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Abstract. We construct symmetric self-similar diffusions with sub-Gaussian heat kernel
estimates on two types of polygon carpets, which are natural generalizations of planner Sier-
pinski carpets (SC). The first ones are called perfect polygon carpets that are natural analogs
of SC in that any intersection cells are either side-to-side or point-to-point. The second ones
are called bordered polygon carpets which satisfy the boundary including condition as SC
but allow distinct contraction ratios.

1. Introduction

We consider the existence of self-similar Dirichlet forms on polygon carpets, which are
natural generalizations of planar Sierpinski carpets (SC), see Figure 1. In history, as a
milestone in analysis on fractals [1, 21], the locally symmetric diffusions with sub-Gaussian
heat kernel estimates on SC were first constructed by Barlow and Bass in their pioneering
works [2, 3, 4], using a probabilistic method. By introducing the difficult coupling argument,
the result was later extended to generalized Sierpinski carpets (GSC) [5], which are higher
dimensional analogues of SC. In the mean time, a different approach using Dirichlet forms
was introduced by Kusuoka and Zhou [19]. The strategy is to construct self-similar Dirichlet
forms on fractals as limits of averaged rescaled energies on cell graphs. The proof is analytic
except a key step to verify that the resistance constants and the Poincare constants are
comparable, which was achieved by the probabilistic “Knight move” argument of Barlow and
Bass’s. The two approaches are both based on the delicate geometry structure (for example,
local symmetry) of SC (or GSC), and were shown to be equivalent in 2010 in the celebrated
work by Barlow, Bass, Kumagai and Teplyaev [6].

Recently, two of the authors extended the results to unconstrained Sierpinski carpets (USC)
in [7] based on the method of Kusuoka-Zhou [19], but replacing the probabilistic argument
with a purely analytic chaining argument of resistances. The USC are more flexible in
geometry as cells except those along the boundary are allowed to live off the grids, see the
left picture in Figure 2 for an example. To overcome the essential difficulty from the worse
geometry, a “building brick” technique inspired by a reverse thinking of the trace theorem
of Hino and Kumagai [12] was developed to construct functions with good boundary values
and controllable energy estimates.

Unexpectedly, it was shown in [8] by two of the authors that the existence of good diffusions
on Sierpinski carpet like fractals is not always the truth, see the right picture in Figure 2 for
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Figure 1. Some polygon carpets that have good self-similar Dirichlet forms.

a counter-example. The construction of this example was partially inspired by the work of
Sabot [20], of which corner vertices loosely connected with inner cells which causes that the
effective resistances between corner vertices are uncomparable with that between opposite
sides. Naturally, it is of great interest to see how the geometry of the fractals plays a role.

Figure 2. The left one is a USC. The right one is a Sierpinski carpet like
fractal without good Dirichlet form (right).

In this paper, as a sequel to [7], motivated by [8], the main aim of the authors is to extend
the existence result to more general planar symmetric fractals. We consider two type of
polygon carpets: perfect polygon carpets and bordered polygon carpets, see Definition 2.2
and also Figure 1 for an illustration. Perfect polygon carpets are natural analogs to SC in
that cells are side-to-side arranged, keeping the locally symmetric structure; while bordered
polygon carpets insist the boundary including condition as SC (and USC), but allow distinct
contraction ratios of the iterated function systems (i.f.s.), which include many irrationally
ramified fractals (see the Sierpinski cross considered in [16] by Kigami).

Indeed, the analysis on the second type of fractals is more challenging, and is of the main
interest of the paper. Due to the counter-example constructed in [8], it is no hope that the
existence result holds for all bordered polygon carpets. A new technique in this paper is
that we will show that two cells close in resistance metric can be connected by a set with
small diameter in resistance metric, and in particular if this happens for two cells on the
opposite sides of the fractal, there is a “ring” passing through the fractal with small diameter
in resistance metric. Basing on this observation, we could extend the existence result to a
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large class of hollow bordered polygon carpets, where “hollow” means all the first generation
cells are located along the boundary of the fractal.

Theorem 1. Let K be a polygon carpet with i.f.s. {Ψi}i∈S, contraction ratios {ρi}i∈S, that
satisfies either (1) or (2):

(1). K is a perfect polygon carpet;
(2). K is a bordered polygon carpets satisfying (H) and (C).

Let µ be the normalized Hausdorff measure on K. Then, there is a local regular self-similar
Dirichlet form (E ,F) on L2(K,µ) with ri = ρθi , i ∈ S, such that

E(f) =
∑
i∈S

r−1
i E(f ◦Ψi), ∀f ∈ F ,

for some θ > 0. In addition, F ⊂ C(K). Moreover, there is a constant C > 0 such that∣∣f(x)− f(y)
∣∣2 ≤ CE(f) · |x− y|θ, ∀x, y ∈ K,∀f ∈ F .

See the exact definition of (H) and (C) in Section 6. By applying [17, Theorem 15.10 and
15.11] by Kigami, we know that Theorem 1 implies that there exists a diffusion process on
K with sub-Gaussian heat kernel estimates.

We will follow the strategy of Kusuoka and Zhou [19], and extend the “building brick”
technique in [7], so that the method will be purely analytic. Although the geometry of
polygon carpets are much more complicated than post critically finite (p.c.f.) self-similar
sets [13, 14, 15] of Kigami, we can still take the advantage of the strong recurrence. In
particular, we use the simplified model, resistance forms, to describe the limit form, though
there is not a compatible sequence argument as in [15].

Finally, we briefly introduce the structure of the paper.
We recommend readers to read the definitions and notations in Section 2 and 3 carefully,

and quickly go over the other parts. In Section 2, we introduce the definition of polygon
carpets, with Proposition 2.7 proved in Appendix A. In Section 3, we show that once we have
good resistance estimates, we can construct good self-similar Dirichlet forms. This section is
not new, but a modification of [19, 7] to include the distinct ratios case. Some well-known
estimates in [19] (which needs some modification) are provided in Appendix B. Also, see
Appendix C for the proof of Proposition 3.5.

Section 4, 5 ,6 will be the main parts of the paper. In Section 4, we will consider important
properties about resistance metrics. The key observations are Propositions 4.4 and 4.5, in
which we show if two cells on the boundary are far away in Euclidean metric, but close in
resistance metric, one can find a “ring” connecting them with small diameter in resistance
metric. Section 5 is a short section on the existence of good Dirichlet forms on perfect polygon
carpets. In Section 6, we study bordered polygon carpets. Our arguments will be based on
Corollary 7.5 and the geometric conditions (H) and (C) of the fractals.

We end the story for hollow bordered polygon carpets in Section 7, where we will develop
a more flexible “building brick” technique to construct functions with good boundary values
and glue them together to verify the resistance estimates.
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Throughout the paper, we will write a . b for two variables (functions, forms) if there is
a constant C > 0 such that a ≤ C · b, and write a � b if both a . b and b . a hold. We will
always abbreviate that a ∧ b = min{a, b} and a ∨ b = max{a, b}.

2. Geometry of Polygon carpets

In this section, we introduce the definition of polygon carpets, and present some basic geo-
metric properties of these fractals as well as their associated graph approximation sequences.

