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Abstract  An orthotropic metamaterial is composed of elements arrayed periodically in space. The 
element includes two cuboid structures. The first structure is the basic structure of the element, and 
the second structure is the transformation of the first structure of the element. The first structure of 
the element is a cuboid structure composed of 24 bars connected by 8 nodes, and the second structure 
of the element is a cuboid structure composed of 36 bars connected by 14 nodes. This metamaterial 
has 6 independent elastic constants, so there is a large degree of freedom in material design. Using 
a simple universal design method, a metamaterial with tailored elastic constants can be designed. 
Therefore, it has great application value in the fields of mechanical metamaterials, elastic wave 
metamaterials, acoustic metamaterials, and seismic metamaterials, and has also laid the foundation 
for realizing the dream of controlling elastic waves, acoustic waves and vibrations. 
Key words  metamaterial, elastic wave, acoustic wave, orthotropic, negative Poisson's ratio, zero 
Poisson's ratio 
Introduction 

The propagation control of elastic waves has great application value in aerospace, submarine, 
mechanical engineering, civil engineering and other fields. According to the theory of 
elastodynamics, the elastic constants of a material are the major factors affecting the propagation of 
elastic waves. Therefore, an important method to control the propagation of elastic waves is to 
design elastic wave metamaterials. In addition, mechanical metamaterials with negative Poisson's 
ratio or zero Poisson's ratio, acoustic metamaterials controlling acoustic waves and seismic 
metamaterials controlling seismic waves, all have great application value and are also emerging 
research hotspots. So far, the metamaterials studied are mainly isotropic metamaterials and 
metamaterials with anisotropic mass density, which are difficult to design. Obviously, orthotropic 
metamaterials can better control elastic waves, acoustic waves and vibrations, but the design of such 
metamaterials is more difficult. An orthotropic material has 12 elastic constants, including 6 
Poisson's ratios, 3 elastic moduli and 3 shear moduli, but only 9 independent elastic constants. If the 
elastic constants of a material can be designed relatively freely, it can be used to design mechanical 
metamaterials, elastic wave metamaterials, acoustic metamaterials and seismic metamaterials. 
However, it is very difficult to design metamaterials with tailored elastic constants. At present, there 
is no simple and effective universal design method [1-15]. 

In 2012, based on the generalized Hooke's law and the superposition principle, Jiang Ke proposed 
a space truss element model for calculating orthotropic elastic problems, i.e., calculating the stresses, 
strains and displacements of each point in the solid under load. The model is applied to materials 
with 9 elastic constants satisfying 3 conditions, i.e., the material has only 6 independent elastic 
constants [16]. Based on the space truss element model, an orthotropic metamaterial and its design 
method are proposed in this paper. 
1 An orthotropic metamaterial and its design method 



  
 (a) The first structure of the element      (b) The second structure of the element 

Fig. 1 The element of the metamaterial 
An orthotropic metamaterial is composed of elements arrayed periodically in space. The element 

includes two cuboid structures. The first structure is the basic structure of the element, and the 
second structure is the transformation of the first structure of the element, as shown in Fig. 1. The 
1-, 2-, and 3-directions of the coordinate system in Fig. 1 are the three principal material directions. 

The first structure of the element is a cuboid structure composed of 24 bars connected by 8 nodes, 
as shown in Fig. 1(a); where, there are 4 bars parallel to each principal material direction, for 3 
principal material directions, then there are 12 parallel bars in total; there are 2 oblique bars on each 
face of the cuboid structure, for 6 faces, then there are 12 oblique bars in total; the 8 nodes used to 
connect the bars are 1, 2, 3, 4, 5, 6, 7 and 8. 

The second structure of the element is a cuboid structure composed of 36 bars connected by 14 
nodes, as shown in Fig. 1(b), compared with the first structure of the element, the difference is that 
there are 4 oblique bars on each face of the cuboid structure, for 6 faces, then there are 24 oblique 
bars in total; 6 nodes are added, i.e. a, b, c, d, e and f. 

The dimensions of the element in the 1-, 2-, and 3-directions are: 
l1=l14=l23=l67=l58,  l2=l12=l56=l87=l43,  l3=l15=l48=l37=l26 . 
where, l is the length of the bar, for example, l26 is the length of the bar 26, 2 and 6 is its two nodes. 

