 500
MHz. These values are equivalent to sweeping rates of
approximately 2.2 × 109 T/s, 1.1 × 109 T/s, 0.55 × 109

T/s, and 0.275 × 109 T/s, respectively, with T/s repre-
senting Tesla per second. We note that in experiments,
hysteresis loops are obtained using fields that change al-
most continuously, and the measurement of the magnetic
moment of a sample can take up to several microseconds.
Those time scales are well beyond the feasibility of SLD,
or of other simulation methods like ASD, since typically
simulations only reach nanosecond scale with sweep rates
similar to ours [25–27]. Nevertheless, as we show in the
next section, the hysteresis loops quickly converge to a
limiting curve as the frequency is decreased.

Efficient minimization techniques, such as the one in
Ref. [57] would lead the system into efficiently finding
and falling into the lowest energy minima, for every value
of the external field, meaning that the spins would be
aligned with the field as soon as the field direction is re-
verted and therefore would not produce a hysteresis loop.
In addition, the use of efficient minimization techniques
implies that there is no real time scale associated with the
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hysteresis loop frequency, which is important, for exam-
ple, when calculating energy balance as in hyperthermia
calculations.

Simulations were run for different angles, ϕ = 0◦, 45◦,
and 90◦, between the external field H and the easy
anisotropy axes. In practice, this was done by chang-
ing the uniaxial anisotropy axis directions while keeping
H aligned in the [001] direction (z axis). For uniaxial
anisotropy, for instance, for ϕ = 90◦ or 45◦ the unit vec-
tor n was oriented along the [100] or [101] direction. Most
simulations where run with magnetic uniaxial anisotropy
according to Eq. (4).

For most cases we use cubic samples of dimensions
(10 × 10 × 10)a30 (a0 = 0.286 nm is the lattice param-
eter of bcc Fe), with periodic boundary conditions in all
directions. The resulting system contains 2000 atoms. To
show that this size is large enough to capture the main
hysteresis properties of the model at low temperatures,
we also run a few simulations using a larger system with
(15×15×15)a30 cells (6750 atoms), as shown in the Sup-
plemental Material (SM). We have also run a few simula-
tions at higher temperatures, cases in which the magnetic
fluctuations increase significantly. In these instances the
volume of the system was set to (32×32×32)a30 (around
65000 atoms) in order to avoid undesired finite-size ef-
fects.

Finally, we have to mention that the total magneti-
zation M as well as the components Mx, My and Mz,
will be expressed normalized to the ideal Fe bulk satura-
tion magnetization Ms. The saturation magnetization is
given by the maximum magnetic moment per unit vol-
ume. For bulk iron, in the volume of a bcc unit cell (a30)
there are 2 spins with magnetic moment µ = 2.2µB and,
therefore, Ms = 2×2.2µB/a

3
0 ≈ 1730 kA/m. In this way,

M = 1.0 means M = 1730 kA/m.

C. Nanoparticles simulation details

As it was mentioned in the introduction, we also per-
formed hysteresis simulations of Fe NPs including lattice
defects. In this subsection, we give additional details re-
garding these simulations.

We have run hysteresis simulations for two different
nanoparticles, a pristine and a defective nanoparticle, at
a temperature of T = 500 K. The pristine NP was built
simply by cutting a sphere with diameter 8 nm from the
perfect bcc lattice. No further relaxation was carried out,
to mimic usual frozen lattice simulations in atomistic spin
dynamics.

The defective NP was built generating vacancies to the
pristine NP above by removing 33.3% of the atoms, ran-
domly. After this, an energy minimization was performed
to relax the defective lattice. The NP temperature was
then raised to 900 K using a 20 ps linear ramp, held at
900 K during 20 ps, and then cooled-down to 500 K also
with a linear ramp. After that, the temperature was held
at 500 K during 20 ps, resulting in a NP with a few small

vacancy clusters, since most vacancies were absorbed at
the surface. In order to include more extended defects,
this NP was deformed mechanically using a flat rigid in-
denter [58], to mimic the strain that a NP could expe-
rience due to synthesis conditions. We used an indenter
with a repulsive constant K = 20 eV

Å
3 (∼ 3 TPa), typi-

cal of indentation in metals [59]. The indenter moved at
200 m/s, which is higher than typical velocities used in
indentation simulations, but much lower than the sound
velocity in the material and results are expected to be
qualitatively similar. The NP is compressed up to a uni-
axial strain of ∼ 20%, but expands sideways in such a
way that the compressive volumetric strain at the maxi-
mum indentation depth is lower than 5%. The indenter
is then displaced upwards for unloading. The resulting
NP was relaxed within the microcanonical NVE ensemble
during 10 ps. The final configuration used for the calcu-
lation of hysteresis loops included small vacancy clusters
and also a twin boundary, something expected in bcc NP
[60], as seen in Figure 13 (f)-(g). The software Ovito [61]
was employed to render snapshots and to analyze the NPs
microstructure and defects. Polyhedral Template Match-
ing (PTM) [62] was used to obtain the crystal structures
and surface mesh tool [63] was used to analyze the NPs
surface and vacancies.

Vacancies imply a lower number of atoms that will pro-
duce a smaller saturation magnetization, 10% smaller ne-
glecting surface effects. NP topology changed from the
roughly spherical shape of the pristine NP, including a
more faceted surface, as shown in Figure 13 (h). There
are ordered terraces and facets in the roughly spherical
pristine NP. The defective NP shows surface disorder in
Figure 13 (e), and large deviations from spherical shape
in Figure 13 (i). From separate tests, dislocations do
not appear as stable for the NP size considered here.
The magnetic moments are assumed equal to the bulk
value for these NP simulations. We note that the mag-
netic moment is expected to vary near defects, and recent
studies have explored variations near surfaces and vacan-
cies [35, 45]. However, these effects would be small and
are not expected to change the overall behavior of the
hysteresis loops.

For both NPs, the hysteresis simulations were car-
ried out at T = 500 K, considering uniaxial magnetic
anisotropy (Eq. (4)) with an anisotropy constantK1 = 35
µeV/atom which has been considered previously for Fe
NPs [10, 46]. The external magnetic field is applied at
zero degrees with respect to the anisotropy axis and it is
varied at a sweep rate of SR = 0.227× 108 T/s.

In these NP simulations the exchange function J(rij)
(Eq. (3)) is fitted to the ab-initio data by Pajda et al. [64]
using the following fitting parameters: α = 25.498 meV,
γ = 0.281, δ = 0.1999 nm. Previous simulations of Fe
NPs with these parameters have shown excellent agree-
ment with experimental observations [34] and we note
that for this parametrization of J(rij), the Curie temper-
ature for an 8 nm NP is close to 600 K. The remaining
parameters are the same as those of the bulk simulations.
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III. RESULTS AND DISCUSSION

In this section, we first analyze how the computational
parameters, such as the simulation run time and the field
frequency, affect the final outcome of the calculations.
The aim is to establish optimal parameters that mini-
mize the computational cost without affecting the reli-
ability of the calculations. Next, we focus on studying
how the hysteresis loops can change when different phys-
ical properties like anisotropy, exchange interaction, and
damping parameter, are modified. These studies are car-
ried out on the bulk samples described in the methods
section. In a first stage, we analyze these effects with-
out coupling the lattice vibrations to the spins dynamics,
i.e. we consider for most cases spin dynamics simulations
with the atoms fixed at their ideal-lattice positions. The
influence of coupling to the lattice vibrations is analyzed
in the final part of this section, where we run full SLD
simulations for both bulk and nanoparticles samples.

A. Simulation time

We start analyzing the effect of the simulation run time
tsim. This quantity represents the interval during which
the external field H is held constant before increasing
or decreasing its absolute value by a given amount. It
is basically the total time of simulation used to calculate
each individual discrete point of a hysteresis loop. After
changing the external field, the magnetic moments must
relax to a new stable configuration and therefore tsim
must be large enough to allow this process to occur. It
is important, then, to determine an optimal value of this
quantity that allows to achieve this goal.

