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On the coset graph construction

of distance-regular graphs∗

Minjia Shi†, Denis S. Krotov‡, Patrick Solé§

Abstract

We show that no more new distance-regular graphs in the tables
of the book of (Brouwer, Cohen, Neumaier, 1989) can be produced by
using the coset graph of additive completely regular codes over finite
fields.
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1. Introduction

Since the times of Delsarte [5], an important tool to construct distance-
regular graphs has been the coset graph of a completely regular code. Many
examples can be found in Chapter 11 of [4], involving notably the Golay codes
and the Kasami codes (for a new description of these codes see e.g. [12]).
More recently, a new distance-regular graph related to the dodecacode, an
important additive F4-code of length 12 was constructed in [11]. This solved
both a thirty year old problem in graph theory [4, Ch. 14], and a forty-five
year old problem in coding theory [1].
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In the present note, we find out which graphs with the parameters in the
tables of [4, Ch. 14] can be realized as coset graphs of completely regular
additive codes over a finite field. A trivial necessary condition is that the
number of vertices should be a power of a prime. More elaborate necessary
conditions include a refinement of the Lloyd theorem for equitable partitions
(Lemma 3), and a divisibility condition bearing on the entries of the inter-
section array (Corollary 1). When all these techniques are exhausted, we can
eliminate the remaining parameters by showing that the needed code does
not exist, either by a direct combinatorial argument, or by long electronic
computations using the dedicated software [7] or [2]. We conclude that no
more additive codes are left to be found satisfying the said condition.

The material is arranged as follows. The next section lists the parameters
we are considering. Section 3 collects basic facts and notations. Section 4
gives the two theoretical tools mentioned above. Sections 5 to 8 study the
codes remaining after use of these two tools. Section 9 concludes the article.

2. Parameters

The only “unsolved” parameters of distance-regular graphs with prime-power
order in the [BCN] table [4, Ch. 14] are the following (the most of the cited
updates are mentioned in [15, Ch. “Tables”]):

• v = 2187 = 37, {140, 126, 20, 1; 1, 10, 126, 140} (Section 8);

• v = 243 = 35, {22, 16, 5; 1, 2, 20}; a graph does not exist [13];

• v = 256 = 28, {25, 24, 3; 1, 3, 20} (Corollary 1);

• v = 729 = 36, {26, 24, 19; 1, 3, 8} (Corollary 1);

• v = 1024 = 210, {31, 30, 17; 1, 2, 15}; a graph exists (Kasami graph [4,
Thm. 11.2.1 (13)], q = j = 2).

• v = 625 = 54, {32, 28, 9; 1, 2, 28} (Corollary 1);

• v = 1024 = 210, {33, 30, 15; 1, 2, 15}; a graph exists [11];

• v = 625 = 54, {36, 28, 4; 1, 2, 24} (Lemma 3);

• v = 343 = 73, {42, 30, 12; 1, 6, 28} (Section 5);

• v = 243 = 35, {44, 36, 5; 1, 9, 40} (Corollary 1);

• v = 343 = 73, {48, 35, 9; 1, 7, 40} (Corollary 1);
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• v = 625 = 54, {52, 42, 16; 1, 6, 28} (Section 6);

• v = 729 = 36, {56, 42, 20; 1, 6, 28} (Section 7);

• v = 512 = 29, {63, 48, 10; 1, 8, 54} (Lemma 3);

• v = 729 = 36, {80, 63, 11; 1, 9, 70} (Corollary 1);

• v = 729 = 36, {104, 66, 8; 1, 12, 88}; a graph does not exist [14].

In this note we discuss the possibility to construct distance-regular graphs
with the parameters above as coset graphs of linear completely regular codes
in Hamming graph H(n, q), where q is prime. (Note that the existence of
a completely regular code in H(n, q) where q = ps for prime p implies the
existence of a completely regular code in H(n(q−1)/(p−1), p) with the same
intersection matrix, because H(n(q − 1)/(p − 1), p) covers H(n, q), see also
Lemma 2 below.)

