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Recent work has demonstrated that high-threshold quantum error correction is possible for biased-
noise qubits, provided one can implement a controlled-not (CX) gate that preserves the bias. Bias-
preserving CX gates have been proposed for several biased-noise qubit platforms, most notably
Kerr cats. However, experimentally measuring the noise bias is challenging as it requires accurately
estimating certain low-probability Pauli errors in the presence of much larger state preparation and
measurement (SPAM) errors. In this paper, we introduce bias randomized benchmarking (BRB) as
a technique for measuring bias in quantum gates. BRB, like all RB protocols, is highly accurate
and immune to SPAM errors. Our first protocol, CX-dihedral BRB, is a straightforward method to
measure the bias of the entire CX-dihedral group. Our second protocol, interleaved bias randomized
benchmarking (IBRB), is a generalization of interleaved RB tailored to the experimental constraints
biased-noise qubits; this is a more involved procedure that directly targets the bias of the CX gate
alone. Our BRB procedures occupy a middle ground between classic RB protocols that only estimate
the average fidelity, and tomographic RB protocols that provide more detailed characterization of
noise but require more measurements as well as experimental capabilities that are not necessarily
available in biased-noise qubits.

I. INTRODUCTION

Achieving scalable quantum computing will require ef-
ficient error-correction to counter the effects of noise. Re-
cent work has revealed that there exist error correcting
codes that tolerate much higher noise rates [1–7] when
the noise is biased, that is, when errors that cause bit
flips are suppressed compared to errors that cause only
phase flips. In order to efficiently detect errors, these
proposals rely on using controlled-NOT (CX) gates that
are bias-preserving such that bit-flip noise remain sup-
pressed to leading order [2–10]. Without bias-preserving
CX gates, error correction is possible but requires more
complex circuits, reducing the effectiveness of the un-
derlying code [11]. Recently, CX gates that preserve
the noise bias have been theoretically proposed in Kerr
cat [12] and other qubit platforms [13, 14] (see also [15]
for improvements to bias-preserving CX gates in Kerr
cat qubits). Experimental efforts towards realizing these
proposals are rapidly growing. In order to determine the
effectiveness of the bias-tailored codes implemented with
the experimentally realized CX gates, it is necessary to
estimate the amount of noise-asymmetry or bias along
with the total error probability of these gates. However,
it is challenging to precisely measure the rate of bit flip
errors of highly-biased noise channels, as such rates are
extremely low.

A common method for precisely estimating low error
probabilities in quantum gates is randomized benchmark-
ing (RB) [16–19] and its derivatives [20–36]. In RB, one
randomly generates circuits from some set of elementary
gates and estimates the average error probability as a
function of the circuit depth; the decay rate of the er-
ror probability with circuit depth then gives information
about the error rate in the circuit. RB protocols typi-
cally boast two main advantages over other characteri-

zation methods. Primarily, RB protocols decouple state
preparation and measurement (SPAM) errors from gate
errors. In addition, because RB involves evaluating the
error rate of circuits composed of many elementary gates,
small error probabilities are magnified and may be pre-
cisely measured. The accuracy of RB experiments to es-
timate properties of the error channel can be rigorously
guaranteed in a variety of settings [23, 24, 37–41].

There exists a zoo of different RB protocols (see [25]
for a taxonomy) which differ in whether they charac-
terize a group of gates or a single gate, whether they
measure only the average fidelity or additional prop-
erties of the noise, and whether they are tailored to
specific experimental hardware. The original RB mea-
sures the fidelity averaged over elements of the Clifford
group [16, 17], but there also exist extensions of RB
which measure the average fidelity of other efficiently-
simulatable groups [22, 26, 27], most notably character
RB [21, 23, 24] which uses techniques from representation
theory to significantly simplify the RB decay functions.
In contrast to RB methods characterizing groups of gates,
interleaved RB [20] and its variants [23, 28–31, 42] instead
measure the average fidelity of a single gate or layer of
gates. There also exist RB protocols that measure prop-
erties of the noise channel beyond the average fidelity for
either groups of gates or specific gates [32–35, 43, 44].
Moreover, efforts have been directed towards designing
both group and interleaved RB protocols that are specif-
ically tailored to the gate-set available in a given hard-
ware [24, 36, 42, 45].

In this spirit, here we introduce group and interleaved
RB procedures tailored to extract information about the
total noise as well as noise-asymmetry in biased-noise
hardware. Our first procedure is CX-dihedral bias RB
(BRB), which is a straightforward modification of CX-
dihedral RB [22, 23]. This procedure measures the noise

ar
X

iv
:2

20
6.

00
00

9v
1 

 [
qu

an
t-

ph
] 

 3
1 

M
ay

 2
02

2



2

bias and average fidelity of the entire CX-dihedral group.
Our second procedure, interleaved bias RB (IBRB), is a
generalization of interleaved RB [20] and the recently in-
troduced 2-for-1 interleaved RB [23, 42]. In particular,
the IBRB procedure is tailored to the available gate-set
of biased-noise qubits [12, 46, 47]. This procedure uses
interleaved CX and Z gates to estimate the bias and fi-
delity of the CX. Both the BRB and IBRB protocols
make heavy use of the recently introduced framework of
character RB [23, 24].

Our approach to biased-noise benchmarking is notably
different from Pauli channel estimation [34, 35, 44]. Pauli
channel estimation is an interleaved RB procedure that
uses character RB and randomized compiling to mea-
sure the full set of Pauli-diagonal elements of the noise
channel associated with any Clifford operation. While
Pauli channel estimation would appear to be sufficient
for measuring the bias of CX gates, it has two drawbacks
that make it unsuitable for estimating bias in biased-
noise qubits. First, Pauli channel estimation demands
considerable experimental overhead, as it estimates the
probability of each Pauli error rather than the probabil-
ity of sets of Pauli errors such as bit-flips and phase-flips.
More importantly, Pauli channel estimation requires in-
terleaving the full Pauli group between the Clifford op-
erators, and is only guaranteed to measure the Clifford’s
noise when the Pauli group is high-fidelity. This is not
suitable for biased-noise qubits, where we generically ex-
pect X and Y gates to be of comparable fidelity to CX
gates if implemented in a bias-preserving manner [12].
On the other hand, if X and Y gates are not implemented
in a bias-preserving manner then it won’t be possible to
accurately estimate the suppressed bit-flip rate in the
CX gates. In contrast to Pauli channel estimation, our
interleaved bias RB is designed specifically to use only
interleaved Z gates, which are trivially bias-preserving
and can be implemented with high-fidelity [8, 12].

Our paper is organized as follows. In Section II, we
define the bias and fidelity of a multi-qubit gate in terms
of the Pauli-diagonal part of its noise channel. In Section
III, we introduce the Pauli, Z, and CX-dihedral groups
that we will use to benchmark the bias. In Section IV,
we give the step-by-step instructions for our bias RB pro-
cedures and illustrate them with simulated experiments.
The derivations of these procedures, as well as technical
details about biased-noise error channels, are relegated
to appendices.

II. DEFINING THE BIAS

Intuitively, the bias of a noise channel Λ is a measure
of the likelihood that an error will not flip a bit and will
instead only apply an erroneous phase. We refer to er-
rors that only apply an erroneous phase as dephasing
errors, while we refer to errors that include a bit-flip
as non-dephasing errors, even if they also apply erro-
neous phases. For example, an error 1⊗Z is dephasing,

while Y ⊗ Z is non-dephasing.
To formally define the bias, we introduce the χχχ-matrix

of a quantum channel [48]. Since the Pauli group on
N qubits forms a basis for the set of all operators on
N qubits, we can write the action of an arbitrary noise
channel as

Λ(ρ) =
∑
~α1,~β1

~α2,~β2

χ~α1
~β1,~α2

~β2
X(~α1)Z(~β1)ρZ(~β2)X(~α2) (1)

for some coefficients χ~α1
~β1,~α2

~β2
[49]. Here ~αi, ~βi ∈ ZN2

are vectors of 0s and 1s that index the Pauli group, and
for any single qubit operator O we use the notation

O(~v) := Ov1
1 ⊗ · · · ⊗OvN

N . (2)

The diagonal of the χ-matrix is non-negative and sums
to one. As a Pauli error is dephasing if and only if
~α = 0, we define the probabilities of dephasing and non-
dephasing errors, pD and pND, by

pD :=
∑
~β 6=~0

χ0~β,0~β (3)

pND :=
∑
~α 6=~0
~β

χ~α~β,~α~β . (4)

Finally, we define the bias η as the ratio of the error
probabilities,

η := pD/pND. (5)

This definition of the bias for a multi-qubit gate was orig-
inally given in [12].

The probability of no error is given by χ~0~0,~0~0, which is
related to pD and pND in the obvious way

χ~0~0,~0~0 = 1− pD − pND. (6)

The usual measure of gate quality is the average fidelity
FΛ, which in can be written in terms of the χ-matrix
as [50, 51]

FΛ =
2Nχ~0~0,~0~0 + 1

2N + 1
(7)

where N is the number of qubits. There exist numerous
RB procedures to measure the average fidelity of a group
of gates [16, 17, 21–25] or a specific gate [20, 23, 28, 29,
31, 42] and therefore determine χ~0~0,~0~0.

Note that while pD and pND only directly give in-
formation about the diagonal elements of the χ-matrix,
complete-positivity of the noise channel Λ implies the off-
diagonal elements of the χ-matrix are bounded by the
diagonal elements as [33, Appendix D]

|χ~α1
~β1,~α2

~β2
| ≤√χ~α1

~β1,~α1
~β1
χ~α2

~β2,~α2
~β2
. (8)
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One can use this bound to show that if two biased noise
channels ΛA and ΛB have non-dephasing error probabil-
ities pAND and pBND, their composition will still have

pND . pAND + pBND + 2
√
pANDp

B
ND (9)

and similar for pD (see Appendix B). Thus, pND as de-
fined in Eq. 4 is a useful characterization of the chan-
nel’s behavior under composition even if the off-diagonal
elements are not negligible. We also note that previ-
ous work on quantum error correction has demonstrated
that measurement of the stabilizers of an error-correcting
code causes the off-diagonal elements of the χ-matrix to
rapidly decay [52–55].

III. THE PAULI, Z, AND CX-DIHEDRAL
QUANTUM GROUPS

We will focus specifically on the Pauli, Z, and CX-
dihedral [22, 56] groups. These are all finite subgroups of
the full unitary group that can be efficiently simulated.
We will consider these groups to be defined modulo over-
all phases for convenience.