We consider fractals in R2 in this paper. For two points x, y ∈ R2, we write the line
segment connecting x, y as x, y, and the Euclidean distance between x, y as |x− y|. For sets
A,B ⊂ R2, we write dist(A,B) = inf{|x − y| : x ∈ A, y ∈ B} as the Euclidean distance
between A,B. It will always be positive providing that A,B are disjoint compact sets. For
A ⊂ R2, we write diam(A) = sup{|x− y| : x, y ∈ A} as the diameter of A.

We will always write A to be an equilateral polygon in R2 with side length 1. Let N0 ≥ 3
be the number of vertices of A, and q1, · · · qN0 be the vertices arranged counter-clockwise.
Denote S0 = {1, · · · , N0}, and write Li = qi, qi+1, i = 1, · · ·N0 for the sides of A accordingly,

where qN0+1 = q1. We denote the Euclidean boundary of A as ∂A :=
⋃N0
i=1 Li and write

Ao = A − ∂A for the interior of A. We denote the canonical symmetric group associated
with A as G , generated from N0 many axial symmetries Γi,i+1’s and N0 many rotational
symmetries Γi’s, where for 1 ≤ i, j ≤ N0, we denote Γi,j the axial symmetry that exchanges
qi, qj , and for 0 ≤ i < N0, denote Γi the rotational symmetry that shifts each qj to qi+j for
j ∈ S0. In particular, Γ0 = id|A.

Let S be a non-empty finite set with N := #S ≥ N0. For each i ∈ S, let Ψi be a contracting
similarity on R2, defined by Ψi(x) = ±ρix+ ci for some 0 < ρi < 1, ci ∈ R2, and call ρi the
contraction ratio of Ψi. We require that for each i ∈ S, ΨiA ⊂ A. Then there is a unique
non-empty compact set K ⊂ A satisfying

K =
⋃
i∈S

ΨiK. (2.1)

Call I := {Ψi}i∈S the iteration function system (i.f.s. for short) associated with K.

Definition 2.1 (Perfectly touching). For i 6= j ∈ S, we say Ψi, Ψj are perfectly touching if
ΨiA ∩ΨjA = ΨiLk = ΨjLk′ for some k, k′ in S0.

We say {Ψi}i∈S a perfect i.f.s. if
(a). for any i 6= j ∈ S, there exists a chain of indices i0, · · · , il ∈ S so that i0 = i, il = j, and
Ψik , Ψik−1 are perfectly touching for any k = 1, · · · , l;
(b). for any i 6= j ∈ S with ΨiA ∩ ΨjA 6= ∅, either Ψi, Ψj are perfectly touching, or
ΨiA ∩ΨjA = Ψiqk = Ψjqk′ for some k, k′ ∈ S0.

Remark. A perfect i.f.s. always has the same contraction ratios.

Definition 2.2 (Polygon carpets). Suppose the i.f.s. I := {Ψi : A → A}i∈S satisfies
(Open set condition). Ψi(Ao) ∩Ψj(Ao) = ∅, ∀i 6= j ∈ S;
(Connectivity). K is connected;
(Symmetry). Γ

(⋃
i∈S ΨiA

)
=
⋃
i∈S ΨiA for any Γ ∈ G ;

(Non-trivial).
⋃
i∈S ΨiA 6= A.

Call the unique compact set K ⊂ A associated with I as in (2.1) a polygon carpet.
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If in addition I satisfies
(Perfectly touching). I is a perfect i.f.s.,

then call K a prefect polygon carpet; alternatively, if I satisfies
(Boundary included). ∂A ⊂

⋃
i∈S ΨiA,

then call K a bordered polygon carpet.
Call both these two types of carpets regular polygon carpets.

Figure 3. Examples of regular polygon carpets: (a) is both perfect and bor-
dered, (b) is only perfect, and (c) is only bordered.

(a) (b) (c)

See Figure 3 for some examples of regular polygon carpets. Clearly, due to the open set
condition, the boundary included condition can only hold when N0 = 3 or 4, but it allows
the contraction ratios to be distinct. To deal with the possible distinct ratios case, we need
to divide the fractal K into cells of comparable sizes in later context. When N0 = 4, the
contraction ratios are the same, and the boundary included condition holds, K is a USC
considered in [7]. If in addition, N = 8, K is the standard Sierpinski carpet SC. See Figure
4 for examples.

Figure 4. Examples of USC, and the left one is SC.

From now on, we always assume K to be a regular polygon carpet, and {Ψi}i∈S to be its
i.f.s.. We denote

∂K := K ∩ ∂A.
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Immediately, ∂K =
⋃
i∈S0

∂iK with ∂iK = ∂K ∩ Li for i ∈ S0.
By open set condition, the Hausdorff dimension dH of K is the unique solution of the

equation
∑

i∈S ρ
dH
i = 1. Since

∑
i∈S ρ

2
i < 1 by non-trivial condition, it always holds that

dH < 2. We will always set µ to be the normalized dH-dimensional Hausdorff measure on K,

i.e. µ is the unique self-similar probability measure on K satisfying µ =
∑

i∈S ρ
dH
i µ ◦Ψ−1

i .

Basic notations.
(1). Let W0 = {∅}, Wn = Sn = {w = w1 · · ·wn : wi ∈ S, i = 1, · · · , n} for n ≥ 1, and

W∗ =
⋃
n≥0Wn. The elements in W∗ are called finite words. For each w ∈ Wn, n ≥ 1, we

write |w| = n for the length of w, write Ψw = Ψw1 ◦ · · · ◦ Ψwn and ρw =
∏n
i=1 ρwi , and call

ΨwK an w-cell in K. In particular, |∅| = 0, Ψ∅ = id|A, ρ∅ = 1 and K∅ = K.
(2). For w ∈ Wn, v ∈ Wm, we denote w · v = w1 · · ·wnv1 · · · vm ∈ Wn+m. For w, v ∈ W∗,

by the open set condition, ΨwA ⊂ ΨvA if and only if w · w′ = v for some w′ ∈ W∗. For
A,B ⊂ W∗, denote A · B = {w · v : w ∈ A, v ∈ B}. In particular, write w · B = {w} · B for
short.

(3). Let B ⊂ W∗ and v ∈ W∗, we define v−1 · B = {w ∈ W∗ : v · w ∈ B}. Clearly,
v−1 · v ·B = B, however, it is often false that v · v−1 ·B = B (we still have v · v−1 ·B ⊂ B).

(4). We say a finite set Λ ⊂W∗ a partition of W∗ if
⋃
w∈Λ ΨwK = K and µ(ΨwK∩ΨvK) =

0,∀w 6= v ∈ Λ. Let Λ,Λ′ ⊂W∗ be two partitions. We say Λ′ is finer than Λ, if for any w ∈ Λ′,
there is some v ∈ Λ such that ΨwA ⊂ ΨvA.

(5). Let ρ∗ = mini∈S ρi. Let σ : W∗ → W∗ be the operator defined as σ(w) = w1 · · ·wn−1

for w = w1 · · ·wn ∈Wn, n ≥ 1 and σ(∅) = ∅. We define Λ0 = W0, and for n ≥ 1,

Λn =
{
w ∈W∗ : ρw ≤ ρn∗ < ρσ(w)

}
.

