
ar
X

iv
:2

20
6.

00
01

3v
2 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

9 
A

ug
 2

02
2

Helical superfluid in a frustrated honeycomb Bose-Hubbard model
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We study a “helical” superfluid, a nonzero-momentum condensate in a frustrated bosonic model.
At mean-field Bogoliubov level, such a novel state exhibits “smectic” fluctuation that are qualita-
tively stronger than that of a conventional superfluid. We develop a phase diagram and compute
a variety of its physical properties, including the spectrum, structure factor, condensate depletion,
momentum distribution, all of which are qualitatively distinct from that of a conventional superfluid.
Interplay of fluctuations, interaction and lattice effects gives rise to the phenomenon of order-by-
disorder, leading to a crossover from the smectic superfluid regime to the anisotropic XY superfluid
phase. We complement the microscopic lattice analysis with a field theoretic description for such
a helical superfluid, which we derive from microscopics and justify on general symmetry grounds,
reassuringly finding full consistency. Possible experimental realizations are discussed.

I. INTRODUCTION

Frustrated systems exhibit novel emergent phenom-
ena as they often host extensive degeneracy that is sen-
sitive to even weak perturbations [1, 2]. This mani-
fests itself in rich low-temperature phenomenology, as
in the frustrated magnetism, which commonly remains
disordered down to temperatures low compared to the
Curie-Weiss temperature set by the exchange interac-
tion [3–7]. At even lower temperature, generically or-
der develops through the so-called “order-by-disorder”
process [8, 9], where fluctuations (e.g., entropically) se-
lect ordered states among many competing nearly free-
energetically degenerate phases. This contrasts with an
even more exotic possibility of a putative quantum liquid,
that fails to order down to zero temperature, as believed
to be exemplified by some 2d Kagome magnetic materials
with a flat-band dispersion [10–25].
Another rich class of “codimension-one” frustrated sys-

tems [26–40], characterized by a bare dispersion that is
nearly degenerate along d − 1 dimensions (d the spatial
dimension), develop even in the bipartite lattice materi-
als, frustrated by competing interactions. Examples in-
clude spinel materials such as MnSc2S4 on 3d diamond
lattice [26, 27, 30, 39] and FeCl3 on layered honeycomb
lattice [40]. Theoretically, they are well described by clas-
sical spin models with nearest-neighbor and next-nearest-
neighbor exchange interactions. Within certain regime
of frustration, the dispersion minima form a degenerate
manifold with codimension-one in the reciprocal space.
However, at nonzero temperature a set of wavevectors is
selected entropically based on their lowest free energy.
The phenomenon of order-by-disorder, however, is elu-

sive in magnetic systems, often obscured by further-
neighbor interactions, which instead can lead to a low-
temperature multi-step ordering sequence of phases [30].
Alternatively, the codimension-one bare dispersion and
the associate phenomenology can be realized in bosonic
systems with frustrated hoppings [41, 42] or Rashba spin-
orbital coupling [43], engineered in a controlled way in

cold atom experiments [44, 45]. More exotic construc-
tions involve ring exchange interactions that induce an
emergent Bose metal [46, 47].

It is thus of interest to elucidate the nature of a state
that emerges from a nonzero density of interacting frus-
trated bosons condensed at nonzero momentum on a dis-
persion minimum contour, and in particular to explore
its stability to a putative quantum liquid state [48, 49].
To this end, we take two complementary approaches, a
paradigmatic two-dimensional Bose-Hubbard model on
honeycomb lattice and a continuum field theory that we
derive from it. The model is frustrated by competing
nearest-neighbor and next-nearest-neighbor hoppings, t1
and t2, and thereby (for a broad range of parameters) ex-
hibits a bare dispersion with a minimum on a closed con-
tour at nonzero momentum k0 set by the hopping matrix
elements. We thus explore in detail the rich phenomenol-
ogy of the resulting helical superfluid state. In particular,
as summarized in detail in Sec. II, we analyze the helical
superfluid within the lattice Bogoliubov approximation,
computing its dispersion, condensate depletion, momen-
tum distribution, structure factor, and equation of state,
all of which different qualitatively from that of a conven-
tional superfluid. We complement this honeycomb lattice
analysis by deriving from it (guided by generalized dipo-
lar symmetry [50–54]) a superfluid smectic field theory
[51, 55] to more generally explore the properties of the
helical condensate. By going beyond the Bogoliubov ap-
proximation, we analyze the quantum and thermal order-
by-disorder phenomenon that sets in at low energies and
leads to a crossover to a more conventional but highly
anisotropic XY superfluid.

The outline of this paper is as follows. In Sec II, we give
a summary of our primary results. In Sec. III, we study a
model of bosons hopping on a frustrated honeycomb lat-
tice and its superfluidity within the Bogoliubov approx-
imation. In Sec. IV, we construct a smectic field theory
for the helical superfluid, and use it to study its stability
to quantum and thermal fluctuations and its properties
in the isotropic continuum, thereby complementing the
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microscopic lattice model analysis in Sec III. Sec. V is
devoted to the quantum and thermal order-by-disorder
phenomenon, that reduces the degeneracy of the disper-
sion minimum contour down to a discrete set of six min-
ima, and thereby stabilizes the helical superfluid state.
We conclude in Sec. VI with a discussion of results in
the contexts of current experiments and remaining open
questions.

II. SUMMARY OF RESULTS

T

SFHelical
SFk=0

N

SFHelical
t2/t1

~t1

(b)

U
n
/
t 1

BECV

BECV

BECE

(a)

t2/t1ρ=

FIG. 1. (a) Schematic phase diagram of the frustrated hon-
eycomb Bose-Hubbard model. With the inclusion of lattice
order-by-disorder effects, the finite-temperature phase bound-
aries from a conventional (SFk=0) or a helical (SFHelical) su-
perfluid to a normal state (N) are of Berezinskii-Kosterlitz-
Thouless universality class. To leading order, the phase tran-
sition temperature is given by TKT ∼ n0

√
BB⊥, where B and

B⊥ are the superfluid stiffnesses defined in the Lagrangian (4).
For t2/t1 < 1/6, B ∼ B⊥ ∼ t1, giving TKT ∝ t1. In contrast,
for t2/t1 > 1/6, B⊥ is induced perturbatively via interac-

tion together with lattice effects, giving TKT ∝ U5/8t
3/8
1 in

the weakly-interacting limit. In the absence of lattice effects,
SFHelical is always destabilized to the Normal state by diver-
gent thermal fluctuations. (b) Phase diagram of the helical
condensate in the regime 1/6 < t2/t1 < 1/2. Bosons can con-
dense at the Vertex (BECV) or the Edge (BECE) of the dis-
persion minimum contour as a result of the order-by-disorder,
obtained by numerically evaluating the one-loop correction to
the thermodynamic potential (85). The black (red-dashed)
curves are zero temperature (T = 0.1Un) phase boundaries,
across which there is a first order transition.

"smectic" GM XY GM
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FIG. 2. (a) Minima of the thermodynamic potential as a
function of the condensate momentum k0 for intermediate
frustration 1/6 < t2/t1 < 1/2. The order-by-disorder ef-
fects, which manifest at long scales r⊥ > λ⊥, break the de-
generate ground state manifold from a (schematic) hexagon
down to six points. The helical condensate (red dot) spon-
taneously breaks the U(1) (C6) symmetry in the left (right)
panel, resulting in a low-energy smectic-like (conventional,
XY) Goldstone mode (GM). (b) Two-point correlation func-
tion C(r) = 〈[φ(r) − φ(0)]2〉 of (4) along r⊥ with r‖ = 0.
For general cases (black curve), the helical superfluid exhibits
quantum (r⊥ < r⊥T ), thermal (r⊥ > r⊥T ), smectic (SFSm,
r⊥ < λ⊥), and XY (SFXY, r⊥ > λ⊥) fluctuations, separated
by two crossover scales, r⊥T and λ⊥. In the absence of the
order-by-disorder (λ⊥ → ∞, red-dashed curve), the helical
superfluid is characterized by linear in r⊥ smectic fluctua-
tions for r⊥ > r⊥T . In the zero temperature limit (r⊥T → ∞,
blue-dotted curve), the superfluid exhibits a long-range order
with C(0, r⊥ → ∞) → const. Inset: same plot with logarith-
mic scale in the r⊥ axis, where r⊥ is plotted to longer scale
for clarity of the crossover.

Before turning to a detailed analysis, we summarize the
key results of this work. We study a Bose-Hubbard model
with frustrated nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hoppings, t1 and t2. For intermediate
frustration 1/6 < ρ ≡ t2/t1 < 1/2, its band structure
features a closed contour minimum centered around the
Γ point (k = 0). We then consider a bosonic condensate
with a macroscopic wavefunction Φ =

√
n0 + πeik0·r+iφ

at a single momentum k0 on the contour minimum – a
“helical condensate”, where n0 is the condensate density,
φ and π are the phase and density fluctuations, respec-
tively. As illustrated in Fig. 1, the helical superfluid is
a stable phase on the high symmetry points of the con-
tour with its transition temperature to the normal state
(below that of a conventional superfluid in the unfrus-
trated regime ρ < 1/6) strongly suppressed by quan-
tum and thermal fluctuations. Quantum Lifshitz transi-
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tions at ρ = 1/6, 1/21 are characterized by “soft” Gold-
stone modes that exhibit an anisotropic quartic disper-
sion, which suppresses the transition temperature to zero.

As summarized in Fig. 2, at zero temperature (T =
0) and on scale shorter than quantum order-by-disorder
length λ⊥Q, the highly anisotropic superfluid exhibits an
unconventional smectic-like Goldstone mode (GM) with
a low-energy dispersion [for full dispersion, see Eq. (24)]

Eq ∼
√

Bq2‖ +Kq4⊥, (1)

where the subscript ‖ (⊥) denotes the direction that is
parallel (perpendicular) to condensate momentum k0, lo-
cated at the high symmetry points of the dispersion con-
tour. At temperatures higher than the interaction U , the
crossover scale is modified to λ⊥T . On longer scales the
so-called order-by-disorder sets in, driven by quantum,
thermal and lattice effects, and the system crossovers to
a more conventional superfluid with highly anisotropic
linear dispersion. In the weakly-interacting limit, the
order-by-disorder length is long, given by

λ⊥ =

{

λ⊥Q ∼ U−5/8, T ≪ Un0.
λ⊥T ∼ U−1/8T−1/2, T ≫ Un0.

(2)

To further explain the order-by-disorder phenomenol-
ogy (discussed in detail in Sec. V), we first note that
the thermodynamic potential of the helical state near
the condensate momentum k0 [see the right panel of
Fig. 2(a)] exhibits a property

Ω(k0 + q) − Ω(k0) ≈ N0

[

bq2‖ + b⊥q
2
⊥ + b4q

4
⊥

]

, (3)

where the coefficients b(k0) and b4(k0) are dominated by
the bare dispersion (see Appendix B), while b⊥(k0) is
generated perturbatively by the lattice order-by-disorder
via interaction U . In the above, N0 is the condensate
number. The corresponding low-energy Goldstone mode
Lagrangian density is given by

L = n0

[

Bτ (∂τφ)
2 +B(∂‖φ)

2 +B⊥(∂⊥φ)
2 +K(∂2

⊥φ)
2
]

,

(4)

which when treated at a quantum level leads to the dis-
persion (1) for a ≪ q−1

⊥ ≪ λ⊥ =
√

K/B⊥ (a the lattice
constant). We observe that a difference choice of the he-
lical condensation, k0 → k0+q, equivalently corresponds
to a linear in r phase rotation, φ → φ+q ·r. By applying
the two transformations to the thermodynamic potential
and the Goldstone mode Hamiltonian respectively, and
requiring the shifted energies to be identical, we obtain
the following Ward identities,

b = B, b⊥ = B⊥. (5)

We expect the relations (5) to hold at all order of a per-
turbation theory (see Sec. V). In particular, at the zeroth
order, the thermodynamic potential [see the left panel of
Fig. 2(a)] is featured by a degenerate contour minimum,
and thus b⊥ = B⊥ = 0. At one-loop (first) order, the
correction to the thermodynamic potential is given by
the zero-point energy of the Bogoliubov quasiparticles
together with entropic contributions, which in turn gives
a b⊥ ∝ U5/4 (b⊥ ∝ U1/4T ) for T ≪ Un0 (T ≫ Un0)
in the weakly-interacting limit. We also perform a com-
plementary calculation of B⊥ verifying (5). In contrast,
while b4 = K at zeroth-order, the above symmetry does
not constrain it to hold generically.
The Goldstone mode theory (4) predicts the low-

energy properties of the helical superfluid. In particular,
the off-diagonal order of the superfluid 〈Ψ∗(r)Ψ(0)〉 ∝
e−C(r), where C(r) = 〈[φ(r) − φ(0)]2〉. As shown in
Fig. 2(b), the two-point correlation function C(r) ex-
hibits several qualitatively distinct limits. Here we fo-
cus on the behavior along the ⊥ direction, leaving de-
tailed discussions in Sec. IVA. At zero temperature (see
the blue-dotted curve), for either B⊥ = 0 or B⊥ 6= 0,
C(r‖ = 0, r⊥ → ∞) → const, indicating a long-range
order of the helical superfluid. At nonzero temper-
ature, as illustrated by the black (red-dashed) curve,
C(0, r⊥ → ∞) ∼ log(r⊥) (∼ r⊥) for B⊥ 6= 0 (B⊥ = 0),
which signifies a quasi-long-range (short-range) order as a
consequence of the XY (smectic) GM fluctuations. For a
general case T 6= 0 and B⊥ 6= 0, there are two important
crossover scales, r⊥T and λ⊥. The former separates the
low-temperature quantum and higher-temperature clas-
sical regimes, while the latter, as discussed above, sep-
arates the short-distance smectic and long-distance XY
regimes.

1 The quantum Lifshitz transition at ρ = 1/2 only happens at the
vertices of the hexagonal contour (see Fig. 5), which is energeti-
cally stable at one-loop order as shown in Fig. 1(b). Higher-order
fluctuations may shift the positions of the Lifshitz transitions, or
make the transition at ρ = 1/2 split into two Lifshitz points
characterized by smectic-like Goldstone modes with Lagrangian
(35b), as allowed by the C6 lattice symmetry.