3. Definitions and basic facts

3.1. Graphs

All graphs in this note are finite, undirected, connected, without loops or
multiple edges. In a graph Γ, the neighborhood Γ(v̄) of a vertex v̄ is the set
of vertices adjacent to v̄. The degree of a vertex v̄ is the size of Γ(v̄). A graph
is regular if every vertex has the same degree. The i-neighborhood Γi(v̄) is
the set of vertices at geodetic distance i to v̄. The distance-i graph of Γ is
the graph on the same vertex set where two vertices are adjacent if and only
if the geodetic distance between them in Γ is i. A graph is distance-regular
(DR) if for every pair or vertices ū and v̄ at distance i apart the quantities

bi = |Γi+1(ū) ∩ Γ(v̄)|, ci = |Γi−1(ū) ∩ Γ(v̄)|,

which are referred to as the intersection numbers of the graph, solely depend
on i and not on the special choice of the pair (ū, v̄). The automorphism group
of a graph is the set of permutations of the vertices that preserve adjacency.

Given a group G and an inversion-closed set G of non-identity elements
of G, the Cayley graph Cal(G, G) is the graph on the vertex set G where two
elements ū and v̄ are adjacent if and only if ūv̄−1 ∈ G.

The Hamming graph H(n, q) is a distance-regular graph on the set Σn

of n-words over the alphabet Σ of size q, two vectors being adjacent if they
are at Hamming distance one. We mostly consider the case when q is a
prime power, Σ is the finite field Fq of order q, and Σn is an n-dimensional
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vector space over Fq. The weight of a vertex of H(n, q) is the number of
nonzero elements in the corresponding tuple. The weight distribution of a
set C of vertices of H(n, q) is the sequence W = (W0,W1, . . . ,Wd), where
Wi is the number of words of weight i in C. Sometimes, we will write the

weight distribution in the form {i
Wi0

0 , i
Wi1

1 , . . . , i
Wi

k

k }, where Wi0, . . . , Wik are
the nonzero terms in W ; for example, (1, 0, 0, 7, 7, 0, 0, 1) = {01, 37, 47, 71}.

3.2. Equitable partitions, completely regular codes

A partition (P0, . . . , Pr) of the vertex set of a graph Γ is called an equitable
partition (also known as regular partition, partition design, perfect coloring)
if there are constants Sij such that

|Γ(v̄) ∩ Pj| = Sij for every v̄ ∈ Pi, i, j = 0, . . . , r.

The numbers Sij are referred to as the intersection numbers, and the matrix
(Sij)

r
i,j=0 as the intersection (or quotient) matrix. If the intersection matrix

is tridiagonal, then P0 is called a completely regular code of covering radius
r and intersection array (S01, S12, . . . , Sr−1 r;S10, S21, . . . , Sr r−1). That is to
say, a set of vertices C is a completely regular code if the distance partition
(C = C(0), C(1), . . . , C(r)) with respect to C is equitable. As was proven by
Neumaier [10], for a distance-regular graph, this definition is equivalent to
the original Delsarte definition [5]: a code C is completely regular if the
outer distance distribution (|C ∩Γi(v̄)|)i=0,1,2,... of C with respect to a vertex
v̄ depends only on the distance from v̄ to C.

3.3. Linear and additive codes

A linear code (that is, a linear subspace of Fn
q ) of dimension k and minimum

distance d in H(n, q) is called an [n, k, d]q code. The duality is understood
with respect to the standard inner product.

Linear codes are special cases of the additive codes, which are, by defini-
tion, the subgroups of the additive group of Fn

q . A coset of an additive code
C is any translate of C by a constant vector. A coset leader is any coset
element that minimizes the weight. The weight of a coset is the weight of
any of its leaders. The coset graph ΓC of an additive code C is defined on
the cosets of C, two cosets being adjacent if they differ in a coset of weight
one.