According to the value of the axial stiffness, the axial stiffnesses of all bars in the element are 
divided into 6 types, as follows: 
K1=K14=K23=K67=K58,  K2=K12=K56=K87=K43,  K3=K15=K48=K37=K26 , 
K4=K13=K24=K57=K68=K1a=K2a=K3a=K4a=K5b=K6b=K7b=K8b , 
K5=K18=K54=K27=K63=K1c=K5c=K8c=K4c=K2d=K6d=K7d=K3d , 
K6=K16=K25=K47=K38=K1e=K2e=K6e=K5e=K4f=K3f=K7f=K8f . 
where, K is the axial stiffness of the bar, for example, K8f is the axial stiffness of the bar 8f, 8 and f 
is its two nodes. 
K1 is the axial stiffness of one parallel bar parallel to the 1-direction, 
K2 is the axial stiffness of one parallel bar parallel to the 2-direction, 
K3 is the axial stiffness of one parallel bar parallel to the 3-direction, 
K4 is the axial stiffness of one oblique bar parallel to the 1-2 plane, 
K5 is the axial stiffness of one oblique bar parallel to the 3-1 plane, 
K6 is the axial stiffness of one oblique bar parallel to the 2-3 plane. 

Any bar in the element can be replaced by a spring or a variable cross-section bar according to 
the principle of keeping the length and stiffness coefficient of the bar unchanged. The stiffness 
coefficient of a bar is the axial force when the bar produces a unit axial displacement, which is equal 



to the ratio of the axial stiffness of the bar to the length of the bar. 
The design method of the metamaterial generally uses the following steps. 
Step 1: The design goal of the metamaterial is to tailor n independent elastic constants in the 9 

elastic constants, where, 1≤n≤6. 
According to the design goal of the metamaterial, the design values of 9 elastic constants of the 

metamaterial are determined. The tailored n independent elastic constants are known, and then the 
(6-n) independent elastic constants are freely selected, and the other 3 elastic constants are 
determined by the following formula (1). 
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where, E1, E2, E3=elastic moduli in the 1-, 2-, and 3-directions,  

ijv =Poisson's ratio, i.e., the negative of the transverse strain in the i-direction over the 

strain in the j-direction when stress is applied in the j-direction, i.e., jiijv εε /−=  for 

jσσ =  and all other stresses are zero,  

G23, G31, G12=shear moduli in the 2-3, 3-1, and 1-2 planes. 
Step 2: Determine whether the 9 elastic constants of the metamaterial are within the allowable 

range of orthotropic elasticity, and the allowable range is determined by Formula (2). 
E1 >0 , E2 >0 , E3 >0 , 
|v12|<(E2/E1)1/2 , |v23|<(E3/E2)1/2 , |v13|<(E3/E1)1/2 , 
G12 >0 , G31 >0 , G23 >0 , 
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If all 9 elastic constants of the metamaterial are within the allowed range, proceed to the next step, 
otherwise, reselect the elastic constants and repeat the previous step and this step. It can also be 
checked after step 3. 

Step 3: Select the dimensions l1, l2, l3 in the three directions of the element, and then calculate the 
axial stiffness of each bar in the element by Formula (3). 
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For any bar in the element, select the elastic modulus of this bar material, and then calculate the 
cross-sectional area of this bar, i.e., the cross-sectional area of this bar = the axial stiffness of this bar 
/ the elastic modulus of this bar material. 

Check the calculated cross-sectional area of each bar, if there is a negative cross-sectional area, 
adjust the dimensions of the element, and then recalculate according to this step, if there is still a 
negative cross-sectional area, modify the design values of the elastic constants of the metamaterial and 
redesign from the first step, if there is no negative cross-sectional area of each bar, select the cross-
sectional shape of this bar and determine the cross-sectional size of this bar, so that the cross-sectional 
size of all bars in the element can be obtained, where, if the cross-sectional area of a bar is 0, it means 
that this bar is not included in the element. Then, select the first structure or the second structure from 
the two structures of the element; finally, according to the dimensions of the element, determine 
whether the cross-section of each bar is too large in the space range of one element, resulting in a 
crowded space and unable to connect each bar to form one element. If there is such a problem, increase 
the elastic modulus of each bar material, and then re-determine the cross-sectional area and cross-
sectional size of each bar. 