Consequently, the helical state is characterized by
an anisotropic XY superfluidity at the longest scale.
However, within a large (for small U) order-by-disorder
crossover scale, (r∗‖ , r

∗
⊥) = (λ2

⊥/ξ, λ⊥) (ξ the coherence

length), the system exhibits soft (B⊥ ≈ 0) quantum and
thermal fluctuations, with its physical properties quali-
tatively distinct from that of a conventional superfluid.
Abstracting from the Bose-Hubbard lattice model, we
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Observables 2d Helical SF 2d conventional SF

Static structure factor, S ∼ n0

√

ξ2q2‖ + ξ2λ2q4⊥ ∼ n0ξ̃q

Condensate depletion, nd/n ∼ U3/4n−1/4 ∼ U

Momentum distribution, nq

1
ξq‖

fn

(

λ
q2⊥
q‖

)

, when q‖ξ ≪ 1

1
(ξq‖)

4 fn

(

λ
q2⊥
q‖

)

, when q‖ξ ≫ 1

1/q, when qξ̃ ≪ 1

C/q4, when qξ̃ ≫ 1

Superfluid stiffness, (ρs)ij 8Jnk0ik0j δijn/m

Chemical potential correction, µ(1) −UnC
(

U3

nB2K

)1/4

logarithmic correction [56, 57]

TABLE I. Comparison of the helical superfluid (within the order-by-disorder crossover scale) and a conventional superfluid at
zero temperature in 2d. Note q = k−k0 (q = k) for the helical (conventional) superfluid. For helical superfluid with low-energy

Lagrangian (4), the coherence length ξ =
√

B/2Un, the anisotropy length scale λ =
√

K/B, the condensate momentum k0,
J and C are constants, and fn is a scaling function given in (65). For conventional superfluid, C is the Tan’s contact and

ξ̃ = 1/
√
4mUn is the coherence length of interacting Bose gas with m, U and n being the mass, interaction strength and

particle density respectively.

develop a field theory that captures the key qualita-
tive features of the helical superfluid within this regime,
and calculate a number of its physical observables, with
the zero-temperature results summarized in Table I. At
nonzero temperature, thermal fluctuations set in at scales

beyond (r‖T , r⊥T ) = (Un0

T ξ,
√

Un0

T

√
λξ) (λ =

√

K/B),

as illustrated in Fig. 2(b). Such quantum-to-classical
crossover is observable in real space- or momentum-
resolved quantities, as exemplified by the structure fac-
tor in Sec. IVB 1. We now turn to detailed analysis that
leads to the results enumerated above.

III. FRUSTRATED BOSE-HUBBARD MODEL

ON HONEYCOMB LATTICE

To explore the phenomenon of nonzero momentum he-
lical superfluidity, we study a frustrated Bose-Hubbard
model on honeycomb lattice with Hamiltonian H =
H0 +Hint, where

Hint =
U

2

∑

i

∑

s=1,2

ni,s(ni,s − 1) (6)

is the usual on-site interactions with the subscripts i and
s labeling the Bravais lattice sites and the two sublattices

respectively. ni,s = a†i,sai,s is the boson number operator

with a†i,s and ai,s the corresponding creation and annihi-
lation operators. The kinetic part of the Hamiltonian is
given by

H0 = −t1
∑

〈ij〉
a†i,1aj,2 + t2

∑

〈〈ij〉〉
(a†i,1aj,1 + a†i,2aj,2) + h.c.,

(7)

where t1 and t2 are the nearest-neighbor (NN) and the
next-nearest-neighbor (NNN) hopping parameters, re-
spectively. We focus on the case of t1 > 0, taking the
advantage of the symmetry of the model: t1 → −t1,
a2 → −a2. In contrast to the NN hopping, we take
the NNN hopping, −t2, to be “frustrated antiferromag-
netic”, −t2 < 0. This has been engineered in atomic
systems in an optical lattice through Floquet techniques
[44]. Throughout our analysis below, we use dimension-
less parameter ρ = t2/t1 > 0 to quantify the frustration
in this model.

A. Band structure of non-interacting Hamiltonian

Below we first review the band structure of H0, identi-
fying the condition when a degenerate minimum along a
closed contour develops, and then study a Bose conden-
sate on the this dispersion minimum contour via Bogoli-
ubov approximation. We start with specifying the NN
and NNN vectors as [see Fig. 3(a)]

e1 = (0, 1), e2 = (−
√
3

2
,−1

2
), e3 = (

√
3

2
,−1

2
),

v1 = (
√
3, 0), v2 = (−

√
3

2
,
3

2
), v3 = (−

√
3

2
,−3

2
)

(8)

with the lattice vectors vi spanning the Bravais trian-
gular lattice and the unit vectors ei spanning the hon-
eycomb lattice (the lattice constant a = 1). The corre-
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sponding reciprocal vectors are [see Fig. 3(b)]

G1 = (0,
4π

3
), G2 = (− 2π√

3
,−2π

3
), G3 = (

2π√
3
,−2π

3
).

(9)

e1

e2 e3

v1

v2

v3

(a) (b)

KK'

M

M'

M''

FIG. 3. (a) Honeycomb lattice with NN (black) and NNN
(red) vectors. The two sublattices are connected by δ = e1.
The lattice spacing is set to a = 1 throughout this paper. (b)
First Brillouin zone, high symmetry points 2, and high sym-
metry (red-dashed) lines. Equivalent high symmetry points
are connected by the reciprocal vectors (9).

The Hamiltonian (7) is straightforwardly diagonalized
in momentum space (see Appendix A)

H0 = − t1
∑

k

(Γqa
†
k,1ak,2 + Γ∗

qa
†
k,2ak,1)

+ t2
∑

k

ǫk(a
†
k,1ak,1 + a†k,2ak,2)

=
∑

k

ǫ−k d
†
k,−dk,− +

∑

k

ǫ+k d
†
k,+dk,+, (10)

where

dk,± =
1√
2
(e−

θk
2 ak,1 ∓ e

θk
2 ak,2) (11)

create bosonic excitations in the two bands,

ǫ−k = t2ǫk − t1|Γk|, ǫ+k = t2ǫk + t1|Γk|, (12)

exhibiting Dirac nodes at the K points (the corners of the
first Brillouin zone), made famous in graphene but irrele-
vant here for bosonic system dominated by condensation
at the bottom of the band. In the above,

ǫk = 2
∑

i

cosk · vi, Γk =
∑

i

exp (−ik · ei) (13)

with |Γk| =
√
3 + ǫk. The dependence of the band struc-

ture on ρ = t2/t1 is depicted in Fig. 4. Momenta k̄0 is
the dispersion minimum that satisfies

∇kǫ
−
k |k=k̄0

= 0 → ρ =
1

2|Γk̄0
| . (14)

2 The high symmetry points are given by Γ = (0, 0), K = ( 4π
3
√

3
, 0),

K ′ = (− 4π
3
√

3
, 0), M = ( π√

3
, π
3
), M ′ = (0,− 2π

3
), and M ′′ =

(− π√
3
, π
3
).

-2

-1

1

2

3

Γ KM Γ

(a)

(b)

(c)

-2

2

4

6

-1

1

2

3

4ϵ
+/t1

ϵ
−/t1

FIG. 4. Band structure (12) of the frustrated bosonic tight-
binding model at different ρ. (a) ρ = 0.1 < 1/6. In this
case, there is only one energy minimum at k = 0 (Γ point).
Bosons form a condensate at zero momentum. (b) 1/6 <
ρ = 0.3 < 1/2. Energy minimum shifts away from Γ point
to nonzero momentum k0, forming a closed contour. This
contour is enlarged and deformed as ρ increases from 1/6 to
1/2 (c) ρ = 0.5. Now the contour is a perfect hexagon with
corner at the center of each edge of first Brillouin zone (M
point).

As shown in Fig. 5, ρ controls the form of the dispersion
minimum in the reciprocal space. In detail, for ρ < 1/6,
the minimum is at the Γ point (k̄0 = (0, 0)), while for
ρ → ∞, the minima are located at the K points. For
intermediate frustration 1/6 < ρ < 1/2 (1/2 < ρ < ∞),
the dispersion minima are extended to closed contour(s)
centered around the Γ (K) point(s). This macroscopic
degeneracy makes the system sensitive to perturbations.
Below we discuss these three cases respectively.

1. ρ < 1/6

The simplest is the weakly-frustrated case of ρ <
1/6, for which the bosons condense at the Γ point [see
Fig. 5(a)], exhibiting conventional zero momentum su-
perfluidity. In the XY spin language, this corresponds to
a ferromagnetic spin state.

2. Intermediate frustration, ρ > 1
2

In this case, the energy minima form closed contours
encircling six corners of the first Brillouin zone, as shown
in Fig. 5(d), with contours shrinking as ρ increases to ∞.
As ρ → ∞, two sublattices decouple, with bosons on

each triangular lattice condensing at a K point of the re-
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(a) ρ=0.1<1/6

3

kx

ky

2

1

0

-1

-2

-3

0-1-2-3 1 2 3

(b) ρ=0.3

3

kx

ky

2

1

0

-1

-2

-3

0-1-2-3 1 2 3

(c) ρ=1/2

3

kx

ky

2

1

0

-1

-2

-3

0-1-2-3 1 2 3

3

kx

ky

2

1

0

-1

-2

-3

0-1-2-3 1 2 3

(d) ρ=0.6

FIG. 5. Solution of energy minimum, plotted in unit of a−1.
Blue-dashed lines denote the first Brillouin zone boundaries.
(a) This is the case shown in Fig. 4(a), where the energy min-
imum is a point. (b) This case corresponds to Fig. 4(b) with
a dispersion minimum contour. (c) This is the case denoted
in Fig. 4(c) with a perfect hexagon contour minimum. (d)
When ρ > 1/2, the energy minima form a contour centered
at every corner of the first Brillouin zone. We are not focus
on this part in this paper.

ciprocal lattice.3 Generally, such superfluid is described
by two order parameters 〈as,i〉 = cse

iKs·rs,i where cs=1,2

are two independent complex condensate amplitudes at
Ks ∈ {K,K′}. Each of these site-dependent order pa-
rameters can be written as a two component XY vector
~Sr = (Re〈ar〉, Im〈ar〉). For a particular choice of c1,2, a

configuration of ~Sr is pictorially illustrated in Fig. 6.

FIG. 6. Spin representation of the bosonic condensates on
the two sublattices (black and red), condensed at the first
Brillouin zone corner K or K′. These become independent in
the ρ → ∞ limit, coupled only by the boson interaction.

3 In XY spin language, this corresponds to the coplanar 120◦ state,
the ground state of XXZ model on the triangular lattice.

3. 1/6 < ρ < 1/2

The intermediate-frustration regime – the main focus
of this paper – exhibits a closed dispersion minimum cen-
tered around the Γ point, as illustrated in Fig. 5(b).
Generically, the contour exhibits a C6 lattice symme-
try. The contour degenerates into a circle [hexagon] for

ρ → 1
6

+
, see Fig. 5(b) [ρ → 1

2

−
, see Fig. 5(c)].

B. Helical superfliud in Bogoliubov approximation

The interplay of interactions and the macroscopic de-
generacy discussed above presents a rich and challenging
problem. However, for weak interactions, a Bose con-
densate on a finite set of k0i points

4 on the minimum of
the dispersion contour is at least a locally stable state of
matter. For a set of non-collinear k0i points, the ground
state is a supersolid that generically breaking the under-
lying crystal lattice and the U(1) symmetries. A simpler
collinear superfluid states are represented by a helical
FF-like condensate at a k0 and an LO-like condensate
at {k0,−k0} [55, 58]. For interacting bosons, finding a
ground state even among these set of supersolids (char-
acterized by a set of k0i) is a challenging problem that
we do not address here and is best studied numerically.
Here we focus on a helical superfluid corresponding

to a condensation at a single k0 that we find exhibits
rich phenomenology that we explore in detail. Such a
state can also be described by a helical spin density wave
~Sr = (Re〈ar〉, Im〈ar〉) =

√
N0(cosk0 · r, sink0 · r) that

breaks the lattice rotational and time-reversal symme-
tries. However, in this FF helical state, the physical ob-
servables remain (lattice-) translationally invariant.
Thus, focusing on such a helical condensate at k0, we

study interacting bosons on a frustrated honeycomb lat-
tice (7) within the Bogoliubov approximation in a canon-
ical ensemble. In momentum space, the interaction (6)
is given by

Hint =
U

2V

∑

s=1,2

∑

k1,k2,p

a†
k1+

p
2 ,s

a†
k2−p

2 ,s
ak1−p

2 ,sak2+
p

2 ,s,

(15)

where V is the number of the unit cells, which is one-half
of the number of the sites, Ns = 2V . At low energies,
neglecting inter-band excitations, we can focus on the
lowest band, and express the site boson operators ak,1
and ak,2 in terms of the lower-band operator dk,−,

ak,1 ≈
1√
2
ei

θk
2 dk,−, ak,2 ≈

1√
2
e−i

θk
2 dk,−, (16)

4 This is to be contrasted with an exotic Bose-Luttinger liquid
state, where the boson amplitude is ordered with k0 fluctuating
across the entire contour, as recently studied by Sur and Yang
[48] and Lake et al. [49]
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where θk = Arg(Γk) defined in Eq. (13). Expressing the
Hamiltonian in terms of excitations

dk0+q,− ≈ −
√

N0δk,k0 + dk,−, (17)

out of a helical condensate N0, to quadratic order we
have the Bogoliubov Hamiltonian,

H ≈ ǫ−k0
N +

nNU

2
− 1

2

∑

q

ε′q (18)

+
1

2

∑

q

(

d†k0+q,− dk0−q,−
)

h−
0

(

dk0+q,−
d†k0−q,−

)

,

(19)

where

h−
0 =

(

ε′q Un cos(Θq)
Un cos(Θq) ε′−q

)

(20)

and

ε′q = ǫ−k0+q − ǫ−k0
+ Un,

Θq =
θk0+q + θk0−q

2
− θk0 ,

n =
N

Ns
=

N

2V
,

N = N0 +
∑

q

d†k0+q,−dk0+q,−, (21)

deferring details to Appendix C. Bogoliubov-
diagonalizing the Hamiltonian gives

H = Egs +
∑

q

Eqα
†
k0+qαk0+q, (22)

where the ground state energy

Egs = ǫ−k0
N +

nNU

2
+

1

2

∑

q

(Eq − ε′q) (23)

and the dispersion

Eq = E2,q + E1,q, (24)

with

E1,q =
√

E2
q + 2UnEq + U2n2 sin2(Θq) (25)

and

Eq =
ǫ−k0+q + ǫ−k0−q

2
− ǫ−k0

, E2,q =
ǫ−k0+q − ǫ−k0−q

2
.

(26)

We postpone the discussion of Egs until Sec. V, where
we show that fluctuations together with the lattice ef-
fects lead to order-by-disorder selection of the condensa-
tion at high symmetry points of the contour. In antici-
pation of this, here we note that there are two classes

(and C6 equivalents) of high symmetry points repre-
sented by k0 = (0, k0V ) “Vertex” BECV and (k0E , 0)
“Edge” BECE, with (14) giving,

k0V =
2

3
arccos

[

1

16ρ2
− 5

4

]

,

k0E =
2√
3
arccos

[

1

4ρ
− 1

2

]

. (27)

We next examine the details of the Bogoliubov disper-
sion Eq that is positive-semi-definite (gapless at q → 0)
for all U and q, which for U → 0 reduces to ǫ−k0+q−ǫ−k0

>
0. We thus find that the helical condensate at the Bo-
goliubov level is locally stable.