The N -qubit Pauli group PN is the group generated
by the Pauli X and Z operators on all N qubits. As
XZ = ZX up to a phase, we may assume all X operators
appear to the left of all Z operators. We then have

PN :=〈X1,Z1, ...,XN ,ZN 〉/U(1) (10)

=
{

X(~α)Z(~β) : ~α ∈ ZN2 , ~β ∈ ZN2
}
. (11)

Since X(~α1)Z(~β1)X(~α2)Z(~β2) = X(~α1 + ~α2)Z(~β1 + ~β2) up
to a phase, this group is isomorphic to Z2N

2

The N -qubit Z group ZN is the commutative subgroup
of the Pauli group generated by all single-qubit Z:

ZN :=〈Zi : 1 ≤ i ≤ N〉/U(1) (12)

=
{

Z(~β) : ~β ∈ ZN2
}
. (13)

This group is clearly isomorphic to ZN2 .
Finally, the N -qubit CX-Dihedral group DN is the

group generated by the N -qubit dihedral group along
with all CX gates between any pair of qubits [22]:

DN := 〈Xi,Ti,CXi,j : 1 ≤ i, j ≤ N〉/U(1). (14)

Here, Ti := exp{iπZi/4} is the T-gate, while CXi,j de-
notes the CX gate with the first index, i, the control and
the second index, j, the target. Simple presentations of
DN were introduced in [22, 57], and efficient decomposi-
tions of elements of DN which minimize the number of
two-qubit gates are given in [56].

IV. THE BIAS RB PROCEDURES

In this section, we outline our two bias RB procedures.
The first is a simple and scalable protocol for measuring

b ρb Eb χb
(

X(~α)Z(~β)
)
Sb(n)

1
⊗N |0〉〈0|

⊗N Z (−1)|~α| A1λ
n
1

2
⊗N |+〉〈+|

⊗N X (−1)|
~β| A2λ

n
2

TABLE I. Initial states, measurements, weighting, and fitting
functions for CX-dihedral bias RB. Here, |~α| denotes the Z2-

valued sum of all elements of ~α, and similarly for |~β|.

pD and pND for the entire CX-dihedral group, which may
be a useful proxy for the performance of the CX gate
when the X and T gates are high-fidelity.

The second is a protocol for measuring pD and pND for
the CX gate CX1,2 acting on two qubits, by interleav-
ing with elements of Z2 and randomly swapping between
the usual CX1,2 gate and a |0〉-controlled CX gate which
flips the target qubit if the control qubit is in the |0〉
state. The |0〉-controlled CX gate can be written as a
CX gate conjugated by a Pauli X on the control qubit,
X1CX1,2X1. This second protocol is specifically designed
for biased-noise, stabilized-cat qubits, where the fidelity
of diagonal Z gates is much higher than the fidelity of
X, and where we can apply both a bias-preserving CX1,2

and a bias-preserving |0〉-controlled CX gate by simply
changing the phase of a drive [9, 12, 13] so that these two
operations have similar pD and pND. However, we expect
this protocol to be generally applicable to other biased-
noise architectures, since arbitrary biased-noise architec-
tures will likely have much higher-fidelity diagonal gates
than off-diagonal gates [9, 13], and X1CX1,2X1 differs
from CX1,2 simply by swapping the roles of |0〉 and |1〉
in the control qubit.

A. CX-dihedral bias RB (BRB)

Standard Clifford RB measures the fidelity averaged
over elements of the Clifford group; similarly, CX-
dihedral bias RB measures pD and pND averaged over
elements of the CX-dihedral group DN . Our proce-
dure is essentially identical to the previous character RB
procedure for estimating the fidelity of the CX-dihedral
group [21, 23]. The only modification is a post-processing
step to extract the dephasing and non-dephasing error
probabilities instead of just the average fidelity.

For convenience, we make the standard RB assumption
of gate-independent noise, so that the noisy implemen-
tation of any U ∈ DN is Λ ◦ U for a noise channel Λ
independent of U . However, like the usual character RB,
our procedure works for gate-dependent noise, provided
all U ∈ DN are high-fidelity; see [23, 24] for proofs.

The CX-dihedral bias RB procedure is:

1. For each b in Table I:

(a) For arbitrary n, choose unitaries U0 ∈ PN
and U1, ..., Un ∈ DN at random. Set Un+1 =

U†1 · · ·U†n.
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(b) Prepare the initial state ρb listed in Table I.

(c) Successively apply the gates (U1U0), U2, U3,
. . . , Un+1. Note that instead of applying U0

and then U1, we compile the product U1U0

into a single element of DN .

(d) Perform a measurement of the observable Eb
in Table I. Weight the outcome by χ∗b(U0).

(e) Repeat steps 1a-1d many times to estimate the
character-weighted survival probability

Sb(n) := E
U0∈PN

U1···Un∈DN

[
χ∗b(U0)P{Ui}

]
(15)

where P{Ui} denotes the expectation value of
Eb after applying the gates in step 1c and E[·]
denotes the average over the choices of gates.

(f) Repeat steps 1a-1e for many different values
of n to estimate the whole Sb(n) curve.

(g) Fit the decay curve, Sb(n), to the functional
form listed in Table I to estimate λb.

2. Estimate the dephasing and non-dephasing error
probabilities of the error channel Λ as

pD =
2N − 1

4N
[
1 +

(
2N − 1

)
λ1 − 2Nλ2

]
pND =

2N − 1

2N
[1− λ1] .

(16)

Note that the weights and measurement outcomes sat-
isfy |χ∗b(U0)P{Ui}| ≤ 1, so that if we take Ns samples to
estimate Sb(n) at a specific value of b and n, the sta-
tistical uncertainty in our estimate is roughly 1/

√
Ns,

independent of n or N . To achieve a good relative un-
certainty, then, we simply need the true value of Sb(n)
to be sufficiently large. For high-fidelity gates, we show
in our derivation in Appendix A 4 that Ab ≈ 1, λb ≈ 1,
so that we can reliably fit the decay curve.

We give an example of CX-dihedral BRB in Fig. 1.
Here, we generate random error channels Λ by generat-
ing random sets of Kraus operators, and simulate a CX-
dihedral BRB experiment (see Appendix D for details on
the random error channels). Fig. 1a illustrates the ex-
periment for a single error channel, where we estimate
the value of Sb(n) for a few different values of n and fit
the data to the functional forms given in Table I. In this
simulation, each value of Sb(n) is estimated using 5000
measurements. To demonstrate the effectiveness of our
procedure, we repeat this experiment for many different
error channels, using Eq. 16 to estimate pD and pND and
finally using these estimates to extract the bias. In Fig.
1b we plot our estimated probabilities versus the exact
probabilities of the error channel, and in Fig. 1c we do
the same for the bias. To estimate the error bars, we
use bootstrap resampling. Visually, it is clear that we
are accurately estimating pD, pND, and η even for very
high biases. To verify this, we compute the reduced-χ2

FIG. 1. Simulated CX-dihedral bias RB experiments. (a) An
example of estimating Sb(n), with the Sb(n) curves plotted
in orange and our estimates of Sb(n) given by blue dots. To
estimate sensitivity to statistical errors, we generate multiple
fits of Sb(n) using bootstrap resampling of our data, which are
plotted in grey and generally overlap the exact Sb(n) curves.
(b) The probabilities pD and pND extracted from the fits for
50 randomly generated error channels. Error bars denote the
standard deviation over 50 resamplings. (c) The estimated
bias η for each of these error channels. We see that even at
very high bias, we can accurately estimate the value of η.



5

statistic for our estimates of pD, pND, and η, and find χ2

between 1 and 1.3, indicating that our bootstrapping is
accurately estimating the error bars to within a factor of
between 1 and

√
1.3.

B. Interleaved bias RB (IBRB)

A common approach to estimate the fidelity of a sin-
gle gate is interleaved RB, in which one interleaves the
gate of interest with random elements from an interleav-
ing group designed to simplify the error channel. Orig-
inally, the gate of interest was required to be from the
interleaving group [20], but later work has relaxed this
requirement [23, 28, 29, 31, 42]. Interleaved RB estimates
the fidelity of the combined error channel ΛU ◦ΛG of the
gate U and interleaving group G; knowing the fidelity
of ΛU ◦ ΛG and the fidelity of ΛG allows one to bound
the fidelity of ΛU , with bounds that become tight as the
fidelity of ΛG approaches one [20, 33, 58]. Thus, we typi-
cally require the interleaving group to have high-fidelity.
On the other hand, the advent of randomized compil-
ing [59–61] implies that in some cases it is not necessary
to separately estimate the fidelities of ΛU and ΛG, as
ΛU ◦ ΛG is the relevant error channel for a circuit that
has been randomly compiled with the group G. However,
in the case of randomized compiling, it is still necessary
for G to be high-fidelity, so that the randomized compi-
lation does not add in significant additional noise.

We develop an interleaved bias RB procedure that di-
rectly estimates the bias of the CX gate in Kerr cat
qubits [12, 46, 47] or other biased-noise platforms [9, 13,
14]. In biased-noise qubits, we generally expect gates
that are diagonal in the Z-basis to have much higher fi-
delity than non-diagonal gates. It is thus desirable to
have a protocol that uses Z2 as the interleaving group,
as the fidelity of X and Y gates may be no better than
the fidelity of the CX gate [62]. Restricting to an inter-
leaving group such as Z2 that is diagonal in the Z-basis
introduces considerable complications, as we will see be-
low.

For convenience, we define C := CX1,2 to be a CX
gate on the two qubits. We also define the gate C ′ :=
X1CX1,2X1, which is similar to C, except that it applies
X2 when qubit 1 is in |0〉 rather than |1〉. The Kerr cat
system can implement bias-preserving versions of both
of these gates using similar procedures, and we expect
that both C and C ′ will have similar dephasing and
non-dephasing probabilities. These features will likely
be shared by any biased-noise system. Define the error
channels ΛC and ΛC′ to be the error channels associated
with C and C ′ respectively, so the noisy implementation
of C is C ◦ ΛC and similar for C ′. In addition define ΛG
to be the error channel associated with gates U ∈ Z2, so
the noisy implementation of U is ΛG ◦U . Finally, define
Λ = ΛC ◦ ΛG and Λ′ = ΛC′ ◦ ΛG to be the composed
error channels. Our protocol will directly estimate the
dephasing and non-dephasing probabilities of the average

b ρ
(a)
b E

(a)
b χb

(
Zβ11 Zβ22

)
Sb(n)

0+ 1
2
Z⊗ |0〉〈0| Z⊗ 1 1 A0+λ

n
0+ +B0+

0− 1
2
Z⊗ |0〉〈0| Z⊗ Z 1 A0−λ

n
0− +B0−κ

n
0−

1+
1
2
1⊗ |+〉〈+| 1⊗X

(−1)β2 A1+λ
n
1+ +B1+κ

n
1+

1
2
Z⊗ |+〉〈+| Z⊗X

1− |+i+i〉〈+i+i| 1⊗Y (−1)β2 A1−λ
n
1− +B1−κ

n
1−

2+
|+ 0〉〈+0| X⊗ 1

(−1)β1 A2+λ
n
2+ +B2+κ

n
2+

|+i 0〉〈+i 0| Y ⊗ 1

2−
|+ 0〉〈+0| X⊗ Z

(−1)β1+β2 A2−λ
n
2− +B2−κ

n
2−

|+i 0〉〈+i 0| Y ⊗ Z

TABLE II. Initial states, measurements, weighting, and fit-
ting functions for interleaved bias RB. In the fitting functions,
λb and κb are two independent RB decay parameters. | ±i〉
denotes eigenstates of the Y operator.

channel (Λ + Λ′)/2. If the dephasing and non-dephasing
probabilities of ΛC and ΛC′ are close and ΛG ≈ 1, this is
identical to the dephasing and non-dephasing probabili-
ties of ΛC alone. On the other hand, even without these
assumptions, we will see below that (Λ + Λ′)/2 is the rel-
evant error channel for a certain randomized compilation
procedure.