Lemma 1 (see, e.g., [4]). An additive code with distance at least 3 is com-
pletely regular with intersection array {b0, . . . , bρ−1; c1, . . . , cρ} if and only
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if the coset graph is distance-regular with intersection numbers b0, . . . , bρ−1,
c1, . . . , cρ.

On the other hand,

Lemma 2 (see [4, Theorem 11.1.10]). If a distance-regular graph of diameter
at least 3 is a Cayley graph on an elementary abelian p-group, then it is the
coset graph of a linear completely regular 1-code over Fp.

So, the existence of a distance-regular graph of diameter at least 3 that
is a Cayley graph on an elementary abelian p-group is equivalent to the
existence of a linear completely regular 1-code in a Hamming graph over Fp

with the same intersection array.

4. Weight distributions

Lemma 3 ([8],[6]). If P is an equitable partition of the Hamming graph
H(n, q) with quotient matrix S, then P is an equitable partition of the distance-
w graph of H(n, q) with quotient matrix S(w) := Kw(K

−1
1 (S)), where

Kk(x) := Kk(x;n, q) :=
k

∑

j=0

(−1)j(q − 1)k−j

(

x

j

)(

n− x

k − j

)

is the Krawtchouk polynomial. In particular, Kw(K
−1
1 (S)) is integer. (The

same is true for any distance-regular graph, with the corresponding P-poly-
nomial.)

The sequence of matrices (S(w))nw=0 can be called the generalized weight
distribution of the equitable partition. Indeed, if the all-zero word belongs
to Pi, then the number of vertices of weight w in Pj is precisely the (i, j)th
element of the matrix S(w). The following corollary shows that for some
putative intersection arrays we can easily, without any calculations, see that
S(w) is not integer for some w.

Corollary 1. Assume that we have a completely regular code C with inter-
section array {β0, ..., βρ−1; γ1, ..., γρ} in a distance-regular graph with inter-
section array {b0, ..., bD−1; c1, ..., cD}. Then for any appropriate i ∈ {1, ..., ρ}
and j ∈ {0, ..., ρ − i} the product βjβj+1...βj+i−1 of i consequent intersec-
tion numbers (similarly, for γj+1...γj+i) is divisible by c1c2...ci (for Hamming
graphs, by i!).
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Proof. We fix any vertex v from C(j) and denote by Wl the set of vertices at
distance l from v. We will prove by induction that

|Wi ∩ C(i)| =

i
∏

l=1

βj+l−1

cl
. (1)

For i = 0, it is trivially 1 = 1 (by usual convention, the result of multiplying
no factors is 1). For i > 0, it is sufficient to show that

ci|Wi ∩ C(i)| = βj+i−1|Wi−1 ∩ C(i−1)|. (2)

By the definition of a completely regular code, the number of edges be-
ginning in Wi−1 ∩ C(i−1) and ending in C(i−1) is βj+i−1|Wi−1 ∩ C(i−1)|. Since
(C(t))t is a distance partition, all these edges end in Wi.

By the definition of a distance-regular graph, the number of edges be-
ginning in Wi ∩ C(i) and ending in Wi−1 is ci|Wi ∩ C(i)|. Since {C(t)}t is a
distance partition, all these edges end in C(i−1).

So, by double-counting the edges connecting Wi−1 ∩C(i−1) and Wi ∩C(i)

we get (4). By induction, we have (1). Since the left part of (1) is integer,
the claim of the corollary is now obvious.

Corollary 2. In Hamming graphs, there are no completely regular 1-codes
with the following putative intersection arrays:

{22, 16, 5; 1, 2, 20}; {25, 24, 3; 1, 3, 20}; {26, 24, 19; 1, 3, 8};
{32, 28, 9; 1, 2, 28}; {36, 28, 4; 1, 2, 24}; {44, 36, 5; 1, 9, 40};
{48, 35, 9; 1, 7, 40}; {63, 48, 10; 1, 8, 54}; {80, 63, 11; 1, 9, 70}.