In principle, one can imagine an individual spin pre-
cessing around the field direction, with a frequency which
increases with the field magnitude. For Fe, the resulting
Larmor frequency gives a period of 36 ps for a 1.0 T field,
and several precession periods are needed to describe the
magnetization evolution. However, for damped dynam-
ics, the frequency remains the same but the spin spirals
down towards the field direction, allowing shorter sim-
ulations [23]. Figure 1 shows the time evolution of the
components of the normalized total magnetization along
the three Cartesian axes, Mx, My, Mz, corresponding to
directions [100], [010], and [001], respectively, during the
simulation of an entire loop for the case ϕ = 90◦. Unless
otherwise stated, for this and subsequent calculations we
use uniaxial anisotropy. As it can be noticed by inspec-
tion of this figure, the applied field (green dashed curve
and right axis) is maintained at a constant value for 90
ps before increasing or decreasing it to the next value, so
tsim = 90 ps. We are interested here in the stabilization of
the magnetization along the field direction, Mz. During
the first moments after the field value is varied a fluctu-

0 2 4 6 8 10 12 14 16 18 20 22
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Figure 1. (Color online.) Time evolution of the components
of the normalized total magnetization throughout an entire
cycle (a) and half a cycle (b). The field value at each time
is also included (green dashed line and right axis). Note that
each field value is kept constant for 90 ps (9 × 105 steps) of
simulation time. In (b), the time average value of Mz, ⟨Mz⟩
(blue dotted line), obtained from the last 30 ps of simulation,
is also added for comparison.

ation period is observed, specially in the region around
the switching field, before Mz reaches a stable value af-
ter approximately 45 ps. This is better appreciated in
Figure 1(b), where a zoom in the region around the first
magnetization switching is displayed. In this figure, we
have also included the average value of Mz, ⟨Mz⟩, which
is obtained in our simulations from the last 30 ps of each
step, where a well stabilized magnetization is observed.
We note that tsim = 90 ps is similar to simulation times
used in micromagnetic and ASD calculations of hystere-
sis loops [20, 25–27, 65, 66]. We have checked that longer
simulation times do not significantly affect the final re-
sults, as it is shown in Figure S3 in the SM. It is crucial
that our magnetization dynamics is well described near
the switching field values. For fields of 0.5 T, the preces-
sion period is ∼ 72 ps, and one would need a few ns of
simulation time for low damping. However, thanks to the
high damping values discussed below, shorter simulation
times can be employed.

Using tsim = 90 ps and frequency f0/4, we calculate the
hysteresis loops for the cases ϕ = 0◦ and ϕ = 90◦. These
curves, along with snapshots showing typical spin config-
urations at different stages of the process, are shown in
Figure 2. As we can see, the system behaves qualitatively
according to what the SW model predicts, i.e. all spins
are roughly in sync like a single macrospin [16, 17]. This
is expected for low-temperature simulations, but devia-
tions would occur at higher temperatures. Still, Figure 3
shows that there is a roughly Gaussian distribution of
spin values, an appreciable deviation from the simpler
macrospin assumption. The spin orientation histograms
in this figure correspond to the state of the system de-
scribed by the snapshot (c) of the ϕ = 90◦ case of Figure 2
(bottom right).
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Figure 2. (Color online.) Top images: resulting hysteresis loops obtained at the converged frequency for ϕ = 0◦ (top left) and
ϕ = 90◦ (top right). Bottom images: snapshots of a fraction of the system, showing typical spin configurations at different
stages of the hysteresis loop for the case ϕ = 0◦ (bottom left) and ϕ = 90◦ (bottom right). Each snapshot, (a), (b), (c) and
(d), corresponds to the points marked on the hysteresis curves (upper images). In the snapshots, the atoms are represented
as red spheres and the spins are colored according to their orientation along the field direction z. Each cubic cell represents a
fraction of the system with a volume of (8 Å)3, extracted from the center of the original system.

Another observation is the behavior of the magnetiza-
tion components around H ≈ 0 (being H the modulus
of H) for the case ϕ = 90◦. In Figure 1 we can see
that when this field takes values close to zero, Mz ≈ 0
(and also My ≈ 0) while Mx takes values close to sat-
uration. This means that, at this stage, all spins are
aligned approximately along the x direction (the easy
axis of magnetization for the uniaxial anisotropy), show-
ing that the simulation reproduces well the expected be-
havior for ϕ = 90◦. The snapshots in Figure 2 (right
panels) confirm this interpretation.

Since these tests confirm that our simulations are con-
sistent with some general physical properties of the sys-
tem, from now on we set tsim = 90 ps.

B. Hysteresis loops and the effect of field frequency

As it was argued in Section II, it is not possible to cal-
culate hysteresis loops at typical very low experimental
frequencies using SLD simulations, due to intrinsic time
limitations of atomistic simulation approaches. Instead,
we are limited to working with high frequencies in the
order of MHz. However, high frequency hysteresis loops
appear to converge to a limit curve as the frequency is
decreased and, as the following analysis shows, this limit
loop should not be so different from those measured ex-
perimentally or calculated theoretically. Following this
line of argumentation, we calculate the hysteresis loops
for different frequencies. In Figure 4, we show how the
area of the hysteresis loops depends on the field frequency
for the cases with ϕ = 0◦ and ϕ = 45◦. Note that we ex-
clude the case ϕ = 90◦ from this analysis, since for this
angle the curves do not present an hysteretic behavior.
The curves in Figure 4 exhibit a typical crossover from
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Figure 3. (Color online.) Histograms of individual spins ori-
entations sx, sy, sz along the three axes. The histograms
correspond to the state of the system described in the snap-
shot (c) of Figure 2 for the case ϕ = 90◦.

a high frequency dynamic regime (for which the area of
the loops is large) to a low frequency dynamic regime (a
weak variation of the area with field frequency) [67].

Given that the simulation time for a given field value
is always the same and, in principle, long enough to cover
spin relaxation for high damping, higher frequency would
only mean larger changes in the discrete field values. The
larger the field jumps, the larger the change across the
energy landscape, and the system might not adapt fast
enough within the 90 ps of simulated time, decreasing
spin switching probability and generating wider loops.
The magnitude of the jumps around the region of the
switching field are ∼ 0.3 T for f0 and ∼ 0.06 T for f0/4.
Therefore, the stabilization of the frequency for ϕ = 0◦

occurs when the field jumps are about one order of mag-
nitude lower than the value of the converged coercive
field.

For ϕ = 45◦, we found convergence at a frequency of
f0/2 while for the ϕ = 0◦ case it is not until a frequency of
f0/4 that the loop area reaches a stable value. At these
frequencies the area of the loops coincides (within the
statistical errors) with the predictions of the SW model.
Figure S2 in the SM shows the corresponding hystere-

sis curves calculated at several different frequencies for
the case ϕ = 0◦, evidencing convergence as frequency de-
creases. This is similar to results showing convergence as
loop time increases in ASD simulations [68] for simula-
tion times similar to our SLD runs. This analysis shows
that, although the convergence frequencies found in this
study are much higher than those typically used in ex-
periments, they are low enough to let the magnetization
equilibrate with the field direction at each field step. This
means that, at these rates, our simulated hysteresis loops
should not present large discrepancies with experiments,
as discussed for example by Westmoreland et al. [27].
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Figure 4. (Color online.) Loop area vs field frequency for the
cases with ϕ = 0◦ and ϕ = 45◦. The values of the area are
normalized by the area of the SW loop.

In Figure 5 we compare the hysteresis loops calculated
for ϕ = 0◦, ϕ = 45◦, and ϕ = 90◦ at a single frequency
f0/4, with those of the SW model [3]. As we can see,
a good agreement is observed in all cases. Nevertheless,
it is important to stress that we do not expect that the
simulation curves should fit exactly the theoretical ones.
Unlike the SW model (for which the macrospin approxi-
mation is considered at T = 0), the SLD simulations are
carried out at low but finite temperature for many mag-
netic atomic moments which, along a hysteresis cycle, do
not rotate coherently in a perfect way (see Fig. 3). For
example, for the ϕ = 0◦ case, we do not obtain a rect-
angular curve because thermal fluctuations and also the
existence of many degrees of freedom, make it easier for
the magnetization to change its orientation at an exter-
nal field value slightly lower than predicted by the SW
model.
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Figure 5. (Color online.) Hysteresis curves calculated with
SLD simulations (full lines) at different angles ϕ compared to
the theoretical ones according to the SWmodel (dashed lines).
The SLD curves correspond to the average curve obtained
from many different cycles. In all cases a field frequency f =
f0/4 was used.

