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Experimental measurements show that the angular dependence of the anisotropic magnetoresis-
tance (AMR) in L10 ordered FePt epitaxial films on the current orientation and magnetization
direction is a superposition of the corresponding dependences of twofold and fourfold symmetries.
The twofold AMR exhibits a strong dependence on the current orientation, whereas the fourfold
term only depends on the magnetization direction in the crystal and is independent of the current
orientation. First-principles calculations reveal that the fourfold AMR arises from the relaxation
time anisotropy due to the variation of the density of states near the Fermi energy under rotation of
the magnetization. This relaxation time anisotropy is a universal property in ferromagnetic metals
and determines other anisotropic physical properties that are observable in experiment.

Introduction.—The fundamental physics of spintronics
is the interplay of magnetization in magnetic materials
and electrical currents [1]. The electrical resistance of a
magnetic device typically depends on the magnetization
configuration, resulting in a variety of intriguing magne-
toresistance (MR) phenomena, such as spin-Hall MR [2],
Rashba-Edelstein MR [3], spin-orbital MR [4], anomalous
Hall MR [5], and Hanle MR [6], which are effectively ap-
plied in probing a magnetic field or magnetization. As
a basic MR effect in ferromagnetic metals (FMs) and
alloys, AMR describes the dependence of electrical resis-
tivity on the magnetization direction [7–12].

AMR and its angular dependence on the current ori-
entation and magnetization direction are attributed to
the interaction among the crystal field, exchange field
and spin-orbit coupling (SOC) [13–15]. Most early stud-
ies were carried out on polycrystalline samples, in which
the symmetry constraint only allowed a twofold term
that scaled as cos2 ϕM , where ϕM is the angle between
the magnetization and current [16]. Twofold AMR has
multiple microscopic mechanisms including s-d scatter-
ing [14, 17], the intrinsic mechanism from band cross-
ings [18] and band splitting due to lattice distortion [19].
Fourfold AMR has been experimentally observed in Fe,
Co and Ni epitaxial films [20–24], (Ga,Mn)As [25, 26],
manganites [27, 28], Fe3O4 [29, 30], Co2MnSi [31] and
antiferromagnetic EuTiO3 [32]. It exists in pseudoepi-
taxial Fe4N films [19, 33, 34] at low temperatures and
vanishes at elevated temperatures. The latter was as-
cribed to the tetragonal lattice distortion in Fe4N [19],
but this interpretation is not applicable to cubic Ni [21].
Recently, the fourth-order perturbation of SOC was pro-
posed to be the mechanism in cubic crystals [35]. So far,
fourfold AMR is still poorly understood.

L10 Fe0.5(Pd1−xPtx)0.5 is an ordered ferromagnetic al-
loy in which both the degree of chemical ordering and
SOC strength are tunable and is therefore an ideal ma-
terial to investigate the microscopic mechanisms under-

lying AMR. Systematic measurement of the resistivity of
FePt epitaxial films combined with first-principles calcu-
lations allows us to gain a thorough understanding of the
observed angular dependence of AMR. Using the current-
orientation independence as the criterion, we discover
that the fourfold AMR arises from the variation in the
density of states near the Fermi surface, which results
in the relaxation time anisotropy under rotation of the
magnetization with respect to the crystallographic axes.
Measured AMR of FePt.— A single-crystal FePt (001)

film is epitaxially grown on an MgO (001) substrate and
patterned into arcuate Hall bars so that the current direc-
tion is continuously variable, as schematized in Fig. 1(a).
The degree of chemical ordering S is controlled by the
substrate temperature during fabrication and the postan-
nealing temperature [36]. S = 1 for a fully ordered struc-
ture, and S = 0 for a completely disordered alloy.