Write Λ∗ =
⋃
n≥0 Λn. Clearly, for each n ≥ 0, Λn forms a partition of W∗, and Λn is finer

than Λm for n ≥ m. For each w ∈ Λn, call ΨwK a level -n cell (n-cell for short) in K and
write ‖w‖ = n. In addition, if ρi = ρ∗ for all i ∈ S, then Λn = Wn for each n ≥ 0.

(6). For any n,m ≥ 0, and w ∈ Λn, we define

Bm(w) = {v ∈ Λn+m : ΨvK ⊂ ΨwK}.
Clearly, Bm(w) = w ·w−1 ·Λn+m represents the collection of (n+m)-cells contained in FwK.
Write Bm(A) =

⋃
w∈A Bm(w) for A ⊂ Λn.

Lemma 2.3. For w ∈ Λ∗ and m ≥ 1, w−1 · Bm(w) is finer than Λm−1, and Λm+1 is finer
than w−1 · Bm(w).

Proof. The lemma follows from the fact that, for w ∈ Λn, v ∈ w−1 · Bm(w), we always have

ρm+1
∗ = ρn+m+1

∗ ρ−n∗ < ρv = ρwvρ
−1
w < ρn+m

∗ ρ
−(n+1)
∗ = ρm−1

∗ .

�

Remark. Unlike the case that ρi = ρ∗ for any i ∈ S, w−1 · Bm(w) may not belong to
{Λn}n≥0.

Proposition 2.4. There exists C > 0 depending only on ρ∗ such that C−1ρ−mdH∗ ≤ #Bm(w) ≤
Cρ−mdH∗ for any w ∈ Λ∗ and m ≥ 0. In particular,

C−1ρ−mdH∗ ≤ #Λm ≤ Cρ−mdH∗ .
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Proof. Suppose w ∈ Λ∗,m ≥ 0, then we have∑
v∈Bm(w)

ρdHv =
∑

v∈Bm(w)

µ(ΨvK) = µ(ΨwK) = ρdHw .

So on one hand

ρ
‖w‖dH
∗ ≥ ρdHw =

∑
v∈Bm(w)

ρdHv >
∑

v∈Bm(w)

ρ
(m+‖w‖+1)dH
∗ ,

which gives #Bm(w) ≤ ρ−(m+1)dH
∗ , and on the other hand

ρ
(‖w‖+1)dH
∗ < ρdHw =

∑
v∈Bm(w)

ρdHv ≤
∑

v∈Bm(w)

ρ
(m+‖w‖)dH
∗ ,

which gives #Bm(w) ≥ ρ−(m−1)dH
∗ . �

Definition 2.5 (m-boundary of cells). For m,n ≥ 0 and w ∈ Λn, define

∂Bm(w) =
{
v ∈ Bm(w) : ΨvK ∩Ψw∂K 6= ∅

}
.

In particular, we write ∂Λm := ∂Bm(∅).

Obviously, ΨwK ⊃
⋃
v∈∂Bm(w) ΨvK ⊃

⋃
v∈∂Bm+1(w) ΨvK for any w ∈ Λ∗ and m ≥ 0. We

have

Ψw∂K =
⋂
m≥0

⋃
v∈∂Bm(w)

ΨvA.

Proposition 2.6. The Hausdorff dimension of ∂K is strictly smaller than dH .

Proof. By the symmetry condition, we see the dimension of ∂K is equal to that of ∂1K,
denoted as dimH(∂1K). So we only need to show dimH(∂1K) < dH .

Let S′ = {i ∈ S : ΨiA ∩ L1 is a line segment}, S′′ = {i ∈ S : ΨiA ∩ L1 is a point} (it may
happen that S′′ = ∅). Let E0 =

⋃
i∈S′′(ΨiA ∩ L1), En =

⋃
i∈S′ ΨiEn−1 for n ≥ 1. Then

∂1K = F1 ∪ F2, where F1 is the unique attractor of {Ψi}i∈S′ , F2 =
⋃∞
n=0En is a countable

set. By taking the open interval Lo1, F1 satisfies the open set condition, which means∑
i∈S′

ρ
dimH(∂1K)
i = 1.

However, by the non-trivial condition and the symmetry condition, there is at least one
map Ψi0 such that i0 /∈ S′. So we have

∑
i∈S′ ρ

s
i <

∑
i∈S ρ

s
i for any s > 0, which gives

dimH(∂1K) < dH . �

By this proposition, we see that the Hausdorff dimension of
⋃
w∈Λ∗

Ψw∂K is strictly less
than dH , which implies that for any n ≥ 0, for almost every x ∈ K, there is only one w ∈ Λn
such that x ∈ ΨwK.

Basic notations of graph approximation sequences.
Let Λ ⊂W∗ be a partition.
(1). For w 6= v ∈ Λ, define w ∼Λ v if ΨwK ∩ ΨvK 6= ∅, then (Λ,∼Λ) is a graph. For

w, v ∈ Λ, we write dΛ(w, v) ∈ Z+ as the graph distance between w, v in Λ. In particular,
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{(Λn,
n∼)}n≥0 is a graph approximation sequence of K where

n∼ is a short of ∼Λn , and we
write dn := dΛn . For k ≥ 0, w ∈ Λn, say

Nk(w) =
{
v ∈ Λn : dn(w, v) ≤ k

}
the k-neighborhood of w in Λn. Write Nk(A) =

⋃
w∈ANk(w) for A ⊂ Λn.

(2). For A ⊂ Λ, say A is connected if each pair w 6= v in A is connected by a path in A,

i.e. there exists a chain of cells {τ (i)}ki=0 ⊂ A with τ (0) = w, τ (k) = v and τ (i) ∼Λ τ (i−1) for
1 ≤ i ≤ k. Call k the length of the path. For a connected A ⊂ Λ, let l(A) = {f : A → R},
and define a non-negative bilinear form DΛ,A on l(A) as

DΛ,A(f, g) =
∑

w∼Λv∈A

(
f(w)− f(v)

)(
g(w)− g(v)

)
, ∀f, g ∈ l(A).

We write DΛ,A(f) := DΛ,A(f, f) for short, and DΛ := DΛ,Λ,Dn,A := DΛn,A,Dn := DΛn . In
this way, DΛ,A can be viewed as a quadratic form on l(A).

(3). We define FΛ as the σ-field generated by
{

ΨwK : w ∈ Λ
}

. There is a natural bijection

πΛ from l(Λ) to L2(K,FΛ, µ) as πΛ(f)(x) = f(w) for any x ∈ ΨwK and w ∈ Λ. Notice that
we ignore the conflict definition on

⋃
w∈Λ Ψw∂K since by Proposition 2.6 it is just a null set

of µ. Write Fn := FΛn , πn := πΛn for short.
(4). Since each L2(K,FΛ, µ) is a closed subspace of L2(K,µ), we define PΛ as the orthog-

onal projection from L2(K,µ) to L2(K,FΛ, µ). Write Pn := PΛn for short.
(5). With the operators PΛ and πΛ, we can shift the domain of DΛ from l(Λ) to L2(K,µ)

by define

DΛ(f, g) := DΛ

(
π−1

Λ ◦ PΛf, π
−1
Λ ◦ PΛg

)
, ∀f, g ∈ L2(K,µ),

still using the notation DΛ with a slight abuse of notation. Then DΛ is a continuous non-
negative bilinear form on L2(K,µ).