C. Anisotropy

According to the SW model, the coercive field and,
therefore, the area of the hysteresis loop when the exter-
nal field is applied along the easy axis (ϕ = 0◦), is pro-
portional to the anisotropy constant K1 in Eq. (4). We
have explored this dependency in our SLD simulations by
reducing and increasing the original anisotropy constant
value (throughout this test called K∗

1 = 35 µeV/atom)
by a factor of 10. Figure 6 (a) shows that the resulting
simulated loops qualitatively exhibit the expected behav-
ior, that is, the loop broadens (narrows) according to the
increase (reduction) of the anisotropy constant. This is
further confirmed in Figure 6 (b) where it can be seen
that the loop area follows an approximately linear be-
havior as a function of K1/K

∗
1 , deviating slightly from

the SW model prediction only for small values of this
constant. These deviations arise from the combination of
two effects. On the one hand, this is due to the fact that
simulated loops are “rounded” near the point of magneti-
zation reversal, deviating from perfect rectangular loops
as explained above. The discrepancy with the SW model
area becomes increasingly important as the loop narrows.
On the other hand, as it was mentioned in the methods
section, large anisotropy helps stabilizing the magnetiza-
tion of the system [26]. For the case of low anisotropy
(K1 = 0.1K∗

1 ) there is poor stabilization ofMz during the
90 ps of simulation of each field step (specially near the
region of magnetization switching), as seen in Figure S6.
Much longer simulation times would be required for low
anisotropy values. Given that our smallest anisotropy is
the Fe bulk anisotropy, we could compare with some ex-
perimental results. Magneto-optic Kerr effect measure-

ments of Fe(100) appear to give a slightly lower coercive
field than our simulation estimate [69], although those
measurements were obtained at higher temperatures and
for multi-domain samples.

We have also analyzed the influence of anisotropy
symmetry. Loops calculated with SLD simulations for
systems with uniaxial and cubic anisotropies, Eqs. (4)
and (5), are shown in Figure 7 for the case ϕ = 0◦. We
compare these curves to the corresponding one for the
SW model with uniaxial anisotropy. The reason is that
at T = 0 K both simulation curves should coincide with
the latter. Our results show that for ϕ = 0◦ the hysteresis
loop does not depend on the type of anisotropy. There-
fore, the small differences between the curves shown in
Figure 7 can be attributed to the effect of tempera-
ture, which is more pronounced in the case of cubic
anisotropy. The area of the loop is slightly smaller for cu-
bic anisotropy, similar to the results reported in Ref. [65].
Usov and Peschany [70] considered the SW model for
uniaxial and cubic anisotropies, for randomly oriented
nanoparticles. They report that the maximum normal-
ized coercive field in both cases is 1, in agreement with
our result. For a random collection of anisotropy orien-
tations, the resulting coercive field for cubic anisotropy
was ∼ 0.68 of the one for uniaxial.

It is more interesting to analyze the difference between
uniaxial and cubic anisotropies, when the field is ap-
plied in the [111] direction. For this field orientation,
we consider a SW model, the Hamiltonian of which has
an arbitrary anisotropy term. We start by applying a
strong enough external field such that the Hamiltonian
has a single minimum with the magnetization M point-
ing in the direction of H. Then, we decrease the in-
tensity of the field using small jumps. At each step we
use a steepest descent method to try to escape from the
energy minimum, so that if it becomes unstable, a new
minimum can be reached. Using this simple algorithm,
we have simulated the zero temperature dynamics of the
SW model with both uniaxial and cubic anisotropies. As
shown in Figure 8, in this case the corresponding hystere-
sis loops for the SW model are very different. However,
as expected, the loops calculated with the SLD simula-
tions agree very well with the curves for the SW model
for both cubic and uniaxial anisotropies. In the case of
cubic anisotropy, while the remanent magnetization for
both SW and SLD curves is ±1/

√
3, there is a quali-

tative difference between them for field values greater
than the coercive one: a small hysteresis behavior present
in the loop of the SW model is not well reproduced in
the SLD simulation. The reason for this is that the en-
ergy barrier separating these states is of approximately
0.3 µeV/atom, several orders of magnitude smaller than
kBT ∼ 8.6 × 10−3 eV. Only a simulation at much lower
temperature would be able to reproduce this behavior.
The cubic case has a lower coercive field, which could
be somewhat expected from results for a collection of
nanoparticles with random orientation [70].

To conclude this section, we mention that for a cou-
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Figure 6. (Color online.) (a) Loops for different values of uniaxial anisotropy K1. (b) Loop area normalized to the area of the
loop with K∗

1 = 35 µeV/atom, against K1/K
∗
1 . The dashed line is the prediction of the SW model.
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Figure 7. (Color online.) Hysteresis loops for uniaxial (red
full line) and cubic (blue circles) anisotropies for the ϕ = 0◦

case and frequency f0/4. The results are compared to the SW
prediction for uniaxial anisotropy (red dashed line).

ple of cases, we have tested a lattice-dependent Neel´s
anisotropy within the framework of Nieves et al. [52] and
the results obtained are similar to the ones for uniaxial
or cubic anisotropy presented above.

D. Exchange interactions

The exchange energy does not play a role in the SW
results, and within that framework there should be no
effect of the exchange interaction on the simulated hys-
teresis loops. To test this prediction within the SLD
framework, we have run simulations with different val-
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Figure 8. (Color online.) Hysteresis loops for an external field
applied along the [111] direction (ϕ ≈ 54.7◦) and frequency
f0/4, for cubic and uniaxial anisotropy. The loops obtained
with SLD are compared to the predictions of an extension of
the SW model that incorporates cubic anisotropy (red short-
dotted line), and to the SW with uniaxial anisotropy (green
dot-dashed line).

ues of the function J(rij). In Figure 9, we compare the
curves obtained using the original exchange J(rij)

∗, with
the ones obtained by increasing or reducing this inter-
action by a factor of 10. As it can be seen, loops are
nearly unaffected by these changes. Increasing the mag-
nitude of the exchange interaction is expected to give
higher magnetization values and broader loops [71], but
at low temperatures (as in this case) this effect is ex-
pected to be very small. Larger differences should be
noticed at higher temperatures where thermal fluctua-
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tions start to play a major role in the magnetization be-
havior. Nevertheless, even at these low temperatures,
a few subtle effects can be noticed: (i) for the simula-
tion with J(rij) = 0.1 × J(rij)

∗ a small but consistent
reduction of the saturation magnetization is observed,
and (ii) for J(rij) = 10× J(rij)

∗ the loop becomes more
rectangular. This last effect is also observed in other
theoretical approaches based on the SW model which
include exchange interactions through a mean field ap-
proach as in Refs. [72, 73]. Lower/higher exchange will
lead to lower/higher Curie temperature (TC) and spin
ordering will be modified. For the same value of the ex-
ternal field, the histogram of spin values is narrower and
with a higher mean value for the higher exchange, facil-
itating the macrospin behavior, leading to a larger satu-
ration field and helping with the sudden spin flip which
causes a more square loop.
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Figure 9. (Color online.) Simulated hysteresis curves for the
case ϕ = 0◦ considering different magnitudes of the exchange
coupling.

E. Damping parameter

The value of the Gilbert damping parameter in the sLL
equation is usually chosen to be in the range 0.01−1. Ex-
perimental estimates for Fe are around 0.001. However,
the possibility of increasing the spin damping values for
numerical convenience is often explored. In SLD simula-
tions a value of λs = 0.1 was used in Ref. [34]. ASD [74]
and micromagnetic [20, 65] simulations use values in the
range 0.1− 1.

The dynamic of a single spin in a magnetic field is well
established, and there are studies discussing the role of
damping and simulation times [23]. However, obtaining
spin relaxation times at a given damping for correlated
multi-spin systems at finite temperature will typically re-
quire simulations. In general, as the damping increases,

there is a faster energy loss, and the relaxation time re-
quired for the system to reach a steady state decreases,
with spins aligned with the preferred orientation deter-
mined by the external field and the anisotropy. There-
fore, it is possible to use higher frequencies to calculate
the hysteresis loops, which become narrower as damp-
ing grows. In the same spirit, in most of the simulations
presented here we use a larger damping value, λs = 0.5.
Using lower damping is possible but would require lower
frequencies as discussed below. The parameter λs is re-
lated to the optimal value of the simulation run time tsim.

In micromagnetic simulations, it has been proposed to
use both very high damping and high loop sweep rates
(SR), in order to achieve computational efficiency [20].
The rationale behind this proposal was as follows. The
magnitude of the coercive field is a function of the mea-
surement time, and the attempt frequency for spin flips.
This measurement time can be related to the SR, and
the flip frequency can be assumed to be proportional
to the damping. Therefore, loops calculated with the
same value of SR/λs would have the same coercive field
which gives the loop width. Based on this, Behbahani et
al. were able to use high SR in their simulations to ob-
tain hysteresis loops that closely match those obtained
at very low SR, by employing extremely high damping
values, and large time steps. Recently, this methodol-
ogy was successfully applied to simulate hysteresis of iron
oxide magnetic nanoparticles with application to hyper-
thermia [66].