The magnetization within the (001) plane is rotated
to measure the longitudinal resistivity ρxx of FePt with
S = 0.82 for currents along [100] and [110], as shown in
Fig. 1(b) and (c), respectively. The measured data are
effectively fitted using the following superposition of the
twofold and fourfold AMR terms:

ρxx(ϕM ) = ρ0 + ∆ρ2 cos 2(ϕM + ϕ2)

+∆ρ4 cos 4(ϕM + ϕ4), (1)

where ϕM represents the angle between the magnetiza-
tion and sensing current defined in Fig. 1(a) and ρ0 is
the average resistivity independent of ϕM . The last two
terms in Eq. (1) correspond to the twofold and fourfold
variations in resistivity, with phases of ϕ2 and ϕ4, respec-
tively. In Fig. 1(d) and (e), the fitted ∆ρ2 and ∆ρ4 are
plotted as a function of the current direction αJ, which
is defined by the angle between the current direction and
the crystal axis [100] [see Fig. 1(a)]. ∆ρ2 is highly sen-
sitive to the sensing current direction and is small and
negative at J‖[100] and becomes large and positive at
J‖[110]. By contrast, the fourfold term ∆ρ4 has a nearly
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FIG. 1. (a) Schematic of AMR measurement. The measured
resistivity ρxx of the L10 FePt film with S = 0.82 at point A
(J‖[100]) and point B (J‖[110]) is plotted in (b) and (c), re-
spectively, as a function of the magnetization direction (ϕM )
with respect to the sensing current. The solid lines in (b) and
(c) correspond to fits using Eq. (1). The fitted parameters
∆ρ2(4) and ϕ2(4) are shown in (d), (e) and (f) as a function
of the current orientation (αJ) with respect to the crystalline
axis [100]. The measurement is carried out at a low temper-
ature of T = 10 K.

constant magnitude that varies by less than 10% over
the range of 0 ≤ αJ ≤ 90◦. The associated phase ϕ4 in
the fourfold term is always equal to the current orienta-
tion αJ, as shown in Fig. 1(f). This result suggests that
fourfold AMR is independent of the current orientation
and depends only on the magnetization direction with re-
spect to the crystallographic axes. Unlike ϕ4, the phase
ϕ2 in the twofold term exhibits nonmonotonic variation
between −45◦ and 45◦ suggesting competition of multiple
components [36].

Figure 2 shows ∆ρ2 and ∆ρ4 that are extracted using
Eq. (1) from experimental data [36] as a function of the
temperature for samples with various degrees of chem-
ical order. Here, we focus on two sensing current di-
rections along high-symmetry axes, [100] and [110]. For
J‖[100], ∆ρ2 is negative at large S [see the orange and
blue symbols in Fig. 2(a)]. At intermediate S, the twofold
AMR exhibits a transition from negative at low temper-
atures to positive at room temperature and above. In
the completely disordered sample, ∆ρ2 is always positive
and nearly invariant with increasing temperature. The
temperature dependence of ∆ρ2 is strikingly different for
J‖[110] in Fig. 2(c), where it decreases with increasing
temperature for all samples. Comparing Fig. 2(b) and
(d), we find that the fourfold AMR has the same temper-
ature dependence for J‖[100] and J‖[110]. With increas-
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FIG. 2. Fitted AMR parameters ∆ρ2 and ∆ρ4 as a function
of temperature for samples with different degrees of chemical
order. The measurement is carried out under a fixed current
orientation that is along [100] in (a) and (b) and along [110]
in (c) and (d).

ing temperature, ∆ρ4 increases for S = 1 and decreases
for smaller S. The fourfold AMR vanishes in the sample
with S = 0.

Twofold AMR.—It is difficult to conclusively deter-
mine the AMR dependence on the degree of chemical
ordering and temperature from Fig. 2 because both fac-
tors influence the AMR simultaneously. To obtain deeper
insight into this dependence, we replot the measured ∆ρ2
of all the samples as a function of the corresponding av-
erage resistivity ρ0 for J‖[100] in Fig. 3(a). A common
trend in the experimental data is thus revealed: ∆ρ2 is
negative at low resistivities and becomes positive at large
ρ0. For the fully disordered alloy with S = 0, ∆ρ2 is a
positive constant that is independent of ρ0.