The elements are arrayed periodically in space, and the adjacent elements share their adjacent nodes, 
thus forming the metamaterial. If in order to reduce the number of bars in the metamaterial, the 
adjacent bars of the adjacent elements are merged into one bar by summing their cross-sectional areas. 

It is possible that there is a deviation between the actual value of the elastic constant of this 
metamaterial and its design value. In order to evaluate the accuracy of the design, the finite element 
method can be used, i.e., take one element and calculate it under uniaxial tension (or uniaxial 
compression) in the three principal material directions respectively, and then the 3 elastic moduli and 
3 Poisson's ratios of the metamaterial can be determined by the definitions of elastic modulus and 
Poisson's ratio, calculate under pure shear in 1-2 plane, 2-3 plane and 3-1 plane respectively, and then 
the 3 shear moduli of the metamaterial can be determined by the definition of shear modulus. 

Various connection modes can be used between the bars in the element, but the actual connection 
mode is generally between the hinged connection and the rigid connection. When calculating, it can 
be simplified according to the specific situation. If the actual connection mode is close to the hinged 
connection, then it is considered as hinged connection, otherwise, it is considered as rigid connection. 
In order to design the metamaterial with small shear modulus and remove the oblique bars in the 
element, the shear modulus in step 1 is set equal to 0, but the connection mode between the bars in the 
element is considered as rigid connection, the actual shear modulus of the metamaterial is greater than 



0, which still satisfies the requirements of elasticity in step 2. 
2 Examples of metamaterial design 

In order to illustrate the design method of metamaterials, 6 examples with negative Poisson's ratio 
or zero Poisson's ratio are given below, where, Example 1 is described in detail, and the other 
examples are only briefly described. 
2.1 Example 1 

The design goal of this orthotropic metamaterial is to tailor one Poisson's ratio v12= -0.5 in the 9 
elastic constants. 

Step 1: Based on the design goal of this metamaterial, determine the design values of the 9 elastic 
constants of this metamaterial, known v12= -0.5, and then freely select 5 independent elastic 
constants, v23=0.85, v13=0.75, E1=480 N/mm2, E2=400 N/mm2, E3=500 N/mm2, and the other 3 
elastic constants are obtained from Formula (1), i.e., G12=24.7423 N/mm2, G31=804.124 N/mm2, 
G23=824.742 N/mm2. 

Step 2: From the formula (2), E1=480 N/mm2 >0, E2=400 N/mm2 >0, E3=500 N/mm2 >0,  
|v12|=0.5<(E2/E1)1/2=0.91, |v23|=0.85<(E3/E2)1/2=1.12, |v13|=0.75<(E3/E1)1/2=1.02,  
G12=24.7423 N/mm2 >0, G31=804.124 N/mm2 >0, G23=824.742 N/mm2 >0,  
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Therefore, the 9 elastic constants of this metamaterial are all within the allowable range of 
orthotropic elasticity. 

Step 3: Select the dimensions in the three directions of the element, l1=10mm, l2=10mm, l3=10mm, 
then by Formula (3), the axial stiffnesses of the bars in the element are: 
K1=5381.44 N,  K2=2474.23 N,  K3=4381.44 N,  
K4=1749.54 N,  K5=56860.1 N,  K6=58318.1 N . 

For simplicity, for all bars in the element, the elastic moduli of all bar materials are selected to be 
the same value, i.e., E=100000 N/mm2, then the cross-sectional areas of the bars are: 
A1=K1/E =0.0538144 mm2 ,  A2=K2/E =0.0247423 mm2 , A3=K3/E =0.0438144 mm2 ,  
A4=K4/E =0.0174954 mm2 ,  A5=K5/E =0.568601 mm2 ,  A6=K6/E =0.583181 mm2 . 
where, A1 is the cross-sectional area of one parallel bar parallel to the 1-direction, 
A2 is the cross-sectional area of one parallel bar parallel to the 2-direction, 
A3 is the cross-sectional area of one parallel bar parallel to the 3-direction, 
A4 is the cross-sectional area of one oblique bar parallel to the 1-2 plane, 
A5 is the cross-sectional area of one oblique bar parallel to the 3-1 plane, 
A6 is the cross-sectional area of one oblique bar parallel to the 2-3 plane. 

