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Abstract
Conducting polymers have wide technological applications in sensors, actuators, electric and
optical  devices,  solar  cells  etc.  To  improve  their  operational  performance,  mechanical,
thermal,  electrical  and  optical  properties,  such polymers  are  doped with  carbon allotrope
nanofillers.  Functionality of the novel  nanocomposite  polymers  may be stipulated by size
characteristics of nanoparticles and the polymer, different physical effects like charge transfer
in such objects  etc. We characterize and analyze structure, elastic, electric properties and of
novel polymer nanocomposites, isotactic polypropylene (iPP) with high crystallinity, doped
with graphene nanoplates (GNP) and nanographite particles at different concentrations and
sizes about 100 nm, basing on the results of dynamic mechanical analysis (DMA), dielectric
spectroscopy, small-angle neutron scattering (SANS) and theoretical modeling. Carbon NPs
aggregated in fractal  objects  in  the bulk of iPP change its  mechanical  plastic,  elastic  and
electric  properties  comparing  with  pristine  polymer.  We  study  modification  of  nanofiller
morphology with the concept of Cosserat elasticity which involves description of the behavior
of linear topological defects caused aggregation of nanographite and GNPs. We supply our
experimental data with numerical simulations on the lattice in frames of the model of Cosserat
elasticity to estimate some mechanical characteristics of the whole composite iPP.

Key  words:  iPP/GNP  composites,  iPP/nanographite  composites,  SANS,  dielectric
spectroscopy, Cosserat elasticity theory, disclinations 

1. Introduction
Polymer nanocomposites filled with carbon allotropes have wide engineering applications in
optoelectronics, photonics, sensing materials and actuators and other fields of human activity
[1, 2]. The functional properties of polymer change when carbon allotropes are added [3,4,5],
changes  in  morphology  and  size  effects  lead  to  changes  in  electrical  and  mechanical
characteristics; doping of polymer with carbon nanofillers is accompanied by modification of
surface,  changes  in  polymer  structure  in  the  bulk  and  interactions  between  nanofillers,
formation of defect structures there [6]. 

For  isotactic  polypropylene  (iPP)  doped  with  carbon  allotrope  nanofillers
(nanographites,  GNPs  etc.)  there  are  results  on  dynamic  mechanical  analysis  (DMA)
[7,8,9,10],  dielectric  spectroscopy,  atomic  force  microscopy  (AFM),  differential  scanning
calorimetry (DSC), scanning electron microscopy (SEM), Raman scattering, small-angle X-
ray scattering [3,4,5] and small-angle neutron scattering (SANS) [11]. 

Dynamic  mechanical  analysis  (DMA)  for  the  iPP-graphene  systems  [7]  revealed
variations of the storage (E') and loss (tgδ) modulii with increasing of contents of graphene
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nanoparticles and temperature. Three relaxation processes (α, β, γ) at the  E'  and tgδ curves are
possible for such composites (β relaxation is associated with generalized motion in the amorphous
regions during the glass transition, γ address to the mobility of crystallites). 

From dielectric spectroscopy for the iPP-graphene systems combined with X-ray and DMA
studies in the appropriate concentration range of NGP’s fillers (by 4.5 vol.%) in iPP the authors
found decreasing of dielectric permittivity and dielectric losses and the growth of crystallization
point of the polymer with increase the filler content [8,9,10]. The elasticity modulus of the iPP
composite increased by 25-35% when adding 1-1.5 vol.% of GNP’s [9].

The SANS method provides nondestructive structure analysis in the length scale from 1 Å
and explicitly characterizes the morphology of nanofillers in the bulk of the material [12]. The
SANS data exhibited fractally modified geometry and carbon NP’s sizes in the bulk of iPP [11]. 

Modification of geometry of the allotrope nanofillers in iPP is associated with appearance of
defects, for instance, point defects, disclinations and dislocations. 

Recently  [13],  for  theoretical  explanation  of  nanofillers  (graphene  and  nanographite)
aggregation,  the Cosserat  model  of  elasticity  was grounded.  The Cosserat  concept  [14,15]  is  a
gauge theory,  which differs from known elasticity theories by the expansion of the gauge field
created by rotation, thereby creating additional degrees of freedom in the material. In context of
similar modern problems, the Cosserat theory has been developed in [16,17,18,19,20,21,22] and
references therein. 

