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A striking feature of non-Hermitian systems is the presence of two different types of topology.
One generalizes Hermitian topological phases, and the other is intrinsic to non-Hermitian systems,
which are called line-gap topology and point-gap topology, respectively. Whereas the bulk-boundary
correspondence is a fundamental principle in the former topology, its role in the latter has not been
clear yet. This paper establishes the bulk-boundary correspondence in the point-gap topology in non-
Hermitian systems. After revealing the requirement for point-gap topology in the open boundary
conditions, we clarify that the bulk point-gap topology in open boundary conditions can be different
from that in periodic boundary conditions. On the basis of real space topological invariants and the
K-theory, we give a complete classification of the open boundary point-gap topology with symmetry
and show that the non-trivial open boundary topology results in robust and exotic surface states.

Recently, non-Hermitian topological phases have at-
tracted much attention [1–115]. Non-Hermitian systems
differ essentially from Hermitian ones: The complex-
valued energy spectra of non-Hermitian systems allow
two types of the gap structure, i.e., line-gap and point-
gap [36]. Whereas the line-gap is a relatively straight-
forward generalization of a gap in Hermitian systems,
the point-gap is intrinsic in non-Hermitian systems. The
multiple gap structures enable corresponding topological
phases of non-Hermitian systems, line-gap, and point-gap
topological phases [16, 36]. Both topological phases are
indispensable to understanding non-Hermitian topologi-
cal phenomena.

A central character of topological phases is the bulk-
boundary correspondence (BBC): the bulk topology
causes anomalous gapless boundary modes in the open
boundary conditions (OBCs). For example, the quan-
tum Hall systems support chiral edge modes from the
nontrivial bulk Chern number [116]. The exact quanti-
zation of the Hall conductance is a consequence of the
dissipationless current of the chiral edge modes.

Despite the importance, recent studies have shown that
non-Hermiticity obscures the BBC [7, 8, 10, 11, 14, 18–
20, 25, 26, 38, 41, 42, 44, 46, 56, 63, 71, 75, 106, 109]. A
class of non-Hermitian systems shows completely differ-
ent bulk spectra in the OBCs than in the periodic bound-
ary conditions (PBCs). Because of this phenomenon-the
non-Hermitian skin effect (NHSE) [18, 20], the bulk en-
ergy gap in OBCs would be closed in PBCs. Therefore, a
bulk topological number in PBCs can be ill-defined even
when a gapless boundary mode exists in a gap in OBCs.
Yao and Wang [18] solved this problem in the case of line-
gap topological phases. Using the generalized Brillouin
zone (GBZ) [18, 19, 46, 63, 71], they define a topological
number in OBCs, and show that the new bulk topological
number correctly recovers the BBC. Furthermore, later,
the BBC in OBCs was also formulated in terms of real-
space topological invariants, enabling the application in
the study of the BBC in higher dimensions and higher-

order line-gap topological phases [47, 117–121].
Whereas the above prescription settled the BBC in

line-gap topological phases, the BBC in point-gap topo-
logical phases has not been clear yet. In one dimension,
point-gap topological numbers in PBCs result in NHSEs
in OBCs, as a result of the BBC [62, 64]. However, there
remains uncertainty of the BBC in higher dimensions:
It has been suggested that topological surface states
originate from the three-dimensional winding number in
PBCs [76, 87, 88], which is the point-gap topological
number for general three-dimensional systems. Nonethe-
less, these surface states can disappear without changing
the bulk topological number. Thus, the relation between
the bulk topology and the surface states is ambiguous.
In this paper, we establish the BBC in point-gapped

topological phases. Following the strategy learned from
line-gap topological phases, our arguments rely on topo-
logical numbers in OBCs. Remarkably, there appears an
essentially new feature intrinsic to point-gap topological
phases. We find that a particular class of non-Hermitian
skin effects, which we dub in-gap skin effects, ruins point-
gap topological numbers in OBCs. As a result, the topo-
logical classification in OBCs can be different from that in
PBCs. Based on this result, we resolve the uncertainty of
the BBC in point-gap topological phases, and show that
non-trivial topological numbers in OBCs result in robust
and exotic surface states. Using the K-theory, we also
give a complete classification table for point-gap topo-
logical phases under OBCs in the presence of symmetry.
Uncertainty of BBC in point-gap topological phases.–

First, let us see the fore-mentioned uncertainty of the
BBC in point-gap topological phases. We start with a
model of exceptional topological insulators (ETIs) [76],

HETI(k) = sin kxσx + sin kzσy +

2−
∑

i=x,y,z

cos ki

σz

− i sin kyσ0, (1)

where σi=x,y,z are the Pauli matrices and σ0 is the 2×2
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identity matrix. As shown in Fig. 1(a), the ETI has a
point gap at E = 0 in the complex energy plane, i.e.,
no complex spectrum crossing the reference point E = 0,
under PBCs in all directions (full PBC). Therefore, we
can define the three-dimensional (3D) winding number
over the 3D Brillouin zone (BZ) [16, 36],

w3|fullPBC = − 1

24π2

∫
BZ

Tr[(H − E)−1d(H − E)]3, (2)

which takes +1 for H = HETI and E = 0.
Interestingly, the ETI hosts surface states once we im-

pose the OBC in the z-direction (zOBC). See Fig. 1(b).
Because the non-Hermitian term i sin kyσ0 in Eq. (1) only
gives a complex shift of the energy under the zOBC,
the surface states of the ETI are equivalent to those of
a Weyl semimetal, HWSM(k) = HETI(k) + i sin kyσ0 =

sin kxσx+sin kzσy+
(
2−∑i=x,y,z cos ki

)
σz. For a fixed

ky with −π/2 < ky < π/2, the Weyl semimetal supports
a non-zero Chern number in the PBCs, and thus it has
corresponding chiral edge modes under the zOBC. By
taking into account the complex energy shift from the
non-Hermitian term i sin kyσ0, the chiral modes give sur-
face states filling the point-gapped region in Fig. 1(b).

FIG. 1. The energy spectra of ETI in Eq. (1). (a) The full
PBC spectrum (gray). The point gap is open around E = 0,
with the nontrivial 3D winding number +1. (b) The zOBC
spectrum (blue) and the full PBC spectrum (gray) in compar-
ison. No NHSE occurs but surface states appear in the region
where the 3D winding number takes the nontrivial value. The
system size is Lx = Ly = 100 and Lz = 30. (c) The yOBC
spectrum (blue) and the full PBC spectrum (gray) in com-
parison. NHSEs occur, and in-gap skin modes (orange) ap-
pear. The system size in the y direction is Ly = 30 and the
momentum resolutions in both kx,z-directions are taken as
∆kx,z = 2π/100.

These surface states have a topological number with
the same value as the bulk 3D winding number: The
effective Hamiltonian of the surface states around E = 0
takes the form of hsurface(kx, ky) = vxkx−iky as the chiral
edge mode of the Weyl semimetal has vxkx with a real
positive constant vx > 0 and the non-Hermitian term of
HETI gives −iky. The 1D winding number w1 on a circle
S1 around (kx, ky) = (0, 0) on the surface BZ [76]:

w1 = −
∮
S1

dk

2πi
· h−1

surface(kx, ky)∇khsurface(kx, ky) = 1

(3)

measures the topology of the surface states, of which
value coincides with the 3D winding number.
The coincidence of the topological numbers suggests

the BBC in point-gap topological phases [76]. However,
there is an uncertainty in this interpretation. In Fig. 1(c),
we show the spectrum of the same model under the OBC
in the y-direction (yOBC). Whereas the bulk topologi-
cal number in Eq.(2) remains the same, no surface state
covering the point-gapped region appears. Instead, we
have skin modes in the gap. Since the skin modes are
localized bulk modes [122], and do not have 1D winding
number [64], the simple BBC does not hold under the
yOBC.
Point-gap topological number under OBCs and BBC. –

The solution of the problem is to use topological numbers
in OBCs. Let us consider a 3D Hamiltonian H(kx, ky)
with momentum-space representation in the x- and y-
directions and real-space representation in the z-direction
under the zOBC. Then, we construct the bulk Hamilto-
nianHbulk(kx, ky) by the projection ofH(kx, ky) onto the
bulk [47]. When the bulk Hamiltonian has a point gap
at E (det[Hbulk − E] ̸= 0), we can define the real-space
3D winding number w3 under the zOBC,

w3|zOBC = − i

12π

∫
BZ

d2kTz[εijkQiQjQk], (4)

with Qi=x,y = i(Hbulk − E)−1∂ki
(Hbulk − E) and Qz =

(Hbulk −E)−1[Z,Hbulk −E], where Z is the position op-
erator in the z-coordinate, and Tz stands for the trace per
unit length in the z-direction. This is a non-Hermitian
generalization of the real-space topological number in
Hermitian systems [123–126]. For the full PBCs, this
quantity reproduces Eq. (2) with the identification∫

dkz
2π

Tr[A(kz)] ↔ Tz[A], i∂kz ↔ [Z, ·], (5)

where A(kz) is a function of kz and A is the real-space
representation of A(kz) [127, 128]. Thus, for the ETI in
Eq. (1), the coincidence between w3|fullPBC with E = 0
in Eq. (2) and w1 in Eq. (3) results in the correspondence
between w3|zOBC with E = 0 in Eq. (4) and w1 in Eq. (3).
Since any nontrivial 3D winding number under zOBC
can be produced by stacking the ETIs in Eq. (1) up to
continuous deformations, we generally have the BBC

w3|zOBC =
∑
kp

w1(kp), (6)

with

w1(kp) = −
∮
S1
p

dk

2πi
· Tr[(hsurface − E)−1∇(hsurface − E)],

(7)

where hsurface(kx, ky) is the surface effective Hamiltonian,
kp is the Fermi point satisfying det[hsurface(kp)−E] = 0,
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and S1
p stands for the counter clockwise circle around

k = kp on the surface Brillouin zone. As we shall show
later, the bulk topological number under the zOBC can
be different from that under the yOBC. Therefore, the
above BBC does not require surface states under the
yOBC.

The necessity of the OBC bulk topological number
becomes obvious once we consider another model. Fig-
ure 2(a) is the bulk spectra of the following model under
different boundary conditions:

H(k) = sin kxσx + 2 sin kzσy + 2

2−
∑

i=x,y,z

cos ki

σz

+
3

2
i(sin ky + sin kz)σ0. (8)

Because of NHSEs in the bulk spectrum, the OBC spec-
trum has a wider point-gapped region than the PBC
spectrum. Therefore, there is a region where only the
topological number under the zOBC is well-defined, as
shown in Fig. 2. We find that the BBC holds for the
topological number under the zOBC, not for that under
the PBC.

ReE

ImE

w3|fullPBC = w3|zOBC = +1

1

(a) fullPBC
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ImE

w3|fullPBC = w3|zOBC = +1

1

FIG. 2. The energy spectra (top) and the 3D winding num-
bers (bottom) of the model in Eq. (8) under different bound-
ary conditions. The magenta lines in the top figures represent
E = −0.5 + iImE with −4 < ImE < 4. (a)(top) The bulk
spectra under the full PBC (gray) and the zOBC (turquoise).
The zOBC spectrum is calculated by using the non-Bloch
theory in Ref.[46]. The point-gapless region under the zOBC
is wider than that under the full PBCs. (bottom) The 3D
winding number under the full PBC along the magenta line
in the top figure. The gray shadings represent point-gapless
regions. (b)(top) The energy spectrum under the zOBC. The
blue modes are surface states which are calculated with the
system size Lx = Ly = 100, Lz = 20. Surface states appear
even in the regions where w3|fullPBC is ill-defined (inside the
red circle). (bottom) The real-space 3D winding number un-
der the zOBC along the magenta line in the top figure. The
turquoise segments represent point-gapless regions.

In-gap skin effects and absence of surface states.– Now

we show that the BBC in Eq. (6) also explains the ab-
sence of surface states in Fig. 1(c) under the yOBC. A
key observation is the presence of in-gap skin modes. In a
manner similar to Eq. (4), we can introduce the 3D wind-
ing number under the yOBC, but the in-gap bulk skin
modes make the topological number ill-defined. Conse-
quently, the BBC under the yOBC does not require any
surface states.

Let us see how this happens in detail. First, we note
that the in-gap skin modes originate from modes with
(kx, kz) = (0, 0), where the Hamiltonian in Eq. (1) be-
comes

HETI(kx = 0, ky, kz = 0) = − cos kyσz − i sin kyσ0. (9)

This 1D Hamiltonian gives the complex spectra ∓e±iky

in the eigensector of σz = ±1, which have the energy
winding numbers ±1 along the ky direction, as illustrated
in Fig. 3(a). Thus, from the general theory of NHSE [64],
we have the skin modes inside the point gap when one
imposes the yOBC [129].

At first glance, the in-gap skin modes appear to be iso-
lated from the other bulk modes, but this is not the case.
For a finite Ly, the Hamiltonian under the yOBC is a con-
tinuous function with respect to kx and kz, so is its eigen-
values. Therefore, there must be ordinary bulk modes
nearby the skin modes. Figure 3(c) shows the energy
spectrum of Eq. (1) under the yOBC, with a high momen-
tum resolution. The bulk modes around the in-gap skin
modes are now evident. Importantly, the point-gapped
region disappears due to these bulk modes. Therefore,
we do not have a well-defined 3D winding number and
surface states under the yOBC.

The disappearance of surface modes can be regard as
a result of a topological phase transition under continu-
ous change of the boundary conditions. Decreasing the
hopping terms between the y = 1 sites and y = Ly sites,
we can smoothly change the boundary condition from
the full PBC to the yOBC. According to the deforma-
tion, the modes at (kx, kz) = (0, 0) shrink to the in-gap
skin modes as shown in Fig. 3(b). Finally, the originally
point-gapped region is fully covered by bulk modes under
the yOBC. We also show the change of the 3D winding
number throughout the topological phase transition for
the model in Eq. (8) in the Supplemental Material [130].

BBC of point-gap topology with symmetry.– The above
arguments can also apply to point-gapped systems under
symmetries. Namely, when a symmetry-protected point-
gap topological number under the OBC is non-zero, then
the corresponding boundary states appear.