The following proposition is almost the same in [19, 7]. We leave its proof in Appendix A.

Proposition 2.7. A regular polygon carpet K defined in Definition 2.2 always satisfies the
condition (A1)-(A4) below.

(A1). There is an open set O such that ΨiO ∩ΨjO = ∅ for any i 6= j ∈ S, and ΨiO ⊂ O
for any i ∈ S.

(A2). (Λn,
n∼) is a connected graph for any n ≥ 0.

(A3). There is a constant c0 > 0 satisfying

min
{

dist(ΨwK,ΨvK) : w, v ∈ Λn, dn(w, v) > 2
}
≥ c0ρ

n
∗

for any n ≥ 1.
(A4). There exists m ≥ 1 such that Bm(w) 6= ∂Bm(w) for any w ∈ Λ∗.

3. Self-similar forms of Kusuoka and Zhou

In this section, we will follow Kusuoka-Zhou’s strategy [19]: first, we introduce three
kinds of Poincare constants λm, Rm and σm (with slight modifications due to the possible

distinctness of contraction ratios, and also note that there is another kind of constants λ
(D)
m in

[19]); second, under a resistance assumption, we prove the existence of self-similar Dirichlet
forms on regular polygon carpets.
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Throughout this paper, we will fix a regular polygon carpet K with Hausdorff dimension
dH .

Definition 3.1 (Poincare constants). Let m ≥ 0, A be a non-empty subset of Λm and
f ∈ l(Λm). We write

[f ]A =
(∑
w∈A

ρdHw
)−1

∑
w∈A

ρdHw f(w)

as the (weighted) average of f on A.
(a). For m ≥ 1, n ≥ 0, w ∈ Λn, we define

λm(w) = sup
{
ρmdH∗ ·

∑
v∈Bm(w)

(f(v)− [f ]Bm(w))
2 : f ∈ l(Bm(w)),Dn+m,Bm(w)(f) = 1

}
.

And for m ≥ 1, define
λm = sup

{
λm(w) : w ∈ Λ∗

}
.

(b). For m ≥ 1, A,B ⊂ Λm and A ∩B = ∅, we define the resistance between A,B as

Rm(A,B) =
(

inf
{
Dm(f) : f ∈ l(Λm), f |A = 1, f |B = 0

})−1
.

In particular, we write Rm(w,B) = Rm({w}, B) and Rm(w, v) = Rm({w}, {v}) for short,
and write Rm(A,B) = 0 if A ∩B 6= ∅. We define

Rm = inf
{
Rn+m

(
Bm(w),Bm(N c

2 (w))
)

: n ≥ 1, w ∈ Λn
}
,

where N c
k (w) := Λn −Nk(w) for w ∈ Λn.

(c). For m ≥ 1, n ≥ 1, w
n∼ w′ ∈ Λn, we define

σm(w,w′) = sup
{(

[f ]Bm(w) − [f ]Bm(w′)

)2
: f ∈ l

(
Bm({w,w′})

)
,Dn+m,Bm({w,w′})(f) = 1

}
.

And for m ≥ 1, define

σm = sup
{
σm(w,w′) : n ≥ 1, w

n∼ w′ ∈ Λn
}
.

One of the important result in [19] is the comparison of the above Poincare constants
basing on the conditions (A1)-(A4).

Proposition 3.2 ([19], Theorem 2.1). There is a constant C > 0 such that

C−2ρ
(dH−2)m
∗ λn ≤ C−1Rmλn ≤ λn+m ≤ Cλnσm (3.1)

for any m,n ≥ 1. In addition, all the constants λm, Rm and σm, m ≥ 1 are positive and
finite.

Remark. The first inequality in (3.1) is exactly that Rm ≥ C−1ρ
(dH−2)m
∗ . It was extensively

explored by Kigami on more general compact metric spaces, see [18, Lemma 4.6.15] for a
generalized version. In particular, this inequality implies that the process is recurrent since
dH < 2 by the non-trivial condition. On the other hand, it is not hard to verify that the
second and third inequalities in (3.1) implies

C−1Rm ≤ λm ≤ Cσm (3.2)

for some C > 0 independent of m. In fact, by taking m = 1, we see λn � λn+1, then taking
n = 1, we see (3.2).

The following is another important observation.
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Proposition 3.3 ([19, Theorem 7.2]). There is C > 0 such that(
f(v)− [f ]Bm(w)

)2 ≤ CλmDn+m,Bm(w)(f)

for any m ≥ 1, n ≥ 0, w ∈ Λn, v ∈ Bm(w) and f ∈ l(Bm(w)).

Since the proof of Proposition 3.2 and 3.3 are essentially same as in [19] with suitable
modification due to the distinctness of contraction ratios, we leave them in Appendix B.

Following Kusuoka-Zhou’s strategy, we will need another inequality:

(B). There is a constant C > 0 such that σm ≤ CRm for any m ≥ 1.

Combining Proposition 3.2 and (B), by a routine argument [19], there is 0 < r ≤ ρ2−dH
∗ < 1

such that Rm � λm � σm � r−m. Kusuoka-Zhou’s approach for SC is analytic except the
verification of (B) (see (B2) in [19], in a slightly different version). They achieved (B) by
a probabilistic “Knight moves” method due to Barlow and Bass [2], see [19, Theorem 7.16].
Two of the authors fulfilled this gap in a recent work [7]. In particular, they developed a
pure analytic method for (B) for a more general planar (square) carpets USC. In some sense,
USC are more flexible in geometry as cells except those along the boundary are allowed to
live off the grids. Due to the possible irrationally ramified situation for USC, the method in
[7] also non-trivially extends Barlow and Bass result [2] since the last one heavily depends
on the local symmetry of SC. In this paper, we will extend the method to regular polygon
carpets.

3.1. Existence of self-similar forms under assumption (B). Let K,µ be the same as
before. Recall that a Dirichlet form on L2(K,µ) is a non-negative quadratic form on L2(K,µ)
which is densely defined, closed and satisfies the Markov property. Please refer to [10] for
the general definition of Dirichlet forms and some necessary properties. In our situation, we
only focus on the recurrent case.

Definition 3.4. A Dirichlet form (E ,F) on L2(K,µ) is called self-similar if
(a). f ∈ F implies f ◦Ψi ∈ F for each i ∈ S;
(b). f ∈ C(K) and f ◦Ψi ∈ F for each i ∈ S implies f ∈ F ;
(c). the self-similar identity holds, i.e.

E(f) =
∑
i∈S

r−1
i E(f ◦Ψi), ∀f ∈ F ,

where 0 < ri < 1, i ∈ S are called renormalization factors.

In Kusuoka-Zhou’s original strategy [19] (where they dealt with the case that ρi’s are the
same), the existence of (E ,F) (taking ri = r for all i ∈ S) follows by two steps: first, they
construct a local regular Dirichlet form (Ē ,F) which is a limit of r−nDn; then, they construct
(E ,F) to be a limit of the Cesàro mean of (

∑
w∈Λn

r−nĒ ◦Ψw,F). We still follow this strategy
but with little adjustment, since the renormalization factors ri’s in our case may be distinct.