Using  the  fracton  representation  [13,18,19,20],  the  relations  between  defect  structures,
elastisity  and electromagnetic  properties  were developed [22,23];  in  particular,  it  is  possible  to
describe percolations phenomena in polymer networks [21].

For  the  structurally  related  polymer  systems  [16],  the  isotropic  elastic  constants  were
defined in terms of the Cosserat theory comparing with experimental results.  

The number of authors considers topological defects disclinations in appearing at formation
of pentagons and heptagons instead of regular hexagon graphene lattice, point defects and grain
boundaries [17] and references therein. 

In  our  manuscript,  we  gather  an  experimental  reports  giving  rise  to  development  the
theoretical  approach  to  explanation  of  aggregation  and  self-organization  of  nanographite  and
graphene nanofillers in the polymer iPP matrix, and we provide modeling of the electrical, elastic
and mechanical properties of these composite systems.

 
2. Experimental 
2.1. Sample preparation 

The samples of isotactic polypropylene (iPP) are filled by n situ polymerization with GNP at
concentrations of 0.7 and 1.8 wt%, and nanographite at 1.5 and 3.6 wt%.

The chemical formula of iPP is (C3H6)n,  its density is 0.9–0.91 g/cm3, and the degree of
crystallinity is  60%. Nanographite particles are in the form of plates with diameter 112.7 nm and
thickness of 47.3 nm.

Graphene nanoplates were produced by chemical  or thermal reduction of graphite  oxide
(TRGO)  [24].  Graphite  oxide  was  produced  using  modified  method  of  Hammers  -  oxidizing
graphite by KMnO4 in concentrated H2SO4.

After X-ray diffraction analysis [4] of GNP and TRGO powders performed using ADP-1
diffractometer, the authors [4] calculated the values of crystallite size 1.127 and 1.003 nm for GNP
and  TRGO,  respectively.  Synthesized  few-layer  particles  contain  3-5  layers  of  graphene.  The
approximate dimensions of individual GNP particle are 100 nm × 100 nm × 1.127 nm.

Synthesis  of  nanocomposites  was  done  in  bulk  propylene,  as  described  in  [4,5].  The
metallocene catalyst was used in the synthesis of composites is highly active and isospecific in
propylene polymerization, producing iPP of high molecular weight [25]. 



Concentration  of  filler  in  composites  was  varied  by  changing  polymerization  time.  Final
product was unloaded from the reactor, washed successively by a mixture of ethyl alcohol and HCl
(10% solution), ethyl alcohol and then dried in vacuum at 60°C until constant weight.

Test specimen were cut from films 100–300 mm thick, pressure molded at 190°C and pressure
10 MPa at cooling rate 16 K·min-1 [6, 7]. 

2.2. DMA, dielectric spectroscopy and mechanical properties

For the iPP-graphene systems [7] significant increase in Young’s modulus is demonstrated, as GNP
is incorporated in the iPP polymeric matrix, from 1280 ± 42 MPa in neat iPP to approximately 1920
± 63 MPa in the iPP-graphene nanocomposite with the highest graphene content (17.4 wt.%), i.e. 50
% gain in rigidity.  

The  data  on  DMA and  other  structural  methods  [3,8,9,10]  for  different  ordered  carbon
allotrope structures, including GNP, in the syndiotactic PP matrix in the temperature range from –60
to 160°C shown temperature decreasing of  E', temperature and concentration dependent peaks of
mechanical and dielectric losses, as well as for graphene nanifillers (by 2.6wt%) in the iPP matrix. 

In [4], the stress-strain properties of iPP/GNP composites with nanofiller content from 0.1 to
9.71 wt.% were studied upon quasistatic tension. Adding a small filler content (2-3 wt.%) in the
polymer matrix leads to an increase matrix in the elasticity modulus upon extension by 25–35%
compared  to  the  initial  polymer.  After  ultrasonic  treatment  of  iPP/GNP samples,  the  relative
elongation upon breakage and yield points vary differently depending on GNP’s content. 

Dielectric spectroscopy of iPP/GNP composites [4] confirmed a significantly increase of
dielectric  losses  and the  dielectric  permeability  of  the  composite  in  the  range concentration  of
GNP’s 0.1-9.71 wt.% at a frequency of 4.8 GHz. Adding of nanofillers GNP to iPP influences on
the percolation threshold, it is reached at 2.1–4.2 wt.% of GNP nanofillers, which is lower than for
graphite [4, 9]. Also iPP/GNP composites demonstrate high values of dielectric permeability ε' and
dielectric losses ε", which grow with an increase of polymer filling.