Proof. For all arrays except {36, 28, 4; 1, 2, 24} and {63, 48, 10; 1, 8, 54}, the
existence of completely regular codes contradicts Corollary 1, which states
that γ1γ2 is divisible by 2 (false for {25, 24, 3; 1, 3, 20}, {26, 24, 19; 1, 3, 8},
{44, 36, 5; 1, 9, 40}, {48, 35, 9; 1, 7, 40}, and {80, 63, 11; 1, 9, 70}) and γ1γ2γ3 is
divisible by 6 (false for {22, 16, 5; 1, 2, 20} and {32, 28, 9; 1, 2, 28}).

For {36, 28, 4; 1, 2, 24}, since 36 is the degree (q − 1)n of the Hamming
graph H(n, q), n ≥ 3, we have q ∈ {2, 3, 4, 5, 7, 10, 13}. In all the cases, direct
calculations show that K3(K

−1
1 (S)) is not integer, where Kw(·) = Kw(·;n, q)

and S is the quotient matrix corresponding to the array {36, 28, 4; 1, 2, 24}.
For {63, 48, 10; 1, 8, 54}, the proof is similar.

5. {42,30,12;1,6,28}, q = 7

A putative distance-regular graph with intersection array {42, 30, 12; 1, 6, 28}
has order 343 = 73. If such a graph can be realized as the coset graph
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of a linear completely regular code in a Hamming graph, then it is a 7-
ary code of length 7 = 42/(6 − 1), dimension 4 = 7 − 3, distance 3, and
covering radius 3. The weight distributions of the code and of its dual are
(1, 0, 0, 42, 42, 630, 840, 846) and (1, 0, 0, 0, 42, 0, 210, 90), respectively.

Proposition 1. If q is an odd prime power larger than 4, then there are no
q-ary codes of length 7, dimension 3, and non-zero weights 4, 6, 7.

Proof. Assume that such a code C exists. W.l.o.g., it has a generator matrix





1 0 0 ? ? ? ?
0 1 0 ? ? ? ?
0 0 1 ? ? ? ?





We note that the weight of each row can only be 4, and two rows do not have
two common zero positions (otherwise, for q > 4, they can be combined in a
weight-5 codeword contradicting the hypothesis). So, w.l.o.g., we have





1 0 0 0 1 1 1
0 1 0 a 0 b c
0 0 1 x y 0 z



 .

If b 6= c, then there is a weight-5 linear combination of the first two rows, a
contradiction. So, b = c; similarly, y = z; and, if we assume w.l.o.g. that
a = b, we also see x = y:





1 0 0 0 1 1 1
0 1 0 a 0 a a
0 0 1 x x 0 x



 .

Multiplying rows by coefficients, we get





−1 0 0 0 −1 −1 −1
0 a−1 0 1 0 1 1
0 0 x−1 1 1 0 1



 .

Now, the sum of the rows (−1, a−1, x−1, 2, 0, 0, 1) has weight 5, a contradic-
tion.

Corollary 3. There are no linear completely regular codes with intersection
array {42, 30, 12; 1, 6, 28} in H(7, 7).
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6. {52,42,16;1,6,28}, q = 5

A putative distance-regular graph with intersection array {52, 42, 16; 1, 6, 28}
has order 625 = 54. If such a graph can be realized as the coset graph of a
linear completely regular code in a Hamming graph, then it is a 5-ary code of
length 13 = 52/(5−1), dimension 9 = 13−4, distance 3, and covering radius
3. The weight distributions of the code and of its dual are (1, 0, 0, 52, 260,
2028, 10660, 48620, 128076, 305240, 479596, 521040, 350480, 107072) and
(1, 0, 0, 0, 0, 0, 0, 52, 0, 0, 364, 0, 208, 0) = {01, 752, 10364, 12208}, respectively.

Proposition 2. There is no 5-ary code of length 13, dimension 4, and non-
zero weights 7, 10, 12.