The cross-sectional area of each bar is not negative, so there is no need to adjust the dimensions 
of the element or modify the design values of the elastic constants of this metamaterial. For 
simplicity, the cross-sectional shapes of all bars are selected to be circular. Obviously, it is easy to 
determine the cross-sectional size of each bar. Select the first structure from the two structures of 
the element. Without drawing, after simple estimation, it is easy to determine that within the space 
range of one element, the cross-sectional size of each bar is appropriate, and each bar can be 
connected to form one element. In fact, if the elastic modulus of each bar material in the element is 
selected to be large enough, the cross-sectional area and cross-sectional size of each bar will be 



small enough, then within the space range of one element, each bar can always be connected to form 
one element. The elements are arrayed periodically in space, and the adjacent elements share their 
adjacent nodes, thus forming this metamaterial. The connection mode between the bars in the 
element is the hinged connection. 
2.2 Example 2 

The connection mode between the bars in the element is the rigid connection, and the others are 
exactly the same as in Example 1. 
2.3 Example 3 

Compared with Example 2, Example 3 remains unchanged except that the structure of the element 
is changed from the first structure to the second structure. 
2.4 Example 4 

For the design values of the 9 elastic constants of this metamaterial, it is known that v12=0, 
E3=1000 N/mm2, then freely select 4 independent elastic constants, v23=0.4, v13=0.3, E1=800 N/mm2, 
E2=1200 N/mm2, and the other 3 elastic constants are obtained from Formula (1), i.e., G12=156.522 
N/mm2, G31=326.087 N/mm2, G23=652.174 N/mm2. Select the dimensions in the three directions of 
the element: l1=10 mm, l2=11 mm, l3=12 mm, then calculate the axial stiffness of each bar in the 
element. For all bars in the element, the elastic moduli of all bar materials are selected as E =50000 
N/mm2, the cross-sectional areas of the bars are: A1=0.344820 mm2, A2=0.465387 mm2, 
A3=0.0621443 mm2, A4=0.280493 mm2, A5=0.569639 mm2, A6=1.06568 mm2. Select that the cross-
sectional shapes of all bars are square. Select the first structure from the two structures of the element. 
The connection mode between the bars in the element is the hinged connection, obviously, any bar 
in the element can be replaced by a spring or a variable cross-section bar according to the principle 
of keeping the length and stiffness coefficient of the bar unchanged. 
2.5 Example 5 

For the design values of the 9 elastic constants of this metamaterial, it is known that v12= 0, v23=0.5, 
v13=0.5, E1=100 N/mm2, E2=100 N/mm2, E3=100 N/mm2, then the other 3 elastic constants are 
obtained from Formula (1), i.e., G12= 50 N/mm2, G31= 100 N/mm2, G23= 100 N/mm2. Select the 
dimensions in the three directions of the element: l1=l2=l3=4 mm, then calculate the axial stiffness 
of each bar in the element. For all bars in the element, the elastic moduli of all bar materials are 
selected as E =10000 N/mm2, the cross-sectional areas of the bars are: A1=A2=A3=0 mm2, 
A4=0.0565685 mm2, A5=0.113137 mm2, A6=0.113137 mm2. Select that the cross-sectional shapes 
of all bars are circular. Select the second structure from the two structures of the element. The 
connection mode between the bars in the element is the rigid connection. 
2.6 Example 6 

For the design values of the 9 elastic constants of this metamaterial, it is known that v12=v23=v13=0, 
E1=150 N/mm2, E2=100 N/mm2, E3=200 N/mm2, then the other 3 elastic constants are obtained from 
Formula (1), i.e., G12=G31=G23=0 N/mm2. Select the dimensions in the three directions of the 
element: l1=l2=l3=10 mm, then calculate the axial stiffness of each bar in the element. For all bars 
in the element, the elastic moduli of all bar materials are selected as E =10000 N/mm2, the cross-
sectional areas of the bars are: A1=0.375 mm2, A2=0.25 mm2, A3=0.5 mm2, A4=A5=A6=0 mm2. Select 
that the cross-sectional shapes of all bars are circular. Select the first structure from the two 
structures of the element. The connection mode between the bars in the element is the rigid 
connection. 
2.7 Actual values of elastic constants of the metamaterial 



In various textbooks on elasticity or mechanics of composite materials, there are 6 Poisson's ratios 
for orthotropic materials, and there are two completely opposite definitions of Poisson's ratio, one 
of which is used in this paper, and the corresponding generalized Hooke's law is shown in Formula 
(4). 
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Three Poisson's ratios can be represented by another three Poisson's ratios and three elastic moduli, 
i.e., v21=v12E1/E2, v31=v13E1/E3, v32=v23E2/E3. 

