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In cove-edged zigzag graphene nanoribbons (ZGNR-Cs), one terminal CH group per length unit
is removed on each zigzag edge, forming a regular pattern of coves that controls their electronic
structure. Based on three structural parameters that unambiguously characterize the atomistic
structure of ZGNR-Cs, we present a scheme that classifies their electronic state, i.e., if they are
metallic, topological insulators or trivial semiconductors, for all possible widths N , unit lengths
a and cove position offsets at both edges b, thus showing the direct structure-electronic structure
relation. We further present an empirical formula to estimate the band gap of the semiconducting
ribbons from N, a, and b. Finally, we identify all geometrically possible ribbon terminations and
provide rules to construct ZGNR-Ca with a well-defined electronic structure.

With the emergence of precision chemistry, the atomi-
cally precise synthesis of graphene nanoribbons (GNRs)
with well-defined widths, edge structures, and termina-
tions has become possible [1–4]. Besides GNRs with
zigzag or armchair edge termination, more complex edges
have also been realized [2–13]. The edges have determi-
nant impact on the electronic structure of the GNRs.
In their seminal work, Lee et al. [14] have demonstrated
topologically nontrivial cove-edged zigzag GNRs (ZGNR-
Cs) and the influence of cove placement and ribbon
width. The introduction of coves – missing CH groups at
both edges of an inherently metallic zigzag GNR, forming
a superlattice – opens a band gap. ZGNR-Cs have been
realized experimentally [7, 13]; but, up to now their topo-
logical states have been predicted only by theory [15]. Al-
though many of the ZGNR-Cs have been studied to date,
there is not yet any rule established that connects their
structural topology with their electronic state. Such a
connection is well known and extremely useful for carbon
nanotubes, where the chirality indexes (m,n) define the
tube’s electronic state, being either metallic if (m−n)/3
is an integer, or semiconducting otherwise [16–18]. For
armchair GNRs, the dependence of the topological in-
variant on the width and unit cell is known [19]. Here,
we report the direct relation between three structural
parameters that identify ZGNR-Cs (see Fig. 1) and the
electronic state, and we discuss the impact of termination
effects.

Unambiguous labeling of cove-edged ZGNRs requires
three parameters: the width N , counted as the number
of zigzag rows of carbon atoms (N ∈ N, N ≥ 3); the
distance between coves on the same edge a in units of
hexagonal rings (a ∈ N, a ≥ 2), which also gives the
unit cell length; and the shortest offset between adjacent
coves on opposite edges b (b ∈ [0, a/2]). The N -ZGNR-
C(a, b), illustrated in Figs. 1(a) and 1(b), labels all struc-
turally possible regular ZGNR-Cs and is equivalent to
the N -CZGNR-(m,n) introduced by Wang et al. with
a = m + 1 [7]. For even N , b is an integer; whereas for

FIG. 1. (a) Visualization of parameters N , a and b in N -
ZGNR-C(a,b). (b) Schematic representation of parameters
and positions of reference points S and L relative to cove po-
sitions. (c) Termination types (red and blue) at boundary of
unit cell (orange) for different values of α in 5-ZGNR-C(3, 1

2 ).

odd N , b is a half-integer. These parameters directly re-
late to the Frieze groups [20] as p2mm for b = 0, p2mg
for b = a/2, and p211 otherwise. This is shown for exem-
plary structures in Fig. S1 in the Supplemental Material
(SM) [21].
For a given ZGNR-C with b 6= a/2, there are two dis-

tinct inversion centers in the unit cell, henceforth called
reference points S (denoting the inversion center at the
shorter offset between the coves) and L (located at the
longer offset), as shown in Fig. 1(b). S and L are shifted
by half a lattice vector along the ribbon with respect to
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one another. For b = a/2, S and L are equivalent. In
general, the position of the unit cell of any structure is
arbitrary. Here, we concentrate on GNRs as obtained in
bottom-up synthesis from well-defined monomers. Typi-
cally, either one centrosymmetric or two identical build-
ing blocks are used [2]. As a consequence, the unit cell
becomes centrosymmetric and has inversion centers at
the boundaries. Illustrative examples can be found in
published bottom-up syntheses of ZGNR-Cs [7, 13]. The
molecular building blocks determine not only the ribbon
geometry but also its terminal ends. Therefore, cell an-
gles of α = 60, 90, and 120◦ are chosen because they
coincide with the carbon-carbon bond orientation. The
unit cell boundary then cuts through the ribbon in differ-
ent ways, creating either an armchair, zigzag or bearded
termination type (see Fig. 1(c)).
The tight-binding (TB) method is applied to calcu-

late electronic properties and topological invariants with
the PythTB package [22] (see SM Sec. S1 for details).
By considering one π electron per carbon atom, the TB
model Hamiltonian with only first-neighbor interactions
t1 = −1 and on-site energies εi is