2.3. Small-angle neutron scattering 

For SANS measurements  [11],  we used the YuMO spectrometer  at  the IBR2 reactor  in
Dubna, Russian Federation [26], the neutron wavelength is λ= 0.7–6Å; the neutron flux on a sample
is ~107  n/(s×cm2) [27],  diameter of neutron beam on the sample is 14 mm. The solid film-like
specimens with different nanofillers (iPP/GNP, iPP/nanographite) were fixed in the holder and put
into thermo box. The thickness values for the specimens were normalized to thickness of iPP film
368 μm. 

In the SANS measurements with YuMO, we recorded counts versus time of flight from the
16 rings of two detectors.  Recalculation and normalization count using the gauge standard of the
known cross  section  vs  time of  flight  to  the differential  scattering  cross  section  dΣ/dΩ(Q) and
normalization on the sample thickness was realized by program SAS [28]. 

To analyze the experimental small-angle scattering curves, we used a number of the following
procedures of the ATSAS 2.4 software package [29].

Preliminary  processing  of  the  initial  scattering  curves  and  registration  of  scattering  by  the
reference sample was performed using the PRIMUS procedure of ATSAS [29]. As the reference
scattering, which was subtracted from the experimental curve of small-angle scattering of samples
I(Q), scattering from a sample of matrix polymer (iPP) was used. Thus, after taking into account
reference scattering, the experimental small-angle scattering curves are characterized by scattering
from only heterogeneous regions ("scattering particles") in the system having a scattering length
different from the scattering length of the polymer matrix. 

We used  the  GNOM procedure  of  ATSAS to  calculate  regularized  scattering  curves  Ireg(Q),
optimized over the entire range of scattering angles, the particle distribution function, the integral
values of the inertia radii of the particles of the scattering phase and the particle size distribution. 



The experimental values of the intensity I(Q) of SANS and the regularized SAXS (X-ray) curves
Ireg(Q) calculated under the GNOM procedure for samples nanographite 1.8, 3.6 wt% and GNP 0.7,
1.8 wt%, excluding scattering from the reference sample iPP, Fig. 1.

Fig.  1.  The  experimental  SANS intensity  I(Q) of  the  samples  1  –  nanographite  3.6  wt%;  2  –
nanographite 1.5 wt%; 3 –  GNP 1.8 wt%; 4 –  GNP 0.7 wt%. The solid lines correspond to the
regularized Ireg(Q) curves. The value k means the slope of the linear sections of the scattering curves
and defines fractal dimensionality [11]. 

The scattering particles have an almost identical spatial structure and their scattering pattern
corresponds  to  scattering  by  a  physical  fractal  object  with  dimension  ds =  6  –  │k│  =  2.5,
corresponding to a surface fractal. I.e. we get the dense compact aggregated particles with a rugged
surface. The upper size range of these physical fractals exceeds the spatial resolution of the small
angle neutron scattering method  Lmax = 2π/Qmin = 94  nm, implemented in the experiments of this
work (Qmin= 0.0665 nm-1).

Since the GNP and nanographite samples used in the work contain particles in the form of
plates, the regularized scattering curves from these samples were primarily used to calculate the
distribution function of particle thicknesses under the assumption of a polydisperse system of plate-
shaped  particles  with  thickness  T  (the  distance  distribution  function  of  thickness,  assuming  a
polydisperse system of flat particles). The calculation results are shown in Fig. 2.

Fig.  2.  Normalized  distribution  functions  of  particle  thicknesses  DN (thin  lines)  under  the



assumption of a polydisperse system of plate-shaped particles with a thickness T calculated from the
scattering curves for GNP and nanographite particles. The thick line is the smoothed curve, with
adjacent averaging, weighted average value [11].  

Similar to the scattering curves, the distribution functions for the GNP and nanographite
samples turned out to be identical to each other. The system of scattering particles in the GNP and
nanographite samples is characterized by high polydispersity. The particle size distribution contains
wafers with a thickness of 1 to 20 nm, whereas the thickness of the initial plates is 47.3 nm and 1
nm for nanographite and GNP samples, respectively.