- 2 - 1 0 1 2

0.0
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0.4

0.6

0.8

1.0

q

E
q

- 2 - 1 0 1 2

0.0

0.5

1.0

1.5

E
q

q

/
t
1

(a)

(b)

/t1

/
t
1

FIG. 7. (a) The helical superfluid dispersion Eq from Eq. (24)
with k0 = (0, k0V ), ρ = 0.3, Un/t1 = 0.2 and q in unit of a−1.
The black-dashed contour indicates the degenerate minimum
of the noninteracting band ǫ−k in Eq. (12). In the presence of
interaction, the minimum appears at the origin, q = 0. The
blue and green curves are dispersion cuts along and perpendic-
ular to k0, indicating small q linear and quadratic dispersions,
respectively. The corresponding long wavelength description
in (b) illustrates the symmetry-expected smectic form (28).
The inset of (b) shows dispersions along q‖ for a set of in-
teraction strengths, from the lowest to the highest given by
Un/t1 = 0.2, 0.6, 1, 1.4.

In Fig. 7, we plot the quasiparticle dispersion Eq as

a function of q = q‖ + q⊥, where q‖ = (q · k̂0)k̂0

and q⊥ = k̂0 × q × k̂0. Without loss of generality,
we plot the case k0 = (0, k0V ), which illustrates gen-
eral properties of the dispersion (24). We note that it
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is asymmetric under q‖ → −q‖ due to the E2,q contri-
bution in (26). Physically, this broken inversion sym-
metry is a consequence of the spontaneously-chosen k0.
At q‖ = mod(−2k0, 4π/3) ∼ 1.5, the disperion also dis-
plays a metastable saddle point inherited from the con-
tour minimum in the noninteracting dispersion ǫ−k , as
shown by the blue curve in Fig. 7(b). This feature dis-
appears gradually with increasing interaction [see inset
of Fig. 7(b)]. In the small q limit, as expected on rota-
tional symmetry grounds (here neglecting lattice order-
by-disorder effects, but see Sec. V) of a helical super-
fluid (striped) state, the dispersion is well-described by
an anisotropic smectic form,

Eq ≈
√

2Un(Bq2‖ +K⊥q4⊥ +K‖q
4
‖ +K‖⊥q

2
‖q

2
⊥)

∼
{

q2⊥, q‖ ≪ λq2⊥,
|q‖|, q‖ ≫ λq2⊥,

(28)

with a “soft” ⊥ direction [see the green curve in

Fig. 7(b)], where λ =
√

K⊥/B. For q‖ ∼ q2⊥, the K‖
and K‖⊥ can be neglected at small q, while in the ro-

tational invariant limit ρ → 1/6+, K‖ ≈ K⊥ ≈ K‖⊥/2.
The parameters in Eq. (28) can be obtained by expand-
ing the free dispersion ǫ−k0+q in q with the results given
in Appendix B. We note that at the Lifshitz transition,
B(ρ → 1/6) → 0. Then, the (above neglected) higher-
order contribution K‖q

4
‖ should be taken into account,

with the Goldstone mode exhibiting an anisotropic quar-
tic dispersion in all directions.

IV. FIELD THEORY OF HELICAL

SUPERFLUID ON A CLOSED CONTOUR

MINIMUM

We now turn to a complementary continuum field-
theoretic description of the helical superfuild state, char-
acterized by Bose condensation on a closed contour mini-
mum in momentum space. In the isotropic case, neglect-
ing lattice effects, this physics can be encoded through a
quartic dispersion

εk = J(k2 − k̄20)
2 + ε0 (29)

with minima on a contour k2 = k̄20 . As we demonstrated
in Sec. III, such dispersion is indeed realized for bosons
on a honeycomb lattice for ρ ≈ 1/6+, with

J = t1

(

− 3

64
+

27ρ

32

)

,

k̄0 =

√

8− 48ρ

1− 18ρ
,

ε0 = t1

[

3(1− 6ρ)2

1− 18ρ
− 3 + 6ρ

]

. (30)

We can encode this physics in a noninteracting Hamilto-
nian H0 =

∫

r
Φ̂†

rε̂rΦ̂r with

ε̂r = J(−∇2 − k̄20)
2 + ε0. (31)

We then extend this to an interacting field theory and
study it in a grand canonical ensemble, with the corre-
sponding imaginary-time action S =

∫

d2rdτ(L0 + L1),

L0 = Φ∗∂τΦ+ J |∇2Φ|2 − 2Jk̄20|∇Φ|2 + (ε̃0 − µ)|Φ|2

L1 =
U

2
|Φ|4, (32)

Φ(r, τ) a complex bosonic field and µ the chemical po-
tential. We also defined an energy offset ε̃0 = Jk̄40 + ε0
and interaction U parameter inherited from the Hubbard
model.
As with the lattice model in Sec. III, here we focus

on the helical superfluid state – a condensate at a single
point k0 on the dispersion contour minimum – encoded
in εk, (29), and L0 in (32). In the density-phase repre-
sentation, the state is characterized by

Φ(r) =
√
neik0·r+iφ =

√
n0 + πeik0·r+iφ (33)

with a nonzero condensate density (at mean-field level)
n0 = (µ−ε0)/U and momentum k0 = k̄0, for µ > ε0 (van-
ishing otherwise), and density and phase fluctuations, π
and φ, respectively. To quadratic order, the helical super-
fluid is then described by a Goldstone mode Lagrangian
density 5

L′
0 =iπ∂τφ+ J

[

k20
n0

(∂‖π)
2 +

1

4n0
(∇2π)2 + 4n0k

2
0(∂‖φ)

2

+ n0(∇2φ)2 + 4k0(∂‖π)(∇2φ)

]

+
U

2
π2, (34)

where the subscripts ‖ and ⊥ denote axes parallel and
perpendicular to k0, respectively. In Sec. V, we will
consider higher-order fluctuations that renormalize the
parameters n0, k0 and reduce the symmetry of the La-
grangian by C6 lattice effects. We note that the phase φ
is compact with 2π periodicity, and thereby allows vor-
tex configurations – dislocation in the helical pattern of
the state. However, because we are primarily interested
in the ordered helical superfluid at zero temperature,
where these defects are confined, we will neglect them
in most of our analysis. They are however important for
the finite temperature Kosterlitz-Thouless superfluid-to-
normal transition in Fig. 1(a).

5 Each term in Eq. (32) can be rewritten in terms of π and φ as

∂τΦ =
eik0·r+iφ

√
n

(

1

2
∂τπ + in∂τφ

)

,

∇Φ =
eik0·r+iφ

√
n

[

1

2
∇π + in(k0 +∇φ)

]

,

∇2Φ =
eik0·r+iφ

n3/2

[

1

2
n∇2π − n2(k0 +∇φ)2 −

1

4
(∇π)2

+ in(∇π · k0 +∇π · ∇φ+ n∇2φ)

]

.
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Integrating out π field in Eq. (34), we obtain the ef-
fective theory of φ described by a quantum smectic La-
grangian (consistent with the honeycomb lattice model
analysis in Sec. III)

Lφ = n0φ

[

−(∂τ + Ê2)2

Ê +B−1
τ

+ Ê
]

φ (35a)

≈ n0

[

Bτ (∂τφ)
2 +B(∂‖φ)

2 +K(∂2
⊥φ)

2
]

, (35b)

where Fourier transform of the operators Ê and Ê2 are
given by

Eq = Bq2‖ +Kq4, E2,q = 2
√
BKq‖q

2, (36)

with the couplings6

Bτ =
1

2Un0
, B = 4Jk20 , K = J. (37)

The final form in Eq. (35b) corresponds to the asymptotic
long wavelength limit. The superfluid mode φ exhibits
an unusual dispersion given by

Eq = E2,q +
√

E2
q +B−1

τ Eq

∼
{

q2⊥, q‖ ≪ λq2⊥, q⊥ ≪ q⊥c,
|q‖|, q‖ ≫ λq2⊥, q‖ ≪ q‖c,

(38)

consistent with our lattice analysis, Eq. (24) and the fea-
tures illustrated in Fig. 7. Two length scales emerge from
the zero-sound dispersion (38). The crossover scale ξ =√
BBτ is the coherence length along k0, beyond which

the dispersion is controlled by interaction. The length
λ =

√

K/B = 1/(2k0) characterizes the anisotropy
along (‖) and transverse (⊥) to k0. The correspond-
ing momentum qc = (q‖c, q⊥c) ≡ (ξ−1, (λξ)−1/2) sepa-

rates the noninteracting regime, Eq ≈
(√

Bq‖+
√
Kq2

)2

,

for q ≫ qc from the long-wavelength interacting form,

Eq ≈ B
−1/2
τ

√

Bq2‖ +Kq4, for q ≪ qc. The latter agrees

with the predictions of the lattice model, Eq. (28), if the
lattice symmetry breaking effects are neglected.
Importantly, we note that, in the absent of lattice ef-

fects, (∇⊥φ)2 is absent in the expansion of Eq. (35b) at
all orders. This is enforced by the underlying rotational
symmetry that is spontaneously broken by the helical su-
perfluid state. More explicitly, an infinitesimal shift of
the condensate momentum k0 → k0 + δk0 along the dis-
persion minimum contour is a symmetry7. According to
(33), this transforms φr → φr + δk0 · r, which then en-
forces the exact vanishing of the coefficient of (∇⊥φ)2.

6 At T = 0 and weak interaction, we neglect the difference between
the boson and condensate densities, n and n0, with (n−n0)/n ∼
U3/4, see Eq. (61).

7 This is closely related to the spontaneous breaking of dipole con-
servation (in addition to charge) of Bose condensation, which
prohibits linear derivative terms, as recently studied in the dipo-
lar Bose-Hubbard model by Lake et al. [54] Here, the helical
superfluid is characterized by an emerged dipole conservation
perpendicular to k0, which however, only holds infinitesimally.

A. Stability

We now turn to the analysis of the stability of the
helical condensate at k0 to quantum and thermal fluc-
tuations, characterized by Goldstone mode fluctuations,
〈φ2〉. The divergence of this fluctuations in the thermo-
dynamic limit is a signature of instability. We generalize
our analysis to d + 1 space-time dimensions, with two
“hard” axes, ‖ and τ , and d−1 transverse “soft” axes. A
complementary generalization to “columnar” Goldstone
mode (with d “hard” and 1 “soft” axes) is relegated to
Appendix D. At d = 2, both generalizations reduce to the
physical case of interest, but corresponding to distinct
analytical continuation of the physical problem. Below,
we employ the low-energy Goldstone mode theory, (35b),
valid within a UV cutoff ΛU defined by Eq < Un0.

1. Local fluctuations 〈φ2〉

At zero temperature, quantum fluctuations are quan-
tified by

〈φ2〉Q =
1

2n0

∫ ΛU dωdq‖d
d−1q⊥

(2π)d+1

1

Bτω2 +Kq4⊥ +Bq2‖

= O(1)× n−1
0 ξ−

d+1
2 λ− d−1

2 , d > 1, (39)

and is finite (system size independent) in the thermody-
namic limit. This thereby demonstrates the stability of
the helical condensate to quantum fluctuations.

At nonzero temperature, thermal fluctuations are dom-
inated by the zeroth Matsubara frequency ωn=0, where
ωn = 2πn/β, with β = 1/T . This gives

〈φ2〉T ≈ T

2n0

∫ ΛU

L−1

dq‖d
d−1q⊥

(2π)d
1

Kq4⊥ +Bq2‖

≈ T 〈φ2〉Q
Un0

×















min
(

L̂
1/2
‖ , L̂⊥

)3−d

, d < 3,

ln
[

min
(

L̂
1/2
‖ , L̂⊥

)]

, d = 3,

O(1), d > 3,

(40)

where the dimensionless parameters L̂‖ = L‖/ξ and

L̂⊥ = L⊥/
√
ξλ. L‖ and L⊥ are the system size along the

‖ and ⊥ directions, respectively. We thus observe that
for d ≤ 3, (in a striking contrast to a conventional super-
fluid) thermal fluctuations diverge with system size, and
thereby destabilize the helical condensate at any nonzero
temperature in the thermodynamic limit. For the physi-
cal case of d = 2, the length scales for this instability are

set by ξT⊥ =
√

ξT‖ λ ∼ Un0

T 〈φ2〉Q
√
ξλ.
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2. Two-point correlation function of φ

Next, we calculate the static two-point correlation
function of φ(r, τ), in the physical case given by

C(r) =〈[φ(r, 0) − φ(0, 0)]2〉

=
T

n0

∑

ωn

∫ ΛU dq‖dq⊥
(2π)2

1− eiq·r

Bτω2
n +Bq2‖ +Kq4⊥

. (41)

We are interested in its asymptotics in the high-
temperature classical and low-temperature quantum lim-
its. At T = 0, the Matsubara converts into an integral
over a continuous frequency ω, giving

CQ(r) = U

∫ ΛU dq‖dq⊥
(2π)2

1− eiq·r
√

2Un0(Bq2‖ +Kq4⊥)

≈ n−1
0 ξ−3/2λ−1/2, r ≫ Λ−1, (42)

growing quadratically to a finite asymptote 〈φ2〉Q, (39),
at d = 2.
In the high-temperature limit, only ωn = 0 contributes

to the correlation function, giving

CT (r) =
2U

β

∫

dq‖dq⊥
(2π)2

1− eiq·r

2Un0(Bq2‖ +Kq4⊥)

=
T

2Un2
0ξ

2

[

( r‖
4πλ

)1/2

e
− r2

⊥
4λr‖ +

r⊥
4λ

erf

(

r⊥
√

4λr‖

)]

≈











Tξ−3/2λ−1/2

4Un2
0

(

r‖
πξ

)1/2

, r‖ ≫ r2⊥
λ , r ≫ Λ−1

U ,

Tξ−3/2λ−1/2

8Un2
0

(

r2⊥
ξλ

)1/2

, r‖ ≪ r2⊥
λ , r ≫ Λ−1

U ,

(43)

where erf(x) is the error function [55, 59].
The above analysis indicates a crossover between the

low and high temperature limits of C(r). To this end, we
perform Matsubara summation in Eq. (41) using

1

β

∑

ωn

eiωnτ

iωn − ǫ
= − eτǫ

eβǫ − 1
, for τ ≥ 0, (44)

and define a crossover scale

qT = (q‖T , q⊥T ) =

(

T

Un0
q‖c,

√

T

Un0
q⊥c

)

, (45)

separating the quantum (q > qT ) and classical (q < qT )
regions of momenta. This gives

C(r) = U

(

∫ qT

+

∫ ΛU

qT

)

1− eiq·r

Eq

coth(βEq/2)

≈ 2U

β

∫ qT 1− eiq·r

E2
q

+ U

∫ ΛU

qT

1− eiq·r

Eq

, (46)

where Eq =
√

B−1
τ (Bq2‖ +Kq4⊥). At low temperature,

β → ∞ and qT → 0, the quantum, second term domi-
nates, giving C(r) ≈ CQ(r). While at high temperature,
β → 0 and qT → ΛU , C(r) is dominated by the classical,
first term, giving C(r) ≈ CT (r).