It should be noted here that possible point-gap topo-
logical numbers under OBCs can be different from those
under PBCs. The disagreement stems from the property
that some point-gap topological numbers in PBCs are al-
ways accompanied by in-gap skin modes, which spoil the
corresponding topological numbers in OBCs.
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FIG. 3. The changes of the spectra of ETI in Eq. (1) from
under the full PBC to the yOBC. Ly is the same as that
in Fig. 1(c) but the momentum resolution around (kx, kz) =
(0, 0) is much finer. The orange modes represent the modes
with kx = kz = 0. (a) The full PBC spectrum. A point gap
is open in the region containing E = 0 with the nontrivial 3D
winding number +1. The modes at kx = kz = 0 form a loop
and have a nontrivial 1D winding number in each eigensector
of σz = ±1. (b) The spectrum under a boundary condition
between the full PBC and the yOBC. Here the hopping am-
plitude between the y = 1 sites and the y = Ly sites is 10−6.
The point-gapped region with the non-zero 3D winding num-
ber shrinks. (c) The yOBC spectrum. The region including
E = 0 is completely closed by the in-gap skin effect of the
modes at kx = kz = 0. Comparing with Fig. 1(c), we can see
that the point-gapped region is completely collapsed by the
modes near kx = kz = 0.

Whereas we have considered the full general symme-
tries in the Supplemental Material, we focus here on a
particular class of symmetries, which we call AZ† sym-
metry. The AZ† symmetries are a non-Hermitian gener-
alization of the Altland-Zirnbauer (AZ) symmetry [36]: It
consists of non-Hermitian versions of time-reversal sym-
metry (TRS†), CHT (k)C−1 = H(−k), particle-hole sym-
metry (PHS†), T H∗(k)T −1 = −H(−k), and chiral sym-
metry (CS) ΓH†(k)Γ−1 = −H(k), where C, T , and Γ are
unitary operators. The AZ† symmetry naturally arises
in the non-Hermitian Hamiltonian of the retarded Green
function, and thus it governs non-Hermitian topological
phases in materials [131]. The presence and/or absence
of these symmetries define ten symmetry classes, and the
topological classification in these classes under the full
PBC has been known [36].

In Table I, we show how the point-gap topological clas-
sification under the PBCs changes under OBCs: In one
dimension, all the point-gap topological numbers in the
AZ† classes become trivial under the OBC, because their
non-trivial values in the PBC always result in in-gap skin
modes under the OBC. Actually, all the Z indices in 1D
AZ† classes reduce to the 1D winding number [36], which
gives in-gap skin modes under the OBC [62, 64]. Further-
more, the Z2 topological number in 1D classes AII† and
DIII† under the PBC causes symmetry-protected skin
modes inside the point gap under the OBC [64]. There-
fore, no 1D point-gap topological number survives under
the OBC.

The reduction of topological numbers in Table I in two
and three dimensions occurs as a result of the dimensional

reduction [132]. First, we focus on class AII†. From a
HamiltonianH(k) with a point gap at E in class AII†, we
can obtain a topologically equivalent gapped Hermitian
Hamiltonian H̃(k):

H̃(k) =

(
0 H(k)− E

H†(k)− E∗ 0

)
, (10)

which belongs to class DIII as it has an additional CS
ΣH̃(k)Σ−1 = −H̃(k) (Σ = σz ⊗ 1) together with TRS
C̃H̃∗(k)C̃−1 = H̃(−k) (C̃ = σx ⊗ C) [36]. Using the
dimensional reduction in class DIII [132], one can show
that the parity of the 3D Z index for H(kx, ky, kz) equals
to the product of the 2D Z2 indices of H(kx, ky, k

0
z)

with k0z = 0 and π, and similarly, the 2D Z2 index of
H(kx, ky, k

0
z) equals to the product of the 1D Z2 indices

of H(kx, k
0
y, k

0
z) with k

0
y = 0 and π. Thus, for class AII†

under full PBCs, a non-trivial 2D Z2 index or an odd
parity of the 3D Z index at E yield a non-zero 1D Z2

index at E along a high symmetric line in the BZ. There-
fore, they always accompany symmetry-protected in-gap
skin modes [64], trivializing the corresponding topologi-
cal numbers in OBCs. As a result, only the even part of
the Z index in three dimensions survives in the OBC. We
can also show the reduction Z → 2Z in 2D class DIII†, us-
ing a similar dimensional reduction. On the basis of the
K-theory, we prove the BBC for point-gap topological
phases under the OBC in all 38-fold symmetry classes in
non-Hermitian systems, including AZ† ones, in the Sup-
plemental Material [130].

Symmetry class TRS† PHS† CS d = 1 d = 2 d = 3

A 0 0 0 Z → 0 0 Z
AIII 0 0 1 0 Z 0

AI† +1 0 0 0 0 2Z
BDI† +1 +1 1 0 0 0

D† 0 +1 0 Z → 0 0 0

DIII† −1 +1 1 Z2 → 0 Z → 2Z 0

AII† −1 0 0 Z2 → 0 Z2 → 0 Z → 2Z
CII† −1 −1 1 0 Z2 Z2

C† 0 −1 0 2Z → 0 0 Z2

CI† +1 −1 1 0 2Z 0

TABLE I. Classification of point-gap topological phases. For
topological numbers with arrows, the left specifies topologi-
cal numbers under PBCs and the right specifies those under
OBCs. For topological numbers without arrows, the classi-
fication under OBCs coincides with that under PBCs. We
consider the AZ† symmetry classes with the spatial dimen-
sion d = 1, 2 and 3.

Remarkably, we can predict novel topological phase
transitions intrinsic to non-Hermitian systems, using the
reduction of the point-gap topological numbers in the
presence of symmetry: The symmetry-protected in-gap
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skin modes in 3D class AII† systems may disappear sud-
denly once one breaks TRS† by an infinitesimal perturba-
tion. The disappearance of the in-gap skin modes allows
the well-defined 3D winding number under the OBC, and
thus we have an abrupt transmutation from the topologi-
cally trivial state with the in-gap skin modes to a topolog-
ically non-trivial one with surface states. Infinitesimal in-
stability [49] intrinsic to non-Hermitian systems induces
this topological phase transition, and thus it never hap-
pens in Hermitian systems. We also find that boundary
states in intrinsic point-gap topological phases may sup-
port a single exceptional point [130], which is also unique
to non-Hermitian systems.

Conclusions.– In this paper, we establish the BBC for
the point-gap topology in non-Hermitian systems. We
demonstrate that real-space topological numbers under
OBCs result in robust and exotic surface states. We find
that the bulk point-gap topology in OBCs can be differ-
ent from that in PBCs, and give a complete classification
of the OBC point-gap topology in the presence of sym-
metry. Our finding reveals a novel universal property of
non-Hermitian topological phases of matters.

We are grateful to Nobuyuki Okuma, Ken Shiozaki,
Shuhei Ohyama, Yusuke Nakai, and Hiroto Oka for
valuable discussions. This work was supported by
JST CREST Grant No.JPMJCR19T2, the establishment
of university fellowships towards the creation of sci-
ence technology innovation, Grant No.JPMJFS2123, and
KAKENHI Grant No.JP20H00131. This work was done
while Takumi Bessho was at Yukawa Institute for Theo-
retical Physics, Kyoto University.

Appendix on the BBC for point-gap topological phases
in general symmetry classes.– Our argument is applica-
ble to any symmetry classes in non-Hermitian systems.
We summarize here our results for point-gap topological
phases in general symmetry classes in non-Hermitian sys-
tems. For the details of the derivation, see Supplemental
Material [130].

In addition to AZ† symmetries discussed in the main
text, non-Hermitian systems allow the original AZ sym-
metries defined by the following equations:

T H∗(k)T −1 = H(−k), T T ∗ = ±1,

CHT (k)C−1 = −H(−k), CC∗ = ±1, (11)

where T and C are unitary operators corresponding to
time-reversal symmetry (TRS) and particle-hole symme-
try (PHS), respectively. Furthermore, as an additional
general symmetry, one can also introduce sublattice sym-
metry (SLS),

SH(k)S−1 = −H(k), S2 = 1, (12)

or pseudo-Hermiticity (pH)

ηH†(k)η−1 = H(k), η2 = 1 (13)

with unitary operators S and η. The presence and/or
absence of these symmetries define symmetry classes in-
trinsic to non-Hermitian systems [36].
Tables S9 and S10 summarize our results on point-gap

topological phases in general symmetry classes. Here, the
presence or absence of AZ or AZ† symmetries define AZ
or AZ† symmetry classes in Table S2. Moreover, each
AZ or AZ† class can host SLS (pH) additionally, where
the subindex +(−) of S/η in Tables S9 and S10 specifies
the commutation (anti-commutation) relation between
SLS/pH and AZ or AZ† symmetries. For an AZ (AZ†)
class having both TRS (TRS†) and PHS (PHS†), S or
η has a double subindex, where the first index specifies
the commutation or anticommutation relation between
SLS and TRS (TRS†), and the second one specifies those
between SLS and PHS (PHS†), respectively. Tables S9
and S10 show how the point-gap topological classification
under the PBCs changes under OBCs. For the topolog-
ical numbers with arrows, the classification under the
PBCs shown on the left changes to that under OBCs on
the right, while the topological numbers without arrows
remain the same under both boundary conditions. We
also find that the BBC holds for the point-gap topolog-
ical classification under OBCs: Topologically protected
boundary states appear when the bulk point-gap topo-
logical numbers under OBCs are non-trivial.

Sym. class TRS PHS CS TRS† PHS†

Complex AZ A 0 0 0 0 0

AIII 0 0 1 0 0

Real AZ AI +1 0 0 0 0

BDI +1 +1 1 0 0

D 0 +1 0 0 0

DIII −1 +1 1 0 0

AII −1 0 0 0 0

CII −1 −1 1 0 0

C 0 −1 0 0 0

CI +1 −1 1 0 0

Real AZ† AI† 0 0 0 +1 0

BDI† 0 0 1 +1 +1

D† 0 0 0 0 +1

DIII† 0 0 1 −1 +1

AII† 0 0 0 −1 0

CII† 0 0 1 −1 −1

C† 0 0 0 0 −1

CI† 0 0 1 +1 −1

TABLE II. AZ and AZ† symmetry classes for non-Hermitian
Hamiltonians. Here, “0” denotes the absence of symmetries,
while “± 1” indicates the presence of each symmetry, depen-
dent on whether its operator squares to ±1.
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AZ class Add. sym. d = 1 d = 2 d = 3

A - Z → 0 0 Z
AIII - 0 Z 0

A S Z⊕ Z
→Z[1,−1]

0 Z⊕ Z

AIII S−, η− 0 Z⊕ Z 0

A η 0 Z 0

AIII S+, η+ Z 0 Z
AI - Z → 0 0 0

BDI - Z2 Z 0

D - Z2 Z2 Z
DIII - 0 Z2 Z2

AII - 2Z → 0 0 Z2

CII - 0 2Z 0

C - 0 0 2Z
CI - 0 0 0

AI S+ Z⊕ Z
→Z[1,−1]

0 0

BDI S+−, η−+ Z2 ⊕ Z2

→ Z2[1, 1]

Z⊕ Z
→ Z[2, 0]⊕ Z[1,−1]

0

D S− Z2 ⊕ Z2

→ Z2[1, 1]

Z2 ⊕ Z2

→ Z2[1, 1]

Z⊕ Z
→ Z[2, 0]⊕ Z[1,−1]

DIII S+−, η+− 0 Z2 ⊕ Z2 Z2 ⊕ Z2

AII S+ 2Z⊕ 2Z
→ 2Z[1,−1]

0 Z2 ⊕ Z2

CII S+−, η−+ 0 2Z⊕ 2Z 0

C S− 0 0 2Z⊕ 2Z
CI S+−, η+− 0 0 0

AI S− Z → 0 0 Z
BDI S−+, η+− 0 Z 0

D S+ Z 0 Z
DIII S−+, η−+ 0 Z 0

AII S− Z → 0 0 Z
CII S−+, η+− 0 Z 0

C S+ Z → 2Z 0 Z
CI S−+, η−+ 0 Z 0

AI η+ 0 0 0

BDI S++, η++ Z 0 0

D η+ Z2 Z 0

DIII S−−, η++ Z2 Z2 Z
AII η+ 0 Z2 Z2

CII S++, η++ 2Z 0 Z2

C η+ 0 2Z 0

CI S−−, η++ 0 0 2Z
AI η− Z2 → 0 Z → 2Z 0

BDI S−−, η−− Z2 Z2 Z
D η− 0 Z2 Z2

DIII S++, η−− 2Z 0 Z2

AII η− 0 2Z 0

CII S−−, η−− 0 0 2Z
C η− 0 0 0

CI S++, η−− Z → 2Z 0 0

TABLE III. Classification of point-gap topological phases in
the AZ classes without or with SLS or pH. The subscript of
S±/η± specifies the commutation (+) or anti-commutation
(-) relation to TRS or PHS. For S±±/η±±, the first subscript
specifies the relation to TRS and the second specifies the re-
lation to PHS. For the topological numbers with arrows, the
classification under OBCs changes from that under PBCs,
where the left specifies the classification under PBCs and the
right specifies that under OBCs. The topological number
Z[i, j] (Z2[i, j]) under OBCs indicates the Abelian group Z
(Z2) generated by the element (i, j) ∈ Z⊕Z [(i, j) ∈ Z2 ⊕Z2]
under PBCs. For the topological numbers without arrows, the
classification under OBCs coincides with that under PBCs.