H =
∑

i

εic
†
i ci +

∑
〈i,j〉

t1c
†
i cj . (1)

To characterize the topological properties, the Zak
phase [23] was calculated as an integral of the Berry
connection i 〈unk|∇kunk〉 over the Brillouin zone (BZ)
summed over all occupied states,

γ = i

occ.∑
n=1

∫
C

〈unk|∇kunk〉 · dk, (2)

where C is an open path over the BZ. This can be divided
into two parts: 1) integrating within the first BZ, and 2)
crossing the boundary from the last point of the cell to
the first point of the next periodic cell. γ is then cal-
culated numerically as in [24] using the gauge-periodic-
boundary condition,

unkfinal = e−iGrunkinitial , (3)

with reciprocal-lattice vector G. For systems with inver-
sion or mirror symmetries in the unit cell, the Zak phase
is quantized to zero or π when one of the inversion cen-
ters coincides with the real-space coordinate origin [25]
(as it is the case for all systems studied here), and theZ2
topological invariant is obtained from

Z2 =
(γ
π

)
mod 2. (4)

Following Fu and Kane [26], Z2 values for systems with
inversion symmetry can also be obtained from the parity
of occupied states at time-reversal invariant momentum
(TRIM) points as

(−1)Z2 =
∏
m

occ.∏
n

ξ(ψn), (5)

where m are the TRIM points, and ξ(ψn) is the parity of
the nth occupied band.
The topological signatures obtained by the Zak phase

and parity calculations agree for all our systems. For
systems without inversion symmetry alternative methods
are available [27, 28]. However, motivated by the avail-
able experiments we restrict our analyses to symmetric
ZGNR-Cs.
By sampling the configuration space of cove-edged

ZGNRs, we find that the structural parameters N , a,
and b determine the ribbon’s electronic state to be either
metallic or semiconducting, as well as their Z2 invari-
ant. Using a classification based on the reference points
S and L at the unit cell boundary, we observe that Z2 is
uniquely given by the structural parameters, with a 4p
periodicity in N (p = 1, 2, . . .) as shown for small a in
Figs. 2(a)-2(d) and extended to large a in Fig. S2. A
classification scheme of the electronic character of cove-
edged ZGNR structures is given in Fig. 2(e).
For even N , the topological properties only depend

on the reference point at the unit cell boundary, inde-
pendent of a and b, with the exception of the metal-
lic ZGNR-C with b = a/2 [Figs. 2(a) and 2(b)].
The N = 4p (p = 1, 2, . . .) ZGNR-C with S and the
N = 4p+ 2 ZGNR-C with L at the boundary are topo-
logically nontrivial, whereas the others are trivial semi-
conductors. This can be reflected in the expression
Z2 = [(N/2) + 1] mod 2 for S and Z2 = (N/2) mod 2 for
L. For odd N , the same values of Z2 are obtained for
N = 4p+1 and N = 4p+3 with the same reference point.
The topological properties become independent of a and
only change with the value of b as Z2 = (b − 1

2 ) mod 2
for reference point S [Fig. 2(c)]. For L, the Z2 invariant
interchanges with both a and b as Z2 = (a+b+ 1

2 ) mod 2
in a checkerboard pattern [Fig. 2(d)]. These rules can be
generalized by a single function for ZS

2 as the value of Z2
for reference point S, which is given by

ZS
2 = (N + 1) mod 2 ·

(
N

2 + 1
)

mod 2

+ (N) mod 2 ·
(
b− 1

2

)
mod 2,

(6)

and a function relating ZS
2 to ZL

2 (Z2 for reference point
L), which is given by

ZL
2 = | (Na+ 1) mod 2− ZS

2 |. (7)