In Fig. 8, we plot C(r) in (41), computed numeri-
cally along r⊥ and r‖, showing its asymptotic behaviors
in the low-temperature (42) and high-temperature (43)
regimes. The crossover scale in real space is given by the
inverse of the thermal wavevectors,

r‖T = q−1
‖T =

Un0

T
ξ, r⊥T = q−1

⊥T =

√

Un0

T

√

λξ. (47)

3. Order-by-disorder

Although the effective theory introduced in this section
is unstable to thermal fluctuations for d ≤ 3, we antici-
pate that the presence of the underlying honeycomb lat-
tice explicitly breaks the degenerate contour in Eq. (31)
down to six-fold minima through quantum and thermal
fluctuations, that probe all momentum scales (detailed in
Sec. V). This in turn introduces perpendicular stiffness
B⊥(∇⊥φ)2, modifying the low-energy Lagrangian to

Lφ

n0
= Bτ (∂τφ)

2 +B(∂‖φ)
2 +B⊥(∂⊥φ)

2 +K(∂2
⊥φ)

2,

(48)

with suppressed fluctuations. As discussed in Sec. V,
B⊥ ∝ U5/4 (B⊥ ∝ U1/4T ) for T ≪ Un0 (T ≫ Un0)
in the weakly-interacting limit Un0 ≪ t1. Importantly,
this leads to a crossover length scale λ⊥ =

√

K/B⊥.
Consequently, as illustrated in Fig. 8(c)(d), the helical
superfluid exhibits an extended crossover from a smectic
regime to an anisotropic XY regime (but with the con-
densate at finite momentum), separated by (r∗‖ , r

∗
⊥) =

(λ2
⊥/ξ, λ⊥). Since B⊥ is perturbatively small in U , λ⊥

can be very large, exhibiting long range of anomalous
smectic superfluidity, that we study in detail below.

B. Physical observables in smectic superfluid

regime

1. Structure factor

To calculate the structure factor, we employ the La-
grangian (34). In Fourier space, it is given by

L′
0 =

1

2

(

φ−q,−ωn π−q,−ωn

)

D−1(q, ωn)

(

φq,ωn

πq,ωn

)

,

(49)
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FIG. 8. Numerical plots (r‖ and r⊥ in units of ξ and
√
ξλ, respectively) of the correlation function (41) (a) along r⊥ with

r‖ = 0 and (b) along r‖ with r⊥ = 0. The helical superfluid exhibits a quantum-to-classical (Q-to-C) crossover around

r⊥ =
√
ξλ

√

Un0/T and r‖ = ξUn0/T with Un0/T = 10, where the finite-temperature (black-solid) curves deviate from the
zero-temperature (blue-dashed) curves. For B⊥ 6= 0, the correlation function (c) along r⊥ with r‖ = 0 and (d) along r‖ with
r⊥ = 0 (black curves) shows a crossover from smectic superfluidity (SFSm) to conventional XY superfluidity (SFXY) around
r⊥ = λ⊥ and r‖ = λ2

⊥/ξ with λ⊥ = 10ξ. The red-dashed curves show the case B⊥ = 0 for comparison. Inset of (c)(d):
logarithmic scale in r axes.

where

D(q, ωn) =
1

(ωn + iE2,q)2 + E2
q + 2Un0Eq

×
(

1
2n0

Eq + U ωn + iE2,q
−ωn − iE2,q 2n0Eq

)

(50)

with Eq and E2,q defined in Eq. (36).
The structure factor is the density-density correlation

function, in the Fourier space given by

S(q, ωn) = D22(q, ωn) =
2n0Eq

(ωn + iE2,q)2 + E2
q + 2Un0Eq

.

(51)
This static structure factor is then given by

S(q) =
1

β

∑

ωn

S(q, ωn)

=
n0Eq

Eq − E2,q
sinh[β(Eq − E2,q)]

cosh[β(Eq − E2,q)]− cosh(βE2,q)
,

(52)

where Eq is defined in Eq. (38) and we used Eq. (44) to
carry out the Matsubara sum.
The structure factor (52) depends on the a number of

scales: coherence length ξ =
√
BBτ , anisotropic length

factor λ =
√

K/B and parallel thermal wavevector q‖T =

(2T 2/Un0B)1/2. Below we first present the results in the
low- and high-temperature limits, and then discuss the
crossover between them.
In the high-temperature limit, β → 0, the structure

factor becomes

ST (q) =
2n0TEq

2Un0Eq + E2
q − E2

2,q

≈
{

T/U, q‖ξ, q⊥
√
λξ ≪ 1,

0, q‖ξ, q⊥
√
λξ ≫ 1,

(53)

exhibiting a maximum on a closed contour (inherited
from the noninteracting dispersion minimum) with a
height T/U and a width increasing with U , illustrated
at high temperature in Fig. 9(a).
In the complementary low-temperature limit, β → ∞,

the structure factor becomes

SQ(q) = n0

√

Eq
Eq + 2Un0

≈
{ √

n0Eq/2U, q‖ξ, q⊥
√
λξ ≪ 1,

n0, q‖ξ, q⊥
√
λξ ≫ 1,

(54)

in contrast exhibiting a single minimum at q = 0, which
becomes more shallow with increases U , as shown in
Fig. 9(b). It can be written as a scaling form

SQ(q, 0) ∼ n0(ξq‖)
αŜ

(

λ
q2

q‖

)

(55)
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FIG. 9. Static structure factor (52) (in unit of n0) as a function of q (in the unit of λ−1) with λ/ξ = 0.3. (a) High-temperature
classical limit with q‖Tλ = 0.4. (b) Low-temperature quantum limit q‖Tλ = 0.01. Quantum-to-classical crossover (c) along q‖
with q⊥ = 0 and (d) along q⊥ with q‖ = 0. From top to bottom the temperature decreases with q‖Tλ = 0.4, 0.3, 0.2, 0.1, 0.01.

The red double-headed arrows in (a) and (c) indicate the scale of condensate momentum 2k0 = λ−1.

in the limits, ξq‖ ≪ 1 and ξq‖ ≫ 1, with

Ŝ(x) =
√

1 + x2, α = 1, for ξq‖ ≪ 1,

Ŝ(x) = 1, α = 0, for ξq‖ ≫ 1. (56)

The structure factor exhibits a quantum-to-classical
crossover for q separated by the thermal wavevectors qT

in Eq. (45), as illustrated in Fig. 9(c)(d).

2. Condensate depletion

The condensate depletion is given by

nd = n− n0 = 〈Φ(r, 0)Φ∗(r, η)〉 − n0

=
1

β

∫

d2q

(2π)2

∑

ωn

e−iωnηG(q, ωn), (57)

where η = 0+ is an infinitesimal positive number to en-
code operator time ordering and with Φ in Eq. (33) ex-
panded up to quadratic order in π and φ,

G(q, ωn) ≈
1

4n0
D22(q, ωn) + n0D11(q, ωn)

+
i

2
D12(q, ωn)−

i

2
D21(q, ωn)

=
u2
q

−iωn + Eq

+
v2q

iωn + E−q

(58)

with matrix D given in Eq. (50), Eq given in Eq. (38)
and

u2
q =

1

2

( Eq + Un0
√

E2
q + 2Un0Eq

+ 1

)

,

v2q =
1

2

( Eq + Un0
√

E2
q + 2Un0Eq

− 1

)

. (59)

After performing the Matsubara summation in Eq. (57)
and using the identity (44),

nd =

∫

d2q

(2π)2

(

v2q +
u2
q + v2q

eβEq − 1

)

, (60)

where the first term gives the zero-temperature interac-
tion driven depletion while the second term describes ad-
ditional depletion due to thermal excitations.
At zero temperature, the depletion (with details rele-

gated to Appendix E) is given by

nd(T = 0) =

∫

d2q

(2π)2
v2q = Cn

(

U3

n0B2K

)1/4

∼ nU3/4n
−1/4
0 ∼ (Un0)

3/4, 8 (61)

where C = 23/4Iθ|fe(0)|/(96π2) ≈ 0.035 with Iθ ≈
10.4882 and fe(0) ≈ −3.70815.
At nonzero temperature, the depletion in Eq. (60) di-

verges in the thermodynamic limit for d ≤ 3, as analyzed
in Appendix E, indicating helical superfluid thermal in-
stability as found in Sec. IVA1.
For the microscopic lattice model discussed in Sec. III,

the depleting is still given by (60), but with uq and vq
given by

u2
q =

1

2





Eq + Un
√

E2
q + 2UnEq + U2n2 sin2(Θq)

+ 1



 ,

v2q =
1

2





Eq + Un
√

E2
q + 2UnEq + U2n2 sin2(Θq)

− 1



 ,

(62)

where the lattice effects are encoded in the periodic
(in momentum space) forms of Θq and Eq defined in
Eqs. (21) and (26).
At zero temperature, the depletion as a function of Un

is computed numerically and presented in Fig. 10. At
small Un, it is a power-law as found in Eq. (61). As Un
increases, nd deviates from this perfect power-law given
by a weakly interacting field theory. At nonzero temper-
ature, thermal fluctuations still destroy the condensate,
as discussed above.

8 In the weakly interacting limit, we neglect the difference between
n and n0 as it is of higher order in U .
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/t1Un

FIG. 10. The log-log plot of the zero temperature depletion
nd (in unit of a−2) in Eq. (61) as a function of Un/t1 for
ρ = 0.2, and k0 = (0, k0V ). The red dots are calculated with
the lattice model expression (62). The dashed line gives a
fitting in the small Un region with the predicted slope = 3/4.

3. Momentum distribution

Another important characterization of the heli-
cal superfluid is the momentum distribution, nq =

〈d†k0+q,−dk0+q,−〉. At T = 0, it is given by

nq = |vq|2 =
1

2

( 1 + Un0

Eq
√

1 + 2Un0

Eq

− 1

)

. (63)

The behavior of nq below (ξq‖ ≫ 1) and beyond (ξq‖ ≪
1) the coherence length ξ =

√
BBτ is described by the

following scaling form,

nq ∼ (ξq‖)
αfn

(

λ
q2⊥
q‖

)

, (64)

with the anisotropy length scale given by λ =
√

K/B
and

fn(x) =
1√

1 + x2
, α = − 1, for ξq‖ ≪ 1,

fn(x) =
1

(1 + x2)2
, α = − 4, for ξq‖ ≫ 1. (65)

We note that for λq2⊥/q‖ ≪ 1, nq ∼ (ξq‖)
α. In the

opposite limit, λq2⊥/q‖ ≫ 1, the momentum distribution
is asymptotically given by

nq ∼
{

1/q2⊥, for q‖ξ ≪ 1.

q3‖/q
8
⊥, for q‖ξ ≫ 1.

(66)

This contrasts qualitatively with that of a conventional
superfluid (see Table I).
Lattice effects beyond this field theoretical treatment

are straightforwardly incorporated with nq = v2q at

T = 0, with the lattice form of vq given by Eq. (62).
In Fig. 11, we plot nq‖,q⊥=0 as a function of q‖ which

verifies the scaling behavior nq‖,q⊥=0 ∼ 1/q‖ (1/q4‖) for

q‖ξ ≪ 1 (q‖ξ ≫ 1). Note, somewhat surprisingly the
(T = 0) momentum distribution is symmetric under the
inversion of momentum nq = n−q, and its profile has the
reflection symmetry, e.g. with respect to q‖ = 2π/3, due
to the underlying lattice structure, as shown in the inset
of Fig. 11. As a result, the 1/q4‖ tail is only visible for

sufficiently small Un.

~

�

0 2
3

4
0

6 10
7

3

FIG. 11. Momentum distribution nq‖,q⊥=0 vs. q‖ (in unit of

a−1) for ρ = 0.2, Un/t1 = 10−4, and k0 = (0, k0V ). The red
dots are calculated from lattice model expression (62). The
dashed line gives the asymptotic behavior for q‖ξ ≪ 1 and
q‖ξ ≫ 1. Inset: linear scale of the same plot.

4. Superflow

As in a conventional superfluid a spatial gradient of φ
gives rise to a supercurrent,

js = nvs (67)

characterized by the anisotropic superfluid velocity with
its form obtained from the Noether’s theorem or, equiv-
alently by gauging (see Appendix F)

vs = 4J
[

(∇φ)2 + 2k0 · ∇φ
]

(k0 +∇φ)− 2J∇3φ. (68)

We emphasize that in vs of (68) we included higher-order
terms, previously left out in the quadratic Lagrangian,
(34). For the simplest uniform gradient configuration
φ = q · r, we have

vs(φ = q · r) =4J
[

q2 + 2k0 · q
]

(k0 + q)

=∇kεk|k=k0+q (69)

with

εk = J(k2 − k20)
2 + ε0, k = k0 + q. (70)
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Un/t1

μ
(1

)

FIG. 12. µ(1) (in unit of Ua−2) vs. Un/t1 for ρ = 0.2, and
k0 = (0, k0V ). The red dots are calculated from (73). The
dashed line gives a fitting to (74) in the small Un region with
a slope = 3/4.

In the long-wavelength limit to linear order, the super-
current is given by

(js)i =
∇φ→0

∑

j

(ρs)ij∇jφ (71)

with the superfluid stiffness (ρs)ij = 8Jn(k0)i(k0)j ,
which vanishes transversely to k0. This helical conden-
sate thus (in the absent of stabilizing lattice effects) can-
not maintain a superflow perpendicular to k0, and thus
by this criterion is not a superfluid.

5. Chemical potential

We next calculate the equation of state, given by the
chemical potential as a function of the boson density n,

µ =
∂Egs

∂N
= µ(0) + µ(1), (72)

where ground state energy Egs is given by Eq. (23).
The lowest-order mean-field contribution and the one-
loop correction are respectively given by

µ(0) = ǫ−k0
+ Un,

µ(1) = − U

4

∫

q



1− Eq + Un(sinΦq)
2

√

E2
q + 2UnEq + (Un sinΦq)2





≈ − U

4

∫

q



1− Eq
√

E2
q + 2UnEq



 , (73)

where in the last line we neglected lattice effects and took
Eq ≈ Bq2‖ +Kq4⊥.