The radius of gyration Rt = T2/12 of the particle thickness determined from the slope of the
linear part of the ln(Q2I(Q))-Q2 plot (the Guinier plot) in the reciprocal space and that calculated by
the indirect transform method [12] applied to the whole experimental scattering curve while using
the GNOM procedure, were close to each other and equal, on average, to 5.5 nm.  

The particle size distribution contains wafers with a thickness of 1 to 20 nm, whereas the
thickness of the initial plates is 47.3 nm and 1 nm for nanographite and GNP samples, respectively.

3. Modeling 

Elasticity of a 2D graphene crystalline honeycomb lattice, in the commonly used membrane
theory,  is  defined  by  topological  defects  dislocations  with  their  translation  Burgers  vector

b⃗=n a⃗1+m a⃗2 (which is a topological invariant), where a⃗ 12 =(3 d cc /2±√3dcc /2) ,  dcc= 1.42 Å
[17],  the  nearest-neighbor  interatomic  distance  in  graphene, a⃗ is  the  vector  connecting  with
disclinations  there,  the  pair  of  integers  (n,  m)  is  addressed  to  dislocations.  Such  defects  form
pentagons  and  heptagons  in  the  graphene  lattice.  The  second  topological  invariant  is  a

microorientation angle θ. The core of the shortest Burgers vector dislocation (1,0) 
|⃗b

(1,0)
|=√3 dcc =

2.46 Å, contains an edge-sharing heptagon-pentagon pair,  its Burgers vector is oriented along the
zigzag direction. The type of dislocations is (1,1) dislocation, its Burgers vector equals = 4.23 Å and
inserts a semi-infinite strip along the zigzag direction of graphene. The core of the dislocation with

the same Burgers vector can be constructed from two 
|⃗b

(1,0)
|

=2.46 Å dislocations: (1,0) and (0,1)
[17]. Grain boundaries are considered as periodic arrays of dislocations. 

Defects dislocations and disclinations demonstrate restrict mobility, dislocations obey glide
constraint, they are moving along their Burgers vector, provided that total number of lattice sites is
conserved, while disclinations cannot move without creating dislocations. Similar properties are
observed in type-I gapless fracton phases. 

The densities of crystalline defects vacansies, dislocations and disclinations are given by

ρvac=∂i u
i

, ρdisc=εkl
∂k ∂lusin g

i
, ρdiscl=ε ij

∂i∂ j ϕ  [18].
The topological defects of the graphene layers can be interpreted as fractons [18] (both

fractons and objects of the Hausdorff dimensionality are identified with the SANS method [21],
however, the fraction density of states is a few more complicated).

The Cosserat  theory is  not dual to a  symmetric  tensor theory.  In this  work,  we use the
geometrical principle of fracton duality to the Cosserat theory with its the asymmetric stress tensor.
In [18] the authors show such a mapping of the momentum and stress tensor to the vector magnetic
field and tensor electric field. 

In the Cosserat theory [16, 18,  19], the elastic media is supplied with microstructure of
microscopic  origin,  i.e.  the  local  volume  element  in  (2+1)-dimensionality  is  described  by  the
gapless displacement vector ui and gapped local orientation θ. In the ground state (T = 0), both these
fields are constant in the space. It is supposed, the system has global translational and rotation
symmetry.  To  resolve  the  discrepancy  in  description  of  topological  defects  (singularities  in



displacement and orientation fields), the dual gauge theory in 1-forms with two gapless and one
gapped degrees of freedom has been constructed [18].

Monolayer  graphite  and  graphene  themselves  have  3-fold  rotational  symmetry  of  the
hexagonal lattice, at the corners of hexagonal Brillouin zone, there are the neutrality point a Fermi
surface. In the graphene structure the in-plane σ bonds are formed from 2s, 2px and 2py orbitals
hybridized in a sp2 configuration, while the 2pz orbital, perpendicular to the layer, builds up covalent
bonds [6], σ bonds define rigidity of the graphene sheet, and π bonds give valence and conduction
bands. At the honeycomb structure, two dual triangular sublattices are built. At the original lattice,
the Fermi points connected to the corners of the hexagonal Brillouin zone. The detail theory from
Bloch wave functions, tight-binding spectra of graphite and graphene and cause of using gauge
fields are discussed, for example, in [6]. 