AZ† class Add. sym. d = 1 d = 2 d = 3

AI† - 0 0 2Z
BDI† - 0 0 0

D† - Z → 0 0 0

DIII† - Z2 → 0 Z → 2Z 0

AII† - Z2 → 0 Z2 → 0 Z → 2Z
CII† - 0 Z2 Z2

C† - 2Z → 0 0 Z2

CI† - 0 2Z 0

AI† S+ Z 0 Z
BDI† S+−, η−+ 0 Z 0

D† S− Z → 0 0 Z
DIII† S+−, η+− 0 Z 0

AII† S+ Z → 2Z 0 Z
CII† S+−, η−+ 0 Z 0

C† S− Z → 0 0 Z
CI† S+−, η+− 0 Z 0

AI† S− 0 0 2Z⊕ 2Z
BDI† S−+, η+− 0 0 0

D† S+ Z⊕ Z
→Z[1,−1]

0 0

DIII† S−+, η−+ Z2 ⊕ Z2

→ Z2[1, 1]

Z⊕ Z
→ Z[2, 0]⊕ Z[1,−1]

0

AII† S− Z2 ⊕ Z2

→ Z2[1, 1]

Z2 ⊕ Z2

→ Z2[1, 1]

Z⊕ Z
→ Z[2, 0]⊕ Z[1,−1]

CII† S−+, η+− 0 Z2 ⊕ Z2 Z2 ⊕ Z2

C† S+ 2Z⊕ 2Z
→ 2Z[1,−1]

0 Z2 ⊕ Z2

CI† S−+, η−+ 0 2Z⊕ 2Z 0

AI† η+ Z2 Z 0

BDI† S++, η++ Z 0 0

D† η+ 0 0 0

DIII† S−−, η++ Z2 Z2 Z
AII† η+ 0 2Z 0

CII† S++, η++ 2Z 0 Z2

C† η+ 0 Z2 Z2

CI† S−−, η++ 0 0 2Z
AI† η− 0 Z2 Z2

BDI† S−−, η−− 0 0 2Z
D† η− Z2 → 0 Z → 2Z 0

DIII† S++, η−− Z → 2Z 0 0

AII† η− 0 0 0

CII† S−−, η−− Z2 Z2 Z
C† η− 0 2Z 0

CI† S++, η−− 2Z 0 Z2

TABLE IV. Classification of point-gap topological phases in
the real AZ† classes without or with SLS or pH. The subscript
of S±/η± specifies the commutation (+) or anti-commutation
(-) relation to TRS† or PHS†. For S±±/η±±, the first sub-
script specifies the relation to TRS† and the second specifies
the relation to PHS†. For the topological numbers with ar-
rows, the classification under OBCs changes from that un-
der PBCs, where the left specifies the classification under
PBCs and the right specifies that under OBCs. The topo-
logical number Z[i, j] (Z2[i, j]) under OBCs indicates the
Abelian group Z (Z2) generated by the element (i, j) ∈ Z⊕Z
[(i, j) ∈ Z2 ⊕ Z2] under PBCs. For the topological numbers
without arrows, the classification under OBCs coincides with
that under PBCs.
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Supplemental Material

S1. FROM PBC TO yOBC IN EQ. (8)

We here demonstrate that the real-space 3D winding number detects a topological phase transition under continuous
change of the boundary condition. Let us start with the Hamiltonian in Eq. (8) of the main text:

H(k) = sin kxσx + 2 sin kzσy + 2

2−
∑

i=x,y,z

cos ki

σz +
3

2
i(sin ky + sin kz)σ0. (S1)

While this model has the non-trivial 3D winding number −1 in a region including E = 0 under the full PBCs, in-gap
skin modes arise under the yOBC, instead of surface states, as shown in Fig. S1. In the following, we will reveal that
the absence of surface states can be understood as a topological phase transition under a continuous deformation of
the boundary condition by using the real-space 3D winding number.
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(kx = kz = 0)

FIG. S1. The yOBC spectrum of the model in Eq. (S1). The system size in the y direction is Ly = 21 and the momentum
resolution in the kx,z-directions is taken as ∆kx,z = 2π/100. No surface states appear, and instead, the skin modes appear.

First, we note that the in-gap skin modes originate from modes with (kx, kz) = (0, 0), where the Hamiltonian in
Eq. (S1) becomes

H(kx = 0, ky, kz = 0) = −2 cos kyσz +
3

2
i sin kyσ0. (S2)

This Hamiltonian gives elliptical complex spectra in the eigensector of σz = ±1, which have the energy winding
numbers ∓1 along the ky direction. According to the general theory of NHSE [62, 64], the energy winding results in
skin modes in Fig. S1.

In Fig. S2, we show how the complex spectrum and the real-space 3D winding number changes under the continuous
deformation of the boundary conditions. Here we define the real-space 3D winding number as follows. Taking the
real-space representation of H(k) in the y-direction and performing the projection to the bulk, we have the bulk
Hamiltonian Hbulk(kx, kz). Then, the real-space 3D winding number at E is

w3 = − i

12π

∫
BZ

d2kTy[εijkQiQjQk] (S3)

with Qi=x,z = i(Hbulk−E)−1∂ki
(Hbulk−E) and Qy = (Hbulk−E)−1[Y,Hbulk−E], where Y is the position operator

of the y-coordinate, and Ty stands for the trace per unit length in the y-direction. Decreasing the hopping amplitudes
between the y = 1 sites and y = Ly sites, we can change the boundary conditions from the full PBC to the yOBC
smoothly. During the process, the point-gapped region becomes smaller because of the shrinking of the modes with
(kx, kz) = (0, 0) in the complex energy plane. Accordingly, we can confirm that the real-space 3D winding number
changes from the well-defined value −1 to ill-defined ones in the original point-gapped region around E = 0, as
illustrated in Fig. S2. Therefore, we conclude that no surface states appear under the yOBC in Eq. (S1) as a result
of the topological phase transition.
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FIG. S2. The changes of the spectrum (top) and the real-space 3D winding number (bottom) of the model in Eq. (S1) from
under the full PBC to the yOBC. Ly is the same as that in Fig. S1, but the momentum resolution around (kx, kz) = (0, 0)
is much finer in the energy spectrum. The orange circles in the top figures represent the modes with (kx, kz) = (0, 0). In the
bottom figures, the 3D winding numbers are calculated at E = 0 + iImE with −4 < ImE < 4. The purple shaded regions in
the bottom figures correspond to point-gapless regions in the top figures. (a) The full PBC. A point gap is open in the region
containing E = 0 with the nontrivial 3D winding number −1. The orange modes at (kx, kz) = (0, 0) form a loop and have a
nontrivial 1D winding number in each eigensector of σz = ±1. (b) A boundary condition between the full PBC and the yOBC.
The hopping amplitude between the y = 1 sites and the y = Ly sites is 0.00005. The point gapped region containing E = 0
shrinks, but the 3D winding number is −1 in the point gapped region. (c) The yOBC. The point-gapped region including
E = 0 is completely closed by the in-gap skin effect with the orange modes near (kx, kz) = (0, 0). The in-gap skin effect makes
the 3D winding number ill-defined.

S2. PROOF OF THE BBC FOR POINT-GAP TOPOLOGICAL PHASES IN AZ† SYMMETRY CLASSES

In this section, we give a proof of the BBC for point-gap topological phases with AZ† symmetry. Below, we assume
that the spatial dimension d is d = 2, 3, but the generalization to higher dimensions is straightforward.

Our basic strategy of the proof is to use the additivity of topological phases in the framework of K-theory. Since
we can add the topological number of H1 to that of H2 by stacking H1 and H2 as(

H1 0

0 H2

)
, (S4)

we can generate any topological phases by considering a proper stacks of a model with the minimal topological number.
From K-theory, we also know that models with the same topological numbers can deform into each other without
gap-closing, up to addition of topologically trivial Hamiltonians. Thus, once we can show the BBC for a model with
the minimal topological number, the BBC holds generally.

We can construct a model with the minimal topological number, which we call the minimal model, as follows.
Except for 3D class CII†, we consider the following form of Hamiltonian,

Hminimal(k) = HSM(k) + i sin kdΓd, HSM(k) =

d−1∑
i=1

sin kiΓi +

[
(d− 1)−

d∑
i=1

cos ki

]
Γ0, (S5)

Eminimal(k) = ±

√√√√d−1∑
i=1

(sin ki)
2
+

[
(d− 1)−

d∑
i=1

cos ki

]2
+ s i sin kd, (S6)

where d ≥ 2 is the spatial dimension, Γi=0,1,2,...,d−1 are Gamma matrices that anti-commute with each other, and
Γd is a matrice that commutes with all Γi=0,1,2,...,d−1, and Γ2

µ = 1 (µ = 0, 1, . . . , d). The sign factor s in Eq. (S6)
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takes s = +1 (s = ±1) for Γd = 1̂ (Γd ̸= 1̂). Note that HSM(k) is the Hamiltonian of a Hermitian Weyl/Dirac
semimetal, and Hminimal is straightforward generalization of Eq. (1) in the main text. Since Hminimal(k) commutes
with i sin kdΓd, the non-Hermitian term i sin kdΓd only gives a complex energy shift if we impose the PBC in the
xd-direction. Therefore, skin effects do not occur when we keep the PBC in the xd-direction.
The point-gap topological number of Hminimal(k) under the full PBC is given by the topological number of the

doubled Hermitian Hamiltonian [36],

H̃(k) =

(
0 Hminimal(k)

H†
minimal(k) 0

)
=

d∑
i=1

sin kiΓ̃i +

[
(d− 1)−

d∑
i=1

cos ki

]
Γ̃0. (S7)

Here Γ̃µ=0,...,d are the Gamma matrices in the doubled space,

Γ̃i=0,...,d−1 =

(
0 Γi

Γi 0

)
, Γ̃d =

(
0 iΓd

−iΓd 0

)
, (S8)

which satisfy {Γ̃µ, Γ̃ν} = δµ,ν . We can easily evaluate the topological number of Eq. (S7), namely the point-gap topo-
logical number of Hminimal(k), because Eq. (S7) is the standard massive Dirac Hamiltonian for topological insulators.
The obtained point-gap topological number coincides with that under the OBC in other than the xd-direction, say
the OBC in the x1-direction (x1OBC), as no skin effects occur. One can also show that this model has surface states
under the x1OBC at the same time. Since the Weyl/Dirac semimetal model HSM has Fermi arc surface states between
two Weyl/Dirac points, Hminimal(k) also has surface states under the x1OBC. As a result, we have the BBC between
the surface states and the bulk point-gap topological number.

For 3D class CII†, the minimal model has the form

Hminimal(k) = HSM(k) + i sin k2Γ2 + i sin k3Γ3, HSM(k) = sin k1Γ1 +

[
2−

3∑
i=1

cos ki

]
Γ0, (S9)

where Γµ satisfy

{Γ0,Γ1} = {Γ2,Γ3} = [Γi=0,1,Γj=2,3] = 0, Γ2
µ=0,1,2,3 = 1. (S10)

The double Hamiltonian of this model also has the form of the standard massive Dirac Hamiltonian, and thus we can
easily evaluate the point-gap topological number. We also find that HSM has E = 0 surface states, which give surface
states with ReE = 0 of Hminimal. Thus, we have the BBC again.
In Table S1, we summarize possible point-gap topological phases under the OBC for AZ† classes with the spatial

dimension d = 1, 2, 3. Below, we present the minimal model for each point-gap topological phase in Table S1. In the
following, τi=x,y,z and σi=x,y,z represent the Pauli matrices, and τ0 and σ0 are the 2×2 identity matrix.

Symmetry class TRS† PHS† CS d = 1 d = 2 d = 3

A 0 0 0 0 0 Z [Sec.S2.1]

AIII 0 0 1 0 Z [Sec.S2.2] 0

AI† +1 0 0 0 0 2Z [Sec.S2.3]

BDI† +1 +1 1 0 0 0

D† 0 +1 0 0 0 0

DIII† −1 +1 1 0 2Z [Sec.S2.4] 0

AII† −1 0 0 0 0 2Z [Sec.S2.5]

CII† −1 −1 1 0 Z2 [Sec.S2.6] Z2 [Sec.S2.6]

C† 0 −1 0 0 0 Z2 [Sec.S2.7]

CI† +1 −1 1 0 2Z [Sec.S2.8] 0

TABLE S1. Classification of point-gap topological phases under the OBC. We consider the AZ† symmetry classes with the
spatial dimension d = 1, 2 and 3. The section numbers for the minimal models are shown for each topological number.
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S2.1. class A

A non-Hermitian system in class A has a nontrivial point-gap topological phase in d = 3. The minimal model is

H(k) = sin kxσx + sin kyσy +

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0, (S11)

and the point-gap topological number under the full PBC is the 3D winding number in Eq. (2), which takes +1 for
Eq. (S11). As shown in the main text, the corresponding point-gap topological number under the xOBC is

w3|xOBC = − i

12π

∫
BZ

d2kTx[εijkQiQjQk], (S12)

with Qx = H−1
bulk[X,Hbulk] and Qi=y,z = iH−1

bulk∂ki
Hbulk, where X is the position operator in the x-coordinate, Tx

stands for the trace per unit length in the x-direction, and Hbulk(ky, kz) is the 3D bulk Hamiltonian with momentum-
space representation in the y- and z-directions and real-space representation in the x-direction.

S2.2. class AIII

A non-Hermitian system in class AIII has a nontrivial point-gap topological phase in d = 2. The minimal model is

H(k) = sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0, (S13)

which hosts CS

ΓH†(k)Γ−1 = −H(k), Γ = σz. (S14)

The point-gap topological number under the full PBC is the first Chern number of the Hermitian matrix iH(k)Γ
[36]:

iH(k)Γ = sin kxσy − sin kyσz −

1−
∑
i=x,y

cos ki

σx, (S15)

which takes +1 for Eq. (S13). The corresponding point-gap topological number under the xOBC is

Ch1|xOBC = 2πiTxy (Pα[[X,Pα], [Y, Pα]]) , (S16)

where Pα is the bulk-band projection operator of iHΓ in a band α, X is the position operator in the x-coordinate,
Y is the position operator in the y-coordinate, Txy stands for the trace per unit area in the xy-plane, and iHΓ is the
bulk Hamiltonian of the real-space representation of iH(k)Γ [47, 126–128, 133].