In Figure 10 we use a field frequency f0 for the case
with ϕ = 90◦. For λs = 0.5 the hysteresis loop in (a) is
reasonably close to the SW prediction, and the magne-
tization versus time in (b) indicates reasonable conver-
gence. However, for λs = 0.1, the loop in (a) is poorly
defined, as expected from the lack of convergence towards
stable magnetization values shown at the top of panel (b).
The possibility of reducing the simulation time in mi-
cromagnetic simulations by increasing both the SR and
the damping, leaving constant the ratio SR/λs, would
be equivalent, in our case, to keeping constant the ratio
f/λs. However, SLD simulations at high damping might
depart from the desired dynamics and should be treated
with care. In our simulations, by choosing λs = 0.5, we
were able to set tsim = 90 ps and use f0/4 as discussed at
the beginning of this section. For lower damping values,
smaller frequencies would be required, significantly in-
creasing the computational costs. Following the previous
scaling, for instance, for λs = 0.1, around 400 ps (4×106

steps) are required to stabilize the magnetization at each
field value, in contrast to the 90 ps (9 × 105 steps) that
are required for λs = 0.5. We have run some simulations
for such a low damping and nanosecond steps, and ver-
ified that this is indeed the case, explaining the lack of
convergence in Figure 10(a).
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Figure 10. (Color online.) (a) Hysteresis curves for the case ϕ = 90◦ with a field frequency f0 and damping parameters λs = 0.1
(dashed line) and λs = 0.5 (full line). The plot shows several cycles for each case. (b) Time evolution of the components of
the magnetization throughout the simulation of half a cycle for the cases considered in (a). The field value at each time is also
included (green dashed line and right axis). Note that each field value is kept constant for 90 ps (9× 105 steps) of simulation
time.

F. Coupling the lattice dynamics

All the results presented so far correspond to frozen-
lattice simulations, meaning that the lattice vibrations
are not included in the dynamics. We now analyze the
effect of full SLD calculations actually coupling the spin
and lattice degrees of freedom, which we refer to as
moving-lattice simulations. We analyze this effect for two
different systems, perfect bcc bulk samples and nanopar-
ticle samples including defects.

1. Low temperature bulk simulations

In Figure 11 we compare the simulated hysteresis loops
at T=10 K for ϕ = 0◦ obtained with (moving-lattice) and
without (frozen-lattice) spin-lattice coupling at different
frequencies. The former gives lower coercivity and nar-
rower loops in comparison with the frozen-lattice case.
This effect is more pronounced for higher frequencies.
This is consistent with the fact that in a system that in-
corporates new degrees of freedom (in this case those of
the lattice), the energy barrier that must be overcome
to reverse the magnetization should decrease. In other
words, when a reversal field is applied, a moving lattice
provides additional paths for the magnetization relax-
ation process. However, this effect is small at a frequency
f0/4 where a stable magnetization is easily achieved for
the chosen sweep rate, showing that the lattice dynamics
contributions are not very important at these low tem-
peratures (T = 10 K). As it was previously shown for
iron nanoparticles at equilibrium, the lattice fluctuations
would become significant at temperatures higher than

300K [34, 45]. The equilibrium magnetization for a mov-
ing lattice is always smaller than that of a frozen lattice
for all temperatures [45]. In addition, in the present ap-
proach, the anisotropy contributions do not depend on
the atomic positions nor the lattice temperature. Larger
differences between moving and frozen lattice simulations
might be observed for Hamiltonians that include addi-
tional terms which are sensitive to factors like atomic
volume [52, 75], or “effective” local electronic density [50].

2. Intermediate and high temperatures bulk simulations

In this subsection, we focus on intermediate tempera-
tures, above ∼ 1/3 of the Curie temperature and also
high temperatures, close to TC . Lattice-induced spin
fluctuations enter in this model through the interatomic
distance dependence of the exchange function J(rij) in
the magnetic Hamiltonian Eq. (2). At low temperatures,
changes in J(rij) due to lattice vibrations are negligible.
Therefore, the coupled spin-lattice dynamics show little
influence in hysteresis loops in that regime, as it was
shown in Figure 11 and discussed in the previous sub-
section. To address the effect of the coupled spin-lattice
dynamics at higher temperatures, we have run simula-
tions for the case of uniaxial anisotropy with the easy
axis aligned with the external field, ϕ = 0◦, at several
temperatures, in the range of T = 300− 1000 K. For the
parametrization of J(rij) used in this work, TC is around
1050 K, as discussed in Section IIA. Given the large fluc-
tuations observed at these temperatures, we consider for
these simulations a larger bulk system, including around
65000 atoms, as mentioned in the Methods section, in or-
der to avoid finite-size effects, and use longer simulation
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Figure 11. (Color online.) Comparison of the hysteresis loops
obtained with (lattice moving) and without (lattice frozen)
coupling to the lattice dynamics at T = 10K. All the figures
correspond the case ϕ = 0◦ at different field frequencies, f0
(top), f0/2 (middle) and f0/4 (bottom). The inset in the top
panel shows histograms of the spins orientation along the field
direction z and correspond to the state of the system just
before the beginning of the magnetization reversal marked
with circles in the respective curves.

times (180 ps per point) in order to avoid the undesirable
regime in which the magnetization cannot equilibrate to
the field direction before the next field increment.

In Figure 12, we compare the hysteresis loops ob-
tained at these conditions under the two different sim-
ulation approaches, lattice-frozen and lattice-moving, for
T = 500K and T = 1000K contrasted to the previous re-
sults at T = 10K. A small difference, consistent with the
results at 10K and with the arguments outlined in the
previous subsection, can be observed between the lattice
frozen and lattice moving loops at T = 500K. However,
this difference is within the margin of error given by the
standard deviation of the average by which the curves
are obtained. This is because, at these relatively high
temperatures, the effect of increased lattice vibrations
on exchange and spin fluctuations is small compared to
the large fluctuations caused by the thermal noise in the
stochastic field ζ(t) in Eq.(8). This is confirmed by the
spin histograms in the inset of Figure S7 in the supple-
mentary material, where a very similar dispersion of spin

orientations is evidenced for both frozen and moving lat-
tice cases. A more pronounced difference between the
frozen and moving lattice protocols is observed for the
loops calculated at T = 1000K. For the moving lattice
simulations, the Curie temperature is close to 1050K (as
it was mentioned above), while for the frozen lattice ones
TC ∼ 1150K [45]. Consequently, in the moving lattice
procedure, the system is closer to a state where hysteresis
should vanish and, therefore, present loops with smaller
area than those of the lattice frozen simulations.
Despite the small differences obtained between the lat-

tice moving and lattice frozen approaches, the effect of
temperature is well captured by the present simulation
method and protocol. At higher temperatures, smaller
loops are obtained, i.e., smaller coercivity and saturation
magnetization as the temperature is increased, following
the expected behavior.
We note that the SW model is sometimes applied at fi-

nite temperatures, despite its lack of validity under those
conditions [53], by re-scaling the saturation magnetiza-
tion to match values at the desired temperature. If the
same procedure was applied to our case, there would be
strong disagreement between the model and the simula-
tions, which represents a warning for such future com-
parison between the SW model and experiments at finite
temperature.
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Figure 12. (Color online.) Comparison of the hysteresis loops
at T = 10K, T = 500K and T = 1000K for lattice frozen
and lattice moving procedures. These results correspond to
the case ϕ = 0◦. For the simulations at T = 500, 1000K a
smaller sweep rate, SR = 0.5 × 108 T/s (which corresponds
to 180 ps of simulation time per point) was used.

3. Nanoparticles simulations

Magnetic nanoparticles are of technological interest,
and their nanostructure will affect magnetization. For
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example, the microstrain state inside nanoparticles can
greatly modify their magnetic properties [76], including
cases where lattice deformation can be driven by va-
cancies [77]. As another example of defects influencing
magnetization, experiments suggest that defects might
play a role in Fe NPs remaining blocked, as opposed to
defect-free NP which would behave superparamagneti-
cally [11, 12].

Most atomistic spin dynamics simulations consider a
frozen perfect lattice, even for cases with defects, like
NP surfaces [23, 78–80], interfaces [68, 81], and point de-
fects [77]. Such approach allows for the use of discrete ex-
change values for 1st, 2nd, etc. nearest neighbors, greatly
saving computational time. There are isolated efforts to
include lattice distortions for a frozen lattice, which re-
quire the capability of handling magnetic interactions at
arbitrary distances and not just regular lattice positions.
Spatial configurations from molecular dynamics can be
used as input [82], or set with other criteria, like in the
recent study of a single dislocation dipole in bulk Cr [83].
Sometimes, defects have been emulated by more symmet-
ric configurations, like the the simulation of vacancies by
weakly coupled ferromagnetic spin pairs, without consid-
ering lattice strain [77]. In addition, these codes will not
allow for dynamical lattice effects, including evolution of
defects with time due to temperature, stress, and cou-
pling to magnetic degrees of freedom. For a NP, surface
roughness might vary considerably with temperature.