In the dual representation, the total defect density is expressed as rotational defects [18],

ρrot=ρdiscl+ρθ=εij
∂i∂ j(ϕ+θ ) ,                                                                                     (1)

where  ρθ is the defect density specific to the Cosserat theory. The disclination defects have two
independent contributions. The asymmetric strain tensor in terms of the angles is 

γ ij=u ij+εij (ϕ+θ) .                                                           (2)
The local displacements and orientations are separated into regular and singular parts.

From expressions ρdisl
i

=0 and ρdisc+ρθ=0  (where ρθ=εij
∂i∂ jθ ), it follows that a globally

defined ui exists if there are no dislocations and disclinations of ui are canceled by disclinations of θ.
The action of a dual theory in terms of magnetic and electric fields is given in [18] and, at

fixing gauge, may be represented into source-free action with two gapless and one gapped mode. 
On the other hand, we can use the corresponding  U(1) Hamiltonian in the gapless gauge

sector with fractons [23] in the form 

H=∫d2 x
1
2 (

~C ijkl Eij Ekl+B i B j)
,                                            (3)

where E, B are the components of electric and magnetic fields. Due to the source-free Gauss law

∂i∂ j Eij
=0 , 

    
Eij=εik ε jl u

kl

,                                                              (4)
Using  canonical  conjugations,  in  particular  ui, and  πi  variables,  the  Hamiltonian  (3)  is

replaced to the form

 
H=∫d2 x

1
2 (C ijkluij ukl+π i π j )

,                                            (5)

The partition function of (5) is 
Z=∫ Duexp(−H /k BT )

.
The Monte Carlo simulations for disclination energy on a dual triangular lattice are shown at

Fig. 3.
 An effective semiempirical elastic potential for graphene performed in DFT calculations

([16 and references therein]) may be used for quantitative measures:

E0=
3

16
α
d2∑

ij
(r ij

2
−dcc 2)

2
+

3
8

βdcc2∑
ijk

(θijk−
2 π
3 )

2

+γ∑
ijkl

r i , jkl
2

,                (6)
Here rij are the distances between two bond atoms, α = 26.060 eV/Å, β = 5.511 eV/Å2, and γ = 0.517
eV/Å2.



Fig. 3. Temperature dependencies of the average energy of disclinations at different particle
concentrations obtained in Monte Carlo simulations with accuracy 0.1%, N=86400.

In  the  Bruggeman-Landauer  approximation  of  the  effective  media  theory,  the  dielectic
properties of a whole composite material can be expressed in the form 

σ e−σ 1

2 σ e+σ1

p+
σ e−σ 2

2 σ e+σ2

(1−p )=0
 ,                                      (7)

where p is the concentration of the first phase, σe is the effective electric conductivity, σ1 and σ2 are
the conductivities of two different constituents of a composite. Basing on the measured dielectric
values and contributions of phases from (7), we can estimate six mechanical characteristics, the
Cosserat  elastic  constants  [16]:  Young’s  modulus,  shear  modulus,  Poisson’s  ratio,  torsion  and
bending characteristic lengths, Coupling number and polar ratio.

Similar scale dependent electric constant ε(r) [33] was proposed by Kosterlitz and Thouless
on the self-consistent equation, applicable in the BKT theory  

ε (r )=1+4 π2 y0
2 K0∫

a

r

(
r '
a0

)
4−2 πU (r ' ) dr '

r '
.                                       (8)

Here, for the triangular lattice 
K0=

1
2π

μ0 B0

μ0+B0

a0
2

k BT
,

μ0  and B0  are the shear and bulk moduli in
absent of dislocations. 

The  values  y0  (viz ln y0)  and  a0  relate  to  the  core  energy and  triangular  lattice  spacing
respectively. U(r’) is the force of dislocations 

4. Conclusions
Basing on different methods of characterization morphology of carbon allotrope nanofillers

graphite and GNP in the volume of iPP and reconstruction of their  shape,  we apply evaluating
numerical modeling in frames of the Cosserat elastic theory and the fracton representation, which
correlates with the SANS results in the available range of nanofiller concentrations. We showed,
that  the  Cosserat  elastic  theory  allows  us  to  provide  mapping  mechanisms  of  evolution  of



disclinations and other topological defects in carbon nanostructures to mechanical characteristics of
the polymer nanocomposites.
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