First, there is a limit Dirichlet form (Ē ,F) on L2(K,µ).
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Proposition 3.5. Assume (B). There is a regular Dirichlet form (Ē ,F) on L2(K,µ) with
r ∈ (0, 1), such that for some constant C > 0,

C−1 sup
n≥1

r−nDn(f) ≤ Ē(f) ≤ C lim inf
n→∞

r−nDn(f), ∀f ∈ F .

In addition, F ⊂ C(K).

Moreover, denote θ = log r
log ρ∗

, then there is a constant C ′ > 0 such that

|f(x)− f(y)|2 ≤ C ′Ē(f) · |x− y|θ, ∀x, y ∈ K,∀f ∈ F .

This proposition essentially follows from a combination of Theorem 5.4, 7.2 in [19]. For
the convenience of the readers, we provide its proof in Appendix C but alternatively follows
from [7, Theorem 3.8] by two of the authors by using the technique of Γ-convergence. Note
that the method of Γ-convergence in the construction of Dirichlet forms on self-similar sets
was also used by Grigor’yan and Yang in [11].

Next, we transform (Ē ,F) into a self-similar one.

Theorem 3.6. Assume (B). There is a local regular self-similar form (E ,F) on L2(K,µ)
with ri = ρθi , i ∈ S, such that

E(f) =
∑
i∈S

r−1
i E(f ◦Ψi), ∀f ∈ F .

In addition, F ⊂ C(K) and E(f) � Ē(f), ∀f ∈ F . Here Ē and θ are same as that in
Proposition 3.5.

Proof. Let (Ē ,F), r be the same in Proposition 3.5. For w ∈ W∗, denote rw = rw1 · · · rw|w| .
Obviously, rw � rn for any w ∈ Λn, n ≥ 0. For any partition Λ ⊂ W∗, denote FΛ =

{
f ∈

C(K) : f ◦Ψw ∈ F , ∀w ∈ Λ
}

and

ẼΛ(f) =
∑
w∈Λ

r−1
w Ē(f ◦Ψw), ∀f ∈ FΛ.

In particular, for n ≥ 0, denote Fn = FΛn ,F ′n = FWn , Ẽn = ẼΛn , Ẽ ′n = ẼWn for short.
For each n ≥ 0, let Λ′n =

{
w ∈ W∗ : ρσ(w) > ρn∗

}
. Then for any n ≥ 1, Λn is the “finest”

partition of W∗ contained in Λ′n, and Λ′n ∩ Λn+1 = ∅. We divide the proof into four claims.

Claim 1. For each m ≥ 1, there is a constant cm > 0 such that for any n ≥ m, for any
partition Λ ⊂ Λ′n \ Λ′n−m and f ∈ L2(K,µ), it satisfies c−1

m Dn−m(f) ≤ DΛ(f) ≤ cmDn(f).

Let w ∼Λ v ∈ Λ, then there is constant c′m > 0 independent of n,w, v,Λ, such that(
π−1

Λ f(w)− π−1
Λ f(v)

)2
=

( ∑
w′∈w·w−1·Λn

∑
v′∈v·v−1·Λn

µ(Ψw′K)

µ(ΨwK)

µ(Ψv′K)

µ(ΨvK)

(
π−1
n f(w′)− π−1

n f(v′)
))2

≤
∑

w′∈w·w−1·Λn

∑
v′∈v·v−1·Λn

(
π−1
n f(w′)− π−1

n f(v′)
)2

≤c′mDn,w·w−1·Λn∪v·v−1·Λn
(f).

By a summation over pairs w ∼Λ v ∈ Λ, the right side of the claim follows. A similar
argument gives the other side.
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Claim 2. F = FΛ for any partition Λ. In particular, F = Fn = F ′n for any n ≥ 0.

“F ⊂ FΛ”. For any w ∈ Λ, choose m ≥ 1 so that w ∈ Λ′m\Λ′m−1. It’s easy to check that for

any k � m, it satisfies w−1 ·Λk ⊂ Λ′k−m+1 \Λ′k−m−2, which gives Dk(f) ≥ Dw−1·Λk
(f ◦Ψw) ≥

c−1
3 Dk−m−2(f ◦ Ψw) for any f ∈ F by Claim 1. Then by Proposition 3.5, there is constant
C1 > 0 such that

Ē(f ◦Ψw) ≤ C1 lim inf
k→∞

r−kDk(f ◦Ψw) ≤ C1c3 lim inf
k→∞

r−kDk+m+2(f) ≤ C2
1c3r

m+2Ē(f) < +∞,

thus f ∈ FΛ follows.
“F ⊃ Fn, n ≥ 0”. We first prove r−nDn(f) ≤ C2Ẽn(f),∀f ∈ Fn for some C2 > 0

independent of n. For each pair w
n∼ w′ ∈ Λn, take x ∈ ΨwK ∩ Ψw′K. Then for any

f ∈ Fn, v ∈ {w,w′}, we have |π−1
n ◦Pnf(v)−f(x)| ≤

∫
K |f ◦Ψv(y)−f(x)|µ(dy) .

√
Ē(f ◦Ψv)

by Proposition 3.5, which gives |π−1
n ◦ Pnf(w) − π−1

n ◦ Pnf(w′)|2 . Ē(f ◦ Ψw) + Ē(f ◦ Ψw′),

thus the desired estimate follows by a summation over w
n∼ w′ ∈ Λn.

Next, it’s easy to check that, for any m ≥ 0, k ≥ 1, it satisfies Λm ·Λk ⊂ Λ′m+k+1 \Λ′m+k−1,
so by Proposition 3.5 and Claim 1, there is constant C3 > 0 such that for any g ∈ F ,

Ẽm(g) ≤ C3r
−m

∑
w∈Λm

lim inf
k→∞

r−kDk(g◦Ψw) ≤ C3c2r
−m lim inf

k→∞
r−kDm+k+1(g) ≤ C1C3c2rĒ(g),

i.e. supm≥0

{
Ẽm(g)

}
≤ C4Ē(g), where C4 = C1C3c2r. Then

f ∈ Fn ⇒f ◦Ψw ∈ F ,∀w ∈ Λn ⇒ sup{Ẽm(f ◦Ψw) : m ≥ 0, w ∈ Λn} <∞

⇒ sup{Ẽm(f) : m ≥ n} <∞⇒ sup{r−mDm(f) : m ≥ n} <∞⇒ f ∈ F .

“F ⊃ FΛ”. For any general partition Λ, take large n so that Λ ⊂ Λ′n. Then f ∈ FΛ gives
f ◦ Ψw ∈ F for any w ∈ Λ, thus f ◦ Ψwv ∈ F for any wv ∈ Λn, i.e. f ∈ Fn. This together
with the last paragraph gives that F ⊃ FΛ.

Claim 3. There is constant C5 > 0 such that
∑n

m=1 Ẽ ′m(f) ≤ C5
∑n

m=0 Ẽm(f),∀n ≥ 1, f ∈ F .