In order to explore the role of lattice dynamics, we sim-
ulate hysteresis loops for pristine and defective Fe NPs
samples. In principle, one could also compare the mag-
netization of the defective NP with a frozen lattice with
exactly the same NP with a moving lattice. Here we
focus on the extreme comparison of a pristine NP with
frozen lattice and a defective NP with moving lattice,
i.e coupling the spin and lattice dynamics, given that we
would like to emphasize the potential of the method com-
pared to the current standard simulations that generally
lack the inclusion of MD simulations configurations and
employ a fixed, ideal lattice structure. Figure 13 shows
the “perfect” NP used for the frozen lattice simulations,
alongside the Fe NP with defects. It can be seen that
the defective NP has a non-spherical topology, with large
planar facets, and also includes a twin boundary, and a
few vacancy clusters. Figure 14 shows the histograms of
magnetization values over the entire simulation, covering
several hysteresis cycles for both NPs. The differences
between the two NPs is large, with the defective NP expe-
riencing significantly larger and more frequent magneti-
zation fluctuations. This suggests that, for a NP, defects
which can be included in spin-lattice dynamics display
different qualitative and quantitative behavior than the
absence of defects. The larger fluctuations lead to nar-
rower hysteresis loops, as qualitatively expected. Figure
15 shows hysteresis loops for both NPs, with the defec-
tive NP displaying lower saturation magnetization and
lower coercive field, resulting in a significantly lower loop
area, approximately one-quarter that of the perfect NP.

We obtain a coercive field around 50 mT for the pristine
frozen NP and around 18 mT for the defective NP at 500
K. This is for a single, oriented NP, with a diameter of 8
nm. Loops from other experiments [11] show smaller co-
ercive fields, around 3 mT. However, our value for the our
defective NP shows very good agreement with an experi-
mental value of around 20 mT for a collection of Fe NP of
the same size as in MD, at 300 K [10]. Furthermore, the
experimental coercive field is approximately half of what
we have obtained for the pristine NP. Given that the co-
ercive field of a random collection of NP is expected to
result in a coercive field of about half that for oriented
NP [3], the agreement is reasonable. In addition, the hys-
teresis loop of a prismatic Fe NP (210 × 210 × 15 nm3)
gives Hc ∼ 75 mT for the field at 45◦, according to recent
micromagnetic simulations [84], also indicating that our
simulations obtain reasonable coercive field values. For
experimental measurement times of seconds, NP below
some critical size are expected to behave superparam-
agnetically at high temperatures [3, 7], but for our NP
size and simulation times of ns, the NPs behave ferro-
magnetically. Recent experiments observed that, within
a collection of Fe NP with 5-20 nm diameter, many be-
haved with the expected superparamagnetism, but some
remained in a blocked ferromagnetic state [11, 12]. De-
fects were assumed to be the cause for the ferromagnetic
behavior, opposite to what we find in our simulations,
where the defects considered here facilitate magnetiza-
tion flips and decrease the coercive field. These prelimi-
nary simulations of pristine and defective NPs highlight
the importance of SLD calculations. The introduction
of defects, and the possibility that they can evolve and
migrate during the simulation time, can change the mag-
netic behavior of such samples.

IV. DISCUSSION

Given the short timestep required to integrate the
atomic degrees of freedom, usually ∼ 0.1 fs - 1 fs, one
needs relatively long simulations to achieve a stable mag-
netization at a given value of the applied magnetic field.
Typically, this would involve several precession periods.
Using the Larmor frequency for Fe gives a period of
∼ 36 ps for a field of 1T. In order to speed-up the spin-
dynamics convergence, a Gilbert damping λs = 1.0 is
used in most ASD simulations [25–28] and values much
larger than 1 have been used in micromagnetic simula-
tions of hysteresis loops [20]. In our simulations, we
found that for a given damping, as frequency decreases,
the loop area also decreases until reaching a constant
value. For bulk iron, and a Gilbert damping of 0.5, we
found that frequencies of 125 MHz or lower provide such
a constant loop area, for simulation times of 90 ps for
each field. Values between 30 and 200 ps (depending on
the system under study and the Gilbert damping em-
ployed) are also used for ASD simulations [25, 26, 28].
For the case in which the anisotropy axis and the field
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Figure 13. (Color online) Snapshots of Fe nanoparticles employed in the hysteresis loop simulations. The upper panel ((a) -
(d)) shows snapshots of the pristine NP (8 nm diameter spherical NP) while the lower panel ((e) - (h)) shows the corresponding
snapshots for the defective NP. In (a) and (e) the entire NP is shown, with atoms colored by PTM structure type. Surface
atoms are classified as “other” (unknown structure). In (b) and (f) a slice near the center of the NP is shown, also colored by
PTM structure type. In (f), atoms in a twin boundary crossing the NP, and around a vacancy are also classified as “other”.
Figures (c) and (g) show the same slice as (b) and (f), but atoms are colored according to their PTM atomic orientation along
the x-axis, to better show the twin rotation in the defective NP. Finally, in (d) and (h) a surface mesh is shown for the NP
surface, a few single vacancies, and vacancy clusters inside the defective NP.

direction are perpendicular, ϕ = 90◦, a converged loop
can be found at even higher frequencies. Agreement be-
tween SLD and SW suggests that loops using this limiting
frequency would not be much different from the exper-
imental or theoretical estimates. This result, partially
solves the problem related to the computational costs in
atomistic simulations of hysteresis loops, allowing to re-
produce experimental hysteresis loops, running SLD sim-
ulations at much higher frequencies than those typically
used in experiments. Large computer clusters allow for
simulations of increasingly larger systems by distribut-
ing spatial scales, but time scale cannot be split amongst
different parallel processes. Therefore, new approaches
for accelerated dynamics [85], bypassing this time scale
problem, will be required for more efficient simulations
of hysteresis loops with SLD.

When atomic motion is coupled to spin dynamics we
found that, for the bulk simulations, the lattice dynam-
ics contributions depend on the loop frequency, but they
are typically small at low and intermediate temperatures,
but more notorious at higher temperatures close to TC .
At low temperatures (10 K) atoms vibrations are negli-
gible. At intermediate temperatures (300− 500K), fluc-

tuations in spin-spin exchange J(rij) produced by the
atomic motion are outweighed by the thermal fluctua-
tions induced by the stochastic term in the sLL equation
of the spin dynamics. In the case of the NP simula-
tions we find significant differences, both qualitative and
quantitative, between the hysteresis loops of a pristine
NP with a frozen lattice and the loops foor a defective
NP with a moving lattice, both with a spin temperature
of T = 500 K.

Although the effects of the coupled spin-lattice dynam-
ics are small for bulk bcc iron, in more complex systems
that exceed the scope of this work, there might be dynam-
ical effects that would result in different hysteresis loops
if the lattice and spin dynamics are coupled. Also, future
studies could include a quantum thermostat to improve
the description of thermodynamic properties at low tem-
peratures [86]. Equations of motion which would provide
angular momentum conservation might be explored too
[50, 51].

SLD simulations could be applied to hysteresis loops
for other systems of technological interest, such as more
complex nanoparticles [14], including core-shell nanopar-
ticles with realistic interfaces [87], magnetostrictive ma-
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Figure 14. (Color online.) Histograms of the magnetization
along the field direction (Mz), for the defective and the pris-
tine NPs. The histograms were built with the data obtained
directly from the entire simulation and are normalized to unit
area.
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Figure 15. (Color online.) Hysteresis loops comparing de-
fective and pristine nanoparticles (NPs). The hysteresis loop
area of the defective NP is nearly 4 times smaller than that
of the pristine NP.

terials with magnetic microstructures [88], compounds
like CrN, where the spin-lattice coupling is responsible for
the unusual temperature dependence of the thermal con-
ductivity [36], and bulk systems with defects [28, 45, 89–
91]. Further examples include strained antiferromag-
netic materials that exhibit different responses to exter-
nal fields [92] and other materials where strain affects
the magnetic properties [93, 94]. Finally, recent theoreti-
cal studies suggest topological magnon phase transitions
tuned by time-dependent strains in 2D materials [95]. In

binary alloys like Fe-Cr the formation of stable precip-
itates is known to occur at certain concentrations, and
this would dynamically affect magnetic properties [96],
as well as magnetically driven phase transformation [97].
Magnetic alloys can display complex microstructure, in-
cluding dislocations, stacking faults, twins, etc., which
greatly affects their magnetic properties [98]. In particu-
lar, High Entropy Alloys (HEA) are materials of techno-
logical interest, with a complex microstructure, including
dislocations, twins, precipitates, and different crystallo-
graphic phases, which leads to a complex magnetic be-
havior [99], pressure-induced phase stabilities, and mag-
netovolume effects [100]. For all of the above cases, SLD
could provide information which can inform micromag-
netic and atomistic spin dynamics simulations.