S2.3. class AI†

In class AI†, we have a nontrivial point-gap topological phase in d = 3. The required symmetry is

CHT (k)C−1 = H(−k), CC∗ = +1, C = τxσx, (S17)

and the minimal model is

H(k) =

sin kxτx + sin kyτy +

2−
∑

i=x,y,z

cos ki

 τz + i sin kzτ0

σz. (S18)

The point-gap topological number in 3D class AI† is the same as that in 3D class A. Since Eq. (S18) is a stacking of
the class A model in Eq. (S11) to the eigensector of σz = ±1, the 3D winding number takes +2 ∈ 2Z for Eq. (S18).
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S2.4. class DIII†

In class DIII†, there exists a nontrivial point-gap topological phase in d = 2. The minimal model is

H(k) = sin kxτxσx +

1−
∑
i=x,y

cos ki

 τxσy − i sin kyτyσz, (S19)

which has TRS†, PHS† and their combination CS

CHT (k)C−1 = H(−k), CC∗ = −1, C = iτyσ0,

T H∗(k)T −1 = −H(−k), T T ∗ = +1, T = τ0σ0, (S20)

ΓH†(k)Γ−1 = −H(k), Γ = iCT ∗.

The point-gap topological number in 2D class DIII† is the same as that in 2D class AIII. iH(k)Γ for Eq. (S19) is

iH(k)Γ = sin kxτzσx − sin kyτ0σz +

1−
∑
i=x,y

cos ki

 τzσy, (S21)

which is a stacking of Chern insulators to the eigensector of τz = ±1. Thus, the first Chern number takes +2 ∈ 2Z for
Eq. (S19).

S2.5. class AII†

In class AII†, there exists a nontrivial point-gap topological phase in d = 3. The minimal model is

H(k) = τy

sin kxσz + sin kyσx +

2−
∑

i=x,y,z

cos ki

σy + i sin kzσ0

 , (S22)

which has TRS†,

CHT (k)C−1 = H(−k), CC∗ = −1, C = iτyσ0. (S23)

The point-gap topological number in 3D class AII† is the same as that in 3D class A. Since Eq. (S22) is a stacking of
the minimal model of 3D class A to the eigensector of τy = ±1, the 3D winding number takes +2 ∈ 2Z for Eq. (S22).

S2.6. class CII†

In class CII†, there exist nontrivial point-gap topological phases in d = 2, 3. We impose the following AZ† symmetry,

CHT (k)C−1 = H(−k), CC∗ = −1, C = iτyσ0,

T H∗(k)T −1 = −H(−k), T T ∗ = −1, T = iτyσz, (S24)

ΓH†(k)Γ−1 = −H(k), Γ = CT ∗.

For d = 2, the minimal model is

H(k) = sin kxτxσx +

1−
∑
i=x,y

cos ki

 τxσy + i sin kyτzσz. (S25)

The point-gap topological number under the full PBCs is the Kane-Male invariant for 2D class AII Hermitian matrix
iH(k)Γ [36], which takes 1 ∈ Z2 for Eq. (S25). The corresponding point-gap topological number under the xOBC is

η|xOBC = dim ker(A− 1) mod 2 (S26)
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with

A = PF −D†
aPFDa, Da(r) =

x̂+ iŷ − (ax + iay)

|x̂+ iŷ − (ax + iay)|
.

Here PF is the projection operator of iHΓ onto the bulk states below the Fermi energy, where iHΓ is the real-space
representation of iH(k)Γ, r = (x̂, ŷ) ∈ Z2 represents the position operator in the xy-plane, and a = (ax, ay) ∈ R2\Z2

is a two dimensional vector in the xy-plane [126, 134, 135].
For d = 3, the minimal model is

H(k) = sin kxτxσx +

2−
∑

i=x,y,z

cos ki

 τxσy + i sin kyτxσ0 + i sin kzτzσz. (S27)

The point-gap topological number under the full PBC is the Z2 invariant of the class AII Hermitian matrix iH(k)Γ
[36], which takes 1 ∈ Z2 for Eq. (S27). The corresponding point-gap topological number under the xOBC is the 3D
version of Eq. (S26) [126, 135].

S2.7. class C†

In class C†, there exists a nontrivial point-gap topological phase in d = 3. The minimal model is

H(k) = sin kxτxσx + sin kyτxσy +

2−
∑

i=x,y,z

cos ki

 τ0σz + i sin kzτzσz, (S28)

which has the following PHS†,

T H∗(k)T −1 = −H(−k), T T ∗ = −1, T = iτzσy. (S29)

The point-gap topological number under the full PBCs is the Z2 invariant of the Hermitian Hamiltonian(
0 H(k)

H†(k) 0

)
(S30)

in class CII [36], which takes 1 ∈ Z2 for Eq. (S28). The corresponding point-gap topological number under the xOBC
is its real-space representation given in Ref. [126].

S2.8. class CI†

In class CI†, there exists a nontrivial point-gap topological phase in d = 2. The minimal model is

H(k) = sin kxτyσx +

1−
∑
i=x,y

cos ki

 τxσx + i sin kyτzσy, (S31)

which obeys

CHT (k)C−1 = H(−k), CC∗ = +1, C = τ0σ0,

T H∗(k)T −1 = −H(−k), T T ∗ = −1, T = iτ0σy, (S32)

ΓH†(k)Γ = −H(k), Γ = iCT ∗.

The point-gap topological number under the full PBC is the same as that in 2D class AIII. Since iH(k)Γ for Eq. (S31)
is a stacking of two Chern insulators to the eigensectors of σz = ±1:

iH(k)Γ = sin kxτyσz + sin kyτzσ0 +

1−
∑
i=x,y

cos ki

 τxσz, (S33)

the first Chern number takes +2 ∈ 2Z for Eq. (S31).
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S3. BULK-BOUNDARY CORRESPONDENCE IN 2D CLASS AIII

We here explain more details of the BBC in point-gap topological phases for 2D class AIII. We start with the model
in Eq. (S13):

HAIII(k) = sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0. (S34)

As explained in Sec.S2.2, this model has the first Chern number +1 of iHAIIIΓ under the xOBC. Since HAIII(k)
commutes with i sin kyσ0, the surface state of this model with a fixed ky is that of the Su-Schrieffer–Heeger (SSH)

model, HSSH(k) = HAIII(k) − i sin kyσ0 = sin kxσx +
(
1−∑i=x,y cos ki

)
σy. For −π/2 < ky < π/2, the SSH

model supports the 1D winding number +1, and thus it has corresponding zero modes |ψ+(ky)⟩ with chirality,
Γ |ψ+(ky)⟩ = +1 |ψ+(ky)⟩, under the xOBC. By taking into account the complex energy shift from the non-Hermitian
term i sin kyσ0, the zero modes give surface states in the point-gapped region, as shown in Fig. S3(b).
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FIG. S3. The energy spectra of the model in Eq. (S34). The system sizes are Lx = Ly = 100. (a) The full PBC spectrum. A
point gap is open in the region containing E = 0, with the nontrivial first Chern number +1. No NHSE occurs and the spectra
coincide with the bulk spectra under the xOBC. (b) The xOBC spectrum. Surface states appear along ReE = 0 where the
first Chern number takes +1. Note that the first Chern number is well-defined only on the line ReE = 0 in class AIII, since
the system has chiral symmetry only when the reference energy of the point gap is purely imaginary.

These surface states have a topological number with the same value as the bulk first Chern number. The effective
Hamiltonian of the surface states around E = 0 takes the form of hsurface(ky) = iky |ψ+(ky)⟩ ⟨ψ+(ky)| as the zero
mode of the SSH model shifted by the non-Hermitian term of HAIII, iky. Then, we can define the occupation number
N (ky) (the number of negative eigenvalues) for ihsurface(ky)Γ on the surface BZ. Since Γ |ψ+(ky)⟩ = +1 |ψ+(ky)⟩,
ihsurface(ky)Γ is equal to −ky |ψ+(ky)⟩ ⟨ψ+(ky)| and we get

N (ky) =

{
1 for ky > 0

0 for ky < 0
. (S35)

The difference of the occupation number νAIII:

νAIII = N (ky > 0)−N (ky < 0) = +1 (S36)

protects the surface energy E = 0 at ky = 0 and thus measures the topology of the surface states, of which value
coincides with the bulk first Chern number. Consequently, we have the BBC under the xOBC for Eq. (S34):

Ch1|xOBC = νAIII. (S37)

In a general case, we can get the BBC by stacking the model in Eq. (S34) up to continuous deformations. The BBC
for other symmetry classes also can be proved in a similar manner.
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S4. THE BBC FOR POINT-GAP TOPOLOGICAL PHASES IN 38-FOLD SYMMETRY CLASSES

According to a general theory in Ref.[36], there are 38-fold symmetry classes in non-Hermitian systems. In this
section, we extend our arguments to all the 38-fold symmetry classes.

First, we briefly explain the 38-fold symmetry classes. In addition to AZ† symmetries discussed in the main text,
non-Hermitian systems may host the original AZ symmetries defined by the following equations:

T H∗(k)T −1 = H(−k), T T ∗ = ±1,

CHT (k)C−1 = −H(−k), CC∗ = ±1, (S38)

ΓH†(k)Γ−1 = −H(k), Γ2 = 1,

where T , C and Γ are unitary operators corresponding to time-reversal symmetry (TRS), particle-hole symmetry
(PHS), and chiral symmetry (CS), respectively. Furthermore, one can introduce sublattice symmetry (SLS),

SH(k)S−1 = −H(k), S2 = 1, (S39)

with a unitary operator S, which is distinct from CS in non-Hermitian systems. The presence and/or absence of these
symmetries give the 38-fold independent symmetry classes, which is a natural generalization of the Hermitian 10-fold
AZ symmetry classes to non-Hermitian systems [36].

To specify the 38-fold symmetry classes, we introduce the convention used in Ref.[36] as follows: (i) The AZ
and AZ† symmetries define 18-fold symmetry classes in Table S2. (ii) Furthermore, each of them can host SLS
additionally, which defines AZ class + S and AZ† class + S. We also introduce the subindex +(−) of S specifying the
commutation (anti-commutation) relation between SLS and AZ or AZ† symmetries. For an AZ (AZ†) class having
both TRS (TRS†) and PHS (PHS†), S has a double subindex, where the first index specifies the commutation or
anticommutation relation between SLS and TRS (TRS†), and the second one specifies those between SLS and PHS
(PHS†), respectively.

Sym. class TRS PHS CS TRS† PHS†

Complex AZ A 0 0 0 0 0

AIII 0 0 1 0 0

Real AZ AI +1 0 0 0 0

BDI +1 +1 1 0 0

D 0 +1 0 0 0

DIII −1 +1 1 0 0

AII −1 0 0 0 0

CII −1 −1 1 0 0

C 0 −1 0 0 0

CI +1 −1 1 0 0

Real AZ† AI† 0 0 0 +1 0

BDI† 0 0 1 +1 +1

D† 0 0 0 0 +1

DIII† 0 0 1 -1 +1

AII† 0 0 0 -1 0

CII† 0 0 1 -1 -1

C† 0 0 0 0 −1

CI† 0 0 1 +1 −1

TABLE S2. AZ and AZ† symmetry classes for non-Hermitian Hamiltonians.

Let us now identify the independent 38-fold symmetry classes. As was shown in Ref.[36], we can divide the 38-fold
symmetry classes according to the number N ≤ 3 of their generators TRS, PHS, TRS† and PHS†. (i) For N=0, we
have 5 classes, which are classes A, AIII, A + S, AIII + S+, and AIII + S−. (ii) For N = 1, we have 6 classes, AI,
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AII, AI†, AII†, D, and C. (iii) For N = 2, there are 15 classes, BDI, DIII, CI, CII, BDI†, DIII†, CI†, CII†, AI + S±,
AII + S+, D + S±, and C + S±. (iv) For N = 3, we have 12 classes, BDI + S±±, DIII + S+±, CI + S±±, and
CII + S+±. Therefore, we have, in total, 5+6+15+12=38 classes. Here we have several remarks: First, AZ† + S
classes do not appear above because the combination between TRS† (PHS†) and SLS gives PHS (TRS) so they are
not independent of AZ + S classes. Second, AII + S− coincides with AI + S− by multiplying i to the Hamiltonian
and replacing the original TRS with the combination of TRS and SLS. In a similar manner, DIII + S−± and CII +
S−± are equal to BDI + S−± and CI + S−±, respectively. Thus, the above list does not include them.

Among these 38-fold symmetry classes, we have proved the BBC in point-gap topological phases for 10-fold AZ†

classes in Sec.S2. The AZ† symmetry classes correspond to A, AIII, AI†, BDI†, AI, DIII†, AII†, CII†, AII, and CI†

in the above 38 classes since one can identify D† and C† with AI and AII by multiplying the imaginary unit i to the
Hamiltonian. We argue below the BBC in point-gap topological phases for the remaining 28 symmetry classes.

S4.1. Classes without SLS

In the remaining 28 classes, 6 classes (BDI, D, DIII, CII, C, and CI) in Table S3 do not support SLS. We first
argue these classes in d = 1, 2, 3. In a manner similar to Sec.S2, on the basis of K-theory, we can prove the BBC by
constructing a model with a minimal topological number. Below we present such minimal models. Except for d = 1, 2
in class BDI and d = 1 in class D, the minimal model has the form of Eq.(S5), and for d = 1, 2 in class BDI and d = 1
in class D, the minimal model is either anti-Hermitian or Hermitian. Therefore, all the minimal models can avoid
skin effects, so have the common value of the point-gap topological numbers between OBC and PBC. Furthermore,
using the conventional BBC for Hermitian systems, each of these models has a boundary state, so we have the BBC.

AZ class d = 1 d = 2 d = 3

BDI Z2 [Sec.S4.1.1] Z [Sec.S4.1.1] 0

D Z2 [Sec.S4.1.2] Z2 [Sec.S4.1.2] Z [Sec.S4.1.2]

DIII 0 Z2 [Sec.S4.1.3] Z2 [Sec.S4.1.3]

CII 0 2Z [Sec.S4.1.4] 0

C 0 0 2Z [Sec.S4.1.5]

CI 0 0 0

TABLE S3. Point-gap topological phases in 6 classes without SLS. These classes do not show the skin effects, and thus the
classification under the OBCs coincides with that under the PBC. The section numbers for the proof of the classification under
OBCs and the BBC are shown for each topological number.