Performing the integration (see Appendix G), we ob-
tain

µ(1) ≈ −UnC
(

U3

nB2K

)1/4

, (74)

where constants C = 23/4IθIσ/(32π
2) ≈ 0.069, Iσ ≈

1.23605 and Iθ ≈ 10.4882. The dimensionless factor in
µ(1) expressed in terms of microscopic parameters is given
by

(

U3

nB2K

)1/4

∝ n−1/4U3/4t
−3/4
1 k̄−1

0 , (75)

where k̄0(ρ) is given by Eq. (30) in the limit of ρ →
1/6. For a general d dimensional helical superfluid, this
dimensionless factor is given by

Qs =

(

Ud+1nd−3

B2Kd−1

)1/4

. (76)

In Fig. 12, we plot an exact numerical evaluation of
the chemical potential in Eq. (73) with lattice effects as
a function of Un. At small Un, Eq. (74) fits the data
well. We note, as indicated in Eq. (74), µ/U decreases
(increases) if U(n) increases, in qualitative distinction
from a conventional superfluid (see Table I).

V. ORDER-BY-DISORDER

So far, we studied the helical condensation at a sin-
gle momentum k0 on the dispersion minimum contour
at the Bogoliubov level. At this order, it exhibits smec-
tic fluctuations that are qualitatively larger than that of
conventional XY superfluids due to the macroscopic de-
generate ground states. In this section, we go beyond the
quadratic action, and study the order-by-disorder phe-
nomenon that appears due to the interplay of quantum
and thermal fluctuations, and the C6 lattice effects. This
generates a nonzero B⊥ that stabilizes the helical super-
fluid even at nonzero temperature.
Formally, we work with the coherent state path integral

of the lattice model introduced in Sec. III, where the
partition function is given by Z =

∫

DΦe−S[Φ], with the
imaginary-time action S =

∫

dτL and the corresponding
Lagrangian

L =
∑

i,a=1,2

Φ∗
i,a∂τΦi,a +H0 +Hint. (77)

In the above, H0 and Hint are functionals that respec-
tively have the same expressions as the kinetic and the in-
teracting parts of the Hamiltonian introduced in Sec. III

with the operators ai,a and a†i,a replaced by coherent state
fields Φi,a and Φ∗

i,a. To study the helical superfluid, we
consider the density-phase fluctuations around a mean-
field of a helical condensate with density n0 and momen-
tum k0:

Φi,1 = eiθk0
/2 eik0·ri,1+iφi,1

√

n0 + πi,1,

Φi,2 = e−iθk0
/2 eik0·ri,2+iφi,2

√

n0 + πi,2, (78)

where ri,a is the position of the lattice site i in a sub-
lattice. Below, we drop the subscripts i and a for no-
tation simplicity. Then, the action can be written as
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S[Φ] = βΩ(0) +
∫

τ L
(0) with the constant mean-field part

Ω(0)(n0,k0) (zeroth-order thermodynamic potential) and
the bare Lagrangian, L(0)(π, φ). Such a procedure par-
allels the field theoretical approach in Sec. IV, but now
encodes the underlying C6 lattice effects. Analysis of
the quadratic part of the action reproduces the Bogoli-
ubov results, predicted in Sec. III. To study the effects
of the higher-order nonlinearalities, various approxima-
tion schemes can be employed. Here we safely employ an
analysis perturbative in Un0, self-consistently verifying
the corrections to B⊥ are finite. We thereby formally
obtain

Z =

∫

DπDφe−βΩ(0)−
∫

τ
L(0)

=

∫

DπDφe−βΩ−
∫

τ
L,

(79)

where the renormalized thermodynamic potential and
Lagrangian are given by perturbation series Ω(n0,k0) =
∑∞

n=0 Ω
(n) and L =

∑∞
n=0 L

(n) [“(n)” stands for the nth
loop correction], respectively. Similar to a conventional
superfluid, global U(1) symmetry φ → φ+α ensures that
φ is massless, i.e., in the continuum, only gradients of φ
appears in the Lagrangian. For a helical condensate, an-
other constraint is the equivalence of the transformations
k0 → k0 + q and φ → φ + q · r in the long wavelength
limit. The former transforms the free energy,

Ω(k0 + q)− Ω(k0) = N0

∑

lm

blmql‖q
m
⊥ . (80)

The latter, when applied to the continuum Lagrangian
density (discussed in detail in Appendix H),

L = n0

∑

lm

Blm(∂‖φ)
l(∂⊥φ)

m + ..., (81)

gives an energy shift
∑

lm Blmql‖q
m
⊥ . In the above, the

ellipsis denotes π and higher derivative φ terms. Since q

can be chosen arbitrarily, we conclude that

blm = Blm, (82)

for any integers l,m ≥ 0, holding in every nth order of

the perturbation theory, b
(n)
lm = B

(n)
lm . Below, we study

the order-by-disorder phenomenon by performing one-

loop calculations of b
(1)
⊥ = b

(1)
02 and B

(1)
⊥ = B

(1)
02 for both

zero and nonzero temperatures.

A. Thermodynamic potential

Before working in the more convenient functional
integral formalism, we note the ground state energy

Egs(k0) = E
(0)
gs (k0) + E

(1)
gs (k0) in Eq. (23) consists of

two contributions, the mean-field and the zero-point en-
ergies, respectively, given by

E(0)
gs = ǫ−k0

N +
nNU

2
, E(1)

gs =
1

2

∑

q

(Eq − ε′q). (83)
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FIG. 13. b⊥ (≈ b
(1)
⊥ , in unit of t1a

2) vs. Un/t1 for ρ = 0.3,
T = 0, N0 = 1. The black-dashed line gives a fitting to (87)
in the small Un region with a slope = 5/4.

The former is the dominate contribution that exhibits a
sub-extensive degeneracy on the contour minimum, while
the latter is the lowest-order in Un0 correction, corre-
sponding to the one-loop correction in the field theory
treatment below.
In the coherent-state path integral, the zeroth-order

thermodynamic potential is equal to the mean-field
ground state energy above (with N → N0)

Ω(0) = E(0)
gs , (84)

and the one-loop correction (neglecting the upper band,
valid for Un0/t1 ≪ 1) is given by

Ω(1)(N0,k0) =
1

2β

∑

q,ωn

Tr lnG−1
0 (q, ωn)

=
1

2β

∑

q,ωn

ln
[

(ωn + iE2,q)2 + E2
1,q

]

=
1

β

∑

q

ln [2 sinh(βEq/2)] , (85)

where G0(q, ωn) is defined in Eq. (H12). In the low-
temperature limit β → ∞, reduces to the zero-point en-

ergy of the Bogoliubov quasiparticles E
(1)
gs = 1

2

∑

q(Eq −
ε′q) (where we measured related to the zero-point energy
of the normal state). In the above, the Matsubara sum
was carried out by using

∑

ωn

ln
[

(ωn + iE2)2 + E2
1

]

=
∑

p=±
ln

[

2 sinh

(E1 + pE2
2T

)]

,

(86)

obtained by integrating (44) over ǫ or by Poisson sum-
mation formula followed by a contour integral [60].
The perturbation theory also gives order-by-order cor-

rections to the condensate momentum, k0 =
∑

n k
(n)
0 .

This allows us to study the corrections of the thermody-
namic potential and its curvature as an expansion at the
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mean-field minimum: Ω(k0) ≈ Ω(0)(k
(0)
0 )+Ω(1)(k

(0)
0 ) and

2N0b⊥(k0) ≈ ∂‖∂
2
⊥Ω

(0)(k
(0)
0 )k

(1)
0 + ∂2

⊥Ω
(1)(k

(0)
0 ).9 Nu-

merical evaluation of the integral (85) lifts the degener-
acy of the bare dispersion contour, replacing it by six
minima with the C6 lattice symmetry. We refer to this
as order-by-disorder phenomenon (demonstrated in the
context of frustrated magnetism in [26, 28]). As shown
in Fig. 1(b), the helical condensate is stable on the high
symmetry points of the contour, the Vertex (BECV) and
the Edge (BECE) condensates, depending on the micro-
scopic parameters ρ, Un0, and temperature T . The phase
boundaries are all first-order. We note that there is a
reentrant BECV around ρ ≈ 0.22, related to the detailed
quasiparticle dispersion at small q characterized by B(ρ)
and K(ρ). As detailed in Appendix I, an expansion at
the minimum of the thermodynamic potential gives

b
(1)
⊥ = b0⊥fb(Un0/T ) (87)

for small Un0, which gives an effective UV cutoff such
that Eq ≈ Bq2‖ +Kq4⊥ < Un0. In the above,

b0⊥ = (Un0)
5/4t

−1/4
1 gb(ρ) (88)

with gb(ρ) a dimensionless O(1) constant and the scaling
function

fb(x) ∼
{

1, for x ≫ 1.
1/x, for x ≪ 1.

(89)

With increasing Un0, higher powers terms in Eq are im-
portant, leading to a deviation from the scaling form (87),
see Fig. 13.
As a consequence of the order-by-disorder phe-

nomenon, B⊥ is induced given by B
(1)
⊥ = b

(1)
⊥ as discussed

above. As a complementary analysis, below we perform

a direct calculation of B
(1)
⊥ , and show that it reduces to

zero in the isotropic, continuum limit.

B. B⊥

To obtain B⊥, one first needs to calculate the zeroth-
order action S(0)[π, φ] based on the lattice model in
Sec. III. A shortcut to this is to expand the mean-field

ground state energy E
(0)
gs (k0 + q) in q, and use the rela-

tion B
(0)
lm = b

(0)
lm . However, this has a shortcoming as it

only gives the leading order in q couplings. Alternatively,
one can start with the lattice model, do an expansion in
π and φ, and then take the continuum limit. The latter
approach is more laborious, but gives the full expression
that is valid even at large momenta. We relegate the
details of this analysis to Appendix H. For simplicity,
we consider a long-wavelength form in analogy to (35b)
that is valid within the coherence length q < qc in the
weakly-interacting limit. By including up to quartic in φ
terms required for one-loop calculations, and choosing k0

at one of the C6 symmetric points, the zeroth-order La-
grangian takes the following form (with the superscripts
(0) dropped for the simplicity of notation)

Lφ

n0
= ∆

[

c(∂‖φ) + c⊥(∂⊥φ)
2
]

+Bτ (∂τφ)
2 +B(∂‖φ)

2 +K20(∂
2
‖φ)

2 +K02(∂
2
⊥φ)

2 +K11(∂
2
‖φ)(∂

2
⊥φ)

+B30(∂‖φ)
3 +B12(∂‖φ)(∂⊥φ)

2 +B40(∂‖φ)
4 +B04(∂⊥φ)

4 +B22(∂‖φ)
2(∂⊥φ)

2, (90)

where Bτ = 1/2Un0 and ∆k0 = 1 − |Γk̄0
|/|Γk0 |, vanish-

ing at k0 = k̄0. All the other parameters are of the form
t1g(ρ) with g(ρ) a dimensionless O(1) constant while the

explicit expressions can be obtained via B
(0)
lm = b

(0)
lm along

with K
(0)
20 = B

(0)
40 , K

(0)
02 = B

(0)
04 and K

(0)
11 = B

(0)
22 , where

the latter relations are found by inspecting the explicit

form of the quadratic action, (H11), and b
(0)
lm are given

in Eqs. (B2) and (B3) for BECV and BECE, respec-
tively. The linear derivative term (tadpole diagram) ∂‖φ

can be eliminated by choosing the condensate momen-
tum such that ∇k0Ω(k0) = 0, which at mean-field level,

gives k
(0)
0 = k̄0. We note B⊥ = 0 in the Lagrangian

(90) even in the presence of C6 lattice (but excluding the
zero-point energy) effects. This is consistent with the
mean-field ground state energy in Eq. (83) that exhibits
a degenerate contour minimum. However, higher-order
fluctuations generally generate a nonzero B⊥. At one-
loop order and the weakly-interacting limit, it is given
by (see details in Appendix J)

9 However, the full expression Ω = Ω(0)+Ω(1) is not real for any k0

since the quasiparticle is only guaranteed to be stable when ex-

panding the condensate around the contour minimum k
(0)
0 . This

is an artifact of the perturbation theory arising from b
(0)
⊥ = 0,

and can be avoided in a self-consistent or renormalization group
analysis.
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B
(1)
⊥ = − c⊥B12

2c

∫

q

3q2‖ + q2⊥
Bτω2

n + Eq
+

1

2

∫

q

B22q
2
‖ + 6B40q

2
⊥

Bτω2
n + Eq

−B2
12

∫

q

q2‖q
2
⊥

(Bτω2
n + Eq)2

≈ B0⊥fB(Un0/T ), (91)

where the dimensionless scaling function fB has the same

limits as in Eq. (89) and B0⊥ = (Un0)
5/4t

−1/4
1 gB(ρ) with

gB(ρ) a dimensionless O(1) constant. In the isotropic
limit ρ → 1/6, K20 = K02 = K11/2 and B/k20 =
B30/k0 = B12/k0 = 4B40 = 4B04 = 2B22, resulting

in B
(1)
⊥ = 0. This suggests the robustness of the Lifshitz

transition point at ρ = 1/6 at one-loop order and as-
sociated relation between harmonic and nonlinear terms
enforced by the rotational symmetry of k0, also corre-
sponding to the dipole conservation symmetry.

VI. CONCLUSION

In summary, we studied a nonzero-momentum super-
fluid state as a condensate in a frustrated honeycomb
Bose-Hubbard model that features a dispersion minimum
contour with a nonzero momentum scale k0, set by frus-
trated hopping. We supplemented the lattice model by a
continuum smectic field theory and explored in detail the
rich phenomenology that emerges from the helical (single
momentum) Bose-condensation on this dispersion mini-
mum contour.

Consistent with generalized Hohenberg-Mermin-
Wagner theorem [61–63], we found that the helical
condensate is stable at zero temperature despite quan-
tum fluctuations that are qualitatively stronger than
that of a conventional superfluid. The helical state
is spontaneously highly anisotropic in its spectrum
of low-energy excitations. We explored in detail the
physical properties of such state, such as the equation
of state (chemical potential), condensate depletion,
momentum distribution, structure factor, of all which
are qualitatively distinct from a conventional XY zero-
momentum superfluid. Because of the “soft” smectic
dispersion, at nonzero temperature, thermal fluctuations
that diverge in the absence of lattice effects lead to a
vanishing of the helical condensate.

However, somewhat paradoxically, a subtle interplay
of lattice effects with quantum and thermal fluctuations
leads to stabilization of the helical smectic state, through
the phenomenon of order-by-disorder via a crossover to
a more conventional stable XY superfluid.

Our study thus predicts a stable helical superfluid state
and its rich phenomenology that can emerge in frustrated
bosonic systems, characterized by a bare dispersion min-
imum contour. Such sub-extensive contour degeneracy
of the condensate momentum, k0, can be realized in cold
atom experiments through Floquet engineering of the op-

tical lattice with frustrated hopping [44, 64] or synthetic
Rashba spin-orbit coupling [45]. Because the latter ap-
proach is not based on frustration, its closed contour min-
imum dispersion would be spoiled by an optical lattice,
reduced to a discrete set of dispersion minima [65–67].
It would thereby exhibit a bare B⊥ modulus controlled
by the depth of the optical lattice, rather than Feshbach
tunable interactions [68], as considered in our study. Yet,
in a shallow optical lattice with a weak B⊥, within a long
crossover scale we expect a nonzero momentum conden-
sate [69–71] in spin-orbit coupled Bose gases, exhibiting
phenomenology predicted in Table I.