We perform a first-principles transport calculation for
fully-ordered L10 FePt with S = 1, where temperature-
induced lattice disorder is introduced to account for the
finite resistivity [36, 44]. By increasing the temperature,
we qualitatively reproduce the resistivity dependence of
twofold AMR, as shown in the inset of Fig. 3(a), and the
difference at small ρ0 is attributed to the large perpendic-
ular anisotropy of highly ordered FePt [36]. The negative
∆ρ2 at low ρ0 and positive value at large ρ0 can be under-
stood by analyzing the band structure of L10 FePt. Fig-
ure 3(b) shows the energy bands near the Fermi energy
EF along the high-symmetry direction 〈100〉 for paral-
lel (ΓM′) or perpendicular (ΓM) magnetizations. In the
low disorder regime, the twofold AMR is nearly indepen-
dent of the scattering rate or relaxation time, suggesting
an intrinsic contribution due to band (anti)crossing [18].
These special band crossings are a consequence of sym-
metry at a given M, whereas rotating M breaks the sym-
metry and lifts the band degeneracy. As the energy bands
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FIG. 3. Fitted ∆ρ2 as a function of the average resistivity ρ0
for current along [100] (a) and [110] (c). Inset of (a): Cal-
culated ∆ρ2 as a function of ρ0 for fully-ordered FePt with
thermal lattice disorder. Calculated band structure with SOC
along 〈100〉 (b) and along 〈110〉 (d). The magnetization is par-
allel to ΓM′ (ΓX′) and perpendicular to ΓM (ΓX). The colors
of the energy bands indicate the spin projection along the
quantization axis. The circles with different sizes represent
the sp components of the Bloch states.

near EF have the characteristics of sp-d hybridization, we
focus on the itinerant sp bands (marked by empty circles)
that have a stronger influence on transport than the more
localized d bands. Rotating M from [100] to [010] results
in the disappearance of a crossing of sp bands along [100]
(ΓM′) (marked by purple ellipses) and hence slightly in-
creases the resistivity, corresponding to a negative ∆ρ2.
As we increase ρ0 by increasing the temperature or de-
creasing S, the contribution of disorder scattering to the
AMR becomes more important. Most of the d bands near
EF have the minority-spin component [45], and therefore,
sp-d↓ scattering leads to a positive ∆ρ2 [16].

For J‖[110], an arbitrary ρ0 corresponds to different
∆ρ2 depending on the details of the degree of chemical
order; see Fig. 3(c). This behavior implies that the AMR
mainly arises from extrinsic disorder scattering, in agree-
ment with the calculated band structure. As shown in
Fig. 3(d), the energy bands along [110] near EF are un-
changed for M‖[110] (ΓX′) or M‖[11̄0] (ΓX) and hence
make no intrinsic contribution to the AMR. When dis-
order scattering becomes stronger with increasing tem-
perature, the resulting band smearing enables the energy
bands farther away from EF to affect electron transport.
The band crossings along ΓX′ become anticrossing gaps
along ΓX (marked by purple ellipses), corresponding to
a negative ∆ρ2 from the intrinsic mechanism. Therefore,
the experimentally measured ∆ρ2 for all S decreases with
increasing temperature.