S4.1.1. class BDI

In class BDI, there exist nontrivial point-gap topological phases in d = 1, 2 [36]. For d = 1, the minimal model is

H(kx) = i (sin kxσx − cos kxσy) , (S40)

which has TRS and PHS of class BDI with T = σ0 and C = σ0. This model has a non-zero Z2 point-gap topological
number of BDI class in d = 1, which is defined by (−1)ν = sgn(Pf[H(π)C]/Pf[H(0)C]) [36]. Furthermore, as Eq.(S40)
is anti-Hermitian so does not show skin effects, this model has the same non-zero point-gap topological number under
OBC, which is defined by

η|OBC = dim ker(A− 1) mod. 2 (S41)

with

A = PF −Dax
PFDax

, Dax
(x̂) =

x̂− ax
|x̂− ax|

.

Here PF is the projection operator of the Hertmian Hamltonian iHT C∗ onto the its negative energy states, where H
is the real-space representation of H(kx), x̂ ∈ Z is the position operator in the real space lattice x, and ax ∈ R\Z
[126]. One can easily check that this model has a zero energy boundary state under OBC, so the BBC holds.
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For d = 2, the minimal model is

H(k) = i

sin kxσx + sin kyσz +

1−
∑
i=x,y

cos ki

σy

 , (S42)

with T = σ0 and C = σ0. The point-gap topological number in 2D class BDI is the first Chern number of the
Hermitian Hamiltonian iH(k)T C∗. For Eq. (S42), we have

iH(k)Γ = − sin kxσx − sin kyσz −

1−
∑
i=x,y

cos ki

σy, (S43)

which gives the first Chern number +1 ∈Z. This model does not show skin effects because of the anti-Hermiticity
and shows a chiral edge state closing the point gap at E = 0 under OBCs. Thus we have the BBC.

S4.1.2. class D

In class D, there exist nontrivial point-gap topological phases in d = 1, 2 and 3. For d = 1, the minimal model is

H(kx) = sin kxσx + cos kxσy, (S44)

which has PHS of class D with C = σ0. The point-gap topological number is given by

(−1)ν1[H] = sgn

{
Pf[H(π)C]
Pf[H(0)C] × exp

[
−1

2

∫ kx=π

kx=0

d log det[H(kx)C]
]}

, (S45)

which becomes non-trivial for Eq.(S44). This model is Hermitian and thus does not show skin effects. Therefore,
this model supports the same non-trivial point-gap topological number under OBC. Because the minimal model has
a boundary zero mode under OBC, we have the BBC.

For d = 2, the minimal model is

H(k) = sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0, C = σ0. (S46)

This model has the same form as Eq.(S5), and thus we can prove the BBC in a similar manner. The Z2 point-gap
topological number is defined by [36]

(−1)ν2[H] =
∏

X=I,II

sgn

{
Pf[H(kX+)C]
Pf[H(kX−)C]

× exp

[
−1

2

∫ k=kX+

k=kX−

d log det[H(k)C]
]}

, (S47)

where (kI+,kI−) and (kII+,kII−) are two pairs of particle-hole symmetric momenta.
For d = 3, the minimal model is

H(k) = sin kxσx + sin kyσz +

2−
∑

i=x,y,z

cos ki

σy − i sin kzσ0, C = σ0, (S48)

which also has the form of Eq.(S5). The point-gap topological number in 3D class D coincides with the winding
number for 3D class A, which takes +1 ∈ Z for Eq. (S48).

S4.1.3. class DIII

In class DIII, there exist nontrivial point-gap topological phases in d = 2, 3. For d = 2, the minimal model is

H(k) = sin kxτxσx +

1−
∑
i=x,y

cos ki

 τxσy + i sin kyτ0σ0, T = iτyσ0, C = τ0σ0. (S49)
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The point-gap topological number is the Kane-Male Z2 invariant for 2D class AII Hermitian matrix iH(k)T C∗ [36],
which is non-trivial for Eq. (S49). For d = 3, the minimal model is

H(k) = sin kxτxσx + sin kyτxσz +

2−
∑

i=x,y,z

cos ki

 τxσy + i sin kzτ0σ0, T = iτyσ0, C = τ0σ0. (S50)

The point-gap topological number under the full PBC is the Z2 invariant of the class AII Hermitian matrix iH(k)T C∗

[36], which is non-trivial for Eq. (S50). These models have the form of Eq.(S5), and thus we have the BBC.

S4.1.4. class CII

In class CII, there exist nontrivial point-gap topological phases in d = 2. For d = 2, the minimal model is

H(k) = τ0

sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0

 , (S51)

with T = iτyσz and C = iτyσ0. The point-gap topological number is the first Chern number of iH(k)T C∗. Since the
above model is a stacking of Eq. (S13), this model has the first Chern number +2 ∈ 2Z and the BBC holds.

S4.1.5. class C

In class C, there exists a non-trivial point-gap topological phase in d = 3. The minimal model is

H(k) = τ0

sin kxσx + sin kyσz +

1−
∑

i=x,y,z

cos ki

σy − i sin kzσ0

 , C = iτyσ0. (S52)

The point-gap topological number is equal to the 3D winding number in d = 3 class A. Since Eq. (S52) is a stacking
of Eq.(S11), the 3D winding number for Eq. (S52) takes +2 ∈ 2Z, and the BBC holds.

S4.1.6. class CI

The point gap topological phase is trivial for class CI in d = 1, 2, 3.

S4.2. Classes with SLS

So far, we have argued the BBC for point-gap topological phases in 16 classes, all of which do not support SLS.
Below we discuss the remaining 22 classes supporting SLS in Eq.(S39). See Table S4. Without loss of generality, we
choose S as µz ⊗ 1̂ such that H(k) takes the form of

H(k) =

(
0 h+(k)

h−(k) 0

)
, (S53)

where µi=x,y,z are the Pauli matrices, µ0 is the 2×2 identity matrix and 1̂ is an identity matrix acting on h±(k).
In a manner similar to the above, we prove the BBC by constructing models with minimal point-gap topological

numbers. To show the existence of boundary states for these models under OBCs, we use the following lemmas:

Lemma 1 Suppose h± is diagonalizable and [h+, h−] = 0, and let |ϕn⟩ be an eigenvector diagonalizing h+ and h−
simultaneously,

h±|ϕn⟩ = E±
n |ϕn⟩. (S54)
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Then, we obtain the eigenvectors and eigenenergies of H from those of h±,

H

(
c±n
√
E+

n |ϕn⟩
±c±n

√
E−

n |ϕn⟩

)
= ±

√
E+

n E
−
n

(
c±n
√
E+

n |ϕn⟩
±c±n

√
E−

n |ϕn⟩

)
, (S55)

where c±n is a constant.

Lemma 2 Suppose h−h+ is diagonalizable and h− has its inverse h−1
− , and let |ψn⟩ be an eigenvector of h−h+,

h−h+|ψn⟩ = λn|ψn⟩. (S56)

Then, we obtain the eigenvectors and eigenenergies of H as,

H

(√
λnh

−1
− |ψn⟩

±|ψn⟩

)
= ±

√
λn

(√
λnh

−1
− |ψn⟩

±|ψn⟩

)
. (S57)

These lemmas imply that if h± (h−h+) in the former (latter) lemma does not show skin effects and supports a
boundary state, then H also does. Here it should be noted that the commutation relation [h−, h+] = 0 and the
invertibility h−1

− may depend on the boundary condition. For instance, whereas eikx and e−ikx commute with each
other, their matrix representations under the OBC do not. The invertibility of eikx also depends on the boundary
condition because eikx has a zero mode under the OBC.

For a system satisfying the assumption for Lemma 2, we also have the following corollary.

Corollary 1 If h+ has a (right) zero eigenvalue, h+|ψ0⟩ = 0, then we have

H|Ψ1
0⟩ = 0, H|Ψ2

0⟩ = |Ψ1
0⟩, (S58)

with

|Ψ1
0⟩ =

(
0

|ψ0⟩

)
, |Ψ2

0⟩ =
(
h−1
− |ψ0⟩
0

)
. (S59)

The equation in Corollary implies that H has a 2× 2 Jordan block with zero eigenenergy

H|Ψi
0⟩ =

∑
j=1,2

|Ψj
0⟩Jji, J =

(
0 1

0 0

)
, (S60)

and thus it has an exceptional point. We use this result in Sec.S6.
Once we choose the basis in Eq.(S53), we only need to consider how AZ symmetries act on h±. For complex AZ +

S classes, we have 3 different situations:

a. H does not have any AZ symmetries, which corresponds to A + S. In this case, h± does not have any AZ
symmetries.

b. CS commutes with SLS, i.e. AIII + S+. Without loss of generality, we take

Γ = µ0 ⊗ γ (S61)

with γ a unitary operator acting on h±, which leads to

γh†±(k)γ
−1 = −h∓(k), γ2 = 1. (S62)

Therefore, h± does not have CS, but they are not independent.

c. CS anti-commutes with SLS, i.e. AIII + S−. Without loss of generality, we take

Γ = µx ⊗ γ (S63)

with γ a unitary operator acting on h±, which leads to

γh†±(k)γ
−1 = −h±(k), γ2 = 1. (S64)

Therefore, h± has its own CS, and they are independent.
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For real AZ + S classes, we have 4 different situations:

d. TRS (if exists) commutes with SLS, while PHS (if exists) anti-commutes with SLS: We can take generally

T = µ0 ⊗ T, C = µx ⊗ C, (S65)

where T and C are unitary operators acting on h±(k). In this basis, TRS and PHS in Eq.(S38) reduce to

Th∗±(k)T
−1 = h±(−k), TT ∗ = ±1,

ChT±(k)C
−1 = −h±(−k), CC∗ = ±1. (S66)

Therefore, h+(k) and h−(k) are independent and belong to the same real AZ class as H(k). We have 8 such
classes, AI + S+, BDI + S+−, D + S−, DIII + S+−, AII + S+, CII + S+−, C + S−, and CI + S+−.

e. TRS (if exists) anti-commutes with SLS, but PHS (if exists) commutes with SLS: Generally, we can take the
basis,

T = µx ⊗ T, C = µ0 ⊗ C, (S67)

which leads to

Th∗±(k)T
−1 = h∓(−k), TT ∗ = +1,

ChT±(k)C
−1 = −h∓(−k), CC∗ = ±1. (S68)

Thus, h± supports neither TRS nor PHS, but it retains the combination of TRS and PHS, i.e. CS. There are
5 such independent classes, AI + S−, BDI + S−+, D + S+, C + S+, and CI + S−+.

f. H has TRS and PHS both commuting with SLS: In this case, we can take the basis

T = µ0 ⊗ T, C = µ0 ⊗ C, (S69)

from which we have

Th∗±(k)T
−1 = h±(−k), TT ∗ = ±1,

ChT±(k)C
−1 = −h∓(−k), CC∗ = ±1. (S70)

Thus, h± may retain only TRS. (If H does not have TRS, h± has no symmetry.) We have 4 such independent
classes: BDI + S++, DIII + S++, CII + S++, and CI + S++.

g. H has TRS and PHS both anti-commuting with SLS: Taking the basis

T = µx ⊗ T, C = µx ⊗ C, (S71)

we have

Th∗±(k)T
−1 = h∓(−k), TT ∗ = ±1,

ChT±(k)C
−1 = −h±(−k), CC∗ = ±1, (S72)

so h± supports only PHS. We have such 2 independent classes: BDI + S−−, and CI + S−−.

Below, we construct the minimal models for these 22 classes.
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Case AZ class SLS d = 1 d = 2 d = 3

a A S Z⊕ Z → Z[1,−1] [Sec.S4.2.1] 0 Z⊕ Z [Sec.S4.2.1]

b AIII S+ Z [Sec.S4.2.2] 0 Z [Sec.S4.2.2]

c AIII S− 0 Z⊕ Z [Sec.S4.2.3] 0

d AI S+ Z⊕ Z → Z[1,−1] [Sec.S4.2.4] 0 0

BDI S+− Z2 ⊕ Z2 → Z2[1, 1] [Sec.S4.2.5] Z⊕ Z → Z[2, 0]⊕ Z[1,−1] [Sec.S4.2.5] 0

D S− Z2 ⊕ Z2 → Z2[1, 1] [Sec.S4.2.6] Z2 ⊕ Z2 → Z2[1, 1] [Sec.S4.2.6] Z⊕ Z → Z[2, 0]⊕ Z[1,−1] [Sec.S4.2.6]

DIII S+− 0 Z2 ⊕ Z2 [Sec.S4.2.7] Z2 ⊕ Z2 [Sec.S4.2.7]

AII S+ 2Z⊕ 2Z → 2Z[1,−1] [Sec.S4.2.8] 0 Z2 ⊕ Z2 [Sec.S4.2.8]

CII S+− 0 2Z⊕ 2Z [Sec.S4.2.9] 0

C S− 0 0 2Z⊕ 2Z [Sec.S4.2.10]

CI S+− 0 0 0

e AI S− Z → 0 [Sec.S4.2.12] 0 Z [Sec.S4.2.12]

BDI S−+ 0 Z [Sec.S4.2.13] 0

D S+ Z [Sec.S4.2.14] 0 Z [Sec.S4.2.14]

C S+ Z → 2Z [Sec.S4.2.15] 0 Z [Sec.S4.2.15]

CI S−+ 0 Z [Sec.S4.2.16] 0

f BDI S++ Z [Sec.S4.2.17] 0 0

DIII S++ 2Z [Sec.S4.2.18] 0 Z2 [Sec.S4.2.18]

CII S++ 2Z [Sec.S4.2.19] 0 Z2 [Sec.S4.2.19]

CI S++ Z → 2Z [Sec.S4.2.20] 0 0

g BDI S−− Z2 [Sec.S4.2.21] Z2 [Sec.S4.2.21] Z [Sec.S4.2.21]

CI S−− 0 0 2Z [Sec.S4.2.22]

TABLE S4. Point-gap topological phases in 22 classes with SLS. For topological numbers colored red or blue, the left specifies
topological numbers under PBCs and the right specifies those under OBCs. For topological numbers colored green, the
classification under OBCs coincides with those under PBCs. The section numbers for the proof of the classification under
OBCs and the BBC are shown for each topological number.

S4.2.1. class A + S (case a.)