Using the finite element method, the actual values of the elastic constants of the metamaterials in 
Examples 1 to 6 are determined. The following will illustrate, taking one element in each example, 
and calculating it under uniaxial tension in the 2-direction and pure shear in the 2-3 plane, 
respectively.  

For the example 1, the computational model of the element under uniaxial tension in the 2-
direction is shown in Fig. 2, and the computational model of the element under pure shear in the 2-
3 plane is shown in Fig. 3; where, the load of the element is determined according to the following 
method, if the element is subjected to uniaxial tension in the 2-direction, the normal stress σ2=40 
N/mm2 is arbitrarily taken, then when using the finite element analysis, the concentrated force 
applied to each node F=σ2×(l1×l3) ÷4=40×(10×10) ÷4=1000 N; if the element is subjected to pure 
shear in the 2-3 plane, the shear stress τ23=τ32=80 N/mm2 is arbitrarily taken, then when using the 
finite element analysis, the concentrated force applied to each node F1=τ23×(l1×l3) ÷4=80×(10×10) 
÷4=2000 N, F2=τ32×(l1×l2) ÷4=80×(10×10) ÷4=2000 N.  

For the examples 2 to 6, according to the same method as the example 1, determine the loads of 
the element and the computational model of the element. For the element in the example 2 or the 
example 3, the loads under uniaxial tension in the 2-direction and pure shear in the 2-3 plane, 
respectively, are exactly the same as those in the example 1. For the example 4, take the normal 
stress σ2=120 N/mm2 under uniaxial tension in the 2-direction, and take the shear stress τ23=τ32=88 
N/mm2 under pure shear in the 2-3 plane. For the example 5, take the normal stress σ2=10 N/mm2 
under uniaxial tension in the 2-direction, and take the shear stress τ23=τ32=10 N/mm2 under pure 
shear in the 2-3 plane. For the example 6, take the normal stress σ2=10 N/mm2 under uniaxial tension 
in the 2-direction, and take the shear stress τ23=τ32=0.1 N/mm2 under pure shear in the 2-3 plane. 



 
Fig. 2 The computational model of the element in Example 1 under uniaxial tension in the 2-

direction 

 
Fig. 3 The computational model of the element in Example 1 under pure shear in the 2-3 plane 
Using the finite element software, the strains of the elements in Examples 1 to 6 under uniaxial 

tension in the 2-direction and pure shear in the 2-3 plane were obtained respectively, as shown in 
Table 1. The strain in each principal material direction of the element can be calculated from the 
nodal displacements, or obtained from the axial strain of the bar parallel to the principal material 
direction, and the shear strain of the element can be calculated from the nodal displacements of the 
element. In addition, for the metamaterial in each example, one corresponding solid element can 
also be taken for comparative analysis, that is, the elastic constants of this solid element, take the 
design values of the elastic constants given in this example; the dimensions, loads and boundary 
conditions of this solid element and the metamaterial element in this example are exactly the same; 
or the strain is calculated from the stress based on the above generalized Hooke's law; it can be 
found that the strain of the solid element is the same or close to the corresponding strain in Table 1. 

The design and actual values of the elastic constants of the metamaterials in Examples 1 to 6 are 
shown in Table 2. Where, the design values in Table 2 are the design values of the elastic constants 
of the metamaterial in each example, and the actual values are calculated according to the definition 
of the elastic constants and Table 1. Taking Example 1 to illustrate, the actual values of the elastic 
constants are: v12= -ε1/ε2= -0.05/0.1= -0.5, v32= -ε3/ε2=0.068/0.1=0.68, E2=σ2/ε2=40/0.1=400, 
G23=|τ23/γ23|=80/0.0970=824.742. 