Fourfold AMR.—The experimental fourfold AMR ∆ρ4
is plotted in Fig. 4(a) as a function of the measured

average resistivity ρ0. The data extracted from differ-
ent sensing current directions overlap with each other.
With increasing ρ0, ∆ρ4 of the highly ordered samples
increases and it decreases for samples with smaller S.
The strong dependence of ∆ρ4 on the ordering degree
and temperature indicates that the physical mechanism
for fourfold AMR is related to scattering. Moreover, the
measurements with various sample thicknesses confirm
that fourfold AMR is not a surface effect but exists in
bulk L10 FePt [36]. A first-principles transport calcula-
tion of fully-ordered L10 FePt also reproduces the non-
monotonic ρ0-dependent fourfold AMR: with increasing
temperature-induced thermal lattice disorder, the calcu-
lated ∆ρ4 increases to a maximum and then decreases,
as shown in Fig. 4(b). In addition, the calculated re-
sistivity also exhibits maxima and minima at M‖〈100〉
and M‖〈110〉, respectively [36], in agreement with exper-
iment. The calculated ∆ρ4 is much larger than the ex-
perimental values and this discrepancy may be attributed
to the neglected spin fluctuation and chemical disorder
in the calculation.

Fourfold AMR in Fe4N is attributed to energy-band
hybridization resulting from the interplay of SOC and
tetragonal distortion [19]. The predictions of this theory,
however, contradict both our experimental observations
and calculations for ∆ρ4. Experimentally, the structural
L10-A1 phase transition of FePt occurs near 1300◦C [46],
below which the tetragonal structure of FePt films is sus-
tained. However, the measured ∆ρ4 becomes very small
near 400 K far below the phase transition temperature,
as seen in Fig. 2(b) and (d), especially for small S. In
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FIG. 4. (a) Fitted ∆ρ4 from experimentally measured resis-
tivity. (b) Calculated ∆ρ4 as a function of the total resistivity
for fully-ordered FePt. (c) Calculated DOS of FePt as a func-
tion of the magnetization direction rotated within the (001)
plane. The black circles and red squares are calculated at
EF and EF − 0.0185 eV, respectively. The Brillouin zone is
sampled by ∼ 24003 k-points for convergence. (d) The differ-
ence in the finite-temperature DOS for M‖[100] and M‖[110]
calculated using Eq. (3).
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our calculation, the tetragonal structure of L10 FePt is
not affected by temperature, whereas the calculated ∆ρ4
exhibits a nonmonotonic dependence.

Under rotation of the magnetization, SOC mediates
the electronic states in the crystal field, leading to a vari-
ation in the density of states (DOS) at the Fermi en-
ergy. Using a hybrid Wannier-Bloch representation [47],
we calculate the DOS of fully-ordered L10 FePt and two
typical cases at EF and EF − 0.0185 eV are plotted in
Fig. 4(c), both of which show fourfold symmetry and
the maxima (minima) at M‖〈100〉 (M‖〈110〉). The elec-
tronic scattering rate at the Fermi level is inversely pro-
portional to the relaxation time and determined by the
Fermi golden rule [48],

1

τ
∝ 2π

~
|〈f |V |i〉|2DfDi. (2)

Here, we only consider the dominant elastic scattering
contribution due to the scattering potential V . In Eq. (2),
|i〉 and |f〉 are the initial and final states, respectively.
Di and Df represent the densities of these states at the
Fermi energy. For M‖〈100〉, the increase in the DOS
enhances the scattering probability of Bloch states and
thus reduces the relaxation time. This picture explains
why the fourfold AMR only depends on the magnetiza-
tion direction with respect to the crystallographic axes
and is invariant for different sensing current directions.

With increasing chemical and lattice disorder, energy-
band smearing causes states away from EF to be incorpo-
rated into the DOS at the Fermi energy. By introducing
a Fermi-Dirac distribution function at finite temperature
f(E, T ), we calculate the DOS at EF as

D(EF , T ) =

∫ ∞
−∞

dE D(E)

[
−∂f(E, T )

∂E

]
. (3)