This class has nontrivial point-gap topological phases in d = 1, 3. For d = 1, the point-gap topological number
under the PBC is a pair of the 1D winding numbers for h±(kx), (w1[h+], w1[h−]) ∈ Z⊕Z [36], where w1[h±] is given
by

w1[h±] =

∫ 2π

0

dkx
2πi

Tr[h−1
± ∂kx

h±]. (S73)

We also have the 1D winding number w1[H] of H(kx), w1[H] = w1[h+] +w1[h−], which gives skin effects. Therefore,
we have w1[h+] +w1[h−] = 0 under the OBC [62, 64]. As a result, under the OBC, the possible point-gap topological
number is (w1[h+],−w1[h+]) and the Z⊕ Z classification changes to the Z one. Here we use the notation Z[1,−1] to
represent the latter Z classification because its generator is given by the element (1,−1) ∈ Z⊕ Z of the former. (We
often use the same notation below.) The minimal model of this phase is

h+(kx) = −ieikx ,

h−(kx) = ie−ikx . (S74)

which has (+1,−1) ∈ Z⊕ Z. This model gives

H(kx) = sin kxµx + cos kxµy, S = µz, (S75)

which supports a boundary zero mode under the OBC. Thus, we have the BBC.
For d = 3, the classification of the point-gap topological phase is Z ⊕ Z, of which topological numbers are a pair

of the 3D winding numbers of h±(k), (w3[h+], w3[h−]) ∈ Z⊕ Z [36]. Thus, we have two generators, (1, 0) and (0, 1).
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The minimal model for the generator (1, 0) is

h+(k) = sin kxσx + sin kyσy +

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0,

h−(k) = σ0. (S76)

We also have the minimal model for another generator (0,+1) ∈ Z⊕ Z, by swapping h+(k) and h−(k) in Eq. (S76).
Under the xOBC, we have [h+, h−] = 0 and either h+ or h− supports boundary states. Thus we have the BBC.

S4.2.2. class AIII + S+ (case b.)

In this class, there exist nontrivial point-gap topological phases characterized by the winding numbers of h+ in
d = 1, 3. For d = 1, the minimal model is

h+(kx) = eikx ,

h−(kx) = −γh†+(kx)γ−1 = −e−ikx , (S77)

where γ = 1 and w1[h+] = +1 ∈ Z. From this, we have H(kx) = i(sin kxµx + cos kxµy) with S = µz and Γ = 1. This
model has a boundary state under the OBC, and thus we have the BBC.

For d = 3, we have the minimal model with γ = σ0 and w3[h+] = +1 ∈ Z as follows.

h+(k) = sin kxσx + sin kyσy +

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0,

h−(k) = −γh†+(k)γ−1 = − sin kxσx − sin kyσy −

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0. (S78)

Note that h+(k) concides with Eq.(S11) so h± has surface states under the xOBC. Thus, from [h+, h−] = 0, we have
the BBC.

S4.2.3. class AIII + S− (case c.)

In this class, h± has its own CS so belongs to class AIII. Thus, we have a Z ⊕ Z point-gap topological phase in
d = 2. A pair of the first Chern numbers for ih±(k)γ, (Ch1[ih+γ], Ch1[ih−γ])∈ Z ⊕ Z, is the point-gap topological
number[36]. Using the model in Eq. (S13), we obtain the minimal model with the topological number (+1, 0) ∈ Z⊕Z
as

h+(k) = sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0,

h−(k) = iσ0, γ = σz. (S79)

We also have another minimal model with topological number (0,+1) ∈ Z ⊕ Z by exchanging h+(k) and h−(k) in
Eq. (S79). In both cases, h+ and h− commute, and either h− or h− has a boundary state. Thus, the BBC holds.

S4.2.4. class AI + S+ (case d.)

In this class, h± belongs to class AI, and there is a Z ⊕ Z point-gap topological phase in d = 1. The point-gap
topological number under the PBC is a pair of the 1D winding number (w1[h+], w1[h−]), where w1[h±] is given by
Eq.(S73). In a manner similar to the d = 1 class A + S case, one can avoid skin effects only when w1[h+]+w1[h−] = 0,
so the point-gap topological phase under the OBC is classified as Z[1,−1]. The minimal model is

h+(kx) = eikx h−(kx) = e−ikx , T = 1. (S80)

This model gives H(kx) = cos kxµx − sin kxµy with T = µ0 and S = µz, which has a zero energy boundary state.
Thus we have the BBC.
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S4.2.5. class BDI + S+− (case d.)

In class BDI+S+−, h± belongs to class BDI, which has nontrivial point-gap topological phases in d = 1, 2. For d = 1,
the point-gap topological number under the PBC is a pair of the Z2 invariants for h±(kx), (ν[h+], ν[h−]) ∈ Z2 ⊕ Z2

[36],

(−1)ν1[h±] = sgn

{
Pf[h±(π)C]

Pf[h±(0)C]

}
, (S81)

which coincides with Eq. (S41) in OBCs. As the Hamiltonian H(kx) has TRS
† for class AII†,

TAII†H
T(kx)T −1

AII†
= H(−kx), TAII†T ∗

AII† = −1, (S82)

where TAII† is given by the combination of C and S, i.e. TAII† = SC = iµy ⊗C, we also have the Z2 number for H(kx)
in class AII†,

(−1)ν1[H] = sgn

{
Pf[H(π)CAII† ]

Pf[H(0)CAII† ]
× exp

[
−1

2

∫ kx=π

kx=0

d log det [H(kx)CAII† ]

]}
, (S83)

which satisfies ν1[H] = ν1[h+] + ν1[h−] (mod. 2). Since the Z2 number results in the symmetry-skin effect [64], we
have the condition ν1[h+] + ν1[h−] = 0 (mod.2) to avoid it. Therefore, the point-gap topological phase under OBC is
Z2[1, 1]. The minimal model is

h+(kx) = h−(kx) = i (sin kxσx − cos kxσy) , (S84)

which shows the BBC.
For d = 2, the point-gap topological phase is Z⊕ Z, which topological number is given by a pair of the first Chern

numbers, (Ch1[ih+γ], Ch1[ih−γ]) [36]. However, using the dimension reduction discussed in the main text, we have
the symmetry-protected skin effect when the first Chern number of iHΓ, Ch1[iHΓ] = Ch1[ih+γ] +Ch1[ih−γ] is odd.
Therefore, the point-gap topological phase becomes Z[1,−1]⊕ Z[2, 0] under OBCs.

Using Eq.(S42) for h±, we can construct the minimal model with the topological number (1,−1) as

h+(k) = −h−(k) = i

sin kxσx + sin kyσz +

1−
∑
i=x,y

cos ki

σy

 , C = T = σ0 (S85)

In a similar manner, another minimal model with the topological number (2, 0) is given by

h+(k) = iτ0

sin kxσx + sin kyσz +

1−
∑
i=x,y

cos ki

σy

 ,
h−(k) = iτyσ0, T = C = τ0σ0. (S86)

In both models, h+ and h− commute with each other and they have boundary states when their first Chern numbers
are non-zero. Therefore, the BBC holds.

S4.2.6. class D + S− (case d.)

In class D + S−, h± belongs to class D, which realizes non-trivial point-gap topological phases in d = 1, 2, 3. For
d = 1, h± supports the Z2 point-gap topological number ν1[h±] in Eq.(S45), and thus the classification under the
PBC is given by (ν1[h+], ν1[h−]) ∈ Z2 ⊕ Z2. Then, as H(k) has TRS† of class AII†,

TAII†H
T (k)T −1

AII†
= H(−k) (S87)

with TAII† = SC, we have the 1D Z2 number ν1[H] for the symmetry-protected skin effect, so we have the condition
ν1[H] = ν1[h+] + ν1[h−] = 0 (mod.2) to avoid the skin effects. As a result, the point-gap topological phase under the
OBC becomes Z2[1, 1]. From Eq.(S44), the minimal model is

h+(kx) = h−(kx) = sin kxσx + cos kxσy, C = σ0, (S88)
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which has (1, 1) ∈ Z2 ⊕ Z2. Since it supports a boundary state, we have the BBC.
For d = 2, the point-gap topological number under the PBC is a pair of (ν2[h+], ν2[h−]) in Eq. (S47) [36]. Then,

from TRS† in the above, the dimension reduction argument in the main text indicates that there arises the symmetry-
protected skin effect when ν2[h+] + ν2[h−] = 1 (mod.2). Hence, the topological classification under OBCs becomes
Z2[1, 1]. The minimal model with topological number (1, 1) is

h+(k) = h−(k) = sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0, C = σ0, (S89)

which shows the BBC.
In d = 3, a pair of the 3D winding numbers (w3[h+], w3[h−]) characterize the point-gap topological phase under

the PBC [36]. In a manner similar to the above, we have the symmetry-protected skin effect when w3[h+] + w3[h−]
is odd. Consequently, the classification under OBCs becomes Z[1,−1]⊕ Z[2, 0]. The minimal model with topological
number (1,−1) is

h+(k) = sin kxσx + sin kyσz +

2−
∑

i=x,y,z

cos ki

σy − i sin kzσ0,

h−(k) = sin kxσx + sin kyσz +

2−
∑

i=x,y,z

cos ki

σy + i sin kzσ0, C = σ0, (S90)

and the minimal model with topological number (2, 0) is

h+(k) = τ0

sin kxσx + sin kyσz +

2−
∑

i=x,y,z

cos ki

σy − i sin kzσ0

 ,

h−(k) = τyσ0, C = τ0σ0, (S91)

both of which show the BBC.

S4.2.7. class DIII + S+− (case d.)

The off-diagonal components h± belong to class DIII, so we have nontrivial point-gap topological phases in d = 2, 3.
Under the PBC, these phases are characterized by a pair of the Z2 invariants in d = 2, 3 class DIII [36] for h±(k).
For d = 2, the minimal model is

h+(k) = sin kxτxσx +

1−
∑
i=x,y

cos ki

 τxσy + i sin kyτ0σ0,

h−(k) = iτyσz, T = iτyσ0, C = τ0σ0, (S92)

which takes (1, 0) ∈ Z2 ⊕Z2. We can also construct another minimal model with topological number (0, 1) ∈ Z2 ⊕Z2

by exchanging h+(k) and h−(k) in Eq. (S92). Since h+ in Eq.(S92) has a boundary state and commutes with h−, we
have the BBC.

Similarly, for d = 3, the minimal model with topological number (1, 0) is

h+(k) = sin kxτxσx + sin kyτxσz +

2−
∑

i=x,y,z

cos ki

 τxσy + i sin kzτ0σ0,

h−(k) = iτyσ0, T = iτyσ0, C = τ0σ0, (S93)

We also have another minimal model with topological number (0, 1) by swapping h+(k) and h−(k) in Eq. (S93). Both
models show the BBC from Lemma 2.
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S4.2.8. class AII + S+ (case d.)

Since h± belongs to class AII, there are nontrivial point-gap topological phases in d = 1, 3. For d = 1, the
point-gap topological phase is 2Z⊕ 2Z [36], which topological number is given by a pair of the 1D winding numbers
w1[h±]. To avoid skin effects, the 1D winding number w1[H] of H should vanish, so we have the condition w1[H] =
w1[h+] + w1[h−] = 0. Thus, the classification under the OBC is 2Z[1,−1]. The minimal model is

h+(kx) = ieikxσy, h−(kx) = −ie−ikxσy, T = iσy, (S94)

which has (+2,−2) ∈ 2Z⊕ 2Z and shows the BBC.

For d = 3, the point-gap topological number under the PBC is a pair of the Z2 invariants in class AII [36] for h±(k).
We have the minimal model with (1, 0) ∈ Z2 ⊕ Z2,

h+(kx) = i

sin kxτxσx + sin kyτxσy +

2−
∑

i=x,y,z

cos ki

 τ0σz

− sin kzτzσz,

h−(kx) = τ0σ0, T = iτzσy. (S95)

We can obtain another minimal model with topological number (0, 1) by exchanging h+(k) and h−(k) in Eq. (S95).
From them, the BBC holds.

S4.2.9. class CII + S+− (case d.)

In class CII + S+−, h± belongs to class CII, so there exist nontrivial point-gap topological phases in d = 2. The
point-gap topological number is a pair of the first Chern numbers (Ch1[ih+TC

∗], Ch1[ih−TC
∗]) ∈ 2Z ⊕ 2Z. The

minimal model with topological number (2, 0) is

h+(k) = τ0

sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0

 ,
h−(k) = iτyσ0, T = iτyσz, C = iτyσ0, (S96)

and another one with topological number (0, 2) is obtained by switching h+(k) and h−(k) in Eq. (S96). From them,
we have the BBC.

S4.2.10. class C + S− (case d.)

h± belongs to class C, and we have nontrivial point-gap topological phases in d = 3. A pair of the 3D winding
numbers (w3[h+], w3[h−]) ∈ 2Z⊕ 2Z characterize the point-gap topological phases under the PBC [36]. The minimal
model with topological number (2.0) is

h+(k) = τ0

sin kxσx + sin kyσz +

2−
∑

i=x,y,z

cos ki

σy − i sin kzσ0

 , (S97)

h−(k) = iτyσ0, C = iτyσ0, (S98)

and we also have aother minimal model with (0,+2) ∈ 2Z⊕ 2Z similarly. These models show the BBC.

S4.2.11. class CI + S+− (case d.)

Since the point gap topological phases are trivial for class CI in d = 1, 2, 3, so are also for this class.
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S4.2.12. class AI + S− (case e.)

In this class, h+ belongs to class A, and TRS exchanges h+ and h−. Thus, we have nontrivial point-gap topological
phases in d = 1, 3 under the PBC. For d = 1, the corresponding point-gap topological number is the 1D winding
number w1[h+] for h+(kx) [36]. We can also define the 1D winding number w1[H] for H(kx), which satisfies w1[H] =
w1[h+] + w1[h−], where w1[h−] is the 1D winding number for h−. Then, from h−(kx) = Th∗+(−kx)T−1, we have
w1[h+] = w1[h−]. Thus, to avoid skin effect, we need w1[h+] = 0, which implies no point-gap topological phase
survives under the OBC.

For d = 3, we have a nontrivial point-gap topological phase under the OBC. The minimal model is

h+(k) = sin kxσx + sin kyσy +

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0,

h−(k) = Th∗+(−k)T−1 = − sin kxσx − sin kyσy −

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0, (S99)

where T = σx. As h± has a boundary state and [h+, h−] = 0, the BBC holds.

S4.2.13. class BDI + S−+ (case e.)