V. SUMMARY AND CONCLUSIONS

In this study, we apply a systematic approach toward
incorporating Spin-Lattice Dynamics in the simulation
of hysteresis phenomena. Each step of the process was
thoroughly evaluated and optimized to ensure the accu-
racy and reliability of the simulation results. We used
SLD simulations to calculate the hysteresis loops of a
bulk ferromagnetic system at different temperatures and
the hysteresis loops of bcc Fe NPs with the inclusion of
structural defects. SLD can include temperature effects
(thermal spin fluctuations as well as lattice vibrations)
and lattice defects in a relatively simple way, comple-
menting spin-dynamic or micromagnetic simulations.
We have also performed formal calculations to derive

the Fokker-Planck equation associated to the set of cou-
pled Langevin equations Eqs.(6)-(8). From this, we de-
duce the correct expressions for the amplitudes of the
white noise correlations that allow the system to reach
an asymptotic stationary Gibbs-Boltzmann equilibrium
state.
From our simulations at a temperature of 10K, spins

behave almost like a macrospin, but there is some spread
in the magnetization values, associated with thermal ef-
fects and exchange interactions. The exchange energy,
which is much larger than the Zeeman or anisotropy en-
ergies, does not significantly affect the hysteresis loops at
low temperatures. The coercive field depends linearly on
the magnitude of the uniaxial anisotropy, as in the SW
model. Cubic anisotropy and uniaxial anisotropy pro-
duce nearly the same loops for the external field aligned
with an easy anisotropy axis. However, there are impor-
tant differences for the case of ϕ ≈ 54.7◦ misalignment,
for which the applied field lies along the [111] direction.
For this case, cubic anisotropy leads to a lower coercivity
value.
In order to validate our low-temperature SLD results,

we compared to the Stoner-Wohlfarth model, which is
widely used in experimental and simulation studies. In
the SW model, there is no lattice, no temperature, and
no exchange interactions. The model assumes uniax-
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ial anisotropy and Zeeman energy contributions, and
spins in the volume are assumed to behave like a sin-
gle macrospin. We compared the outcome of the SLD
simulations at T = 10 K to the predictions of the SW
model for different angles between the external field and
the anisotropy axis. We analyzed the effects of several pa-
rameters like simulation run time, field frequency, damp-
ing, exchange, anisotropy and lattice-vibrations. We
found that the low-temperature loops obtained with SLD
agree very well with those predicted by the SW model,
provided that several parameters are chosen with care.
Once this agreement is established, validating our model,
we study the effect of the coupled spin-lattice dynam-
ics on the intermediate and high temperature hysteresis
loops where the SW model is no longer valid.

Our study employs several approximations, including
a classical Heisenberg Hamiltonian, but it can capture
reasonably well the behavior of lattice defects that mod-
ify magnetic properties. In particular, we are able to
model the high-temperature evolution of a nanoparti-
cle with both point and extended defects, where such
defects lower the overall magnetization and significantly
reduce the area of the hysteresis loop, compared to a typ-
ical frozen lattice approximation. This was qualitatively
expected, given that disorder hinders global magnetiza-
tion and, under varying external fields, helps fluctuations
which would reduce loop area. However, quantitative
simulations can certainly contribute to the understand-
ing of experimental results, and with the future design of
tailored magnetization in NP.

In order to model complex materials of interest, it is
desirable to have reliable simulation techniques and pro-
tocols for hysteresis processes that incorporate the effects
of coupled lattice and spin dynamics and this study would
be a contribution in that direction. While most of our re-
sults correspond to the already well-studied case of pure
bulk Fe, our approach provides a framework for future
studies to efficiently use SLD for the study of hysteresis
behavior in magnetic materials in general.
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Appendix

The aim of this Appendix is to derive the Fokker-
Planck equation associated to the set of coupled Langevin
equations, Eqs.(6)-(8), which rule the translational and
rotational dynamics of the magnetic moments. From the
Fokker-Planck equation, we then deduce the amplitudes
of the white noise correlations, Eqs.(10) and (12), that
allow the system to reach an asymptotic stationary state
of equilibrium Gibbs-Boltzmann form.
For the sake of completeness, we work with a Langevin

equation for spins in which we add the stochastic field to
both the gyromagnetic and the relaxation terms, with a
parameter A controlling the presence or absence of noise
in the latter dissipative mechanism. In this way, for A =
1 we obtain the sLLG equation while for A = 0 we recover
our sLL Eq.(8) [22].

1. Langevin formulation

We take a set of i = 1, . . . , N particles at positions
ri = (rix, r

i
y, r

i
z), with momenta pi = (pix, p

i
y, p

i
z) and

magnetic moments si = (six, s
i
y, s

i
z). As in the main text,

we label a, b, or c the space coordinates x, y, and z.
Since the number of components of the magnetic mo-
ments are also three we use the labels a, b, c for them as
well. The magnetic moments are normalised such that
|si|2 = (sia)

2 = 1 for each particle i. Here and in the fol-
lowing we use Einstein summation notation over repeated
a, b, c indices; not over i, j particle indices, and we write
the sums over these indices explicitly when needed.
The stochastic Langevin equations of motion Eqs.(6)-

(8) are recast in the generic form [101]

dtr
i
a =

pia
mi

, (A.1)

dtp
i
a =

N∑
j( ̸=i)

[
−∂V (rij)

∂ria
+

∂J(rij)

∂ria
si · sj

]
− γL
mi

pia + ξia , (A.2)

dts
i
a = giab ω

i
b + giab ζ

i
b , (A.3)

where dt denotes the time derivative d/dt and ωi
b =

− 1
ℏ
∂Hmag

∂sib
is the component b of the effective field act-

ing on spin i. The noises affecting the translation and
magnetic degrees of freedom, ξia and ζia, are independent
Gaussian white random variables with zero mean and
correlations

⟨ξia(t)ξ
j
b(t

′)⟩ = 2DLδabδ
ijδ(t− t′) , (A.4)

and

⟨ζia(t)ζ
j
b (t

′)⟩ = 2Dsδabδ
ijδ(t− t′) . (A.5)

http://dirac.df.uba.ar/
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We will fix the coefficients DL and Ds below. The ma-
trices giab and giab are defined as

giab =
1

1 + λ2
s

[ϵabcs
i
c +

λs

si
(s2i δab − sias

i
b)] , (A.6)

giab = f i
ab +Ahi

ab , (A.7)

with

f i
ab =

1

1 + λ2
s

ϵabcs
i
c =

1

2
(giab − giba) , (A.8)

hi
ab =

λs

si

1

1 + λ2
s

(s2i δab − sias
i
b)

=
1

2
(giab + giba) . (A.9)

Here, f and h are the antisymmetric and symmetric
parts of g, respectively, and ϵabc is the completely an-
tisymmetric Levi–Civita tensor. Note that for A = 0
Eq. (A.3) corresponds to the sLL Eq. (8). Instead, since
f i
ab + hi

ab = giab, for A = 1 we have that giab = giab and it
is then easy to show that Eq. (A.3) reduces to the well-
known sLLG equation. Importantly enough, we have re
inserted the modulus of the local spins, si, since although
it is fixed to be one, its variations with respect to the vari-
ous spin components are non-trivial and have to be taken
into account in the calculations that follow. For instance,

∂s2i
∂sia

= 2sa ,
∂s2i

∂(sia)
2
= 6 (A.10)

for each spin i. In the second equation a sum over the
three a components was implicit and led to a factor 3.