The difference of calculated DOS between M‖〈100〉 and
M‖〈110〉 is plotted in Fig. 4(d). The anisotropic DOS
also exhibits a nonmonotonic dependence on tempera-
ture that is consistent with that of the fourfold AMR.
This nonmonotonic behavior is attributed to the fact
that the DOS has a larger anisotropy at EF + ε than
at EF . Thus, increasing the temperature enables the en-
ergy EF + ε to contribute to transport and enhances the
fourfold AMR. An enough high temperature involves a
very large energy range and eventually averages out the
anisotropy in the DOS. Note that the calculated ∆ρ4 in
Fig. 4(b) and anisotropic DOS in Fig. 4(d) decrease more
slowly with the temperature than the experimental ∆ρ4
in Fig. 4(a). This result is obtained because chemical dis-
order and spin wave excitations, which are not included
in the calculation, strongly suppress the fourfold AMR
in reality by breaking local symmetry.

With SOC that couples spin and real space, the par-
ticular magnetization orientation affects the electronic
structure and thus modulates the DOS near Fermi sur-
face. Such a modulation follows the crystal symmetry
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FIG. 5. (a) Measured ∆ρ4 of L10 ordered Fe0.5(Pd1−xPtx)0.5
20-nm-thick films as a function of Pt concentration x at 10 K.
The inset shows the measured ρxx. (b) Calculated ∆ρ4 of
FePt as a function of scaled SOC strength. The black dashed
line indicates the SOC strength of FePd. The dotted line
illustrates quadratic dependence.

and hence leads to fourfold AMR in any metallic ferro-
magnets with fourfold symmetry. By carefully studying
the literature, we have found that the measured fourfold
AMR in Co [21], Ni [24] and Fe4N [33] are independent
of current direction in agreement with our findings. It
indicates that the proposed microscopic mechanism for
the fourfold AMR is universal for ferromagnetic metals.

In addition to resistivity, relaxation time is important
for Gilbert damping that characterizes dynamical mag-
netization dissipation [49]. At low temperature, Kam-
berský’s breathing Fermi surface model [50] explicitly
shows the proportionality of Gilbert damping and relax-
ation time, while Gilbert damping at high temperature
is inversely proportional to relaxation time due to the
dominant interband scattering [51]. This nonmonotonic
relationshop has been demonstrated by first-principles
calculations [52]. Thus the relaxation time anisotropy
due to the modulation of DOS shall lead to anisotropic
Gilbert damping [53], which was recently observed in
single-crystal ferromagnets but has not yet been under-
stood [54, 55].

The isoelectronic properties of Pt and Pd enable the
SOC strength to be mediated by changing the Pt/Pd
atomic concentration, whereas other parameters, such
as the lattice constant, saturation magnetization, and
Curie temperature, remain almost the same [56, 57].
We measure the resistivity and AMR in (001) L10
Fe0.5(Pd1−xPtx)0.5 for different Pt concentrations x. The
sheet resistivity exhibits a maximum near x = 0.5 and
thus obeys Nordheim’s rule [58], whereas the magnitude
of ∆ρ4 increases with x and is nearly independent of the
current orientation as shown in Fig. 5(a). The enhanced
∆ρ4 with increasing SOC strength is reproduced by first-
principles transport calculation by artificially reducing
SOC of FePt; see Fig. 5(b). At small SOC strength, ∆ρ4
exhibits a quadratic dependence on SOC.
Summary.— We studied the AMR of (001) L10 FePt

epitaxial films by systematically varying the degree of
chemical order and temperature and identified the un-
derlying microscopic mechanisms of AMR. Twofold AMR
arises from the competition between the intrinsic mecha-
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nism due to magnetization-orientation-dependent band
crossings and the extrinsic scattering mechanism that
results from thermal and chemical disorder scattering.
Fourfold AMR is attributed to the variation in the DOS
and hence in the relaxation time at the Fermi surface
that is induced by rotating the magnetization. Current-
orientation independence is the main criterion used to
identify this mechanism. The relaxation time anisotropy
is universal for other FMs with proper symmetry and is a
possible mechanism for the anisotropic Gilbert damping
observed in recent experiments.
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