The frustrated bosonic model that we studied is iso-
morphic to a quantum O(2) easy-plane magnet with frus-
trated exchange couplings, which is also characterized by
a spiral contour as manifold of its classical ground states.
The helical superfluid we explored thus maps directly on
such a coplanar spin spiral state with the U(1) super-
fluid phase corresponding to the O(2) direction of the
XY spin. Theoretical studies suggest the stability of such
spiral states in a quantum easy-plane magnet [35] and in
XY models (for spin-1/2, equivalent to the Bose-Hubbard
model at half-filling in the U → ∞ hard-core limit, in
contrast to the weak U limit considered here) with k0 at
high symmetry points selected by quantum fluctuations
[72–74]. This contrasts with the corresponding Heisen-
berg O(3) model [26, 28], which at nonzero temperature
in 2d is always unstable (even with the usual linear dis-
persion) to a disordered state due to strongly coupled
nonlinear spin wave fluctuations.

Our analysis, however, does not provide the sufficient
conditions to realize the helical superfluid discussed here.
Other interesting supersolid phases, e.g., Bose conden-
sate at multiple momenta, are also competing ground
states that can emerge from the interplay of interactions
and the macroscopic degeneracy of the dispersion mini-
mum. Selecting between these is a challenging problem
that we have not addressed and likely requires extensive
numerical analysis. Cold-atoms systems where our model
is realized using Floquet engineering will likely be chal-
lenged by heating problem as well as further neighbor
hopping and interactions.

Here we neglected the vortices (allowed by the period-
icity of the superfluid phase) that can play an important
role for the quantum and thermal phase transitions out
of the helical superfluid state, sketched at the mean-field
level in Fig. 1(a). In 2+1d it is isomorphic to the melt-
ing of a quantum smectic (at low energies perturbed by
stabilizing modulus B⊥ generated by order-by-disorder)
that has been formulated through a dual gauge theory
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in Ref. [51, 75], but with critical RG analysis remain-
ing as an open problem. We note that, as discussed in
Ref. [76] in addition to conventional vortices of the super-
fluid phase φ, thermal excitations of orientational (“mo-
mentum”) vortices in k0 (based on numerical analysis)
appear to play an important role. We leave these and
other questions discussed above for future theoretical re-
search and hope that the rich phenomenology presented
here will stimulate further experimental and theoretical
works on frustrated bosonic and magnetic systems.
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Appendix A: Diagonalization of frustrated

tight-binding model on honeycomb lattice

The tight-binding Hamiltonian in Eq. (7) can
be written in terms of Pauli matrices H0 =
∑

k(a
†
k,1, a

†
k,2)h0(ak,1, ak,2)

T , where

h0 = t2ǫk1− t1|Γk| cos θk σx + t1|Γk| sin θk σy, (A1)

with

ǫk = 2
∑

i

(cosk · vi),

Γk =
∑

i

exp(−ik · ei),

θk = Arg(Γk). (A2)

The Hamiltonian h0 can be diagonalized by the transfor-
mation

U =
1√
2

(

exp(i θk2 ) exp(i θk2 )
− exp(−i θk2 ) exp(−i θk2 )

)

, (A3)

which gives

U †h0U = t2ǫk1− t1

(

−|Γk| 0
0 |Γk|

)

, (A4)

with two bands

ǫ−k = t2ǫk − t1|Γk|, ǫ+k = t2ǫk + t1|Γk|. (A5)
The lower band exhibits a contour minimum for 1/6 <
ρ = t2/t1 < 1/2.
In general, the dispersion minimum contour can appear

in a class of Hamiltonians written as

h0 = t1T + t2T
2, (A6)

where t1 and t2 are the nearest-neighbor and next-
nearest-neighbor hopping amplitudes and T is a 2 × 2
hopping matrix, with the form

T =

(

0 Gk

G†
k 0

)

(A7)

in the sublattice basis. Then the two band are given by

ǫ±k = ±|t1||Gk|+ t2|Gk|2 (A8)

with the lower energy band ǫ−k exhibiting macroscopic
ground state degeneracy along the contour defined by
|Gk| = |t1|/2t2.

Appendix B: Expansion of ǫ−k around the dispersion minimum contour

In the weakly-interacting regime, the band dispersion around the bose condensate plays an important role for the
low-energy properties of the helical superfluid. This is established through the facts: (i) the zeroth-order thermody-
namic potential Ω(0)(N0,k0) = N0ǫ

−
k0

+N2
0U/4V depending on the free dispersion ǫ−k and (ii) The relation between

Ω(0) and the zeroth-order Goldstone mode theory L(0) as discussed in Sec. V. Expansion on the lower band dispersion
(12) up to quartic order gives

ǫ−k0+q − ǫ−k0
≈ ∆(cq‖ + c⊥q

2
⊥) + b(0)q2‖ + b

(0)
30 q

3
‖ + b

(0)
12 q‖q

2
⊥ + b

(0)
40 q

4
‖ + b

(0)
04 q

4
⊥ + b

(0)
22 q

2
‖q

2
⊥, (B1)
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where for the Vertex condensate (BECV), k0 = (0, k0V ), |Γk0 | =
√

5 + 4 cos(3k0V /2), and the coefficients

c = 6t2 sin(3k0V /2), c⊥ =
3t2[2 + cos(3k0V /2)]

2
, b(0) =

9t2 sin
2(3k0V /2)

|Γk0V |2
,

b
(0)
30 =

27t2[3 + 5 cos(3k0V /2) + cos(3k0V )] sin(3k0V /2)

2|Γk0 |4
, b

(0)
12 =

9t2[4 sin(3k0V /2) + sin(3k0V )]

4|Γk0 |2
,

b
(0)
40 =

27t2[76 + 190 cos(3k0V /2) + 163 cos(3k0V ) + 50 cos(9k0V /2) + 7 cos(6k0V )]

32|Γk0|6
, b

(0)
04 =

9t2[2 + cos(3k0V /2)]
2

16|Γk0|2
,

b
(0)
22 =

27t2[15 + 25 cos(3k0V /2) + 11 cos(3k0V ) + 3 cos(9k0V /2)]

16|Γk0|4
(B2)

and for the Edge condensate (BECE), k0 = (k0E , 0), |Γk0 | = |1 + 2 cos(
√
3k0E/2)|, and the coefficients

c = 2
√
3t2[sin(

√
3k0E/2) + sin(

√
3k0E)], c⊥ =

9t2 cos(
√
3k0E/2)

2
, b(0) = 3t2 sin

2(
√
3k0E/2),

b
(0)
30 =

3
√
3t2 sin(

√
3k0E)

4
, b

(0)
12 =

9
√
3t2 sin(

√
3k0E)

4|Γk0 |
, b

(0)
40 =

3t2[−1 + 7 cos(
√
3k0E)]

32
,

b
(0)
04 =

81t2[1 + cos(
√
3k0E)]

32|Γk0 |2
, b

(0)
22 =

27t2[−1 + 3 cos(
√
3k0E/2) + 3 cos(

√
3k0E) + cos(3

√
3k0E/2)]

16|Γk0|2
. (B3)

In the above, ∆ = 1− |Γk̄0
|/|Γk0 |, which vanishes at k0 = k̄0. For k0 6= k̄0, there are corrections to all the coefficients

above, but here we only give the ones for q‖ and q2⊥ that are important for the one-loop calculations in Sec. V.

Appendix C: Bogoliubov approximation to the frustrated Bose-Hubbard model

For a condensate at k0, the bosonic operators are given by

ak,1 ≈ Ak0,1δk,k0 + ak0+q,1, ak,2 ≈ Ak0,2δk,k0 + ak0+q,2, (C1)

where Ak0,1 = 1√
2
ei

θk0
2

√
N0 and Ak0,2 = 1√

2
e−i

θk0
2

√
N0. We then expand the interacting part of the Hamiltonian,

(15), which up to quadratic order of ak0+q and a†k0+q is given by

Hint ≈
U

2V

∑

s=1,2

(

|Ak0,s|4 + 4|Ak0,s|2
∑

q

a†k0+q,sak0+q,s + (A∗
k0,s)

2
∑

q

ak0−q,sak0+q,s +A2
k0,s

∑

q

a†k0−q,sa
†
k0+q,s

)

=
UN2

0

4V
+

UN0

4V

(

4
∑

q

a†k0+q,1ak0+q,1 + e−iθk0

∑

q

ak0−q,1ak0+q,1 + eiθk0

∑

q

a†k0−q,1a
†
k0+q,1

)

+
UN0

4V

(

4
∑

q

a†k0+q,2ak0+q,2 + eiθk0

∑

q

ak0−q,2ak0+q,2 + e−iθk0

∑

q

a†k0−q,2a
†
k0+q,2

)

. (C2)

With a transformation to the band basis

ak,1 =
1√
2
ei

θk
2 (dk,+ + dk,−), ak,2 =

1√
2
e−i

θk
2 (−dk,+ + dk,−), (C3)

followed by neglecting the upper band contributions, dk,+, that only give O(Un0/t1) corrections to the ground state,
we obtain the following total Hamiltonian

H = ǫ−k0
N0 +

UN2
0

4V
+
∑

q

ǫ−k0+qd
†
k0+q,−dk0+q,− +

UN0

2V

∑

q

(

d†k0+q,−dk0+q,− + d†k0−q,−dk0−q,−
)

+
UN0

4V

∑

q

cos

(

θk0 −
θk0+q + θk0−q

2

)

(

dk0+q,−dk0−q,− + d†k0+q,−d
†
k0−q,−

)

, (C4)

which gives the Hamiltonian (19) after using the canon- ical ensemble relation

N = N0 +
∑

q

d†k0+q,−dk0+q,−. (C5)
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The Hamiltonian (19) then can be diagonalized by the
bosonic Bogoliubov transformation

V =

(

uq vq
v∗−q u∗

−q

)

, (C6)

where uq and vq (chosen to be real) are given in Eq. (62)

with uqvq = −
√

u2
qv

2
q, and V is a nonunitary matrix

that preserves the bosonic commutation relation after the
basis transformation

(

dk0+q,−
d†k0−q,−

)

= V

(

αk0+q

α†
k0−q

)

. (C7)

The dispersions E±
q = E±q of αk0±q in Eq. (24) can be

obtained by solving the determinant equation

|H − λσz | = 0 (C8)

with the solutions λ = E+
q , −E−

q , where E±
q > 0.

Appendix D: Stability of quantum “smectic” and

“columnar” phases in d-dimensions: generalized

Hohenberg-Mermin-Wagner theorems

In this appendix, we perform a simple dimensional
analysis of the stability of a smectic (columnar) phase in
d spatial dimensions, which exhibits a Goldstone mode
with 1 (d − 1) hard direction(s), ‖, and the other d − 1
(1) soft direction(s), ⊥. We set U = B = K = 2n0 = 1
for simplicity.
For the smectic phase, the quantum fluctuations at

T = 0 is characterized by

〈φ2〉Q =

∫

dω

2π

dq‖d
d−1q⊥

(2π)d
1

ω2 + q2‖ + (q2⊥)
2
. (D1)

With the change of variables q2⊥ = y⊥, the above equation
becomes

〈φ2〉Q =

∫

dωdq‖dq⊥
(2π)d+1

qd−2
⊥

ω2 + q2‖ + q4⊥

∝
∫

dωdq‖dy⊥
(2π)d+1

y
d−3
2

⊥
ω2 + q2‖ + y2⊥

.

(D2)

The stability of this state requires the convergence in the
IR, which requires

3 +
d− 3

2
> 2 ⇒ d > 1. (D3)

For the columnar phase, the quantum fluctuations are

〈φ2〉Q =

∫

dωdd−1q‖dq⊥
(2π)d+1

1

ω2 + q2‖ + q4⊥

∝
∫

dωdq‖dy⊥
(2π)d+1

qd−2
‖ y

−1/2
⊥

ω2 + q2‖ + y2⊥
, (D4)

which requires

3 + (d− 2)− 1

2
> 2 ⇒ d >

3

2
(D5)

for the stability. Therefore, for the physical dimension
of our interest, d = 2, both requirements are satisfied,
which suggests the helical superfluid stable under quan-
tum fluctuations.

At nonzero temperature, we consider the dominant
classical contributions at ωn = 0, which for the smec-
tic are given by

〈φ2〉T =

∫

dq‖d
d−1q⊥

(2π)d
1

q2‖ + (q2⊥)
2

∝
∫

dq‖dy⊥
(2π)d+1

y
d−2
2

⊥ y
−1/2
⊥

q2‖ + y2⊥
. (D6)

Its stability requires

2 +
d− 3

2
> 2 ⇒ d > 3. (D7)

While in the columnar phase,

〈φ2〉T =

∫

dd−1q‖dq⊥
(2π)d

1

q2‖ + q4⊥

∝
∫

dq‖dy⊥
(2π)d+1

qd−2
‖ y

−1/2
⊥

q2‖ + y2⊥
, (D8)

which requires

2 + d− 2− 1

2
> 2 ⇒ d >

5

2
(D9)

Thus, thermal fluctuations make the 2d smec-
tic/columnar phase unstable.

Appendix E: Calculation details of depletion

The condensate depletion is given by Eq. (60) at weak
interactions as discussed in the main text. At zero tem-
perature, β = ∞ leads to

nd =

∫ ∞

−∞

dq‖dq⊥
(2π)2

1

2

( Eq + Un
√

E2
q + 2UnEq

− 1

)

, (E1)

where Eq ≈ Bq2‖ + Kq4⊥ as defined in Eq. (36). In this

section, we perform the integral exactly. With the change
of variables:

σ‖ =

√

B

2Un
q‖, σ⊥ =

√

K

2Un
q2⊥, σ

2 = σ2
‖ + σ2

⊥,(E2)
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the integral can be rewritten as

I =

∫ ∞

−∞

dq‖dq⊥
(2π)2

1

2

( Eq + Un
√

E2
q + 2UnEq

− 1

)

=
(2Un)3/4

B1/2K1/4

∫ ∞

−∞

dσ‖dσ⊥
16π2

1
√

|σ⊥|

( 2 + 1
σ2
‖
+σ2

⊥

2
√

1 + 1
σ2
‖
+σ2

⊥

− 1

)

=
(2Un)

3
4

B
1
2K

1
4

∫ ∞

0

√
σdσ

16π2

∫ 2π

0

dθ
√

| sin θ|

(

2σ2 + 1

2σ
√
σ2 + 1

− 1

)

=
(2Un)3/4

16π2B1/2K1/4
IθIσ, (E3)

where Iθ =
∫ 2π

0
dθ√
| sin θ|

≈ 10.4882 and

Iσ =

∫ ∞

0

dσ

(

2σ2 + 1

2
√
σ3 + σ

−
√
σ

)

= −2

3
σ3/2 +

2

3

√

σ + σ3 +
fe(σ)

6

∣

∣

∣

∣

∞

0

= −fe(0)

6
=

|fe(0)|
6

(E4)

with

fe(σ) = 2(−1)1/4EllipticF

[

iArcSinh
(−1)1/4√

σ
,−1

]

.