Proof. Let G be a 4×13 generator matrix of a putative code with considered
parameters. The columns of G form a set S of 13 points of the vector space
F4
5 = GF(5)4. Any (3-dimensional) hyperplane H ∋ 0̄ in F4

5 is determined
by its dual vector h̄: H = {x̄ ∈ F4

5 : x̄ · h̄ = 0}. Since h̄ · G is a codeword
of weight 7, 10, or 12, any such hyperplane intersects with S in 6 = 13 − 7,
3 = 13− 10, or 1 = 13− 12 points. Now, consider a (2-dimensional) plane P
containing at least two points of S. It is included in exactly six 3-dimensional
hyperplanes, call them Hi, i = 0, 1, 2, 3, 4, 5. In the rest of the proof, we will
show that any intersection numbers of S with P and Hi, i = 0, 1, 2, 3, 4, 5,
are contradictory. Denote a := |S ∩P |, a > 1, and bi := |S ∩Hi|, bi ∈ {3, 6}.
Now we have 13 = |S| = a+

∑5
i=0(bi − a) =

∑5
i=0 bi − 5a = 6 · 3+ k · 3− 5a,

where k is the number of i in {0, 1, 2, 3, 4, 5} such that bi = 6. We derive
k = 5(a− 1)/3. Since k is integer, we have a = 4 and k = 5. However, a = 4
also implies that bi cannot be 3 and hence k = 6, a contradiction.

Corollary 4. There are no linear completely regular codes with intersection
array {52, 42, 16; 1, 6, 28} in H(13, 5).

7. {56,42,20;1,6,28}, q = 3

A putative distance-regular graph with intersection array {56, 42, 20; 1, 6, 28}
has order 729 = 36. If such a graph can be realized as the coset graph of a
linear completely regular code in a Hamming graph, then it is a 3-ary code
of length 28 = 56/(3 − 1), dimension 22 = 28 − 6, distance 3, and covering
radius 3. The weight distributions of the dual code is {01, 1256, 18392, 21280}.

Proposition 3. There is no 3-ary code of length 28, dimension 6, and non-
zero weights 12, 18, 21.
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We currently do not have a theoretical proof of the last proposition. The
nonexistence of a code with the specified parameters was checked using the
software [7] (1 hour of computation) and [2] (10 sec. of computation).

Corollary 5. There are no linear completely regular codes with intersection
array {56, 42, 20; 1, 6, 28} in H(28, 3).

The following straightforward corollary of the fact above has an easy
computer-free proof.

Corollary 6. There are no linear completely regular codes with intersection
array {56, 42, 20; 1, 6, 28} in H(7, 9).

Proof. If such a code exists, then its dual weight distribution is {01, 456, 6392,
7280}, which is impossible by Proposition 1.

8. {140,126,20,1;1,10,126,140}, q = 3

The only putative distance-regular graph in the [BCN] table with prime-
power order and diameter more than 3 has order 2187 = 37 and intersection
array {140, 126, 20, 1; 1, 10, 126, 140}.

The corresponding completely regular code C in H(70, 3) has intersection
matrix













0 140 0 0 0
1 13 126 0 0
0 10 110 20 0
0 0 126 13 1
0 0 0 140 0













.

It is easy to see that C ∪ C(4) is a completely regular code with intersection
matrix





0 140 0
1 13 126
0 30 110



 .

Since C(4) consists of 3 cosets of C, the code C ∪ C(4) is linear; its coset
graph is a strongly regular graph whose parameters are also questionable,
according to [3].

The dual code is a ternary two-weight code with weight distribution
{01, 45588, 54140}. However, a [70, 6, 45]3 code does not exist [9].

Corollary 7. There are no linear completely regular codes with intersection
array {140, 126, 20, 1; 1, 10, 126, 140} or {140, 126; 1, 30} in H(70, 3).
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9. Conclusion

We have shown that no distance-regular graphs with an unsolved intersection
array from the table [4, Ch. 14] can be constructed as a Cayley graph on an
elementary abelian group, or, equivalently, as the coset graph of a linear
completely regular code.

Finally, we observe that the existence of unrestricted (not necessarily lin-
ear) completely regular codes with the parameters considered in Sections 5–8
and the existence of few-distance codes with dual parameters remain un-
solved.
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