First, we prove there is constant C6 > 0 such that ẼΛ(f) ≤ C6Ẽm−1(f) for any m ≥ 1,
partition Λ ⊂ Λ′m \ Λ′m−1, f ∈ F . Note that for any w ∈ Λm−1, it satisfies w−1 · Λ · Λk ⊂
Λ′k+2 \ Λ′k for all k ≥ 1. Then for any f ∈ F , we have

ẼΛ(f) =
∑

w∈Λm−1

r−1
w

∑
v∈w−1·Λ

r−1
v Ē(f ◦Ψw ◦Ψv)

≤C7

∑
w∈Λm−1

r−1
w

∑
v∈w−1·Λ

lim inf
k→∞

r−kDk(f ◦Ψw ◦Ψv)

≤C7c2

∑
w∈Λm−1

r−1
w lim inf

k→∞
r−kDk+2(f ◦Ψw) ≤ C1C7c2r

2Ẽm−1(f)

for some constant C7 > 0, giving the desired estimate.
Next, since we can choose at most M = [ log ρ∗

log ρ∗ ] + 1 partitions Λ̃i ⊂ Λ′m \ Λ′m−1, 1 ≤ i ≤M
such that Λ′m \ Λ′m−1 =

⋃M
i=1 Λ̃i. Then by the estimate above,

∑
w∈Λ′m\Λ′m−1

r−1
w Ē(f ◦Ψw) ≤



SELF-SIMILAR DIRICHLET FORMS ON POLYGON CARPETS 13

C6M Ẽm−1(f) for any m ≥ 1, f ∈ F . Thus
∑n

m=1 Ẽ ′m(f) ≤
∑n

m=1

∑
w∈Λ′m\Λ′m−1

r−1
w Ē(f ◦

Ψw) ≤ C5
∑n−1

m=0 Ẽm(f), where C5 = C6M . The claim follows.

Take a countable Ē1-dense set F̂ ⊂ F with {f ◦ Ψw : f ∈ F̂ , w ∈ W∗} ⊂ F̂ , where

Ē1(·) = Ē(·) +‖ · ‖2L2(K,µ). By Claim 3 and the fact that supm≥0 Ẽ(f) . E(f), we can choose a

strictly increasing {nl}l such that E(f) := liml→∞
1
nl

∑nl
m=1 Ẽ ′m(f) <∞ exists for any f ∈ F̂ .

Claim 4. E(f) � Ē(f) for any f ∈ F̂ .

Note that
∑nl

m=1 Ẽ ′m(f) ≥
∑[

nl
M

]

m=1 Ẽm(f). Combining this with Claim 3, it’s enough to prove

Ē(f) . lim inf
n→∞

1

n

n∑
m=1

Ẽm(f) ≤ lim sup
n→∞

1

n

n∑
m=1

Ẽm(f) . Ē(f), ∀f ∈ F̂ .

Since in the proof of Claim 2, we have r−nDn(f) . Ẽn(f) . Ē(f) for any f ∈ F , n ≥ 0, the
above estimate follows by taking limit, which gives Claim 4.

By Claim 4, we can continuously extend E to F . By Proposition 3.5, E is a regular Dirichlet
form on L2(K,µ), since the extension keeps E(tf) = t2E(f), E(f+g)+E(f−g) = 2E(f)+2E(g)
and E((f ∧ 1) ∨ 0) ≤ E(f) for any t ∈ R and f, g ∈ F .

By the construction, for any f ∈ F̂ ,

E(f) = lim
l→∞

1

nl

nl∑
m=1

Ẽ ′m(f) = lim
l→∞

1

nl

nl−1∑
m=0

∑
i∈S

r−1
i

∑
w∈Wm

r−1
w Ē(f ◦Ψi ◦Ψw) =

∑
i∈S

r−1
i E(f ◦Ψi),

giving the self-similar property over F by continuously extension. The local property of
(E ,F) follows immediately by the self-similar property.

�

Remark. Due to Proposition 3.5 and Theorem 3.6, it remains to verify condition (B) to
achieve our main goal, Theorem 1.

4. Resistance estimates between sets

In the rest of this paper, we will prove condition (B) for two classes of polygon carpets:
all the perfect polygon carpets (Section 5) and some bordered polygon carpets (Section 6, 7).
Before proceeding, we present some observations about resistances.

We first restate Proposition 3.3 in terms of oscillations of functions.

Definition 4.1. For any non-empty set A and f ∈ l(A), we denote

osc|A(f) = sup
{
f(x)− f(y) : x, y ∈ A

}
.

For m ≥ 1, define

δm := sup
{

osc|2Bm(w)(f) : w ∈ Λ∗, f ∈ l
(
Bm(w)

)
,D‖w‖+m,Bm(w)(f) = 1

}
.

Lemma 4.2. λm � σm � δm for m ≥ 1.
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Proof. First, for any w ∈ Λ∗, m ≥ 1, and f ∈ l
(
B(w)

)
with D‖w‖+m,Bm(w)(f) = 1, it follows

from Proposition 3.3 that
(
f(v) − [f ]Bm(w)

)2 ≤ C1λm for some constant C1 > 0 for any

v ∈ Bm(w), and so osc|Bm(w)(f) ≤ 2
√
C1λm. This gives that δm ≤ 4C1λm.

Next, for m ≥ 1, pick a pair w
n∼ v ∈ Λn, n ≥ 1, and a function f ∈ l

(
Bm({w, v})

)
such

that Dn+m,Bm({w,v})(f) = 1 and [f ]Bm(w)− [f ]Bm(v) ≥ 1
2

√
σm. Pick ι ∈ Bm(w) and κ ∈ Bm(v)

so that ι
n+m∼ κ, then ∣∣f(ι)− f(κ)

∣∣ ≤√Dn+m,Bm({w,v})(f) = 1.

Hence,

1

2

√
σm ≤ [f ]Bm(w) − [f ]Bm(v) ≤ osc|Bm({w,v})(f)

≤ osc|Bm(w)(f) + osc|Bm(v)(f) +
∣∣f(ι)− f(κ)

∣∣ ≤ 2
√
δm + 1.

By Proposition 3.2, σm � 1 for large m. This gives that there exists a constant C2 > 0
independent of m, such that δm ≥ C2σm.

Finally, the above estimates give that C−1σm ≤ δm ≤ Cλm for some constant C > 0.
Combing this with formula (3.2), we immediately see that λm � σm � δm for m ≥ 1. �

The following lemma will help us find a lower bound estimate of resistances between sets
with only resistance estimates between points.

Lemma 4.3. Let m ≥ 1 and A,B ⊂ Λm. For each C > 0, there is C ′ > 0 (depending only
on C and K) such that if Rm(w, v) ≥ Cσm,∀w ∈ A, v ∈ B, then

Rm(A,B) ≥ C ′σm.

Proof. It suffices to consider large m, so we can choose n > 0 independent of m such that
δm−n <

C
9 σm for each m > n according to Proposition 3.2 and Lemma 4.2.

We introduce A′, B′ ⊂ Λn as “covers” of A,B by

A′ = {w′ ∈ Λn : Bm−n(w′) ∩A 6= ∅}, B′ = {v′ ∈ Λn : Bm−n(v′) ∩B 6= ∅}.

One can see that

Rm
(
Bm−n(w′),Bm−n(v′)

)
≥ C

9
σm, ∀w′ ∈ A′, v′ ∈ B′.