In class BDI + S−+, h+(k) has CS, γh
†
+(k)γ

† = −h+(k) with γ = TC∗, and TRS and PHS exchange h+ and h−.
So h+ belongs to class AIII. Thus, we have a non-trivial point-gap topological phase in d = 2. The Chern number for
ih+(k)γ characterizes the point-gap topological phase[36]. The minimal model is

h+(k) = sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0,

h−(k) = Th∗+(−k)T−1 = −ChT+(−k)C−1 = sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0, (S100)

with T = γ = σz, C = σ0. h+ and h− in the minimal model commute and they support boundary states. Thus, we
have the BBC.

S4.2.14. class D + S+ (case e.)

In this class, h+(k) belongs to class A and PHS exchanges h+ and h−. The system has non-trivial topological phases
in d = 1, 3. For d = 1, the corresponding point-gap topological number under the PBC is the 1D winding number
w1[h+] ∈ Z for h+(kx). We can also consider the 1D winding number w1[H] for H(kx), w1[H] = w1[h+] + w1[h−],
where w1[h−] is the 1D winding number for h−(kx). However, the relation h−(kx) = −ChT+(−kx)C−1 leads w1[h+] =
−w1[h−], so w1[H] always vanishes. Thus, no skin effect occurs. The minimal model with w1[h+] = 1 is

h+(kx) = eikx , h−(kx) = −ChT+(−kx)C−1 = −e−ikx , (S101)

where C = 1. This model gives H(kx) = i(sin kxµx + cos kxµy), which supports a boundary state. Thus the BBC
holds.

In d = 3, the point-gap topological number is the 3D winding number w3[h+] ∈ Z. The minimal model is

h+(k) = sin kxσx + sin kyσy +

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0,

h−(k) = −ChT+(−k)C−1 = sin kxσx + sin kyσy +

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0, (S102)

where C = σx and w3[h+] = +1. This model shows the BBC.
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S4.2.15. class C + S+ (case e.)

For this class, h+(k) belongs to class A, and PHS exchanges h+ and h−. Thus, point-gap topological phases under
the PBC are Z in d = 1, 3. For d = 1, the point-gap topological number is the 1D winding number w1[h+] for h+(kx).
Because H(k) has TRS for class AII†, TAII†H

T (k)T −1
AII†

= H(−k) with TAII† = SC, we also have the 1D Z2 number
ν1[H] responsible for the symmetry-protected skin effect. From the straightforward calculation, we can show that
ν1[H] = w1[h+] (mod.2), thus only the even part of w1[h+] survives under the OBC. Thus, the classification under
the OBC becomes 2Z. The minimal model with w1[h+] = 2 is

h+(kx) = eikxσ0, h−(kx) = −ChT+(−kx)C−1 = −e−ikxσ0, (S103)

with C = iσy. This model gives H(kx) = i(sin kxµx + cos kxµy)σ0, which support a boundary state. Thus, we have
the BBC.

For d = 3, the point-gap topological number is the 3D winding number w3[h+] ∈ Z for h+. Whereas H(k) has
TRS for class AII† in the above, the 3D winding number w3[H] of H takes an even number because H(k) has PHS
for class C at the same time. Therefore, no symmetry-protected skin effect occurs by the dimensional reduction. The
minimal model with w3[h+] = 1 is

h+(k) =
τ0 + τz

2

sin kxσx + sin kyσy +

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0

+
τ0 − τz

2
σ0,

h−(k) = −ChT+(−k)C−1 =
τ0 − τz

2

− sin kxσx − sin kyσy +

2−
∑

i=x,y,z

cos ki

σz + i sin kzσ0

− τ0 + τz
2

σ0,

(S104)

where C = iτxσy. Note that h± is block-diagonal and one of the blocks has the form of Eq.(S11). Therefore, h± has
a boundary state under the xOBC. Furthermore, we have [h+, h−] = 0 under the xOBC, so the BBC holds.

S4.2.16. class CI + S−+ (case e.)

In class CI + S−+, h+(k) belongs to class AIII, and thus the system has a Z point-gap topological phase in d = 2.
The corresponding point-gap topological number is the first Chern number for ih+(k)γ [36]. The minimal model with
Ch1[ih+γ] = 1 is

h+(k) =
τ0 + τz

2

sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0

+
τ0 − τz

2
iσ0,

h−(k) = Th∗+(−k)T−1 = −ChT+(−k)C−1 =
τ0 − τz

2

− sin kxσx +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0

− τ0 + τz
2

iσ0,

(S105)

where T = τxσx, C = τxσy, γ = iTC∗ = τ0σz. This model show the BBC.

S4.2.17. class BDI + S++ (case f.)

In class BDI + S++, h+(k) belongs to class AI and there exist nontrivial point-gap topological phases in d = 1.
The minimal model is the same as Eq. (S77) with T = C = γ = 1.

S4.2.18. class DIII + S++ (case f.)

For this class, h+(k) belongs to class AII and nontrivial point-gap topological phases exist in d = 1, 3. For d = 1,
the minimal model is

h+(kx) = eikxσ0, h−(kx) = −ChT+(−kx)C−1 = −γh†+(kx)γ−1 = −e−ikxσ0, (S106)
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where T = iσy, C = σ0 and γ = σ0. This model has w1[h+] = 2 ∈ 2Z, and shows the BBC.
For d = 3, the minimal model is

h+(k) = i

sin kxτxσx + sin kyτxσy +

2−
∑

i=x,y,z

cos ki

 τ0σz

+ sin kzτzσz,

h−(k) = −ChT+(−k)C−1 = −γh†+(k)γ−1 = i

sin kxτxσx + sin kyτxσy +

2−
∑

i=x,y,z

cos ki

 τ0σz

+ sin kzτzσz,

(S107)

where T = iτzσy, C = τxσx and γ = τyσz. This model hosts the 3D non-trivial Z2 number ν3[h+] in class AII. Because
h+ and h− commute and support boundary states, the BBC holds.

S4.2.19. class CII + S++ (case f.)

In this class, h+(k) belongs to class AII and nontrivial point-gap topological phases exist in d = 1, 3. For d = 1,
the point-gap topological number is the 1D winding number w1[h+] ∈ 2Z and the minimal model is the same as
Eq. (S106) with T = C = iσy, γ = σ0. For d = 3, the point-gap topological number is the 3D Z2 number ν3[h+] for
class AII [36], and the minimal model with ν3[H] = 1 is

h+(k) = i

sin kxτxσx + sin kyτxσy +

2−
∑

i=x,y,z

cos ki

 τ0σz

+ sin kzτzσz,

h−(k) = −ChT+(−k)C−1 = −γh†+(k)γ−1 = i

sin kxτxσx + sin kyτxσy +

2−
∑

i=x,y,z

cos ki

 τ0σz

− sin kzτzσz,

(S108)

where T = C = iτzσy and γ = τ0σ0. Since h± supports a boundary state and [h+, h−] = 0 under the xOBC. Thus
the BBC holds.

S4.2.20. class CI + S++ (case f.)

In this class, h+(k) belongs to class AI and there exists a Z point-gap topological phase in d = 1. In a similar
manner to C+ S+, H(k) has TRS† for class AII†, thus the odd parity of w1[h+] causes the symmetry-protected skin
effect, and the topological classification changes from Z to 2Z under the OBC. The minimal model with w1[h+] = 2
is

h+(kx) = eikxσ0, h−(kx) = −ChT+(−kx)C−1 = −γh†+(kx)γ−1 = −e−ikxσ0, (S109)

where T = σ0, C = iσy and γ = σy. This model shows the BBC.

S4.2.21. class BDI + S−− (case g.)

In this class, h±(k) belongs to class D, and there exist point-gap topological phases in d = 1, 2, 3. For d = 1, the
point-gap topological number is the 1D Z2 number ν1[h+],

(−1)ν1[h+] = sgn

{
Pf[h+(π)C]

Pf[h+(0)C]
× exp

[
−1

2

∫ kx=π

kx=0

d log det[h+(kx)C]

]}
. (S110)

The minimal model is

h+(kx) = sin kxσx + cos kxσy, h−(kx) = Th∗+(−kx)T−1 = −γh†+(kx)γ−1 = − sin kxσx − cos kxσy, (S111)
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with C = T = σ0, and we have the BBC.
For d = 2, the point-gap topological number is the 2D Z2 number ν2[h+],

(−1)ν2[h+] =
∏

X=I,II

sgn

{
Pf[h+(kX+)C]

Pf[h+(kX−)C]
× exp

[
−1

2

∫ k=kX+

k=kX−

d log det[h+(k)C]

]}
, (S112)

where (kI+,kI−) and (kII+,kII−) are two pairs of particle-hole symmetric momenta. The minimal model is

h+(k) = sin kxσx + sin kyσz +

1−
∑
i=x,y

cos ki

σy + i sin kyσ0,

h−(k) = Th∗+(−k)T−1 = −γh†+(k)γ−1 = − sin kxσx − sin kyσz −

1−
∑
i=x,y

cos ki

σy + i sin kyσ0, (S113)

with C = T = σ0. Since h± supports a boundary state and [h+, h−] = 0 under the xOBC, we have the BBC.
For d = 3, the point-gap topological number is the 3D winding number w3[h+] ∈ Z for h+. The minimal model is

h+(k) = sin kxσx + sin kyσz +

2−
∑

i=x,y,z

cos ki

σy − i sin kzσ0,

h−(k) = Th∗+(−k)T−1 = −γh†+(k)γ−1 = − sin kxσx − sin kyσz −

2−
∑

i=x,y,z

cos ki

σy − i sin kzσ0, (S114)

with C = T = σ0, which also shows the BBC.

S4.2.22. class CI + S−− (case g.)

In this class, h+(k) belongs to class C, and there exists a 2Z point-gap topological phase in d = 3. The point-gap
topological number is the 3D winding number w3[h+] for h+. The minimal model is

h+(k) = τ0

sin kxσx + sin kyσz +

1−
∑

i=x,y,z

cos ki

σy − i sin kzσ0

 ,
h−(k) = Th∗+(−k)T−1 = −γh†+(k)γ−1 = −τ0

sin kxσx + sin kyσz +

1−
∑

i=x,y,z

cos ki

σy + i sin kzσ0

 , (S115)

with T = τ0σ0 and C = iτyσ0. Since h± supports a boundary state and [h+, h−] = 0 under the xOBC, we have the
BBC.
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S5. CLASSIFICATION TABLES FOR POINT-GAP TOPOLOGICAL PHASES

In the previous section, we have completed the proof of the BBC for point-gap topological phases in 38 classes. In
this section, we present classification tables in a more convenient form and summarize how the point-gap topological
phases change between the PBC and the OBC. As an additional symmetry, we introduce here pseudo-hermiticity
defined by

ηH†(k)η−1 = H(k), η2 = 1, (S116)

with a unitary matrix η. Since pseudo-hermiticity is equivalent to CS by multiplying the Hamiltonian by i, it does not
change the classification. However, pseudo-hermiticity serves as a key internal symmetry in non-Hermitian physics,
so its inclusion is convenient for application.

To obtain classification tables, we use the equivalence relations between classes. Tables S5, S6 and S7 summarize
the equivalent relations between classes. Combining these tables with the results in Tables S3 and S4, we obtain the
classification tables in Tables S8, S9 and S10.

AZ class S− S−+ S−−

AI AII + S−

BDI DIII + S−+ DIII + S−−

CI CII + S−+ CII + S−−

TABLE S5. Equivalence among the real AZ symmetry classes with SLS. The subscript of S± specifies the commutation (+)
or anti-commutation (-) relation to TRS or PHS in the real AZ class. For S±±, the first subscript specifies the relation to TRS
and the second specifies the relation to PHS.

AZ† class S+ S− S++ S+− S−+ S−−

AI† D + S+ C + S−

BDI† BDI + S++ DIII + S−+ CI + S+− CII + S−−

D† AI + S+ AII + S−

DIII† CI + S++ CII + S−+ BDI + S+− DIII + S−−

AII† C + S+ D + S−

CII† CII + S++ CI + S−+ DIII + S+− BDI + S−−

C† AII + S+ AI + S−

CI† DIII + S++ BDI + S−+ CII + S+− CI + S−−

TABLE S6. Equivalence between the real AZ† symmetry class with SLS and the real AZ symmetry class with SLS [36]. The
subscript of S± specifies the commutation (+) or anti-commutation (-) relation to TRS/TRS† or PHS/PHS†. For S±±, the
first subscript specifies the relation to TRS/TRS† and the second specifies the relation to PHS/PHS†.
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Sym. class η η+ η− η++ η+− η−+ η−−

A AIII

AIII AIII + S+ AIII + S−

AI BDI† DIII†

BDI BDI + S++ BDI + S−+ BDI + S+− BDI + S−−

D BDI DIII

DIII DIII + S−− DIII + S+− DIII + S−+ DIII + S++

AII CII† CI†

CII CII + S++ CII + S−+ CII + S+− CII + S−−

C CII CI

CI CI + S−− CI + S+− CI + S−+ CI + S++

AI† BDI DIII

BDI† BDI† + S++ BDI† + S−+ BDI† + S+− BDI† + S−−

D† BDI† DIII†

DIII† DIII† + S−− DIII† + S+− DIII† + S−+ DIII† + S++

AII† CII CI

CII† CII† + S++ CII† + S−+ CII† + S+− CII† + S−−

C† CII† CI†

CI† CI† + S−− CI† + S+− CI† + S−+ CI† + S++

TABLE S7. Equivalence between the AZ/AZ† symmetry class with pseudo-Hermiticity and those with SLS [36]. The subscript
of η±/S± specifies the commutation (+) or anti-commutation (-) relation to TRS/TRS† or PHS/PHS†. For η±±/S±±, the first
subscript specifies the relation to TRS/TRS† and the second specifies the relation to PHS/PHS†.