The interleaved bias RB procedure is:

1. For b = 0± and b = 1± in Table II:

(a) For arbitrary n, choose unitaries
U1, ..., Un+1 ∈ Z2 uniformly at random.
Also choose CX gates C1, ..., Cn ∈ {C,C ′}
uniformly at random.

(b) If there is more than one initial state ρb listed
in Table II, randomly select one of the listed
initial states and prepare it.

(c) Alternatively apply the gates from Z2 and the
CX gates as U1, C1, U2, C2, ..., Un, Cn, Un+1.

(d) Perform a measurement of the observable Eb
corresponding to the ρb selected in step 1b.
Weight the outcome by χ∗b({Ui})σ±({Ci}),
where we define

σ±({Ci}) := (±1)δC1,C′+···+δCn,C′ (17)

χ∗b({Ui}) :=
∏
i

χ∗b(Ui) (18)

and χb(Ui) is given in Table II. If b = 0−
or b = 1− the effect of σ is to multiply the
measurement outcome by (−1) for each C ′ we
apply, while otherwise σ is trivial.

(e) Repeat steps 1a-1d many times, to estimate
the signed character-weighted survival
probability

Sb(n) := E
ρb

U0···Un+1∈Z2

C1,...,Cn∈{C,C′}

[
χ∗b({Ui})σ±({Ci})P{Ci},{Ui},ρb

]
(19)
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where P{Ci},{Ui},ρb denotes the expectation
value of Eb after applying the gates in step 1c
to ρb.

(f) Repeat steps 1a-1e for many different values
of n to estimate the whole Sb(n) curve.

(g) Fit Sb(n) to the functional form listed in Ta-
ble II to estimate λb and κb, where we take
the convention <(λb) > <(κb).

2. For b = 2± in Table II:

(a) For arbitrary n, choose unitaries
U1, ..., U2n+1 ∈ Z2 uniformly at random.
Also choose CX gates C1, ..., C2n ∈ {C,C ′}
uniformly at random.

(b) If there is more than one initial state ρb listed
in Table II, randomly select one of the listed
initial states and prepare it.

(c) Alternatively apply the gates
from Z2 and the CX gates as
U1, C1, U2, C2, ..., U2n, C2n, U2n+1.

(d) Perform a measurement of the observable Eb
corresponding to the ρb selected in step 2b.
Weight the outcome by χ∗b({Ui})σ±({Ci}),
where we define

σ±({Ci}) := (±1)δC1,C′+···+δC2n,C′ (20)

χ∗b({Ui}) :=
∏
i odd

χ∗2+(Ui)
∏
i even

χ∗2−(Ui) (21)

where χ2±(Ui) are given in Table II.

(e) Repeat steps 2a-2d many times, to estimate
the signed character-weighted survival
probability

Sb(n) := E
ρb

U0···U2n+1∈Z2

C1,...,C2n∈{C,C′}

[
χ∗b({Ui})σ±({Ci})P{Ci},{Ui},ρb

]
(22)

where P{Ci},{Ui},ρb denotes the expectation
value of Eb after applying the gates in step 2c
to ρb.

(f) Repeat steps 2a-2e for many different values
of n to estimate the whole Sb(n) curve.

(g) Fit Sb(n) to the functional form listed in Ta-
ble II to estimate λb and κb, where we take
the convention <(λb) > <(κb).

3. Estimate the dephasing and non-dephasing error
probabilities of the combined error channel Λ as

pD =
1

16

[
3λ0+ + 3λ0− − 3κ0− − λ1+

− κ1+ − λ1− + κ1− − λ2+

− κ2+ − λ2− − κ2− − 1
]

pND = 1− 1

4
[1 + λ0+ + λ0− − κ0−] .

(23)

To realize the mixed, non-positive state ρ = 1
2Z ⊗

|0〉〈0| we simply prepare either |00〉〈00| or |10〉〈10| with
equal probability, and weight the resulting measurement
by (−1) if we prepare |10〉〈10|. We realize the states
ρ = 1

21⊗ |+〉〈+| and ρ = 1
2Z ⊗ |+〉〈+| similarly.

In this procedure, for b = 0+ we need to accurately es-
timate λ0+ and for b 6= 0+ we need to accurately estimate
both λb and κb. To accurately fit these decay parame-
ters, we require the prefactors A0+ and Ab, Bb for b 6= 0+
to be large. As we will demonstrate in our derivation in
Appendix A 5, for high-fidelity gates we expect A0+ ≈ 1,
as well as Ab ≈ 1/2 and Bb ≈ 1/2 for b 6= 0+, so that we
may accurately fit the decay parameters.

In the case of b = 0− and b = 1−, we also need to dis-
tinguish between λb and κb, since they enter into Eq. 23
with different signs. As we demonstrate in Appendix A 5,
for high-fidelity gates we expect λb ≈ 1 and κb ≈ −1, so
we can define λb to be the decay constant with the largest
real part. In the case of b = 0+, b = 1+, and b = 2±
we cannot differentiate between λb and κb, since they are
both ≈ 1 for high-fidelity gates, but they enter Eq. 23
with the same sign and therefore do not need to be dis-
tinguished.

While there are nine initial states and measurements
listed in Table II, one can use the same experimental data
for b = 0+ and b = 0−, the two rows of b = 1+, for the
first row of b = 2+ and the first row of b = 2−, and for
the second row of b = 2+ and the second row of b = 2−,
reducing the cost to five distinct pairs of initial states
and measurements.

We give an example of IBRB in Fig. 2. Here, we gen-
erate random error channels ΛG, ΛC , and ΛC′ by gener-
ating random sets of Kraus operators, and simulate an
IBRB experiment (see Appendix D for details on the ran-
dom error channels). Fig. 2a illustrates the experiment
for a single error channel, where we estimate the value of
Sb(n) for a few different values of n and fit the data to
the functional forms given in Table II. Again, each value
of Sb(n) is estimated using 5000 measurements. Note
that for b = 1−, 2− the function Sb(n) = Abλ

n
b + Bbκ

n
b

oscillates with period 2, because λb ≈ 1 and κb ≈ −1.
However, we can still accurately estimate the parameters
Ab, Bb, λb, κb by taking only a few widely spaced data
points, as shown in Fig. 2a, provided we take data at
both even and odd sequence lengths n. This is because
the rapid oscillations are constrained to have period 2
by the form of Sb(n), so it is not necessary to take fine-
grained data at nearby values of n to fit this rapidly os-
cillating function. To demonstrate the effectiveness of
our procedure, we repeat this experiment for many dif-
ferent error channels, using Eq. 23 to estimate pD and
pND and finally using these estimates to extract the bias.
In Fig. 2b we plot our estimated probabilities versus the
exact probabilities of the error channel, and in Fig. 2c
we do the same for the bias. To estimate the error bars,
we again use bootstrap resampling. Visually, it is clear
that we are accurately estimating pD, pND, and η even
for very high biases. To verify this, we again compute
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FIG. 2. Simulated interleaved bias RB experiments. (a) An example of estimating Sb(n), with the Sb(n) curves plotted in
orange and our estimates of Sb(n) given by blue dots. Note that Sb(n) is oscillatory for b = 0−, 1−, since the decay constants
λb, κb have opposite sign. To robustly fit Sb(n) in the presence of these oscillations does not require densely sampling data
points, since we know the oscillatory period is always 2; however, it does require taking data at both even and odd sequence
lengths, as shown in the figure. To estimate sensitivity to statistical errors, we generate multiple fits of Sb(n) using bootstrap
resampling of our data, which are plotted in grey and generally overlap the exact Sb(n) curves. (b) The probabilities pD
and pND extracted from the fits for 50 randomly generated error channels. Error bars denote the standard deviation over 50
resamplings. (c) The estimated bias η for each of these error channels. We see that even at very high bias, we can accurately
estimate the value of η.

the reduced-χ2 statistic for our estimates, and find χ2

between 2 and 3, indicating that our bootstrapping is
accurately estimating the error bars to within a factor of
between

√
2 and

√
3.

C. Randomized compiling for interleaved bias RB

Our IBRB measures pD and pND for the averaged,
composite channel (Λ + Λ′)/2, with Λ = ΛC ◦ ΛG and
Λ′ = ΛC′ ◦ ΛG. Provided that pD and pND for ΛC and
ΛC′ are equal and ΛG = 1, these are also the dephasing
and non-dephasing probabilities for ΛC alone. However,
in general we would like to avoid assuming the error chan-
nels ΛC and ΛC′ are identical, and we would like to allow
for the possibility of ΛG 6= 1.

Previous interleaved RB procedures for determining
the fidelity of a gate C have a similar problem; in
these procedures one separately estimates the fidelity of
ΛC ◦ ΛG and ΛG, and uses this information to provide
bounds on the fidelity of ΛC alone [20]. These bounds
depend on the fidelity of ΛG, with lower fidelity ΛG re-
sulting in looser bounds for the fidelity of ΛC . From this
point of view, it is important for the interleaving group
to be high-fidelity, in order to be able to tightly bound
the fidelity of ΛC . It is also possible to use this method to
bound pD and pND of (ΛC + ΛC′)/2, provided we know

the corresponding probabilities for ΛG and Λ (see Ap-
pendix B 3). However, benchmarking pD and pND of ΛG
is challenging for G = Z2 as averaging over sequences of
Z2 gates does not randomize error channels enough to
guarantee a simple form of the survival probability.

On the other hand, the technique of randomized com-
piling [59–61] provides an alternative interpretation of
interleaved RB results. In randomized compiling, one
intentionally inserts random elements of a high-fidelity
interleaving group between the lower-fidelity gates C in
order to eliminate the coherence of the noise. In a cir-
cuit that has been randomly compiled, the error channel
associated with a gate C is the combined error channel
ΛC ◦ ΛG. From this point of view, we require the inter-
leaving group to be high-fidelity to ensure that randomly
inserting elements of the interleaving group into a circuit
does not notably increase the errors in the circuit.

We can do a modified version of randomized compil-
ing for bias-preserving CX gates. Each time a CX gate
appears in a circuit, we randomly insert an element of
Z2 before it, and with 50% probability replace it with
|0〉-controlled CX, XcCXc,tXc. These extra Pauli opera-
tors can be commuted through the rest of the circuit and
their effect can be tracked in software. This is illustrated
in Fig. 3 for the example of a circuit that measures the
stabilizer of the XZZX surface code [5].