In fact, one choose w ∈ Bm−n(w′) ∩ A and v ∈ Bm−n(v′) ∩ B, and define f ∈ l(Λm) such
that f(w) = 1, f(v) = 0 and Dm(f) = R−1

m (w, v) ≤ (Cσm)−1. Then by the choice of n, one
has f |Bn−m(w′) ≥ 2

3 and f |Bn−m(v′) ≤ 1
3 . The estimate of Rm

(
Bm−n(w′),Bm−n(v′)

)
follows

immediately.
By the above estimate, for each pair w′ ∈ A′, v′ ∈ B′, we can find gw′,v′ ∈ l(Λm) such that

0 ≤ gw′,v′ ≤ 1 and

gw′,v′ |Bm−n(w′) = 1, gw′,v′ |Bm−n(v′) = 0, Dm(gw′,v′) ≤ 9(Cσm)−1.

Define g ∈ l(Λm) by

g(w) = max
w′∈A′

min
v′∈B′

gw′,v′(w), ∀w ∈ Λm.
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Then it is direct to check that g|Bm−n(A′) = 1 and g|Bm−n(B′) = 0. Finally, noticing that

A ⊂ Bm−n(A′), B ⊂ Bm−n(B′) and Dm(g) ≤
∑

w′∈A′,v′∈B′ Dm(gw′,v′) ≤ (#Λn)2 · 9(Cσm)−1,
the lemma follows. �

Now, we state an important consequence of Lemma 4.3, whose application Proposition 4.5
will be the key tool in Section 6.

Proposition 4.4. There is a function η : (0,∞)→ (0,∞) (depending only on K) such that
lim
c→0

η(c) = 0, and in addition, for each m ≥ 1 and w, v ∈ l(Λm) satisfying Rm(w, v) ≤ cσm,

one can find a connected subset A ⊃ {w, v} of Λm such that Rm(w′, v′) ≤ η(c)σm, ∀w′, v′ ∈ A.

Proof. Instead of considering connected A directly, we consider cut sets that separate w, v.
More precisely, we say a set B separates w, v if Λm \ B is disconnected and w, v belongs to
different connected components of Λm \B. Then, one can see that it suffices to take

η(c) = 4γ(c) + 5c,

where

γ(c) := sup
{
c′ : there exists m ≥ 1 and w, v ∈ Λm such that Rm(w, v) ≤ cσm,

and {w′ ∈ Λm : Rm(w′, {w, v}) > c′σm} separates w, v
}
.

In fact, for any m ≥ 1 and w, v ∈ Λm satisfying Rm(w, v) ≤ cσm, if we let B =
{
w′ ∈ Λm :

Rm(w′, {w, v}) >
(
c+γ(c)

)
σm
}

, by the definition of γ(c), we can see that B doesn’t separate
w, v. Thus, we can find a connected component A of Λm \ B containing both w, v, and it is
not hard to see that Rm(w′, v′) ≤ 4

(
c+ γ(c)

)
σm + cσm for any w′, v′ ∈ A.

It remains to show γ(c) → 0 as c → 0. We will show that for each ε > 0, there exists
δ > 0 such that γ(δ) ≤ ε, which will finish the proof since γ is a non-decreasing function. Let
m ≥ 1 and w, v ∈ Λm, and assume that B =

{
w′ ∈ Λm : Rm(w′, {w, v}) > εσm

}
seperates

w, v. Then, by Lemma 4.3, there exists δ depending only on ε (and K) such that

Rm
(
B, {w, v}

)
≥ δσm.

Hence, we can find a function f ∈ l(Λm) such that

f |B = 1, f |{w,v} = 0 and Dm(f) ≤ (δσm)−1.

Let Av be the component of Λm \B which contains v, and define g ∈ l(Λm) as

g(w′) =

{
f(w′), if w′ ∈ Λm \Av,
1, if w′ ∈ Av.

Then, we have g(w) = 0, g(v) = 1 and Dm(g) < (δσm)−1. Hence,

Rm(w, v) > δσm.

Notice that the above argument holds for any m ≥ 1 and w, v ∈ Λm such that B =
{
w′ ∈

Λm : Rm(w′, {w, v}) > εσm
}

seperates w, v, so we conclude that γ(δ) ≤ ε. �
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4.1. An application of Proposition 4.4. In this subsection, we consider an application of
Proposition 4.4. We will use the symmetry of the polygon carpets.

Half-sides and related notations.
(1). We define S1 := S0 ∪ {i+ 1/2 : i ∈ S0} equipped with a distance dS1 as

dS1(i, j) := |i− j| ∧
(
N0 − |i− j|

)
for any i, j ∈ S1.

Denote distS1(I1, I2) = min
{
dS1(i, j) : i ∈ I1, j ∈ I2

}
for I1, I2 ⊂ S1. In particular, write

distS1(i, I) = distS1({i}, I) for short. For i ∈ 1
2Z := {j/2 : j ∈ Z}, we identify i with the

unique index ĩ ∈ S1 satisfying (i− ĩ)/N0 ∈ Z.
(2). For i ∈ S0, denote the midpoint of Li as qi+1/2. We define L′i = qi, qi+1/2 for i ∈ S1

with qN0+1 = q1, the half-sides of A. Clearly, Li = L′i ∪ L′i+1/2 for each i ∈ S0.

(3). For i ∈ S0, m ≥ 0, we denote

∂iΛm = {v ∈ Λm : ΨvK ∩ Li 6= ∅}

and {
∂′iΛm = {v ∈ ∂iΛm : dist(ΨvK, qi) ≤ dist(ΨvK, qi+1)},
∂′i+1/2Λm = {v ∈ ∂iΛm : dist(ΨvK, qi) ≥ dist(ΨvK, qi+1)}.

There exists m0 ≥ 1 such that for any m ≥ m0, i, j ∈ S1 with dS1(i, j) ≥ 1, ∂′iΛm∩∂′jΛm = ∅.

We also need the following notation about symmetry.

Symmetry on W∗.
For each Γ ∈ G , denote Γ∗ the induced symmetry of Γ on W∗, i.e. Γ∗ : W∗ →W∗ satisfying

ΨΓ∗(w)K = Γ(ΨwK), ∀w ∈W∗.

In particular, denote Γ∗i,j ,Γ
∗
i on W∗ induced by Γi,j ,Γi respectively, for i 6= j ∈ S0.

By the symmetry, we have Rm(∂′iΛm, ∂
′
jΛm) = Rm

(
Γ∗(∂′iΛm

)
,Γ∗(∂′jΛm)

)
for any Γ ∈ G ,

m ≥ m0, and i, j ∈ S1.

Proposition 4.5. Let m ≥ m0 and i, j ∈ S1 with dS1(i, j) ≥ 1. For each w ∈ ∂′iΛm and
v ∈ ∂′jΛm, one can find a connected subset A ⊂ Λm such that

w ∈ A = Γ∗(A), ∀Γ ∈ G ,

and

Rm(w′, v′) ≤ 2N0η
(Rm(w, v)

σm

)
· σm, ∀w′, v′ ∈ A,

where η is the same function introduced in Proposition 4.4.
In particular, Rm(w,Γ∗w) ≤ 2N0η

(
Rm(w, v)/σm

)
σm for any Γ ∈ G .

Proof. According to Proposition 4.4, we can find a connected A′ such that {w, v} ⊂ A′ ⊂ Λm
and Rm(w′, v′) ≤ η

(
Rm(w, v)/σm

)
σm,∀w′, v′ ∈ A′. It suffices to let

A =
⋃

Γ∈G

Γ∗(A′).
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Figure 5. An illustration of the connected sets A and A′ in Λm.