AZ class Add. sym. d = 1 d = 2 d = 3

A - Z → 0 0 Z
AIII - 0 Z 0

A S Z⊕ Z → Z[1,−1] 0 Z⊕ Z
AIII S−, η− 0 Z⊕ Z 0

A η 0 Z 0

AIII S+, η+ Z 0 Z

TABLE S8. Classification of point-gap topological phases in the complex AZ classes without or with SLS or pseudo-Hermiticity.
The subscript of S±/η± specifies the commutation (+) or anti-commutation (-) relation to CS. For the topological numbers
colored red or blue, the classification under OBCs changes from that under PBCs, where the left specifies the classification
under PBCs and the right specifies that under OBCs. The topological number Z[i, j] under OBCs indicates the abelian group
Z generated by the element (i, j) ∈ Z ⊕ Z under PBCs. For the topological numbers colored green, the classification under
OBCs coincides with that under PBCs.
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AZ class Add. sym. d = 1 d = 2 d = 3

AI - Z → 0 0 0

BDI - Z2 Z 0

D - Z2 Z2 Z
DIII - 0 Z2 Z2

AII - 2Z → 0 0 Z2

CII - 0 2Z 0

C - 0 0 2Z
CI - 0 0 0

AI S+ Z⊕ Z → Z[1,−1] 0 0

BDI S+−, η−+ Z2 ⊕ Z2 → Z2[1, 1] Z⊕ Z → Z[2, 0]⊕ Z[1,−1] 0

D S− Z2 ⊕ Z2 → Z2[1, 1] Z2 ⊕ Z2 → Z2[1, 1] Z⊕ Z → Z[2, 0]⊕ Z[1,−1]

DIII S+−, η+− 0 Z2 ⊕ Z2 Z2 ⊕ Z2

AII S+ 2Z⊕ 2Z → 2Z[1,−1] 0 Z2 ⊕ Z2

CII S+−, η−+ 0 2Z⊕ 2Z 0

C S− 0 0 2Z⊕ 2Z
CI S+−, η+− 0 0 0

AI S− Z → 0 0 Z
BDI S−+, η+− 0 Z 0

D S+ Z 0 Z
DIII S−+, η−+ 0 Z 0

AII S− Z → 0 0 Z
CII S−+, η+− 0 Z 0

C S+ Z → 2Z 0 Z
CI S−+, η−+ 0 Z 0

AI η+ 0 0 0

BDI S++, η++ Z 0 0

D η+ Z2 Z 0

DIII S−−, η++ Z2 Z2 Z
AII η+ 0 Z2 Z2

CII S++, η++ 2Z 0 Z2

C η+ 0 2Z 0

CI S−−, η++ 0 0 2Z
AI η− Z2 → 0 Z → 2Z 0

BDI S−−, η−− Z2 Z2 Z
D η− 0 Z2 Z2

DIII S++, η−− 2Z 0 Z2

AII η− 0 2Z 0

CII S−−, η−− 0 0 2Z
C η− 0 0 0

CI S++, η−− Z → 2Z 0 0

TABLE S9. Classification of point-gap topological phases in the real AZ classes without or with SLS or pseudo-Hermiticity.
The subscript of S±/η± specifies the commutation (+) or anti-commutation (-) relation to TRS or PHS. For S±±/η±±, the
first subscript specifies the relation to TRS and the second specifies the relation to PHS. For the topological numbers colored
red or blue, the classification under OBCs changes from that under PBCs, where the left specifies the classification under PBCs
and the right specifies that under OBCs. The topological number Z[i, j] (Z2[i, j]) under OBCs indicates the abelian group Z
(Z2) generated by the element (i, j) ∈ Z ⊕ Z ((i, j) ∈ Z2 ⊕ Z2) under PBCs. For the topological numbers colored green, the
classification under OBCs coincides with that under PBCs.



35

AZ† class Add. sym. d = 1 d = 2 d = 3

AI† - 0 0 2Z
BDI† - 0 0 0

D† - Z → 0 0 0

DIII† - Z2 → 0 Z → 2Z 0

AII† - Z2 → 0 Z2 → 0 Z → 2Z
CII† - 0 Z2 Z2

C† - 2Z → 0 0 Z2

CI† - 0 2Z 0

AI† S+ Z 0 Z
BDI† S+−, η−+ 0 Z 0

D† S− Z → 0 0 Z
DIII† S+−, η+− 0 Z 0

AII† S+ Z → 2Z 0 Z
CII† S+−, η−+ 0 Z 0

C† S− Z → 0 0 Z
CI† S+−, η+− 0 Z 0

AI† S− 0 0 2Z⊕ 2Z
BDI† S−+, η+− 0 0 0

D† S+ Z⊕ Z → Z[1,−1] 0 0

DIII† S−+, η−+ Z2 ⊕ Z2 → Z2[1, 1] Z⊕ Z → Z[2, 0]⊕ Z[1,−1] 0

AII† S− Z2 ⊕ Z2 → Z2[1, 1] Z2 ⊕ Z2 → Z2[1, 1] Z⊕ Z → Z[2, 0]⊕ Z[1,−1]

CII† S−+, η+− 0 Z2 ⊕ Z2 Z2 ⊕ Z2

C† S+ 2Z⊕ 2Z → 2Z[1,−1] 0 Z2 ⊕ Z2

CI† S−+, η−+ 0 2Z⊕ 2Z 0

AI† η+ Z2 Z 0

BDI† S++, η++ Z 0 0

D† η+ 0 0 0

DIII† S−−, η++ Z2 Z2 Z
AII† η+ 0 2Z 0

CII† S++, η++ 2Z 0 Z2

C† η+ 0 Z2 Z2

CI† S−−, η++ 0 0 2Z
AI† η− 0 Z2 Z2

BDI† S−−, η−− 0 0 2Z
D† η− Z2 → 0 Z → 2Z 0

DIII† S++, η−− Z → 2Z 0 0

AII† η− 0 0 0

CII† S−−, η−− Z2 Z2 Z
C† η− 0 2Z 0

CI† S++, η−− 2Z 0 Z2

TABLE S10. Classification of point-gap topological phases in the real AZ† classes without or with SLS or pseudo-Hermiticity.
The subscript of S±/η± specifies the commutation (+) or anti-commutation (-) relation to TRS† or PHS†. For S±±/η±±, the
first subscript specifies the relation to TRS† and the second specifies the relation to PHS†. For the topological numbers colored
red or blue, the classification under OBCs changes from that under PBCs, where the left specifies the classification under PBCs
and the right specifies that under OBCs. The topological number Z[i, j] (Z2[i, j]) under OBCs indicates the abelian group Z
(Z2) generated by the element (i, j) ∈ Z ⊕ Z ((i, j) ∈ Z2 ⊕ Z2) under PBCs. For the topological numbers colored green, the
classification under OBCs coincides with that under PBCs.
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S6. INTRINSIC POINT-GAP TOPOLOGICAL PHASES

As discussed in Ref.[64], there exist two types of point-gap topological phases: One is those smoothly connected to
conventional Hermitian (or anti-Hermitan) topological phases without point-gap closing, and the other is not. The
latter is called intrinsic point-gap topological phases. Comparing Tables S7, S8, and S9 in Ref.[64] for intrinsic point-
gap topological phases with Tables S8, S9 and S10 in the above, we can predict which intrinsic point-gap topological
phases result in boundary states. We summarize the results in Tables S11, S12 and S13. Here the superscripts ”SE”
and ”BS” of the topological numbers indicate the skin effect and the boundary state, respectively: If the ZSE or ZSE

2

(ZBS or ZBS
2 ) topological number is nonzero, we have skin effects (boundary states) in the corresponding intrinsic

point-gap topological phase.
A remarkable feature of intrinsic point-gap topological phases is that boundary states can avoid the doubling

theorem in Ref.[136] and have a single exceptional point on a boundary. Whereas such a surface state has been known
to appear in an exceptional topological insulator [76], the exact condition for the appearance has not been specified
before. Here we would like to point out that the presence of an intrinsic topological phase is necessary for such a
boundary state with a single exceptional point: If the system is not in an intrinsic point-gap topological phase, it
is smoothly deformable to a Hermitian or an anti-Hermitian one without point-gap closing. Therefore, even if the
system supports exceptional points, the exceptional points should appear in a pair. Otherwise, the exceptional points
can not disappear because they have their own topological numbers [45], which contradicts the fact that the system
is topologically equivalent to a Hermitian (or anit-Hermitian) one where no exceptional point exists. Actually, the
exceptional topological insulator in Ref.[76] has the intrinsic point-gap topological number in 3D class A (see Table
S11), which is the 3D winding number w3 = 1. In Figs. S4 and S5, we show another examples of such exceptional
boundary states. In both cases, the presence of exceptional points immediately follows from Corollary 1. In Fig.S4,
we consider the 3D class A + S model in Eq.(S76). As discussed in Sec.S4.2.1, a pair of the 3D winding numbers
(w3[h+], w3[h−]) ∈ Z ⊕ Z characterizes the point-gap topological phase in this class, and the topological number of
this model is (1, 0). According to Table S4 in Ref.[64], this number realizes an intrinsic point-gap topological phase,
which is consistent with the presence of an exceptional point in Fig.S4. In a similar manner, we can check that the
2D class AIII + S− model in Eq.(S79) realizes an intrinsic point-gap topological phase, which is also consistent with
the presence of an exceptional point in Fig.S5.
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FIG. S4. The energy spectra of the 3D class A + S model in Eq. (S76). The system sizes are Lx = 30, Ly = Lz = 60. This
model has an intrinsic point-gap topological number and its boundary state hosts an exceptional point.

FIG. S5. The energy spectra of the 2D class AIII + S− model in Eq. (S79). The system sizes are Lx = Ly = 100. This model
has an intrinsic point-gap topological number and its boundary state hosts an exceptional point.

AZ class Add. sym. d = 1 d = 2 d = 3

A - ZSE 0 ZBS

AIII - 0 0 0

A S ZSE 0 ZBS

AIII S−, η− 0 ZBS
2 0

A η 0 0 0

AIII S+, η+ 0 0 0

TABLE S11. Classification of intrinsic point-gap topological phases for complex AZ classes without or with SLS or pseudo-
Hermiticity. The subscript of S±/η± specifies the commutation (+) or anti-commutation (-) relation to CS. The topological
numbers colored red (green) result in non-Hermitian skin effects (boundary states).
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AZ class Add. sym. d = 1 d = 2 d = 3

AI - ZSE 0 0

BDI - 0 0 0

D - 0 0 ZBS

DIII - 0 0 0

AII - 2ZSE 0 0

CII - 0 0 0

C - 0 0 2ZBS

CI - 0 0 0

AI S+ ZSE 0 0

BDI S+−, η−+ ZSE
2 ZSE

2 0

D S− ZSE
2 ZSE

2

(2Z+ 1)SE

2ZBS

DIII S+−, η+− 0 ZBS
2 ZBS

2

AII S+ ZSE 0 ZBS
2

CII S+−, η−+ 0 ZBS
2 0

C S− 0 0 ZBS

CI S+−, η+− 0 0 0

AI S− ZSE 0 0

BDI S−+, η+− 0 0 0

D S+ 0 0 ZBS

DIII S−+, η−+ 0 0 0

AII S− ZSE 0 0

CII S−+, η+− 0 ZBS
2 0

C S+ ZSE
2 0 ZBS

CI S−+, η−+ 0 ZBS
2 0

AI η+ 0 0 0

BDI S++, η++ 0 0 0

D η+ 0 0 0

DIII S−−, η++ 0 0 0

AII η+ 0 0 0

CII S++, η++ 0 0 0

C η+ 0 0 0

CI S−−, η++ 0 0 0

AI η− ZSE
2 ZSE

2 0

BDI S−−, η−− 0 0 0

D η− 0 0 0

DIII S++, η−− 0 0 0

AII η− 0 0 0

CII S−−, η−− 0 0 0

C η− 0 0 0

CI S++, η−− ZSE
2 0 0

TABLE S12. Classification of intrinsic point-gap topo-
logical phases for real AZ classes without or with SLS
or pseudo-Hermiticity. The subscript of S±/η± specifies
the commutation (+) or anti-commutation (-) relation to
TRS or PHS. For S±±/η±±, the first subscript specifies
the relation to TRS and the second one specifies the rela-
tion to PHS. The topological numbers colored red (green)
result in non-Hermitian skin effects (boundary states).

AZ† class Add. sym. d = 1 d = 2 d = 3

AI† - 0 0 2ZBS

BDI† - 0 0 0

D† - ZSE 0 0

DIII† - ZSE
2 ZSE

2 0

AII† - ZSE
2 ZSE

2

(2Z+ 1)SE

2ZBS

CII† - 0 0 0

C† - 2ZSE 0 0

CI† - 0 0 0

AI† S+ 0 0 ZBS

BDI† S+−, η−+ 0 0 0

D† S− ZSE 0 0

DIII† S+−, η+− 0 ZBS
2 0

AII† S+ ZSE
2 0 ZBS

CII† S+−, η−+ 0 ZBS
2 0

C† S− ZSE 0 0

CI† S+−, η+− 0 0 0

AI† S− 0 0 ZBS

BDI† S−+, η+− 0 0 0

D† S+ ZSE 0 0

DIII† S−+, η−+ ZSE
2 ZSE

2 0

AII† S− ZSE
2 ZSE

2

(2Z+ 1)SE

2ZBS

CII† S−+, η+− 0 ZBS
2 ZBS

2

C† S+ ZSE 0 ZBS
2

CI† S−+, η−+ 0 ZBS
2 0

AI† η+ 0 0 0

BDI† S++, η++ 0 0 0

D† η+ 0 0 0

DIII† S−−, η++ 0 0 0

AII† η+ 0 0 0

CII† S++, η++ 0 0 0

C† η+ 0 0 0

CI† S−−, η++ 0 0 0

AI† η− 0 0 0

BDI† S−−, η−− 0 0 0

D† η− ZSE
2 ZSE

2 0

DIII† S++, η−− ZSE
2 0 0

AII† η− 0 0 0

CII† S−−, η−− 0 0 0

C† η− 0 0 0

CI† S++, η−− 0 0 0

TABLE S13. Classification of intrinsic point-gap topo-
logical phases for real AZ† classes without or with SLS
or pseudo-Hermiticity. The subscript of S±/η± specifies
the commutation (+) or anti-commutation (-) relation to
TRS† or PHS†. For S±±/η±±, the first subscript spec-
ifies the relation to TRS† and the second one specifies
the relation to PHS†. The topological numbers colored
red (green) result in non-Hermitian skin effects (bound-
ary states).
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