(E5)
Consequently, the integral is

I =
(2Un)3/4

16π2B1/2K1/4
Iθ

|fe(0)|
6

, (E6)

which gives the depletion

nd

n
=

(

U3

nB2K

)1/4
23/4Iθ |fe(0)|

96π2
. (E7)

Similarly, we generalize the study of depletion to be in
d = l +m dimensions. The system possesses dispersion
hard along l directions and soft alongm directions. With
q‖(⊥);i being the momentum along the i-th hard (soft)
direction, the generalized dispersion is

E(l,m)
q =

m
∑

i=1

Biq
2
‖;i +

m
∑

j=1

Kjq
4
⊥;j. (E8)

In terms of variables

σ‖;i =

√

Bi

2Un
q‖;i, σ⊥;i =

√

Ki

2Un
q2⊥;i,

σ2 =

l
∑

i

σ2
‖;i +

m
∑

j

σ2
⊥;j , (E9)

the depletion is given by

n
(l,m)
d =

∫ ∞

−∞

dlq‖d
mq⊥

(2π)2
1

2

( E(l,m)
q + Un

√

(E(l,m)
q )2 + 2UnE(l,m)

q

− 1

)

.

(E10)

The integral can be proceeded as

I(l,m) = (2Un)(2l+m)/4

2(
∏

l
i Bi

∏

m
j Kj)1/2

∫∞
−∞

dlσ‖d
mσ⊥

(2π)m+l (E11)

×∏m
j

K
1/4
j

2|σ⊥,j |1/2

(

2σ2+1
2
√
σ4+σ2

− 1

)

. (E12)

Particularly, when Bi = B and Kj = K for any i and j,

I(l,m) ∝ (Un)(2l+m)/4

Bl/2Km/4
. (E13)

The depletion is then given by

n
(l,m)
d

n
∝ (Un1− 4

2l+m )(2l+m)/4

Bl/2Km/4
. (E14)

Now we discuss the thermal corrections to the deple-
tion, which is given by

δnd(T ) =nd(T )− nd(0) =
∫∞
−∞

ddq
(2π)d

u2
q+v2

q

eβEq−1
(E15)

with Eq and E1,q defined in Eq. (24), and u2
q and v2q de-

fined in Eq. (62). In the long-wavelength limit, Eq ≈
E1,q ≈

√

2UnE(l,m)
q . Then, with the change of vari-

ables σ‖,i = β
√
2BUn0q‖,i and σ⊥,j = β

√
2KUn0q

2
⊥,j

(set Bi = B and Kj = K for simplicity),

δnd(T ) =

∫ ∞

−∞

ddq

(2π)d
E(l,m)
q + Un

E1,q
1

eβEq − 1

≈
∫ ∞

−∞

dlq‖d
mq⊥

(2π)l+m

Un
√

2UnE(l,m)
q

1

eβ
√

2UnE(l,m)
q − 1

∝ 1

(2π)l+m2mT

(

T 2

2BUn0

)l/2(
T 2

2KUn0

)m/4

×
∫ ∞

0

dσ
σl+m/2−2

eσ − 1
, (E16)

where the radial integral over σ is finite if l+m/2−2 > 0.
This suggests the superfluid is stable when

2l +m > 4. (E17)

For a smectic (columnar) phase with l = 1 (l = d−1) and
m = d− 1 (m = 1), we reproduce the stability condition
d > 3 (d > 5/2) as obtained in Appendix D.

Appendix F: Superflow

In this section, we derive the expression of the super-
current. Notice that there involves higher-order deriva-
tives in the Lagrangian L0 in Eq. (32), its equation of
motion is thus modified as

∂L0

∂Φ
− ∂µ

( ∂L0

∂(∂µΦ)

)

+ ∂i∂j

( ∂L0

∂(∂i∂jΦ)

)

= 0; (F1)
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where µ = (τ, i, j, k, . . . ) and i, j, k, . . . are spatial indices.
With the detailed form of L0, We obtain

−∂τΦ
∗ + J(∇4Φ∗ + 2k20∇2Φ∗) = 0 (F2)

along with a similar equation for Φ. In addition, the La-
grangian L0 respects the global U(1) symmetry. There-
fore, an infinitesimal transformation Φ → eiεΦ ≈ Φ+iεΦ
(and Φ∗ → e−iεΦ∗ ≈ Φ∗ − iεΦ∗, where ε ≪ 1) results
in L0 → L0 + ε∆L0 with ∆L0 being a total derivative,
given by

∆L0 =
∂L0

∂Φ
(iΦ) +

( ∂L0

∂(∂µΦ)

)

(i∂µΦ)

+
( ∂L0

∂(∂i∂jΦ)

)

(i∂i∂jΦ) + Φ ↔ Φ∗

= ∂µ

( ∂L0

∂(∂µΦ)
(iΦ)

)

+ ∂i

( ∂L0

∂(∂i∂jΦ)
(i∂jΦ)

)

+Φ ↔ Φ∗,

where we applied the equation of motion in Eq. (F1) to
get the second equality. Then, the Noether current is

j0 =
∂L0

∂(∂τΦ)
(iΦ) +

∂L0

∂(∂τΦ∗)
(−iΦ∗) = 2iΦ∗Φ

ji =
∂L0

∂(∂iΦ)
(iΦ) +

∂L0

∂(∂iΦ∗)
(−iΦ∗)

+
∂L0

∂(∂i∂jΦ)
(i∂jΦ) +

∂L0

∂(∂i∂jΦ∗)
(−i∂jΦ

∗)

= − iJΦ(∂i∇2Φ∗ + 2k20∂iΦ
∗) + iJΦ∗(∂i∇2Φ+ 2k̄20∂iΦ)

+ iJ∇2Φ∗∂iΦ− iJ∇2Φ∂iΦ
∗, (F3)

which satisfy the continuity equation, ∂µj
µ = 0.

With Φ =
√
neik0·r+iφ (and at mean-field level k0 =

k̄0), the supercurrent is then a current in space,

js = 4Jn

[

(∇φ)2 + 2k0 · ∇φ− 1

n
∇2n+

3

4n2
(∇n)2

]

× (k0 +∇φ)− 2J∇n∇2φ− 2Jn∇3φ

≈ 4Jn
[

(∇φ)2 + 2k0 · ∇φ
]

(k0 +∇φ)− 2Jn∇3φ,

(F4)

generated through the twisting of the superfluid phase φ.
In the last line, we consider the long-wavelength limit,
where the fluctuation of density is small such that ∇n ≈
0.
The supercurrent density can be written as js = nvs,

where vs the superfluid velocity. For a linear in r classical
phase variation φ = q · r, the superfluid velocity reduces
to the derivative of the bare dispersion

vs = 4J
[

q2 + 2k0 · q
]

(k0 + q)

= ∇kεk|k=k0+q, (F5)

where

εk = J(k2 − k20)
2 + ε0, k = k0 + q. (F6)

We emphasize that the existence of the nonlinear φ terms
in Eq. (F4) makes this relation hold.
Alternatively, the supercurrent can be obtained as a

response to a background probe gauge field. We first gen-
eralize the long-wavelength harmonic Goldstone mode
Hamiltonian density [with the corresponding Lagrangian
density (35b)],

H0φ = 4Jnk20(∇‖φ)
2 + Jn(∇2φ)2, (F7)

to the quartic order in φ by requiring the rotational sym-
metry of k0, giving

Hφ = 4Jn

[

k0∇‖φ+
1

2
(∇φ)2

]2

+ Jn(∇2φ)2. (F8)

As the system coupled with a background U(1) gauge
field, the Hamiltonian density is modified as Hφ[∇φ] →
Hφ[∇φ+A]. The supercurrent density is then obtained
by taking derivative with respect to the gauge field

js =
∂Hφ

∂A

∣

∣

∣

∣

A=0

= 4Jn
[

(∇φ)2 + 2k0∇‖φ
]

(k0 +∇φ)− 2Jn∇3φ,

(F9)

which reproduces the long-wavelength expression in
Eq. (F4).

Appendix G: Calculation details of the chemical

potential

In this appendix, we evaluate the integral in Eq. (73).
As in Appendix E, we use the dimensionless variables
defined in Eq. (E2), and written integral as

I =

∫ ∞

−∞

dq‖dq⊥
(2π)2

(

1− Eq
√

E2
q + 2UnEq

)

=

∫ ∞

−∞

dq‖dq⊥
(2π)2

(

1− 1
√

1 + 2Un
Eq

)

=

∫ ∞

−∞

dσ‖dσ⊥
8π2

(2Un)3/4

B1/2K1/4

1
√

|σ⊥|

(

1− σ√
σ2 + 1

)

=
(2Un)3/4

8π2B1/2K1/4
IθI

′
σ , (G1)

where σ2 = σ2
‖ + σ2

⊥, Iθ is defined and computed in

Eq. (E3), and

I ′σ =

∫ ∞

0

√
σdσ

(

1− σ√
σ2 + 1

)

=

(

2
√
σ

3
(σ −

√

1 + σ2) +
1

3
fe(σ)

)∣

∣

∣

∣

∞

0

=
1

3
(fe(∞)− fe(0)) ≈ 1.23605, (G2)



23

with fe(σ) is in Eq. (E5). We note that fe(∞) ≡
limσ→∞ fe(σ) = 0 and fe(0) ≡ limσ→0 fe(σ) ≈
−3.70815, which lead to the last approximation in
Eq. (G2).

As a result, the chemical potential for the helical su-
perfluid in 2d is

µ

U
= n

[

1− 23/4IθI
′
σ

32π2

(

U3

B2Kn

)1/4]

. (G3)

In general, for a d dimensional system with a dispersion

E(l,m)
q defined in Eq. (E8), the integral in Eq. (G1) can

be generalized as

I(l,m) =

∫ ∞

−∞

dlq‖d
mq⊥

(2π)m+l

(

1− E(l,m)
q

√

(E(l,m)
q )2 + 2UnE(l,m)

q

)

.

(G4)
In terms of the dimensionless variables defined in
Eq. (E9), the integral becomes

I(l,m) =

∫ ∞

−∞

dlσ‖d
mσ⊥

(2π)m+l

(2Un)(2l+m)/4

(
∏l

iBi

∏m
j Kj)1/2

×
m
∏

j

K
1/4
j

2|σ⊥,j|1/2
(

1− σ√
σ2 + 1

)

. (G5)

For the special case Bi = B and Kj = K for any i and

j, we have

I(l,m) ∝ (2Un)(2l+m)/4

Bl/2Km/4
. (G6)

Accordingly, in terms of the dimensionless quantity

Ql,m =
(Un1− 4

2l+m )(2l+m)/4

Bl/2Km/4
, (G7)

the chemical potential is

µ(l,m)

U
= n

[

1− Il,mQl,m
]

, (G8)

where Il,m is a dimensionless O(1) constant fully deter-
mined by l and m. For a d-dimensional smectic phase
with l = 1 and m = d− 1, the dimensionless quantity

Q1,d−1
smectic =

(

Ud+1nd−3

B2Kd−1

)1/4

. (G9)

We can check that with dim [Un] = E, dim[n] = L−d,
dim [B] = EL2, and dim [K] = EL4 (E, L with dimen-

sions of energy and length, respectively), Q1,d−1
smectic is in

fact dimensionless. On the other hand, in a columnar
phase with l = d− 1 and m = 1, the dimensionless quan-
tity is given by

Qd−1,1
columnar =

(

U2d−1n2d−5

B2d−2K

)1/4

. (G10)

Appendix H: φ theory with C6 lattice effects

We start with the coherent state path integral formalism of the frustrated Bose-Hubbard model introduced in the
beginning of Sec. V. In the density-phase representation (78), the Lagrangian (including the constant part) can be
written as

L = i
∑

i,a=1,2

πi,a∂τφi,a +H0 +Hint, (H1)

where the kinetic part

H0 = − 2t1n0

∑

〈i,j〉

√

1 +
πi,1

n0
+

πj,2

n0
+

πi,1πj,2

n2
0

cos [θk0 + k0 · (ri,1 − rj,2) + φi,1 − φj,2]

+ 2t2n0

∑

a=1,2

∑

〈〈i,j〉〉

√

1 +
πi,a

n0
+

πj,a

n0
+

πi,aπj,a

n2
0

cos [k0 · (ri,a − rj,a) + φi,a − φj,a] (H2)

and the interaction

Hint =
U

2

∑

i

[(n0 + πi,1)
2 + (n0 + πi,2)

2]. (H3)

For a bose condensate, we assume the fluctuations of π and φ fields are small, and thereby expand in a power series,
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which up to quadratic order in π and φ is given by

H ′
0 = − t1n0

∑

〈i,j〉
eiθk0

+ik0·(ri,1−rj,2)

[

1 +
πi,1

2n0
+

πj,2

2n0
+ i(φi,1 − φj,2)−

1

8n2
0

(πi,1 − πj,2)
2 − 1

2
(φi,1 − φj,2)

2

−i
(πi,1 + πj,2)

2n0
(φi,1 − φj,2)

]

+ t2n0

∑

a

∑

〈〈i,j〉〉
eik0·(ri,a−rj,a)

[

1 +
πi,a

2n0
+

πj,a

2n0
+ i(φi,a − φj,a)

− 1

8n2
0

(πi,a − πj,a)
2 − 1

2
(φi,a − φj,a)

2 − i
(πi,a + πj,a)

2n0
(φi,a − φj,a)

]

+
U

4

∑

i,a

(n0 + πi,a)
2 + h.c.. (H4)

To perform one-loop calculations, we include the cubic and quartic terms of φ, given by

H ′
1 = − t1n0

6

∑

〈i,j〉
eiθk0

+ik0·(ri,1−rj,2)

[

−i(φi,1 − φj,2)
3 +

1

4
(φi,1 − φj,2)

4

]

+
t2n0

6

∑

a

∑

〈〈i,j〉〉
eik0·(ri,a−rj,a)

[

−i(φi,a − φj,a)
3 +

1

4
(φi,a − φj,a)

4

]

+ ...+ h.c. (H5)

At this point, one can either directly take the continuum limit in the real space or go to momentum space to get
an effective action. The calculation for the former is simpler but misses some contributions even at long length scale,
while the later is tedious but valid for all momentum. We discuss both methods below.