The value of Z2 does not depend on the termination
type of the unit cell; however, the positions of S and
L (Fig. 1) can affect Z2. As shown in Fig. 3, for the
unit cells of a given N -ZGNR-C(a,b) having the same
reference point at the boundary, the same value of Z2 is
obtained. It is independent of the realized termination
type being an armchair, a zigzag or bearded.
The change of Z2 upon exchange of S and L at the

unit cell boundary is apparent from the parity of the
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FIG. 2. Z2 invariant for ZGNR-C in (a) N = 4p (p = 1, 2, . . .) with S or N = 4p+ 2 with L at the boundary, (b) N = 4p with
L or N = 4p+ 2 with S at the boundary, (c) N = 4p+ 1 and N = 4p+ 3 with S and (d) N = 4p+ 1 and N = 4p+ 3 with L at
the boundary. Structural parameters a and b are varied in rows and columns, respectively. Topological insulators (Z2 = 1) are
marked in red, trivial semiconductors (Z2 = 0) in blue, and metallic ribbons (marked “m") in yellow. (e) Generalized scheme
to derive Z2 for a given set of structural parameters N , a, and b.

FIG. 3. Possible primitive unit cells for 5-ZGNR-C(2, 1
2 ) rib-

bons with reference points S (orange) and L (blue) at the
boundary. Unit cells with α = 60◦, α = 90◦, and α = 120◦
are shown; and the termination type is indicated.

electronic states. In the TB formalism, the eigenstate ψn

is expressed as

ψn =
∑

i

cn,ie
ikri |φi〉 =

∑
i

c̃n,i|φi〉, (8)

where cn,i are the components i of eigenvector cn to the
basis functions φi, and r is the position of site i. When
treated as a periodic infinite system, the same ZGNR-C
will always give the same set of eigenvectors cn. The
parity is only affected by the structure of the ribbon it-
self and by the choice of its terminal position (S or L at
the boundary). When switching the boundary between
reference points S and L, the unit cell is shifted by half
a lattice vector. At k = 0, this transformation has no
effect because eikri = 1. On the other hand, at k = π,
half of the elements in c̃n,i are multiplied by −1, and
parity switches the sign for all states at k = π. As the
number of occupied states in a ZGNR-C is Na − 1, Z2
interchanges when the boundary of the unit cell is shifted
between S and L for all structures with an odd number
of occupied states as their parity product changes sign
at k = π. Hence, Z2 stays the same when switching be-
tween S and L only for ZGNR-Cs with both odd N and
odd a at the same time due to an even number of occu-

pied states. Similar parity-based arguments rationalize
why the cutting angle α, and thus the structure of the
terminals (zigzag, armchair, or bearded), does not affect
the value of Z2.
The parameters N , a, and b also define the charac-

ter and size of the band gap ∆g. All semiconducting
ZGNR-Cs have a direct band gap at k = 0 for odd a
and at k = π for even a, independent of N and b (see
Fig. S3 for examples). Quantum confinement gives the
largest ∆g for small N , and ∆g decreases exponentially
with N [see Fig. 4(a)]. This was also reported for other
GNR types [29]. We also observe exponential decay with
increasing a because the cove is the structural element
opening the band gap in zigzag nanoribbons. The only
exception is found for a = 2, where the proximity of the
coves dominates the electronic structure. Because of this,
the corresponding data points in Fig. 4(a) are colored in
gray.
The dependence of ∆g on offset b, expressed relative to

a, is shown in Fig. 4(b). The largest ∆g values for a given
a (∆max) are found at b = 0 for even N and at b = a/2
for odd N . As a consequence, ZGNR-Cs with even N
are metallic for b = a/2. However, geometric out-of-plane
distortion (e.g. by H-H repulsion across the cove) reduces
the p2mg symmetry and opens a band gap [7, 30]. These
results show that ZGNR-Cs with large band gaps are
obtained for thin ribbons (small N), for high cove density
(small a), and for b being close to zero for even or to a/2
for odd N .
The relative band gap as a function of b/a converges

toward a cosine function [see Fig. 4(b)]. The deviations
evident for a = 3 quickly decrease with increasing a.
Thus, a good estimate for ∆g for all ZGNR-Cs is

∆g = ∆max · cos
[(

b

a
+ Nmod 2

2

)
π

]
, (9)
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FIG. 4. (a) ∆max in units of |t1|. (b) ∆g relative to the
maximum value for a given a as a function of b/a for (left)
odd and (right) even N . Data points correspond to calculated
structures, and continuous red lines correspond to the fit of
Eq. (9).