The error channel for the resulting randomized gate
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|+〉 • Zβ1 Xα • Xα • • X

•
Zβ2

•

|+〉 • • • • Zβ1+β2 X

•
Zβ2Xα

•

FIG. 3. Randomizing a single CXc,t gate in a circuit that
measures the stabilizer of the XZZX code, where c denotes
the control qubit and t the target. Rather than apply the bare
CXc,t gate, we randomly insert an element of Z2 before the
gate, and randomly apply either CXc,t or XcCXc,tXc. This
modification of the circuit results in an overall Pauli operator,
which can be tracked in software.

then has the pD and pND that we measure in our exper-
iment. Therefore, we can always achieve the error rates
pD and pND by this randomized compiling procedure.

Like the usual randomized compiling, our biased-noise
randomized compilation procedure has the additional
benefit of limiting how errors can build up when compos-
ing noisy gates. We show in Appendix C that if two error
channels ΛA and ΛB are randomly compiled as above,
their composition (ΛA ◦ ΛB) will have a non-dephasing
error probability

pND ≈ pAND + pBND, (24)

which, in contrast to to Eq. 9, says that pND grows lin-
early rather than quadratically in the number of com-
posed error channels when the circuit is randomly com-
piled by ZN . This is similar to the behavior of the aver-
age infidelity for full randomized compilation, which also
may grow quadratically under composition for generic
noise channels but grows linearly for randomly compiled
circuits [58].

V. CONCLUSION

Measuring the bias of a highly-biased gate is a delicate
process, as the non-dephasing error probability must be
precisely estimated. By using techniques from random-
ized benchmarking, we can precisely estimate these error
probabilities. The essential ingredient in our method is
defining efficiently measurable weighted survival proba-
bilities whose decay rates depend only on pND. Because
we consider variable sequence lengths, our method esti-
mates gate error rates independently from SPAM errors,
even if the SPAM errors are much larger than the non-
dephasing gate errors. By measuring the weighted sur-
vival probabilities for long gate sequences, we can mag-
nify the effect of small non-dephasing errors, allowing us

to precisely measure arbitrarily small error probabilities
by simply increasing our sequence length.

Our interleaved bias RB in particular is highly tailored
to the experimental constraints of biased noise qubits.
In general, interleaved RB works because the interleaved
gates randomize the error channel while not adding sig-
nificant additional errors. However, in the case of biased
noise qubits, we can only interleave Z gates without intro-
ducing additional errors; X and Y gates are generally as
error-prone as CX gates. As a result, we were motivated
to add additional randomization by swapping between
C and C ′, which allowed for sufficient randomization of
the error channel. This is in contrast to standard tech-
niques for estimating Pauli channels, which assume one
can freely add Pauli operators to a circuit without adding
significant errors [34, 35, 44, 61]. We expect our tech-
niques to be highly relevant to near-term experiments,
as the numerous proposals for bias-preserving CX gates
[12–14] are realized experimentally.
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Appendix A: Derivation of the procedures

To derive these procedures requires a detour into some
background mathematics. To begin, we review a few
necessary aspects of representation theory, and define a
natural representation for quantum groups, the Liouville
representation. Next, we determine the irreducible rep-
resentations of the Liouville representation of PN , ZN ,
and DN . Then we derive how the dephasing and non-
dephasing probabilities may be written as the trace over
invariant subspaces of the Liouville representations. Fi-
nally, armed with this background, we derive each of the
bias RB procedures.

1. Background: Representation theory

Given a finite group G, a unitary representation is
a map assigning a unitary matrix to each group element
such that group multiplication is preserved:

φ : G→ U(m), φ(g1g2) = φ(g1)φ(g2). (A1)

where U(m) is the group of m×m unitary matrices act-
ing on Cm. A representation is irreducible if the image
of φ doesn’t preserve any proper subspace of Cm. Ev-
ery finite-dimensional representation can be uniquely de-
composed as the direct sum of irreducible representations
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(irreps):

φ ' a1φ1 ⊕ · · · ⊕ aIφI (A2)

Cm ' V a11 ⊕ · · · ⊕ V aII (A3)

where φi : G → Vi is irreducible and aiφi is standard
shorthand for the direct sum of ai copies of φi. The
number ai is refered to as the multiplicity of the ith
irrep. Finally, the character χ of a representation is
defined by

χ(g) = Tr (φ(g)) . (A4)

We will repeatedly use two elementary facts about rep-
resentations.

Fact 1 (Projection Formula). If φ ' a1φ1 ⊕ · · · ⊕ aIφI ,
then the projector Π̂i onto V aii ⊆ Cm is given by

Π̂i =
dim(Vi)

|G|
∑
g∈G

χ∗i (g)φ(g) (A5)

where χi is the character of φi.

Fact 2 (Schur’s Lemma). If φ ' a1φ1⊕ · · · ⊕ aIφI , then
for any matrix Q ∈ GL(m) we have

1

|G|
∑
g∈G

φ(g−1)Qφ(g) ' (Q1⊗11)⊕· · ·⊕(QI⊗1I) (A6)

where Qi is some ai× ai matrix, and Qi⊗1i is a matrix
that acts on V aii by mixing the ai copies of Vi but acting
as the identity on the degrees of freedom within each copy
of Vi. In particular, if ai = 1 for all i, we have

1

|G|
∑
g∈G

φ(g−1)Qφ(g) =
∑
i

Tr(Π̂iQ)

Tr(Π̂i)
Π̂i (A7)

where Π̂i is the projector onto the single copy of Vi ⊆ Cm.

See [63] for proofs of these facts, as well as more details
on the representation theory of finite groups.

In this paper, we will be interested in the case where
G ⊂ U(2N ) is a finite subgroup of the unitary group on
N qubits. In this case, the standard action of U ∈ G
on a density matrix, ρ 7→ UρU†, is a unitary repre-
sentation of G on the vector space of density matrices.
Choosing a basis for H, we can more conveniently rep-
resent a density matrix ρ =

∑
i,j ρij |i〉〈j| by a vector

|ρ〉〉 :=
∑
i,j ρij |i〉|j〉. In terms of this vectorized density

matrix, it is simple to see that the action of a unitary U
on |ρ〉〉 is given by

|UρU†〉〉 = U ⊗ U∗|ρ〉〉 = Û |ρ〉〉 (A8)

where we’ve defined Û := U ⊗ U∗ to be the matrix rep-
resentation of the unitary U acting on the space of vec-
torized density matrices. This representation φ : U 7→ Û

sending a d× d unitary to a d2 × d2 unitary is known as
the Liouville representation.

We can define the Liouville representation of a quan-
tum channel Λ : ρ 7→

∑
aKaρK

†
a by Λ̂ :=

∑
aKa ⊗K∗a ,

in which case we have∣∣Λ(ρ)
〉〉

= Λ̂|ρ〉〉. (A9)

Finally, we can write the expectation value of an ob-
servable E over a state ρ in terms of the Liouville repre-
sentation as

〈E〉ρ = Tr(E†ρ) = 〈〈E|ρ〉〉 (A10)

We refer to [48] for a more detailed treatment of both
quantum channels and the Liouville representation.

2. Irreps of the quantum groups

For the Pauli, Z, and CX-dihedral groups, we will need
to understand the decomposition of their Liouville repre-
sentation into irreps, and the characters of those irreps.

In the case of the 1-qubit Pauli group, the Liouville
representation decomposes into four non-isomorphic ir-
reps, with projectors and characters given in Table III.
The Liouville representation of the N -qubit Pauli group
PN then decomposes into 4N non-isomorphic irreps in-
dexed by vectors ~i ∈ ZN4 , with projectors and characters

Π̂P~i = Π̂Pi1 ⊗ · · · ⊗ Π̂PiN (A11)

χ~i

(
X(~α)Z(~β)

)
= χi1(Xα1Zβ1) · · ·χiN (XαNZβN ).

One can similarly determine a factorized form for the
irreps of the Liouville representation of the Z group ZN ,
but we will need only the case N = 2 here. The Liouville
representation of Z2 decomposes into 16 irreps with pro-
jectors and characters given Table IV. Note that in this
case, each irrep has multiplicity 4.

Finally, the Liouville representation of the CX-dihedral
group DN decomposes into the three irreps given in Ta-
ble V. Note that the number of irreps is independent of
N . Derivation of these irreps can be found in [22].

3. The dephasing/non-dephasing error
probabilities in the Liouville representation

From the definition of the dephasing and non-
dephasing error probabilities, Eqs. 3 and 4, we want to
express pD and pND as the trace of Λ̂ over subspaces
ZN and PN \ ZN of the Pauli group. Note that these
subspaces are invariant under the action of any bias-
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i Π̂Pi χi(X
αZβ)

0 1
2
|1〉〉〈〈1| 1

1 1
2
|Z〉〉〈〈Z| (−1)α

2 1
2
|Y 〉〉〈〈Y | (−1)α+β

3 1
2
|X〉〉〈〈X| (−1)β

TABLE III. Irreps, projectors, and characters of the Liouville
representation of P1.

i Π̂Zi χi
(
Zβ11 Zβ22

)

0

1
4
|11〉〉〈〈11|

1
1
4
|1Z〉〉〈〈1Z|

1
4
|Z1〉〉〈〈Z1|

1
4
|ZZ〉〉〈〈ZZ|

1

1
4
|1X〉〉〈〈1X|

(−1)β2
1
4
|1Y 〉〉〈〈1Y |

1
4
|ZX〉〉〈〈ZX|

1
4
|ZY 〉〉〈〈ZY |

2

1
4
|X1〉〉〈〈X1|

(−1)β1
1
4
|XZ〉〉〈〈XZ|
1
4
|Y 1〉〉〈〈Y 1|

1
4
|Y Z〉〉〈〈Y Z|

3

1
4
|XX〉〉〈〈XX|

(−1)β1+β2
1
4
|XY 〉〉〈〈XY |

1
4
|Y X〉〉〈〈Y X|

1
4
|Y Y 〉〉〈〈Y Y |

TABLE IV. Irreps, projectors, and characters of the Liouville
representation of Z2.

i Π̂Di

0 1
2N
|1 · · ·1〉〉〈〈1 · · ·1|

1 1
2N

∑
P∈ZN\{1···1}

|P 〉〉〈〈P |

2 1
2N

∑
P∈PN\ZN

|P 〉〉〈〈P |

TABLE V. Irreps and projectors of the Liouville representa-
tion of DN . For this work, we will not need the characters of
DN .

preserving operator. It is straightforward to show

TrZN
(Λ̂) =

1

2N

∑
P∈ZN

〈〈P |Λ̂|P 〉〉 (A12)

= 2N (1− pND) (A13)

TrPN\ZN
(Λ̂) =

1

2N

∑
P∈PN\ZN

〈〈P |Λ̂|P 〉〉 (A14)

= (4N − 2N )(1− pND)− 4NpD (A15)

Rearranging this gives formulas for the dephasing and
non-dephasing probabilities

pD =
1

4N

[(
2N − 1

)
TrZN

(Λ̂)− TrPN\ZN
(Λ̂)
]

pND = 1− 1

2N
TrZN

(Λ̂).