1. Taking continuum limit in the real space

To take the continuum limit, we consider the fields φi,α and πi,α on lattice sites as slowly-varying functions of
continuous spacetime coordinates (r, τ) compared to the lattice constant. The time coordinate is already continuous.
Therefore, the difference of two operators at distinct spatial locations can be expanded as

φ(ri,a)− φ(rj,a′ ) =
∞
∑

n=1

1

n!
(∆r · ∇)nφ|r=rj,a′ , (H6)

where ∆r = ri,a − rj,a′ with a and a′ label the sublattices. Below we focus on the case k0 = (0, k0) while other cases
can be derived following the same procedure. Including up to the second (first) order for the quadratic (cubic and
quartic) term(s), the Hamiltonian density, defined by 2

3
√
3

∫

r
H′ = H ′

0 +H ′
1, is given by

H′

n0
≈ ∆

[

c(∂‖φ) + c⊥(∂⊥φ)
2
]

+B(∂‖φ)
2 +K20(∂

2
‖φ)

2 +K02(∂
2
⊥φ)

2 +K11(∂
2
‖φ)(∂

2
⊥φ)

+B30(∂‖φ)
3 +B12(∂‖φ)(∂⊥φ)

2 +B40(∂‖φ)
4 +B04(∂⊥φ)

4 +B22(∂‖φ)
2(∂⊥φ)

2 +
U

2n0
π2, (H7)

where ∆k0 = 1− |Γk̄0
|/|Γk0 | with k̄0 satisfying Eq. (14),

c = 12t2 sin(3k0/2), c⊥ = 3t2[2 + cos(3k0/2)], B = 4t2[1− cos(3k0/2)], B30 = B12 = 3t2 sin(3k0/2),

K20 =
t2
24

[−5 + 32 cos(3k0/2)], K02 =
9t2
8

, K11 =
3t2
4

[−1 + 4 cos(3k0/2)],

B40 =
t2
24

[−5 + 32 cos(3k0/2)], B04 =
9t2
8

, B22 =
3t2
4

[−1 + 4 cos(3k0/2)], (H8)

and the constant and linear in π terms are dropped. In the above, the ρ dependence is hidden in k0(ρ) and t2 = t1ρ.
By integrating over π, we obtain the zeroth-order Lagrangian density, (90), with the parameters (H8), however, not

satisfying the relation B
(0)
lm = b

(0)
lm . This inconsistency is due to the θk0 factor in Eq. (H2), or more generally the

two-band nature of the model, which invalids the simple continuum limit above that neglects the spatial variation
between the two sublattice sites within a unit cell, as discussed in more details below.
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2. Continuous effective theory in the momentum space

Alternatively, We can Fourier transform the Hamiltonian H ′
0 and H ′

1 followed by a change of basis defined as







πq,1

πq,2

φq,1

φq,2






=

1

2

(

Uq + U∗
−q in0(Uq − U∗

−q)
−i 1

n0
(Uq − U∗

−q) Uq + U∗
−q

)







πq,+

πq,−
φq,+

φq,−






, (H9)

where the subscripts 1, 2 label the two sublattices and ± denote the two bands as in the main text. The unitary
matrix above is given by

Uq =
1√
2

(

exp(i
θk0+q−θk0

2 ) exp(i
θk0+q−θk0

2 )

− exp(−i
θk0+q−θk0

2 ) exp(−i
θk0+q−θk0

2 )

)

. (H10)

At quadratic order, the action for the lower band is given by

S0 =
1

2

∑

q

(

π−q,− φ−q,−
)

G−1
0 (q, ωn)

(

πq,−
φq,−

)

, (H11)

where

G−1
0 (q, ωn) =

(

Eq/(2n0) + U
1+cosΘq

2 ωn + iEq,2
−ωn − iEq,2 2n0Eq + 4n2

0U
1−cosΘq

2

)

. (H12)

In the above, we consider the weakly-interacting limit and can thereby drop the upper band contributions which only
give O(Un0/t1) corrections to the low energy physics. Before computing higher-order terms, we have two comments
in order.
Firstly, we note the quadratic action reproduces the same Bogoliubov quasiparticle spectrum in Eq. (24). Tech-

nically, both the density-phase representation (78) and the Bogoliubov approximation (17) share the same classical

background field, which in real space is given by
√
n0e

±i
θk0
2 +ik0·ri,1(2) with the + and − factors for the sites in the

1 and 2 sublattices respectively. The fluctuations around the condensate are given by π and φ in Eq. (78) or d−
in Eq. (17). An expansion of the former representation gives linear terms of π and φ that takes the same form as
the real and imaginary parts of d− in the latter representation, and thus both give the same form of the quadratic
action. While the higher-order terms which modifies the S0 in Eq. (H11) do not have a simple relation compared with
higher-order terms which corrects Eq. (19), they should describe the same physics.
Secondly, as shown above, an accurate calculation gives B and K identical with the ones from Bogoliubov theory in

Eq. (28). In Appendix H1, fields on the two sites within a unit cell are considered to be the same, i.e., φi,1 ≈ φi,2 ≈ φi.
This is equivalent to approximate the transformation in Eq. (H9) with Uq ≈ U0, which gives φq,1 ≈ φq,2 ≈ 1√

2
φq,−.

Therefore, the discrepancy between B and K in (H8) and the accurate ones in Eq. (B2) comes from the definition of
the fields, which by inspection gives a factor of 1/2 via the relation φq = 1√

2
φq,−, and the difference between Uq and

U0. The latter can be neglected in the limit k0 → 0, where the difference is of higher-order in q.
The calculations for the nonlinear terms are quite tedious. Especially, it is hard to simplify the expressions after

the transformation in Eq. (H9). Here, we employ the same approximation φq,1 ≈ φq,2 ≈ φq to derive below the cubic
and quartic terms in φ.

S1 ≈ − in0√
V

∑

q,q′

Γ3(q)φqφq′φ−q−q′ +
n0

12V

∑

{q}
[−4Γ4(q1) + 3Γ4(q1 + q2)]× φq1φq2φq3φ−q1−q2−q3 , (H13)

where

Γ3(q) = − t1Re

[

(Γk0+q − Γk0−q)e
−iφk0 + 4ρ

∑

α

sin (k0 · vα) sin(q · vα)

]

Γ4(q) = − 2t1Re

[(

Γk0+q + Γk0−q

2
− Γk0

)

e−iφk0 − 2ρ
∑

α

cos (k0 · vα) [1− cos (q · vα)]

]

, (H14)

where an expansion of Γ3 and Γ4 in small q together with a Fourier transform back to the real space reproduce the
nonlinear terms in the field theory (H7) with the same coefficients obtained earlier (H8).



26

Appendix I: One-loop calculation of b⊥

Here we calculate the perpendicular curvature b⊥ = 1
2N0

∂2
k⊥

Ω(k0) at one-loop order. By expanding the condensate

momentum k0 = k
(0)
0 + k

(1)
0 around its mean-field value k

(0)
0 and keeping the leading-order terms, we get

b
(1)
⊥ =

1

2N0
∂k‖

∂2
k⊥

Ω(0)
(

k
(0)
0

)

k
(1)
0 +

1

2N0
∂2
k⊥

Ω(1)
(

k
(0)
0

)

, k
(1)
0 = −

∂k‖
Ω(1)

(

k
(0)
0

)

∂2
k‖
Ω(0)

(

k
(0)
0

) , (I1)

where k
(1)
0 can be determined by ∇k0Ω(k0) = 0 and

∂k‖
Ω(1)

(

k
(0)
0

)

=
1

2

∑

q

coth (βEq/2)∂k‖
Eq

∂2
k⊥

Ω(1)
(

k
(0)
0

)

=
∑

q

[

coth (βEq/2)∂
2
k⊥

Eq − β

2 sinh2 (βEq/2)
(∂k⊥

Eq)
2

]

. (I2)

In the absence of interaction, ∂k‖
Eq = ∂q‖Eq and ∂2

k⊥
Eq = ∂2

q⊥Eq. Accordingly, the integrands in ∂k‖
Ω(1)

(

k
(0)
0

)

and

∂2
k⊥

Ω(1)
(

k
(0)
0

)

are total derivatives, which makes ∂k‖
Ω(1)

(

k
(0)
0

)

= ∂2
k⊥

Ω(1)
(

k
(0)
0

)

= 0 and subsequently b
(1)
⊥ = 0.

In the presence of weak interaction, the dispersion deviates from the noninteracting form within a crossover scale
qc = (qc‖, q

c
⊥) = (ξ−1, (λξ)−1/2). Therefore, the integrals (I2) are dominated by the region q < qc. In this small U

limit, we obtain b
(1)
⊥ = b0⊥fb(Un0/T ) by using change of variables q′‖ = ξq‖ and q′⊥ = (λξ)1/2q⊥ in Eq. (I2), where

b0⊥ = (Un0)
5/4t

−1/4
1 gb(ρ) with gb(ρ) a dimensionless O(1) constant and the scaling function fb is defined in Eq. (89).

Appendix J: One-loop calculation of B⊥

A complete one-loop calculation should give the perpendicular stiffness of φ equals to the corresponding curvature

in the thermodynamic potential, i.e., B
(1)
⊥ = b

(1)
⊥ , with b

(1)
⊥ being calculated in Appendix I. Here, we instead perform

an approximate calculation of B
(1)
⊥ in the long-wavelength limit, where the Lagrangian (90) is valid. Specifically, we

consider the leading derivative terms and thereby only keep Uπ2 for the π field, which is enabled by an U -dependent
UV cutoff ΛU defined by Eq < O(1)×Un0, which in the weakly-interacting limit reduces to q < O(1)×qc. Although
such calculation neglects the range of integration q > qc, the contribution to B⊥ in this range is actually very small

as seen in the calculation of b
(1)
⊥ in Appendix I that takes into account all momentum. Therefore, the integral of B

(1)
⊥

or b
(1)
⊥ actually self regulates at qc in the weakly-interacting limit.

1. Long-wavelength limit

We consider the low-energy φ-only theory (90), where the bare Green function is given by (kB = 1)

G0,φ(q) = 〈φ−qφq〉0 =
1

2n0

1

Bτω2
n + Eq

, (J1)

where Eq = Bq2‖ +K20q
4
‖ +K02q

4
⊥ +K11q

2
‖q

2
⊥ and Bτ = 1/2Un0.

We first calculate the coefficient of ∂‖φ, which corresponds to the slope of the thermodynamic potential at k0 along
the ‖ direction. At one-loop order, it is given by

+ = n0C∆k0 +
B12

2

∫ ΛU

q

3q2‖ + q2⊥
Bτω2

n + Eq
, (J2)

where the first term is the zeroth-order contribution that vanishes at k0 = k̄0 and
∫

q
= 1

βV

∑

q,ωn
. With the one-loop

correction, k0 needs to be shifted such that the coefficient of ∂‖φ is zero again, which assures k0 is located at the local
minimum of the loop-corrected thermodynamic potential with vanished first derivative. In the above, the tadpole
diagrams are dropped as they cancel out up to all orders when choosing the correct k0.
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Next we calculate B⊥, which at one-loop order is given by

B
(1)
⊥ = + +

= c⊥n0∆k0 +
1

8

∫ ΛU

q

B22q
2
‖ + 6B04q

2
⊥

Bτω2
n + Eq

−B2
12

∫ ΛU

q

q2‖q
2
⊥

(Bτω2
n + Eq)2

= − c⊥B12

2c

∫ ΛU

q

3q2‖ + q2⊥
Bτω2

n + Eq
+

1

8

∫ ΛU

q

B22q
2
‖ + 6B04q

2
⊥

Bτω2
n + Eq

−B2
12

∫ ΛU

q

q2‖q
2
⊥

(Bτω2
n + Eq)2

, (J3)

where in the last line we choose k0 at which the linear term ∂‖φ vanished. In the above, the arguments of the

coefficients are taken to be their mean-field value k0 = k̄0 as the difference is of higher order. With a change of
variables q′‖ = ξq‖ and q′⊥ = (λξ)1/2q⊥, we can rewrite the expression above that in the weakly-interacting limit is

given by

B
(1)
⊥ ≈ − c⊥B12Bτ

4cξ(λξ)3/2

∫ Λ

q′

q′⊥
2

ω′
n
2 + q′‖

2 + q′⊥
4
+

3B04Bτ

4ξ(λξ)3/2

∫ Λ

q′

q′⊥
2

ω′
n
2 + q′‖

2 + q′⊥
4
− B2

12B
2
τ

ξ3(λξ)3/2

∫ Λ

q′

q′‖
2q′⊥

2

(ω′
n
2 + q′‖

2 + q′⊥
4)2

=
3B04 − c⊥B12/c

8ξ(λξ)3/2

∫ Λ

q′

q′⊥
2

E′
q′

coth

(

Un0E
′
q′

T

)

− BτB
2
12

2ξ3(λξ)3/2

∫ Λ

q′

q′‖
2q′⊥

2

2E′
q′

3

[

coth

(

Un0E
′
q′

T

)

+
Un0E

′
q′

T
csch2

(

Un0E
′
q′

T

)]

,

(J4)

where ω′
n = Bτωn = πnT/Un0 (here n is an integer, not confused with the particle density), E′

q′ = q′‖
2 + q′⊥

4 and the

UV cutoff Λ indicates q′ = (q′‖, q
′
⊥) < (O(1),O(1)). In the last line above, we can read B

(1)
⊥ = B0⊥fB(Un0/T ), where

the dimensionless scaling function fB exhibits the same limits as fb in Eq. (89) and B0⊥ = (Un0)
5/4t

−1/4
1 gB(ρ) with

gB(ρ) a dimensionless O(1) constant.

2. Isotropic limit

In the isotropic limit ρ → 1/6 or k0 → 0, the coefficients K ≡ K20 = K02 = K11/2, B/k20 = B30/k0 = B12/k0 =

B40 = B04 = B22/2 and c = 2k0c⊥. Consequently, B
(1)
⊥ in the last line of Eq. (J3) vanishes

B
(1)
⊥ = − B

4k20

∫

q

3q2‖ + q2⊥
Bτω2

n +Bq2‖ +Kq4
+

B

4k20

∫

q

q2‖ + 3q2⊥
Bτω2

n +Bq2‖ +Kq4
− B2

k20

∫

q

q2‖q
2
⊥

(Bτω2
n +Bq2‖ +Kq4)2

= 0, (J5)

where we used the following integration by part for the last term

∫

q

q2‖q
2
⊥

(Bτω2
n +Bq2‖ +Kq4)2

=

∫ ∞

0

dqq

∫ 2π

0

dθ
q4 cos(θ)2 sin(θ)2

[Bτω2
n +Bq2 cos(θ)2 +Kq4]2

=
1

2B

∫ ∞

0

dqq

∫ 2π

0

dθ
q2[sin(θ)2 − cos(θ)2]

Bτω2
n +Bq2 cos(θ)2 +Kq4

=
1

2B

∫

q

q2⊥ − q2‖
Bτω2

n +Bq2‖ +Kq4
. (J6)
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