Table 1  The strains of the elements in Examples 1 to 6 under uniaxial tension in the 2-direction 
and pure shear in the 2-3 plane, respectively 

    strain 
 
 

Example 

under uniaxial tension in the 2-direction 
under pure 
shear in the 
2-3 plane 

strain ε1 in  
the 1-direction 

strain ε2 in  
the 2-direction 

strain ε3 in  
the 3-direction 

shear strain 
γ23 

Example 1 0.05 0.1 -0.068 -0.0970 
Example 2 0.0495 0.0994 -0.0674 -0.0969 
Example 3 0.0465 0.0959 -0.0640 -0.0969 
Example 4 0 0.1 -0.048 -0.1349 
Example 5 -0.00062 0.0980 -0.0481 -0.0998 
Example 6 0 0.1 0 -0.3273 

Table 2  The design and actual values of the elastic constants of the metamaterials in Examples 1 
to 6 

elastic 
constant 

 
Example 

under uniaxial tension in the 2-direction 
under pure shear 
in the 2-3 plane 

v12 v32 E2 (N/mm2) G23 (N/mm2) 
design 
value 

actual 
value 

design 
value 

actual 
value 

design 
value 

actual 
value 

design 
value 

actual 
value 

Example 1 -0.5 -0.5 0.68 0.68 400 400 824.7 824.7 
Example 2 -0.5 -0.498 0.68 0.678 400 402 824.7 825.6 
Example 3 -0.5 -0.485 0.68 0.667 400 417 824.7 825.6 
Example 4 0 0 0.48 0.48 1200 1200 652.2 652.2 
Example 5 0 0.006 0.5 0.491 100 102 100 100.2 
Example 6 0 0 0 0 100 100 0 0.31 
It can be seen from Table 2 that if the connection mode between the bars in the element is hinged 

connection and the structure of the element is the first structure, then the actual value of the elastic 
constant of the metamaterial is exactly the same as the design value, e.g., Examples 1 and 4; if the 
connection mode between the bars in the element is rigid connection, then whether the first structure 
or the second structure is adopted for the structure of the element, there is a deviation between the 
actual value of the elastic constant of the metamaterial and the design value, but the design accuracy 
is good, e.g., Example 2, Example 3, Example 5, Example 6. In general, for the manufactured 
metamaterial, under the premise of ensuring the stability of the element, if the actual connection 
mode between the bars in the element is closer to the hinged connection, the design accuracy will 
be higher. 

For the example 1, the deformation of the element under uniaxial tension in the 2-direction is 
shown in Fig. 4, and the deformation of the element under pure shear in the 2-3 plane is shown in 
Fig. 5, which are consistent with the theoretical predictions. Fig. 6, Fig. 7 and Fig. 8 show the 
elements of the metamaterials in Example 3, Example 5, and Example 6 respectively, the element 
structure of the metamaterial in each example can be seen intuitively, and it is obvious that it can be 
easily manufactured. Generally, the structure of the element adopts the second structure, which has 
better convenience for the manufacture of metamaterials. 



 
Fig. 4 The deformation of the element in Example 1 under uniaxial tension in the 2-direction 

 
Fig. 5 The deformation of the element in Example 1 under pure shear in the 2-3 plane 

 
Fig. 6 The element of the metamaterial in Example 3 



 
Fig. 7 The element of the metamaterial in Example 5 

 
Fig. 8 The element of the metamaterial in Example 6 

3 Expansion of metamaterials 
The space truss element in Reference 17 is applied to materials with 9 independent elastic 

constants, while the space truss element in Reference 16 is a special case of the space truss element 
in Reference 17. Using the same method as above, an orthotropic metamaterial can be proposed 
based on the space truss element model in Reference 17, but the structure of the element is complex, 
which is inconvenient to manufacture. In addition, using the same method as above, a planar 
metamaterial can be proposed based on the plane stress element model in Reference 16 or 17. 
4 Conclusion 

The orthotropic metamaterial proposed in this paper has 6 independent elastic constants, so there 
is a large degree of freedom in metamaterial design. Using a simple design method, a metamaterial 
with tailored elastic constants can be designed. Therefore, it has great application value in the fields 
of mechanical metamaterials, elastic wave metamaterials, acoustic metamaterials, and seismic 
metamaterials, and has also laid the foundation for realizing the dream of controlling elastic waves, 
acoustic waves and vibrations. The element structure of the metamaterial is very simple and easy to 
manufacture. In addition, using the same method, it can be extended to 3D metamaterials with 9 
independent elastic constants and planar metamaterials. 
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