(A16)

Our goal in these RB procedures is to determine the two
traces TrZN

(Λ̂) and TrPN\ZN
(Λ̂).

4. Deriving CX-dihedral bias RB

The character-weighted survival probability Sb can be
written as

Sb(n) = E
U0∈PN

U1···Un∈DN

[
〈〈Eb|Λ̂M Λ̂Ûn+1Λ̂ÛN · · · Û2Λ̂Û1Û0Λ̂P |ρb〉〉χ∗b(U0)

]
(A17)

where Λ is the error channel associated with elements of DN , and we have included unknown preparation and
measurement errors ΛP and ΛM . We make the standard RB change-of-variables, defining V1 := U1 and inductively
defining Vm := UmVm−1. Note that the expectation value over {Vm} is equivalent to the expectation value over {Um}.
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Thus, we can write

Sb(n) = E
U0∈PN

V1···Vn∈DN

[
〈〈Eb|Λ̂M Λ̂V̂ †n Λ̂V̂nV̂n−1 · · · V̂2V

†
1 Λ̂V̂1Û0Λ̂P |ρb〉〉χ∗b(U0)

]
(A18)

= 〈〈Eb|Λ̂M Λ̂

[
E

V ∈DN

[
V̂ †Λ̂V

]]n
E

U0∈PN

[
Û0χ

∗
b(U0)

]
Λ̂P |ρb〉〉. (A19)

The two expectation values can be evaluated using
Facts 1 and 2. First, we note from Eq. A11 that χ1 is the
character function of the irrep of the Liouville representa-
tion indexed by~i1 = (1, 1, . . . , 1), and χ2 is the character

function of the irrep indexed by ~i2 = (3, 3, . . . , 3). Then
Fact 1 says that

E
U0∈PN

[
Û0χ

∗
b(U0)

]
= Π̂P~ib

(A20)

where the projectors have the explicit form (see Eq. A11)

Π̂P~ib
=


1

2N
|Z · · ·Z〉〉〈〈Z · · ·Z|, b = 1

1

2N
|X · · ·X〉〉〈〈X · · ·X|, b = 2

(A21)

Second, we note that, since the Liouville representation
of the dihedral group is multiplicity-free (all ai = 1),
Fact 2 gives

E
V ∈DN

[
V̂ †Λ̂V

]
=
∑
i

Tr(Π̂Di Λ̂)

Tr(Π̂Di )
Π̂Di . (A22)

Combining these facts allows us to simplify the survival
probability as

Sb(n) =
∑
i

〈〈Eb|Λ̂M Λ̂

[
Tr(Π̂Di Λ̂)

Tr(Π̂Di )

]n
Π̂Di Π̂P~ib

Λ̂P |ρb〉〉.

(A23)

We have carefully chosen χb to give us a projector Π̂P~ib
such that Π̂Di Π̂P~ib

= δi,bΠ̂~ib , as can be checked from the

formulas for Π̂Di in Table V. Therefore, all terms in the
sum vanish except for i = b, and we can write the final
form of Sb(n) as

Sb(n) = 〈〈Eb|Λ̂M Λ̂Π̂P~ib
Λ̂P |ρb〉〉︸ ︷︷ ︸

Ab

[
Tr(Π̂Db Λ̂)

Tr(Π̂Db )︸ ︷︷ ︸
λb

]n
(A24)

where we have defined Ab, λb to match the form given
in Table I. Note that λb only depends on Λ, and all ef-
fects of the SPAM errors ΛP and ΛM are absorbed in Ab.
Note also that provided we have reasonably high-fidelity
preparation, gates, and measurements, we can approxi-
mate Ab as

Ab ≈ 〈〈Eb|Π̂P~ib |ρb〉〉 = 1 (A25)

where the last equality is found by plugging in the explicit
formulas for Eb, Π̂P~ib

, and ρb given in Eq. A21 and Table I.

Therefore, the prefactor in front of λnb is large, and we
can accurately fit λb.

To finish, we note that plugging in the explicit formulas
from Table V for Π̂Db gives

λ1 =
TrZ(Λ̂)− 1

2N − 1
(A26)

λ2 =
TrP\Z(Λ̂)

4N − 2N
. (A27)

Plugging this into Eq. A16 for pD and pND gives the
estimates in Eq. 16, as desired.

5. Deriving interleaved bias RB

a. Deriving the survival probabilities for b = 0± and b = 1±

We begin by considering the survival probability S0+.

For convenience, we define the operator M̂0+ by

M̂0+ :=
1

2
Π̂Z0 (ĈΛ̂ + Ĉ ′Λ̂′)Π̂Z0 . (A28)

Note that Π̂Z0 is a rank-4 projector, so M̂0+ is a rank-4
operator in the general case.

We now evaluate the survival probability S0+(n) in
terms of M0+. We note that Fact 1 implies that

EU∈Z2
[Û ] = Π̂Z0 . We then have
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S0+(n) = E
U1···Un+1∈Z2

C1,...,Cn∈{C,C′}

[
〈〈E0+|Λ̂M Λ̂GÛn+1ĈnΛ̂nÛnĈn−1Λ̂n−1Ûn−1 · · · Û2Ĉ1Λ̂1Û1Λ̂P |ρ0+〉〉

]
(A29)

= E
C1,...,Cn∈{C,C′}

[
〈〈E0+|Λ̂M Λ̂G Π̂Z0 ĈnΛ̂nΠ̂Z0︸ ︷︷ ︸

M̂0+

Π̂Z0 Ĉn−1Λ̂n−1Π̂Z0︸ ︷︷ ︸
M̂0+

· · · Π̂Z0 Ĉ1Λ̂1Π̂Z0︸ ︷︷ ︸
M̂0+

Λ̂P |ρ0+〉〉
]

(A30)

= 〈〈E0+|Λ̂M Λ̂GM̂
n
0+Λ̂P |ρ0+〉〉 (A31)

Given that M̂0+ has rank 4, we can expand it in terms of
its eigenvalues µj and corresponding left and right eigen-
vectors |φj〉〉 and |ψj〉〉 as

M̂0+ =

4∑
j=1

|ψj〉〉µj〈〈φj | (A32)

where we have normalized our eigenvectors so that
〈〈ψj |φk〉〉 = δj,k. In this case, our survival probability
becomes

S0+(n) =

4∑
j=1

〈〈E0+|Λ̂M Λ̂G|ψj〉〉〈〈φj |Λ̂P |ρ0+〉〉µnj .

(A33)
Note that again the eigenvalues µj depend only on the
gate errors Λ and Λ′, and not on the SPAM errors ΛP
and ΛM .

In this form, the survival probability is the sum of four
exponential decays, which is infeasible to fit to experi-
mental data. However, in the case of high-fidelity gates,
we can show that only two exponential decays are rel-
evant using perturbation theory in δΛ̂ := (Λ̂ − 1) and

δΛ̂′ := (Λ̂′ − 1). For perfect gates with δΛ̂ = δΛ̂′ = 0,

M̂0+ has eigenvalues and eigenvectors given by

|ψ0
1〉〉 = |φ0

1〉〉 =
1

2
|11〉〉 µ0

1 = 1 (A34)

|ψ0
2〉〉 = |φ0

2〉〉 =
1

2
|Z1〉〉 µ0

2 = 1 (A35)

|ψ0
3〉〉 = |φ0

3〉〉 =
1

2
|1Z〉〉 µ0

3 = 0 (A36)

|ψ0
4〉〉 = |φ0

4〉〉 =
1

2
|ZZ〉〉 µ0

4 = 0. (A37)

Then to first order in δΛ̂ and δΛ̂′, we have

µ1 = 1 (A38)

µ2 =
1

4

〈〈
Z1
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣Z1〉〉+O(δ2) (A39)

µ3 = O(δ) (A40)

µ4 = O(δ). (A41)

We therefore see that one eigenvalue is always 1, and
that we may neglect the eigenvalues µ3 and µ4, since
their contribution to the survival probability S0+(n) is

O(δn). We can therefore fit S0+(n) to a single exponen-
tial decay plus a constant. In the notation of Table II,
µ2 corresponds to λ0+.

From Eq. A33, the prefactor A0+ in front of the expo-
nential decay is given by

A0+ = 〈〈E0+|Λ̂M Λ̂G|ψ2〉〉〈〈φ2|Λ̂P |ρ0+〉〉 (A42)

We can estimate the value of A0+ by assuming

Λ̂G, Λ̂P , Λ̂M ≈ 1 and evaluating Eq. A42 explicitly, pro-
vided we can estimate the eigenvectors |ψ2〉〉, |φ2〉〉. Since
the eigenvectors at δ = 0 (Eqs. A34 and A35) are de-
generate, we must use degenerate perturbation theory to
find the eigenvectors at δ 6= 0. This means that |ψ2〉〉
and |φ2〉〉 will in general be (up to O(δ)) some linear
combination the δ = 0 eigenvectors with eigenvalue 1.
Specifically, we have

|ψ2〉〉 ≈
1

2
|Z1〉〉 (A43)

|φ2〉〉 ≈
1

2
|Z1〉〉+

γ

2
|11〉〉 (A44)

where γ is some constant determined by the specific per-
turbations δΛ and δΛ′, and the overall form is restricted
by the normalization condition 〈〈φi|ψj〉〉 = δi,j and the
fact that |φ1〉〉 = 1

2 |11〉〉 is a right-eigenvector with eigen-
value 1 for any trace-preserving map. Using these eigen-
vectors to evaluate Eq. A42 then gives A0+ ≈ 1, so that
we may accurately fit λ0+.