where ∆max can be fitted as function of N and a (a ≥ 3):

∆max = Ae−B·N + Ce−(D+E·a)·N . (10)

Close agreement with explicit TB calculations
(R2 > 0.99) is obtained for A = 3.04, B = 1.42,
C = 1.30, D = −0.35, and E = 0.17 (see Fig. S4(a)),
parameterized for data with 3 ≤ N ≤ 10 and 3 ≤ a ≤ 11.
For large values of N with a = 3, the convergence of ∆g
toward zero is slower than predicted by Eq. (10) because
of short-range effects [see Fig. S4(b)].
A junction state occurs when a topologically trivial

and a topologically nontrivial GNR fuse. This requires
commensurable terminal ends, which can be expressed
by commensurable unit cell boundaries. The termination
types in ZGNR-Cs can be described by simple rules as
shown in Fig. 5 for reference point S, and in Fig. S5 for
both S and L with an extended dataset. A schematic
representation similar to Fig. 2(e) is shown in Fig. S6.

All rectangular unit cells have armchair terminations.
However, for even N , the symmetry along the ribbon axis
is broken in finite ribbons due to atoms at the boundary
of the cell.

In ZGNR-Cs with even N , either zigzag or bearded
termination is realized for both α = 60◦ and α = 120◦.
The influence of b on the termination type is shown in
Figs. 5(a) and 5(b) for S and in Figs. S5(e) and S5(f)
for L. For S, a bearded termination is found for b = 2k
(k = 0, 1, 2, . . .) and a zigzag termination is found for
b = 1 + 2k at N = 4p. This interchanges for N = 4p+ 2.
For L, the zigzag and bearded terminations alternate
with both a and b for both N = 4p and N = 4p+ 2.
In ZGNR-Cs with odd N , both zigzag and bearded

terminations are realized by choosing either α = 60◦
or α = 120◦, as shown in Figs. 5(c) and 5(d) and
Figs. S5(c)-S5(f). With S at the unit cell boundary, the

FIG. 5. Realized termination types for ZGNR-C with S
at the unit cell boundary: (a) N = 4p and (b) N = 4p+ 2
show the same termination types for both α = 60◦ and
α = 120◦. (c) Termination types in N = 4p+ 1, α = 60◦
and N = 4p+ 3, α = 120◦; and (d) termination types in
N = 4p+ 1, α = 120◦ and N = 4p+ 3, α = 60◦. Zigzag ter-
minations are indicated by "zz" in orange, and bearded ter-
minations are indicated by "bd" in blue.

termination types in ZGNR-Cs with odd N are indepen-
dent of a and alternate with b. Zigzag terminations are
realized by α = 60◦ at even b− 1

2 with N = 4p+1 and at
odd b− 1

2 with N = 4p+3. In cells with α = 120◦, zigzag
and bearded terminations are interchanged. With L at
the unit cell boundary, the realized termination type al-
ternates with both a and b. Detailed information on this
is given in Figs. S5(e) and S5(f).
Together with the rules on the Z2 invariant, the band

gap, and finite ZGNR-C structures, we have now devel-
oped the rule set for the construction of GNRs with junc-
tion states and sizeable large band gaps. This is demon-
strated for an exemplary system in Fig. 6.

FIG. 6. Topological junction state between 4-ZGNR-C(3,0)
with reference point L at the boundary of the unit cell
(Z2 = 0) and pristine 9-AGNR of the zigzag cell type
(Z2 = 1). The ribbons are connected at a zigzag termina-
tion (red line), and the primitive unit cells adjacent to the
heterojunction are indicated.

In conclusion, we predicted the electronic structure,
including band gap character and size, and the Z2 in-
variant for all geometrically possible cove-edged zigzag
graphene nanoribbons, depending on their characteristic
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structural variables, the width N , the distance between
coves a, and the cove offset b. The topological properties
are impacted by the termination of the ribbons, reflected
by the positions of the inversion centers S and L in the
unit cell. Equations (6) and (7) provide the topologi-
cal properties, whereas Eq. (9) gives an approximation
of the band gap. We further give rules for constructing
GNR junctions with topological edge states. We thus
demonstrate the direct relation between structural and
electronic topology in these systems, and we provide sim-
ple rules for the design of cove-edged nanoribbons of rich
electronic variety, including metals and semiconductors:
the latter with a large variation of band gap and with or
without topological edge states. We are confident that
similar rules are applicable to other GNR types.