2. The Fokker-Planck Equation

Let us join the momenta, position and magnetic vari-
ables of all particles, each with three components, in a
single α = 1, . . . , 9N component vector

y = (p1, . . . ,pN , r1, . . . , rN , s1, . . . , sN ) . (A.11)

Starting from the Chapman-Kolmogorov equation

P (y, t+∆t) =

∫
dy0 P (y, t+∆t|y0, t)P (y0, t) , (A.12)

we obtain the Fokker-Planck description from the
Langevin one by using the definition of P (y, t) via the
Dirac delta function,

P (y, t+∆t|y0, t) = ⟨δ(y − yξ,ζ(t+∆t))⟩ . (A.13)

This compact Dirac delta notation indicates a product
over all the 9N components of the vector y which is
forced to take the value given by the solution to the
Langevin equations. The mean value ⟨. . . ⟩ is taken over
the two noise sources and yξ,ζ(t + ∆t) is the solution
to the Langevin equations (A.1)-(A.3) evaluated at time

t+∆t, with initial condition y(t) = y0, which clearly de-
pends on the noises. We now expand yξ,ζ(t+∆t) around
y0 since the time increment ∆t is small and the y incre-
ment ∆y as well. Using y = y0 +∆y,

P (y, t+∆t|y0, t) = δ(y − y0)− ∂α (δ(y − y0)⟨∆yα⟩)

+
1

2
∂α∂β (δ(y − y0)⟨∆yα∆yβ⟩)

+O(∆t2) , (A.14)

with summation over repeated α, β = 1, . . . , 9N indices.
Combining Eqs. (A.12) and (A.14), and integrating over
y0, one gets

P (y, t+∆t) = P (y, t)− ∂α (⟨∆yα⟩P (y, t))

+
1

2
∂α∂β (⟨∆yα∆yβ⟩P (y, t))

+O(∆t2) . (A.15)

Taking the limit for the differential of P ,

∂tP (y, t) = lim
∆t→0

P (y, t+∆t)− P (y, t)

∆t
, (A.16)

and eliminating any term of higher order than ∆t in
the right-hand-side of Eq. (A.15), we obtain the Fokker-
Planck equation

∂tP (y, t) = −∂α

[
⟨∆yα⟩
∆t

P (y, t)

]
+
1

2
∂α∂β

[
⟨∆yα∆yβ⟩

∆t
P (y, t)

]
.(A.17)

The next step is to calculate the averages ⟨∆yα⟩ and
⟨∆yα∆yβ⟩ to leading order in ∆t using the Langevin
Eqs. (A.1)-(A.3) which read, in discrete time,

∆ria ≡ ria(t+∆t)− ria(t) =
pia
mi

∆t , (A.18)

∆pia ≡ pia(t+∆t)− pia(t)

=

N∑
j(̸=i)

[
−∂V (rij)

∂ria
+

∂J(rij)

∂ria
si · sj

]
∆t

− γL
mi

pia ∆t+ ξia ∆t , (A.19)

∆sia ≡ sia(t+∆t)− sia(t)

= giab ω
i
b ∆t + giab ζ

i
b ∆t . (A.20)

All variables in the right-hand-sides of these equations
are evaluated at the mid-point ymp = [y(t)+y(t+∆t)]/2
since we chose to work with the Stratonovich prescrip-
tion, the unique scheme consistent with the conservation
of the modulus of the magnetization, in the way we wrote
the equations [22, 101]. When working at O(∆t) we will
be able to, in some cases, replace this mid-point by the
initial one y0 in the interval [t, t+∆t].
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The averages of the position increments or the product
of two position increments are

⟨∆ria⟩ = ⟨pia
∆t

mi
⟩ = pia

mi
∆t+O(∆t2) , (A.21)

⟨∆ria ∆rjb⟩ = O(∆t2) . (A.22)

Besides, for the momentum and magnetisation compo-

nents we obtain, respectively,

⟨∆pia⟩ =

N∑
j( ̸=i)

[
−∂V (rij)

∂ria
+

∂J(rij)

∂ria
si · sj

]
∆t

− γL
mi

pia∆t+O(∆t3/2) , (A.23)

⟨∆pia ∆pjb⟩ = 2DLδabδ
ij∆t+O(∆t3/2) ,

(A.24)

and

⟨∆sia⟩ = giab ω
i
b ∆t− 2Ds

1 + (Aλs)
2

(1 + λ2
s)

2
sia ∆t

+O(∆t3/2) , (A.25)

⟨∆sia ∆sjb⟩ = 2Ds
1 + (Aλs)

2

(1 + λ2
s)

2
(s2i δab − sias

i
b) δ

ij∆t

+O(∆t3/2) . (A.26)

The averages over the cross products are sub-leading
since the noises ξia and ζia are not correlated. Replacing
now Eqs. (A.21)-(A.26) into Eq.(A.17), we finally find
the explicit Fokker-Planck equation

∂tP = − ∂

∂ria

(
pia
mi

P

)
− ∂

∂pia


N∑

j( ̸=i)

[
−∂V (rij)

∂ria
+

∂J(rij)

∂ria
si · sj

]
P − γL

mi
pia P

+
1

2

∂

∂pia

∂

∂pib
(2DLδab P )

− ∂

∂sia

[
giab ω

i
b P − 2Ds

1 + (Aλs)
2

(1 + λ2
s)

2
sia P

]
+

1

2

∂

∂sia

∂

∂sib

[
2Ds

1 + (Aλs)
2

(1 + λ2
s)

2

(
s2i δab − sias

i
b

)
P

]
, (A.27)

where we recall that there is a sum over repeated a and b indices, and here also the i index.

3. Stationary solution

We now check whether the Gibbs-Boltzmann distribution Peq = Z−1e−H/kBT , where Z is the partition function,
is a stationary solution of the Fokker-Planck Eq. (A.27). Such a stationary P does not depend on time and should
satisfy ∂tP = 0, i. e.

0 = −
N∑
i

pia
mi

∂P

∂ria
−

N∑
i ̸=j

[
−∂V (rij)

∂ria
+

∂J(rij)

∂ria
si · sj

]
∂P

∂pia
+ 3

N∑
i

γL
mi

P +

N∑
i

γL
mi

pia
∂P

∂pia
+DL

N∑
i

∂2P

∂(pia)
2

+2
λs

si

1

(1 + λ2
s)

N∑
i

sib ω
i
b P −

N∑
i

giab ω
i
b

∂P

∂sia
+ 6DsN

1 + (Aλs)
2

(1 + λ2
s)

2
P + 2Ds

1 + (Aλs)
2

(1 + λ2
s)

2

N∑
i

sia
∂P

∂sia

+Ds
1 + (Aλs)

2

(1 + λ2
s)

2

[
−6NP − 4

N∑
i

sia
∂P

∂sia
+

N∑
i

(
s2i δab − sias

i
b

) ∂2P

∂sia∂s
i
b

]
, (A.28)
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where we wrote the sum over i explicitly. Now, considering that ∂αPeq = − Peq

kBT ∂αH and assuming that P = Peq, it

follows that the translational terms in Eq. (A.28) are

0 = − P

kBT

∑
i ̸=j

pia
mi

[
∂J(rij)

∂ria
si · sj −

∂V (rij)

∂ria

]
+

P

kBT

∑
i ̸=j

[
−∂V (rij)

∂ria
+

∂J(rij)

∂ria
si · sj

]
pia
mi

+3P

N∑
i

γL
mi

− γLP

kBT

N∑
i

(
pia
mi

)2

+
DLP

kBT

[
−

N∑
i

3

mi
+

1

kBT

N∑
i

(
pia
mi

)2
]

. (A.29)

The first line automatically cancels out while the second line leads to the well-known dynamical fluctuation-dissipation
relation

DL = γLkBT . (A.30)

This is the exact relationship as derived by Einstein which perfectly matches Eq. (10).
On the other hand, for the magnetic degrees of freedom and after trivial cancellations of terms we obtain

0 = 2
λs

si

1

(1 + λ2
s)

N∑
i

sib ω
i
b P −

N∑
i

giab ω
i
b

∂P

∂sia

+Ds
1 + (Aλs)

2

(1 + λ2
s)

2

[
−2

N∑
i

sia
∂P

∂sia
+

N∑
i

(
s2i δab − sias

i
b

) ∂2P

∂sia∂s
i
b

]
. (A.31)

Replacing giab by its explicit expression and the derivatives of P , ∂P/∂sia = βℏωi
a P and ∂2P/∂sia∂s
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The term proportional to ϵabc vanishes because
ϵabc ω

i
a ωi

b s
i
c = ωi · (ωi × si) = 0. Instead, the remaining

terms cancel if we choose

Ds =
λs(1 + λ2

s)

[1 + (Aλs)2]

kBT

ℏ
, (A.33)

we have already set si = 1. This is the fluctuation-
dissipation relation for the magnetic degrees of freedom.