The case of b = 0− and b = 1± are similar. We define

M̂0− :=
1

2
Π̂0(ĈΛ̂− Ĉ ′Λ̂′)Π̂0 (A45)

M̂1+ :=
1

2
Π̂1(ĈΛ̂ + Ĉ ′Λ̂′)Π̂1 (A46)

M̂1− :=
1

2
Π̂1(ĈΛ̂− Ĉ ′Λ̂′)Π̂1 (A47)

and repeat the above analysis to see that we have for
b = 0− and b = 1−

Sb(n) =

4∑
j=1

〈〈Eb|Λ̂M Λ̂G|ψj〉〉〈〈φj |Λ̂P |ρb〉〉µnj , (A48)
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or for b = 1+

S1+(n) =
1

2

4∑
j=1

(
〈〈E(1)

1+ |Λ̂M Λ̂G|ψj〉〉〈〈φj |Λ̂P |ρ(1)
1+〉〉

(A49)

+〈〈E(2)
1+ |Λ̂M Λ̂G|ψj〉〉〈〈φj |Λ̂P |ρ(2)

1+〉〉
)
µnj ,

where µj , |ψj〉〉, and |φj〉〉 are the eigenvalues and eigen-

vectors of the corresponding M̂b operator. Performing
perturbation theory, we find that the unperturbed M̂0−
and M̂1− have eigenvalues {µ0

j} = {1,−1, 0, 0}, while the

unperturbed M̂1+ has eigenvalues {µ0
j} = {1, 1, 0, 0}. We

label the two largest-magnitude eigenvalues by λb and
κb, and neglect the remaining eigenvalues that are O(δ).
Working to first order in δΛ and δΛ′, we find

λ0− − κ0− =
1

4

[〈〈
1Z
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣1Z〉〉
+
〈〈
ZZ
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣ZZ〉〉] (A50)

λ1+ + κ1+ =
1

4

[〈〈
1X
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣1X〉〉
+
〈〈
ZX

∣∣∣ Λ̂ + Λ̂′

2

∣∣∣ZX〉〉] (A51)

λ1− − κ1− =
1

4

[〈〈
1Y
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣1Y 〉〉
+
〈〈
ZY
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣ZY 〉〉]. (A52)

In total, we’ve demonstrated that for these values of
b, we can fit Sb(n) to the sum of two exponential de-
cays, as given in Table 23. We can again estimate the
prefactors Ab and Bb in front of the decays by assuming
Λ̂G, Λ̂P , Λ̂M ≈ 1 and evaluating Eqs. A48 and A49. In
the case of b = 1+ we again need to use degenerate per-
turbation theory, while the cases of b = 0− and b = 1−
are non-degenerate. We find that Ab, Bb ≈ 1/2, so that
we can reliably fit both decay curves. Note that the only
reason for averaging over two initial states and final mea-
surements for b1+ is to ensure that A1+, B1+ ≈ 1/2.

b. Deriving the survival probabilities for b = 2±

We begin by considering the survival probability S2+.

For convenience, we define the operator M̂2+ by

M̂2+ :=
1

4
Π̂Z2 (ĈΛ̂ + Ĉ ′Λ̂′)Π̂Z3 (ĈΛ̂ + Ĉ ′Λ̂′)Π̂Z2 . (A53)

Note that Π̂Z2 is a rank-4 projector, so M̂2+ is a rank-4
operator in the general case.

We now evaluate the survival probability S2+(n) in
terms of M2+. We note that Fact 1 implies that

EU∈Z2
[Ûχ∗2+(U)] = Π̂Z2 and EU∈Z2

[Ûχ∗2−(U)] = Π̂Z3 (re
the expression for χ2± in Table II to the characters of
the Liouville representation of Z2 in Table IV). We then
have

S2+(n) = E
(a)=(1),(2)

U1···U2n+1∈G
C1,...,C2n∈{C,C′}

[
〈〈E(a)

2+ |Λ̂M Λ̂GÛ2n+1Ĉ2nΛ̂2nÛ2nĈ2n−1Λ̂n−1Ûn−1 · · · Û3Ĉ2Λ̂2Û2Ĉ1Λ̂1Û1Λ̂P |ρ(a)
2+〉〉χ∗2({Ui})

]

(A54)

= E
(a)=(1),(2)

C1,...,C2n∈{C,C′}

[
〈〈E(a)

2+ |Λ̂M Λ̂G Π̂Z2 Ĉ2nΛ̂2nΠ̂Z3 Ĉ2n−1Λ̂n−1Π̂Z2︸ ︷︷ ︸
M̂2+

· · · Π̂Z2 Ĉ2Λ̂2Π̂Z3 Ĉ1Λ̂1Π̂Z2︸ ︷︷ ︸
M̂2+

Λ̂P |ρ(a)
2+〉〉

]
(A55)

=
1

2

(
〈〈E(1)

2+ |Λ̂M Λ̂GM̂
n
2+Λ̂P |ρ(1)

2+〉〉+ 〈〈E(2)
2+ |Λ̂MM̂n

2+Λ̂P |ρ(2)
2+〉〉

)
(A56)

=

4∑
j=1

1

2

(
〈〈E(1)

2+ |Λ̂M Λ̂G|ψj〉〉〈〈φj |Λ̂P |ρ(1)
2+〉〉+ 〈〈E(2)

2+ |Λ̂M Λ̂G|ψj〉〉〈〈φj |Λ̂P |ρ(2)
2+〉〉

)
µnj (A57)

where in the last line, µj , |ψj〉〉, and |φj〉〉 denote the

eigenvalues and eigenvectors of M̂2+.

We again simplify this expression through perturbation

theory. When δΛ̂ = δΛ̂′ = 0, M̂2+ has eigenvalues and
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eigenvectors given by

|ψ0
1〉〉 = |φ0

1〉〉 =
1

2
|X1〉〉 µ0

1 = 1 (A58)

|ψ0
2〉〉 = |φ0

2〉〉 =
1

2
|Y 1〉〉 µ0

2 = 1 (A59)

|ψ0
3〉〉 = |φ0

3〉〉 =
1

2
|XZ〉〉 µ0

3 = 0 (A60)

|ψ0
4〉〉 = |φ0

4〉〉 =
1

2
|Y Z〉〉 µ0

4 = 0. (A61)

Then to first order in δΛ̂ and δΛ̂′, the eigenvalues satisfy

µ1 + µ2 =
1

4

[〈〈
X1
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣X1〉〉
+
〈〈
XX

∣∣∣ Λ̂ + Λ̂′

2

∣∣∣XX〉〉 (A62)

+
〈〈
Y 1
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣Y 1〉〉
+
〈〈
Y X

∣∣∣ Λ̂ + Λ̂′

2

∣∣∣Y X〉〉]− 2 +O(δ2)

µ3 = O(δ) (A63)

µ4 = O(δ). (A64)

We neglect µ3 and µ4, and find S2+ is the sum of two
exponential decays. In the notation of Table II, µ1 cor-
responds to λ2+ and µ2 corresponds to κ2+.

Similarly, for S2−(b), we define

M̂2− :=
1

4
Π̂2(ĈΛ̂− Ĉ ′Λ̂′)Π̂3(ĈΛ̂− Ĉ ′Λ̂′)Π̂2 (A65)

in terms of which we can write

S2−(n) =
1

2

4∑
j=1

(
〈〈E(1)

2− |Λ̂M Λ̂G|ψj〉〉〈〈φj |Λ̂P |ρ(1)
2−〉〉

(A66)

+〈〈E(2)
2− |Λ̂M Λ̂G|ψj〉〉〈〈φj |Λ̂P |ρ(2)

2−〉〉
)
µnj ,

where now µj , |ψj〉〉, and |φj〉〉 denote the eigenvalues

and eigenvectors of M̂2−.

We again use perturbation theory; the unperturbed
eigenvalues and eigenvectors are

|ψ0
1〉〉 = |φ0

1〉〉 =
1

2
|XZ〉〉 µ0

1 = 1 (A67)

|ψ0
2〉〉 = |φ0

2〉〉 =
1

2
|Y Z〉〉 µ0

2 = 1 (A68)

|ψ0
3〉〉 = |φ0

3〉〉 =
1

2
|X1〉〉 µ0

3 = 0 (A69)

|ψ0
4〉〉 = |φ0

4〉〉 =
1

2
|Y 1〉〉 µ0

4 = 0 (A70)

while to first order in δΛ̂ and δΛ̂′, the eigenvectors satisfy

µ1 + µ2 =
1

4

[〈〈
XZ

∣∣∣ Λ̂ + Λ̂′

2

∣∣∣XZ〉〉
+
〈〈
Y Y

∣∣∣ Λ̂ + Λ̂′

2

∣∣∣Y Y 〉〉 (A71)

+
〈〈
Y Z
∣∣∣ Λ̂ + Λ̂′

2

∣∣∣Y Z〉〉
+
〈〈
XY

∣∣∣ Λ̂ + Λ̂′

2

∣∣∣XY 〉〉]− 2 +O(δ2)

µ3 = O(δ) (A72)

µ4 = O(δ). (A73)

We again neglect µ3 and µ4, and find S2− is also the sum
of two exponential decays. In the notation of Table II,
µ1 corresponds to λ2− and µ2 corresponds to κ2−.

Finally, we can estimate the prefactors A2± and B2±
by assuming Λ̂G, Λ̂P , Λ̂M ≈ 1 and evaluating Eqs. A57
and A66. In both cases, we must use degenerate pertur-
bation theory to find the approximate eigenvectors. We
again find Ab, Bb ≈ 1/2.

c. Finding the dephasing and non-dephasing probabilities

We can combine Eqs. A39 and A50 to evaluate the
trace over Z2 as

TrZ2

(
Λ̂ + Λ̂′

2

)
= 1 + λ0+ + λ0− − κ0− (A74)

and we can combine Eqs. A51, A52, A62, and A71 to
evaluate the trace over P2 \ Z2 as

TrP2\Z2

(
Λ̂ + Λ̂′

2

)
= λ1+ + κ1+ + λ1− − κ1− + λ2+

+ κ2+ + λ2− + κ2− + 4. (A75)

Plugging Eqs. A74 and A75 into Eq. A16 for pD and pND

gives Eq. 23 as desired.

Appendix B: Dephasing/non-dephasing probabilities
of a composite channel

Given two quantum channels

ΛA(ρ) =
∑
~α1,~β1

~α2,~β2

χA
~α1
~β1,~α2

~β2
X(~α1)Z(~β1)ρZ(~β2)X(~α2) (B1)

ΛB(ρ) =
∑
~α1,~β1

~α2,~β2

χB
~α1
~β1,~α2

~β2
X(~α1)Z(~β1)ρZ(~β2)X(~α2) (B2)
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with dephasing and non-dephasing probabilities pAD,
pAND, pBD , and pBND, we want to find bounds on the
dephasing/non-dephasing probabilities of the combined
channel (ΛA ◦ ΛB). We will denote the combined error
probabilities by simply pD and pND.

1. Finding the non-dephasing error probability

From the definition of pND, Eq. 4, we have

pND =
∑

~α1+~γ1=~α2+~γ2 6=~0
~β1+~δ1=~β2+~δ2

(−1)
~β1·~γ1+~β2·~γ2χA

~α1
~β1,~α2

~β2
χB
~γ1~δ1,~γ2~δ2

. (B3)

For legibility in what follows, we will denote the diag-
onal elements χ~α~β,~α~β of the χ-matrices by simply χ~α~β .

Note that the complete-positivity of ΛA and ΛB requires
that the χ-matrices are positive semidefinite, which in
turn implies |χ~α1

~β1,~α2
~β2
| ≤ √χ~α1

~β1
χ~α2

~β2
[33], a fact we

will use repeatedly. We will also repeatedly use two el-
ementary inequalities, both of which are versions of the
Cauchy-Schwarz inequality:

∑
i

√
aibi ≤

√∑
i

ai

√∑
i

bi (B4)

I∑
i=1

√
ai ≤

√
I

√∑
i

ai. (B5)

The condition ~α1 + ~γ1 = ~α2 + ~γ2 6= ~0 implies at most
two of {~α1, ~α2, ~γ1, ~γ2} can be equal to ~0. We thus divide
the terms in Eq. B3 into several subsets.