All calculated data are available at the zenodo
repository[31].
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Supplemental Material

This supplemental material contains:

• Fig. S1, showing ZGNR-C with widths N = 4 . . . 7 as examples for the nomenclature of cove-edged ZGNR. For
each structure the symmetry elements and the Frieze group are included.

• Section , detail information on tight-binding calculations.

• Fig. S2, giving tables of Z2 for an extended set of ZGNR-C, similar to Fig. 2(a-d).

• Fig. S3, showing a set of exemplary band structures with a direct band gap at k = π if a is even
(4-ZGNR-C(2,0)), at k = 0 if a is odd (4-ZGNR-C(3,0)), or metallic if b = a

2 .

• Fig. S4, visualizing the fit results given in Eq. (10) and demonstrating the behavior of the band gap for large
N , testing the validity of the fit for ∆max.

• Fig. S5, giving tables of realized termination types for an extended set of ZGNR-C with both S and L as
reference points at the boundary, similar to Fig. 5.

• Fig. S6, containing a scheme for the realized termination types of ZGNR-C.
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FIG. S1. Representative ZGNR-C structures with widths N = 4 . . . 7. The respective label, the Frieze group and the relevant
symmetry elements are indicated for each structure.

Tight-Binding (TB) Calculation Details

Throughout this paper, the pythTB package, which can be downloaded from
http://www.physics.rutgers.edu/pythtb/, is used. In this package, pythtb.tb_model class is the main tight-binding
model class. Dimensionality, orbitals, lattice vectors, on-site energies and hopping parameters can be set up with
this class. Here, only one π-electron per carbon atom is considered with 1st-neighbor interaction t1 = −1. To satisfy
the symmetry requirement, real-space origin is placed at the center of the cell, which is also an inversion center for
ZGNR-C. In this class, band structure can be calculated with given path and k-grid.
pythtb.wf_array is a class designed for calculating topological properties. With solve_on_grid function solving the
TB model at each grid point within the BZ, and berry_phase function doing the numerical integration for all
occupied bands, Zak phase is obtained for 1D system.

http://www.physics.rutgers.edu/pythtb/
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FIG. S2. Z2 invariant for ZGNR-C: (a) N = 4p (with integer p = 1, 2, . . .) with S or N = 4p + 2 with L at the boundary,
(b) N = 4p with L or N = 4p + 2 with S at the boundary, (c) N = 4p + 1 and N = 4p + 3 with S and (d) N = 4p + 1 and
N = 4p+ 3 with L at the boundary. Structure parameters a and b are varied in rows and columns, respectively, with a ≤ 11.
Topological insulators (Z2 = 1) are marked in red, trivial semiconductors (Z2 = 0) in blue, metallic ribbons are indicated as
"m" (yellow).

FIG. S3. Electronic band structures for 4-ZGNR-C(2,0), 4-ZGNR-C(2,1), and 4-ZGNR-C(3,0) calculated by TB.
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FIG. S4. (a) Estimated ∆max as function of N and a according to Eq. (10). Dashed lines are isolines of ∆max with 0.1 |t1|
difference between each other. (b) Electronic band gap for large N , demonstrated using exemplary structures and curves
obtained for the chosen a using Eq. (10).
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FIG. S5. Termination types for ZGNR-C: (a-d) Unit cells with S at the boundary with (a) N = 4p and (b) N = 4p + 2
for both α = 60◦ and α = 120◦, (c) N = 4p + 1, α = 60◦ or N = 4p + 3, α = 120◦ and (d) N = 4p + 1, α = 120◦ or
N = 4p + 3, α = 60◦. (e-h) Unit cells with L at the boundary with (e) N = 4p and (f) N = 4p + 2 for both α = 60◦ and
α = 120◦, (g) N = 4p + 1, α = 60◦ or N = 4p + 3, α = 120◦ and (h) N = 4p + 1, α = 120◦ or N = 4p + 3, α = 60◦. Zigzag
terminations are indicated by labels "zz" in orange, and bearded by "bd" in blue.
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