Note that for A = 0 we obtain Eq. (12). However, it is im-
portant to highlight that Eq. (A.33) is different from the
one reported in Ref. [37], which is valid only for damp-
ing values λs ≪ 1. We have checked, with simulations
not shown here, that this is the correct expression that
allows one to use large values of the damping constant
λs and let the magnetic degrees freedom equilibrate with
the environment.
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R. Yanes, U. Nowak, A. Kleibert, and F. Nolting, Di-
rect observation of magnetic metastability in individual
iron nanoparticles, Physical review letters 112, 107201
(2014).

[12] A. Kleibert, A. Balan, R. Yanes, P. M. Derlet, C. A.
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E. Restrepo-Parra, Optimal phase space sampling for
monte carlo simulations of heisenberg spin systems,
Journal of Physics: Condensed Matter 31, 095802
(2019).

[27] S. C. Westmoreland, C. Skelland, T. Shoji, M. Yano,
A. Kato, M. Ito, G. Hrkac, T. Schrefl, R. F. Evans,
and R. W. Chantrell, Atomistic simulations of α-
fe/nd2fe14b magnetic core/shell nanocomposites with
enhanced energy product for high temperature perma-
nent magnet applications, Journal of Applied Physics
127, 133901 (2020).

[28] S. Jenkins, R. W. Chantrell, and R. F. Evans, Atom-
istic origin of the athermal training effect in granu-
lar irmn/cofe bilayers, Physical Review B 103, 104419
(2021).

[29] T. Tajiri, H. Deguchi, M. Mito, K. Konishi, S. Miya-
hara, and A. Kohno, Effect of size on the magnetic
properties and crystal structure of magnetically frus-
trated dymn 2 o 5 nanoparticles, Physical Review B
98, 064409 (2018).

[30] R. Essajai, Y. Benhouria, A. Rachadi, M. Qjani, A. Mz-
erd, and N. Hassanain, Shape-dependent structural and
magnetic properties of fe nanoparticles studied through
simulation methods, RSC advances 9, 22057 (2019).

[31] T. Shimada, K. Ouchi, I. Ikeda, Y. Ishii, and T. Kita-
mura, Magnetic instability criterion for spin–lattice sys-
tems, Computational Materials Science 97, 216 (2015).

[32] P.-W. Ma, S. Dudarev, and C. Woo, Spilady: A parallel
cpu and gpu code for spin–lattice magnetic molecular
dynamics simulations, Computer Physics Communica-
tions 207, 350 (2016).

[33] X. Wu, Z. Liu, and T. Luo, Magnon and phonon dis-
persion, lifetime, and thermal conductivity of iron from
spin-lattice dynamics simulations, Journal of Applied
Physics 123, 085109 (2018).

[34] G. Dos Santos, R. Aparicio, D. Linares, E. Miranda,
J. Tranchida, G. Pastor, and E. Bringa, Size-and
temperature-dependent magnetization of iron nanoclus-
ters, Physical Review B 102, 184426 (2020).

[35] G. dos Santos, R. Meyer, R. Aparicio, J. Tranchida,
E. M. Bringa, and H. M. Urbassek, Spin-lattice dynam-
ics of surface vs core magnetization in fe nanoparticles,
Applied Physics Letters 119, 012404 (2021).

[36] I. Stockem, A. Bergman, A. Glensk, T. Hickel,
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[64] M. Pajda, J. Kudrnovskỳ, I. Turek, V. Drchal, and
P. Bruno, Ab initio calculations of exchange interac-
tions, spin-wave stiffness constants, and curie temper-
atures of fe, co, and ni, Physical Review B 64, 174402
(2001).

[65] D. Aurélio and J. Vejpravova, Understanding magneti-
zation dynamics of a magnetic nanoparticle with a dis-
ordered shell using micromagnetic simulations, Nano-
materials 10, 1149 (2020).

[66] R. Behbahani, M. L. Plumer, and I. Saika-Voivod, Mul-
tiscale modelling of magnetostatic effects on magnetic
nanoparticles with application to hyperthermia, Jour-
nal of Physics: Condensed Matter 33, 215801 (2021).

[67] M. I. Dolz, S. D. Calderón Rivero, H. Pastoriza, and
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SUPPLEMENTARY MATERIAL

This supplementary material presents extra figures in-
tended to expand the discussion and provide extra evi-
dence and support the points discussed in the main text.

1. Average curve

Figure S1 presents an example of how the resulting
hysteresis loops where obtained. The resulting curve was
obtained by averaging several individual cycles.
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Figure S1. (Color online.) Four different hysteresis loops for
the ϕ = 0◦ case at frequency f = f0 plotted together with the
average curve (solid red line).

2. Effect of frequency and loop convergence

Figure S2 shows the hysteresis loops at different fre-
quencies for the case in which the anisotropy axis and the
direction of the external field form an angle of ϕ = 0◦.
The plot evidences that the loops narrow when the fre-
quency is decreased until the convergence frequency is
found and the resulting loop coincides with the Stoner-
Wohlfarth prediction (green curve).

3. Increased simulation time

As it is argued in the main text, a simulation time of
tsim = 90 ps for each field value is sufficient to produce
reliable hysteresis loops. Figure S3 shows that increasing
this time by a factor of approximately 2 has no apprecia-
ble effect in the shape of the resulting curves.



25

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.0

-0.5

0.0

0.5

1.0
M
z

m0H (T)

Figure S2. (Color online.) Hysteresis loops for the ϕ = 0◦

case at different field frequencies f0, f0/2, f0/4 and f0/8,
compared to the rectangular loop of the SW model (green
curve).
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Figure S3. (Color online.) Hysteresis loops for the ϕ = 90◦

case and frequency f = f0/2 with different simulations times
(tsim) for each point of the curve

4. Size effects

Figure S4 compares two individual hysteresis loops
obtained for a bcc lattice in a cubic box of volume
V = (10a0)

3 (the system under study) and a larger sys-
tem with V = (15a0)

3. The simulations correspond to
the case of ϕ = 0◦ and frequency f0/4.

Figure S5 compares the fluctuations of Mz, the compo-
nent of the magnetization along the field direction, during
several field steps for three different system volumes.

Both figures show that simulating a system with V =
(10a0)

3 is sufficient to avoid large size-effects.
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Figure S4. (Color online.) Hysteresis cycles for the ϕ = 0◦

case and frequency f0/4 for different system sizes.
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Figure S5. (Color online.) Comparison of the fluctuations of
the component of the magnetization along the applied field di-
rection Mz during the time evolution of a simulation through-
out half a cycle for different system sizes. The simulations
correspond in all cases to the case of ϕ = 0◦ and frequency
f0/4. The field value at each time is also included (green
dashed line and right axis).

5. Anisotropy and magnetization fluctuations

As it was argued in the Methods section of the main
text, we have used mainly uniaxial anisotropy with an
anisotropy constant equal to K∗

1 = 35 µeV/atom, ten
times larger than the Fe bulk value. The main reason for
this is that, using a large anisotropy in the simulations
helps to quickly stabilize the magnetization of the system
for the ϕ = 0◦ case, and therefore, less simulation time for
each field value is required. Figure S6 shows this effect by
comparing the time-evolution of the components of the
magnetization for two different anisotropy intensities.
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Figure S6. (Color online.) Comparison of the fluctuations of
the components of the magnetization for the simulations with
ϕ = 0◦, frequency f0/4 and different anisotropy constants,
during the same number of applied field steps. The Gilbert
damping in these simulations is λs = 0.5.

6. Hysteresis loops and statistics at high
temperature

Figure S7 shows the effect of spin-lattice coupling at
T = 500 K. For this case, due to the increased spin fluctu-
ations, the simulations were run for a bcc Fe bulk system
with a volume of (32×32×32)a30 (65536 atoms), to avoid
undesired finite-size effects. In addition, a smaller sweep
rate of SR = 0.5 × 108 T/s (which correspond to 180
ps of simulation time per point) was employed for this
simulations. The spin histograms shows that spin fluctu-
ations at this high temperature are comparable for both
approaches.
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Figure S7. (Color online.) Hysteresis loops obtained at
T = 500K under the 2 approaches: lattice frozen and lat-
tice moving. These results correspond to the case of ϕ = 0◦

and a smaller sweep rate, SR = 0.5 × 108 T/s (which cor-
responds to 180ps of simulation time per point). The curves
were obtained by averaging over 10 individual loops in each
case. The inset shows histograms of the spins orientation
along the field direction and corresponds to the state of the
system just before the spin flip, indicated by the circle and
arrow. These histograms were obtained averaging over 5 dif-
ferent histograms.
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