1. Terms with ~α1 = ~α2 = ~0 (and thus ~γ1 = ~γ2 6= ~0).

2. Terms with ~γ1 = ~γ2 = ~0 (and thus ~α1 = ~α2 6= ~0).

3. Terms with ~α1 = ~γ2 = ~0 (and thus ~α2 = ~γ1 6= ~0).

4. Terms with ~α2 = ~γ1 = ~0 (and thus ~α1 = ~γ2 6= ~0).

5. Terms with ~α1 = ~0 and ~α2, ~γ1, ~γ2 6= ~0 (and thus
~γ2 = ~α2 + ~γ1).

6. Terms with ~α2 = ~0 and ~α1, ~γ1, ~γ2 6= ~0 (and ~γ2 =
~α1 + ~γ1).

7. Terms with ~γ1 = ~0 and ~α1, ~α2, ~γ2 6= ~0 (and ~γ2 =
~α1 + ~α2).

8. Terms with ~γ2 = ~0 and ~α1, ~α2, ~γ1 6= ~0 (and ~γ1 =
~α1 + ~α2).

9. Terms with ~α1, ~α2, ~γ1, ~γ2 6= ~0 (and ~γ2 = ~α1 + ~α2 +
~γ1).

Let’s take each of these in turn. We have

(1) =
∑
~γ1 6=~0
~β1,~β2,~δ1

(−1)(~β1+~β2)·~γ1χA~0~β1,~0~β2
χB
~γ1~δ1,~γ1(~β1+~β2+~δ1)

(B6)

=
∑
~γ1 6=~0
~δ1

χA~0~0,~0~0χ
B
~γ1~δ1,~γ1~δ1

+
∑

~β2,~γ1 6=~0
~δ1

(−1)
~β2·~γ1χA~0~0,~0~β2

χB
~γ1~δ1,~γ1(~β2+~δ1)

+
∑

~β1,~γ1 6=~0
~δ1

(−1)
~β1·~γ1χA~0~β1,~0~0

χB
~γ1~δ1,~γ1(~β1+~δ1)

(B7)

+
∑

~β1,~β2,~γ1 6=~0
~δ1

(−1)(~β1+~β2)·~γ1χA~0~β1,~0~β2
χB
~γ1~δ1,~γ1(~β1+~β2+~δ1)

The first term is equal to pBND, up to irrelevant higher-
order terms. We can bound the magnitude of the remain-
ing terms:

∣∣∣∣∣∣∣∣
∑

~β2,~γ1 6=~0
~δ1

(−1)
~β2·~γ1χA~0~0,~0~β2

χB
~γ1~δ1,~γ1(~β2+~δ1)

∣∣∣∣∣∣∣∣
≤
∑
~β2 6=~0

√
χA~0~0χ

A
~0~β2

∑
γ1 6=~0
~δ1

√
χB
~γ1~δ1

χB
~γ1(~β2+~δ1)

(B8)

≤
∑
~β2 6=~0

√
χA
~0~β2

∑
γ1 6=~0
~δ1

χB
~γ1~δ1

(B9)

≤ 2N/2
√∑
β1 6=~0

χA~0~β2
pBND (B10)

= 2N/2
√
pADp

B
ND (B11)

∣∣∣∣∣∣∣∣
∑

~β1,~γ1 6=~0
~δ1

(−1)
~β1·~γ1χA~0~β1,~0~0

χB
~γ1~δ1,~γ1(~β1+~δ1)

∣∣∣∣∣∣∣∣
≤ 2N/2

√
pADp

B
ND (B12)



16∣∣∣∣∣∣∣∣
∑

~β1,~β2,~γ1 6=~0
~δ1

(−1)(~β1+~β2)·~γ1χA~0~β1,~0~β2
χB
~γ1~δ1,~γ1(~β1+~β2+~δ1)

∣∣∣∣∣∣∣∣
≤
∑

~β1,~β2 6=~0

√
χA
~0~β1

χA
~0~β2

∑
~γ1 6=~0
~δ1

√
χB
~γ1~δ1

χB
~γ1(~β1+~β2+~δ1)

(B13)

≤
∑

~β1,~β2 6=~0

√
χA
~0~β1

χA
~0~β2

∑
~γ1 6=~0
~δ1

χB
~γ1~δ1

(B14)

≤ 2N
∑
~β1 6=~0

χA~0~β1
pBND (B15)

= 2NpADp
B
ND (B16)

Thus in total, we have∣∣(1)− pBND

∣∣ ≤ 2N/2+1
√
pADp

B
ND + 2NpADp

B
ND (B17)

By symmetry, we similarly have∣∣(2)− pAND

∣∣ ≤ 2N/2+1pAND

√
pBD + 2NpANDp

B
D (B18)

The remaining terms are only higher-order corrections,
and so we bound their magnitudes:

|(3)| ≤
∑
~α2 6=~0
~β1,~β2,~δ2

√
χA
~0~β1

χA
~α2
~β2
χB
~α2(~β1+~β2+~δ2)

χB
~0~δ2

(B19)

=
∑
~α2 6=~0
~β2

√
χA~0~0χ

A
~α2
~β2
χB
~α2
~β2
χB~0~0

+
∑

~α2,~β1 6=~0
~β2

√
χA
~0~β1

χA
~α2
~β2
χB
~α2(~β1+~β2)

χB~0~0

+
∑

~α2,~δ2 6=~0
~β2

√
χA~0~0χ

A
~α2
~β2
χB
~α2(~β2+~δ2)

χB
~0~δ2

+
∑

~α2,~β1,~δ2 6=~0
~β2

√
χA
~0~β1

χA
~α2
~β2
χB
~α2(~β1+~β2+~δ2)

χB
~0~δ2
. (B20)

We can bound each of these four terms as∑
~α2 6=~0
~β2

√
χA~0~0χ

A
~α2
~β2
χB
~α2
~β2
χB~0~0

≤
∑
~α2 6=~0
~β2

√
χA
~α2
~β2
χB
~α2
~β2

(B21)

≤
√√√√√
∑
~α2 6=~0
~β2

χA
~α2
~β2

√√√√√
∑
~α2 6=~0
~β2

χB
~α2
~β2

(B22)

=
√
pANDp

B
ND (B23)

∑
~α2,~β1 6=~0

~β2

√
χA
~0~β1

χA
~α2
~β2
χB
~α2(~β1+~β2)

χB~0~0

≤
∑
~β1 6=~0

√
χA
~0~β1

∑
~α2 6=~0
~β2

√
χA
~α2
~β2
χB
~α2(~β1+~β2)

(B24)

≤
∑
~β1 6=~0

√
χA
~0~β1

√√√√√
∑
~α2 6=~0
~β2

χA
~α2
~β2

√√√√√
∑
~α2 6=~0
~β2

χB
~α2
~β2

(B25)

≤ 2N/2
√∑
~β1 6=~0

χA~0~β1

√
pANDp

B
ND (B26)

≤ 2N/2
√
pADp

A
NDp

B
ND (B27)

∑
~α2,~δ2 6=~0

~β2

√
χA~0~0χ

A
~α2
~β2
χB
~α2(~β2+~δ2)

χB
~0~δ2
≤ 2N/2

√
pBDp

A
NDp

B
ND

(B28)

∑
~α2,~β1,~δ2 6=~0

~β2

√
χA
~0~β1

χA
~α2
~β2
χB
~α2(~β1+~β2+~δ2)

χB
~0~δ2

=
∑
~β1 6=~0

√
χA
~0~β1

∑
~δ2 6=~0

√
χB
~0~δ2

∑
~α2 6=~0
~β2

√
χA
~α2
~β2
χB
~α2(~β1+~β2+~δ2)

(B29)

≤
∑
~β1 6=~0

√
χA
~0~β1

∑
~δ2 6=~0

√
χB
~0~δ2

√√√√√
∑
~α2 6=~0
~β2

χA
~α2
~β2

√√√√√
∑
~α2 6=~0
~β2

χB
~α2
~β2

(B30)

≤ 2N
√∑
~β1 6=~0

χA~0~β1

√∑
~δ2 6=~0

χB~0~δ2

√
pANDp

B
ND (B31)

≤ 2N
√
pADp

B
Dp

A
NDp

B
ND. (B32)

Thus, in total we have

|(3)| ≤
√
pANDp

B
ND

(
1 + 2N/2

√
pAD

)(
1 + 2N/2

√
pBD

)
.

(B33)

By symmetry, we also have

|(4)| ≤
√
pANDp

B
ND

(
1 + 2N/2

√
pAD

)(
1 + 2N/2

√
pBD

)
.

(B34)



17

Continuing, we have

|(5)| ≤
∑

~α2,~γ2 6=~0
~α2 6=~γ2
~β1,~β2,~δ2

√
χA
~0~β1

χA
~α2
~β2
χB

(~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

(B35)

=
∑

~α2,~γ2 6=~0
~α2 6=~γ2
~β2,~δ2

√
χA~0~0χ

A
~α2
~β2
χB

(~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

+
∑

~α2,~β1,~γ2 6=~0
~α2 6=~γ2
~β2,~δ2

√
χA
~0~β1

χA
~α2
~β2
χB

(~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

(B36)

each of which can be bounded as∑
~α2,~γ2 6=~0
~α2 6=~γ2
~β2,~δ2

√
χA~0~0χ

A
~α2
~β2
χB

(~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

≤
∑
~α2 6=~0
~β2

√
χA
~α2
~β2

∑
~γ2 6=~0,~α2

~δ2

√
χB

(~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

(B37)

≤
∑
~α2 6=~0
~β2

√
χA
~α2
~β2

∑
~γ2 6=~0
~δ2

χB
~α2
~δ2

(B38)

≤ 2N
√√√√√
∑
~α2 6=~0
~β2

χA
~α2
~β2
pBND (B39)

= 2N
√
pANDp

B
ND (B40)

∑
~α2,~β1,~γ2 6=~0
~α2 6=~γ2
~β2,~δ2

√
χA
~0~β1

χA
~α2
~β2
χB

(~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

=
∑
~β1 6=~0

√
χA
~0~β1

∑
~α2 6=~0
~β2

√
χA
~α2
~β2

∑
~γ2 6=~0,~α2

~δ2

√
χB

(~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

(B41)

≤
∑
~β1 6=~0

√
χA
~0~β1

∑
~α2 6=~0
~β2

√
χA
~α2
~β2

∑
~γ2 6=~0
~δ2

χB
~γ2~δ2

(B42)

≤ 23N/2
√∑
~β1 6=~0

χA~0~β1

√√√√√
∑
~α2 6=~0
~β2

χA
~α2
~β2
pBND (B43)

≤ 23N/2
√
pANDp

A
Dp

B
ND. (B44)

Thus in total,

|(5)| ≤ 2NpBND

√
pAND

(
1 + 2N/2

√
pAD

)
(B45)

By symmetry, we also have

|(6)| ≤ 2NpBND

√
pAND

(
1 + 2N/2

√
pAD

)
(B46)

|(7)| ≤ 2NpAND

√
pBND

(
1 + 2N/2

√
pBD

)
(B47)

|(8)| ≤ 2NpAND

√
pBND

(
1 + 2N/2

√
pBD

)
. (B48)

Finally,

|(9)| ≤
∑

~α1,~α2,~γ2 6=~0
~α1+~α2 6=~γ2
~β1,~β2,~δ2

√
χA
~α1
~β1
χA
~α2
~β2
χB

(~α1+~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

(B49)

=
∑
~α1 6=~0
~β1

√
χA
~α1
~β1

∑
~α2 6=~0
~β2

√
χA
~α2
~β2

×
∑

~γ2 6=~0,(~α1+~α2)
~δ2

√
χB

(~α1+~α2+~γ2)(~β1+~β2+~δ2)
χB
~γ2~δ2

(B50)

≤
∑
~α1 6=~0
~β1

√
χA
~α1
~β1

∑
~α2 6=~0
~β2

√
χA
~α2
~β2

∑
~γ2 6=~0
~δ2

χB
~γ2~δ2

(B51)

≤ 22N
∑
~α1 6=~0
~β1

χA
~α1
~β1
χA
~α2
~β2
pBND (B52)

≤ 22NpANDp
B
ND (B53)

Combining the bounds given in Eqs. B17, B18, B33,
B34, B45, B46, B47, B48, and B53, we have that

pND = pAND + pBND + ε (B54)

where the error term ε is bounded by

|ε| <2
√
pANDp

B
ND

+ 2N/2+1

[√
pADp

B
ND + pAND

√
pBD

+
√
pADp

A
NDp

B
ND +

√
pANDp

B
Dp

B
ND

]
+ 2N

[
pADp

B
ND + pANDp

B
D + 2

√
pADp

A
NDp

B
Dp

B
ND

+2pAND

√
pBD + 2

√
pADp

B
ND

]
+ 23N/2+1

[
pAND

√
pBDp

B
ND +

√
pADp

A
NDp

B
ND

]
+ 22NpANDp

B
ND.

(B55)

While the bound on |ε| involves many terms, in the case

where pA,BD � 2−N and pA,BND /pA,BD � 2−N the bound is

essentially just 2
√
pANDp

B
ND, which gives Eq. 9 of the main
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text. This is the relevant regime for high fidelity, highly-
biased channels on a small number of qubits. It is also the
relevant regime for error channels in which off-diagonal
elements of the χ-matrix are exponentially suppressed in
the weight of the Pauli errors, which is likely the case for
error-correction circuits as they tend to decohere noise
[52–55].

2. Finding the dephasing error probability

From the definition of pD, Eq. 3, we have

pD =
∑

~α1+~γ1=~α2+~γ2=~0
~β1+~δ1=~β2+~δ2

(−1)
~β1·~γ1+~β2·~γ2χA

~α1
~β1,~α2

~β2
χB
~γ1~δ1,~γ2~δ2

. (B56)

We could similarly divide the terms in this sum into
categories and bound them, as we did for pND above.

However, if we assume pA,BD � pA,BND , we can instead ap-
proximate pD by p = pD+pND, the total error probability
of the channel. We then use the known result [58, Theo-
rem 1]

p = pA + pB + ε, |ε| ≤ 2
√
pApB . (B57)

3. Extracting the dephasing and non-dephasing
probabilities in IBRB

Given the estimates of pD and pND given in Eqs. B57
and B54, respectively, we can reverse these equations to
try and estimate pAD and pAND from pBD , pBND, pD, and
pND. This is relevant if ΛA is the error channel associated
to our gate of interest and ΛB is the error channel of
our interleaving group. For convenience, we’ll assume
we’re in the regime where we can neglect the error terms
proportional to 2N/2 and higher powers. Rearranging
Eqs. B57 and B54 gives

pAD = pD + pBD + ε, |ε| < 2
√
pDpBD (B58)

pAND = pND + pBND + ε, |ε| < 2
√
pNDpBND. (B59)

We note that in our particular case, it seems difficult
to extract pBD and pBND for the group Z2, as the Liouville
representation of this group has high multiplicity. This is
why we prefer the randomized compiling interpretation
of pD and pND given in the main text.

Appendix C: Randomized compiling with Z
randomization

In this section, we explain the randomized compiling
by ZN in more detail, and prove that it ensures non-
dephasing errors increase linearly under composition (Eq.
24 of the main text).

Given an N -qubit bias-preserving Clifford circuit com-
posed of gates C1, C2, . . . , Cn, a noisy implementation
of the circuit is given by

ĈnΛ̂n · · · Ĉ2Λ̂2Ĉ1Λ̂1 (C1)

where Λ̂1, Λ̂2, . . . , Λ̂n are the associated error channels.
Let’s assume that we can implement arbitrary elements
of ZN with a gate-independent error channel Λ̂G, where
Λ̂G is negligible red to the Clifford errors. We take the
convention that the In this case, we can interleave ran-
domly chosen gates U ∈ ZN between the Clifford ele-
ments without increasing the error. Note that because
the circuit elements are Clifford, the effect of interleav-
ing U can be corrected by an efficiently computable Pauli
correction operator. We’ll denote the correction opera-
tor by Un+1. Note that because the Cliffords preserve
the bias, we have Un+1 ∈ ZN .

The resulting noisy circuit is then

Λ̂GÛn+1ĈnΛ̂nΛ̂GÛn · · · Ĉ2Λ̂2Λ̂GÛ2Ĉ1Λ̂1Λ̂GÛ1. (C2)

Because the Cliffords preserve the bias, commuting any
element of ZN past a Clifford results in another element
of ZN . We can thus rewrite the circuit as

Λ̂GĈnV̂
†
n Λ̂nΛ̂GV̂n · · · Ĉ2V̂

†
2 Λ̂2Λ̂GV̂2Ĉ1V̂

†
1 Λ̂1Λ̂GV̂1. (C3)

for some Vi ∈ ZN that are also distributed uniformly over
ZN . Taking the expectation value over V̂1, . . . V̂n results
in an effective circuit of the form

Λ̂GĈnΛ̂Tn · · · Ĉ2Λ̂T2 Ĉ1Λ̂T1 . (C4)

where the twirled error channel ΛTi is given by

Λ̂Ti = E
V ∈ZN

[
V̂ †Λ̂iΛ̂GV̂

]
. (C5)

The twirled version of the error channels is highly sim-
plified compared to the original error channel. In terms
of the χ-matrix, if the original error channel is given by

(Λi ◦ ΛG) (ρ) =
∑
~α1,~β1

~α2,~β2

χ~α1
~β1,~α2

~β2
X(~α1)Z(~β1)ρZ(~β2)X(~α2)

(C6)

then the twirled error channel is given by

ΛTi (ρ) =
∑
~α

~β1,~β2

χ~α~β1,~α~β2
X(~α)Z(~β1)ρZ(~β2)X(~α) (C7)

where the off-diagonal elements of the χ-matrix with
~α1 6= ~α2 are set to zero.

If we consider the composition of two twirled error
channels (ΛTA ◦ ΛTB), we can again estimate the non-
dephasing probability of the composition in terms of the
dephasing and non-dephasing probabilities of ΛA and
ΛB . In evaluating the sum in Section B 1, the fact that



19

the error channels are twirled means the only nonzero
terms in the sum have ~α1 = ~α2 and ~γ1 = ~γ2. These leaves
the sum over subsets (1) and (2) unchanged, makes the
sum over subsets (3)-(8) zero, and lets us reevaluate the
sum over subset (9) as

|(9)| ≤
∑
~α,~γ 6=~0
~β1,~β2,~δ2

√
χA
~α~β1

χA
~α~β2

χB
~γ(~β1+~β2+~δ2)

χB
~γ~δ2

(C8)

=
∑
~α 6=~0
~β1

√
χA
~α~β1

∑
~β2

√
χA
~α~β2

∑
~γ 6=~0
~δ2

√
χB
~γ(~β1+~β2+~δ2)

χB
~γ~δ2

(C9)

≤
∑
~α 6=~0
~β1

√
χA
~α~β1

∑
~β2

√
χA
~α~β2

∑
~γ 6=~0
~δ2

χB
~γ~δ2

(C10)

≤ 2N
∑
~α 6=~0

√∑
~β1

χA
~α~β1

√∑
~β1

χA
~α~β2

pBND (C11)

≤ 2N
∑
~α 6=~0
~β1

χA
~α~β1

pBND (C12)

≤ 2NpANDp
B
ND. (C13)

Thus by combining Eqs. B17, B18, and C13, we have

pND = pAND + pBND + ε (C14)

|ε| ≤ 2N/2+1

[√
pADp

B
ND + pAND

√
pBD

]
+ 2N

[
pANDp

B
D + pADp

B
ND + pANDp

B
ND

]
. (C15)

In the regime of high-fidelity gates on a small number of
qubits, |ε| is negligible, which gives Eq. 24 in the main
text.

In contrast, randomized Z2 compiling produces no no-
table improvement to the bounds on pD for a highly bi-
ased noise channel, as in this case the dominant uncer-
tainty in pD comes from off-diagonal elements of the χ-

matrices χA and χB with ~α1 = ~α2 = ~γ1 = ~γ2 = ~0, which
are not affected by twirling.

Appendix D: Generating random biased-noise error
channels

Here, we give more details on our procedure to generate
random biased-noise error channels to use in our simu-
lation data. We make no claim that this procedure is
optimal or generates all realistic error channels; our goal
was simply to generate error channels that were both bi-
ased and not Pauli-diagonal to illustrate the power of our
BRB methods.

We first randomly choose the number d = 1, ..., 4N of
Kraus operators to include, as well as the approximate
target probabilities pD and pND for the channel. For
i = 1, . . . , (d − 1), we choose each Kraus operator to be
either dephasing or non-dephasing with probability 1/2,
and set it to

Ki :=



√
10pD

d

∑
~β

c~βZ(~β), dephasing

√
10pND

d

∑
~α 6=~0
~β

c~α,~βX(~α)Z(~β), non-dephasing

(D1)
where each c is generated by choosing a uniform r ∈
[0, 1], θ ∈ [0, 2π], and setting c = reiθ. The factor of
10 was inserted “by hand” to make the resulting error
channel approximately have the desired dephasing/non-
dephasing probabilities.

Finally, having defined Ki for i = 1, . . . , (d − 1), we
define Kd to be a matrix satisfying

K†dKd = 1−
d−1∑
i=1

K†iKi (D2)

to ensure the overall channel is trace-preserving. While
this description of Kd is not unique, one matrix satisfy-
ing this equation is given by the Cholesky decomposition

of (1 −
∑
iK
†
iKi) [64], which is what we used in our

simulations.
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