A′ w

v

Γ∗k1,l1

Γ∗k2,l2

We only need to show that A is connected. Readers can find an illustration of the proof in
Figure 5. Without loss of generality, we assume i = j + dS1(i, j), and we let{

k1 = bi− 1
2c,

l1 = bic+ 1,
and

{
k2 = bic,
l2 = bi+ 1

2c+ 1.

Then k1+l1
2 = i and k2+l2

2 = i+ 1
2 , so that one can then check

A′ ∩ Γ∗k1,l1(A′) 6= ∅, Γ∗k2,l2 ◦ Γ∗k1,l1(A′) ∩ Γ∗k1,l1(A′) 6= ∅, Γ∗k2,l2 ◦ Γ∗k1,l1 = Γ∗1.

Thus A′′ = A′ ∪ Γ∗k1,l1
(A′) ∪ Γ∗1(A′) is connected, and as a consequence A =

⋃
k∈S0

Γ∗k(A
′′) is

connected. �

Remark. We need the full strength of Proposition 4.5 for the development of Section 6,
while in Section 5 we only need the estimate Rm(w,Γ∗w) ≤ 2N0η

(
Rm(w, v)/σm

)
σm for any

Γ ∈ G , which accutally can be derived by an easier way.

5. Condition (B) for perfect polygon carpets

In this section, we prove the condition (B) for perfect polygon carpets. Noticing that
ρ∗ = ρi for any i ∈ S in this case, we will use an adaptation of the pure analytic argument in
[7] developed for USC by two of the authors.

The proof takes two steps: first we prove a resistance estimate between half-sides using
Proposition 4.5 and Lemma 4.3, then we construct bump functions by taking advantage of
the good symmetry of the perfect polygon carpets.

For w, v ∈ Λn, n ≥ 1, we say Ψw,Ψv are perfectly touching if ΨwA ∩ ΨvA = ΨwLi = ΨvLj
for some i, j ∈ S0.

For convenience of readers, we recall the basic facts about resistances below.

Basic Facts.
Let Λ be a partition, A ⊂ Λ connected and A1, A2 ⊂ A. Denote

RΛ,A(A1, A2) =
(

inf{DΛ,A(f) : f |A1 = 1, f |A2 = 0, f ∈ l(A)}
)−1

.
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Write RΛ,A(w, v) := RΛ,A({w}, {v}) for short. Then the following holds:
(1). for A ⊂ B ⊂ Λ, A1, A2 ⊂ A, we have RΛ,A(A1, A2) ≥ RΛ,B(A1, A2);
(2). for A ⊂ Λ, w ∼Λ v ∈ A, we have RΛ,A(w, v) ≤ 1.

Remark. Since ρ∗ = ρi for all i ∈ S for perfect polygon carpets, we always have Λm = Wm

for all m ≥ 0, and in addition, for any w ∈W∗, m ≥ 0, w−1 · Bm(w) coincides with Wm.

First, we consider the resistance between disjoint half-sides.

Lemma 5.1. There exists a constant C > 0 and m0 ≥ 1 such that Rm(w, v) ≥ Cσm for any
m ≥ m0, w ∈ ∂′1Λm, v ∈ ∂′iΛm with i ∈ S1 and dS1(1, i) ≥ 1.

Proof. Notice that δm = maxι,ι′∈Λm Rm(ι, ι′) for any m ≥ 1.
It suffices to consider m large enough. By Proposition 3.2 and Lemma 4.2 we can choose

n > 0 independent of m so that Rm(ι, ι′) ≤ δn+m

4 ,∀ι, ι′ ∈ Λm. By the basic fact (1) above,
we then have

Rn+m(τ · ι, τ · ι′) ≤ δn+m

4
, ∀τ ∈ Λn, ∀ι, ι′ ∈ Λm. (5.1)

In addition, by Proposition 3.2, when m is large enough, we always have #Λn ≤ δn+m

4 .

Now for w ∈ ∂′1Λm, v ∈ ∂′iΛm, we fix a pair ι, κ ∈ Λn+m. One can find a path τ (0), τ (1), · · · , τ (L)

with L < #Λn such that Ψτ (k) ,Ψτ (k−1) are perfectly touching for each 1 ≤ k ≤ L, and

ι ∈ Bm(τ (0)), κ ∈ Bm(τ (L)). Hence, we can pick a sequence ι(j), 0 ≤ j ≤ 2L + 1, such that

ι(0) = ι, ι(2N+1) = κ, and{
{ι(2k), ι(2k+1)} ⊂ τ (k) · {Γ∗(w) : Γ ∈ G }, ∀1 ≤ k ≤ L− 1,

ι(2k−1) n+m∼ ι(2k), ∀1 ≤ k ≤ L.
(5.2)

Then, by Proposition 4.5 and by the basic fact (1) above, we have

Rn+m(ι(2k), ι(2k+1)) ≤ 2N0η
(Rm(w, v)

σm

)
· σm, ∀1 ≤ k ≤ L− 1, (5.3)

where η is the same function in Proposition 4.4.
Hence, combining (5.1)-(5.3), by the basic fact (2), we can see

Rn+m(ι, κ) ≤
2L∑
j=0

Rn+m(ι(j), ιj+1) ≤ #Λn · 2N0η
(Rm(w, v)

σm

)
· σm +

1

2
δn+m + #Λn.

By taking the supreme over ι, κ, and noticing that by Proposition 3.2 and Lemma 4.2, δn+m ≥
C1σm for some C1 > 0, we see that η

(Rm(w,v)
σm

)
≥ C2 for some C2 > 0 independent of m and

the choice of w, v. The lemma then follows immediately since η(c)→ 0 as c→ 0. �

Corollary 5.2. There exists C > 0 and m0 ≥ 1 such that for any m ≥ m0,

Rm
(
∂′1Λm ∪ ∂′1/2Λm,

2N0−1⋃
k=4

∂′k/2Λm
)
≥ Cσm.

Proof. By Lemma 5.1, there is C1 > 0 so that Rm(w, v) ≥ C1σm for any w ∈ ∂′1Λm ∪ ∂′1/2Λm

and v ∈
⋃2N0−1
k=4 ∂′k/2Λm. Hence, by Lemma 4.3, the corollary holds. �
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Theorem 5.3. The condition (B) holds for perfect polygon carpets.

Proof. For each m ≥ m0, define fm,1 ∈ l(Λm) as the unique function satisfying

fm,1|∂′1Λm∪∂′1/2
Λm

= 1, fm,1|⋃2N0−1
k=4 ∂′

k/2
Λm

= 0,

and

Dm(fm,1) = R−1
m

(
∂′1Λm ∪ ∂′1/2Λm,

2N0−1⋃
k=4

∂′k/2Λm
)
, (5.4)

where m0 is the same number in Corollary 5.2. Define fm,i = fm,1 ◦ (Γ∗i−1)−1 for each i ∈ S0.
Next, we fix n ≥ 1 and w ∈ Λn. For each i ∈ S0, we define gw,m,i ∈ l(Λn+m) by gluing

together scaled copies of fm,j so that gw,m,i is positive only in a neighbourhood of Ψwqi. More
precisely, for each v ∈ Λn, v

′ ∈ Λm, we define

gw,m,i(v · v′) =

{
0, if Ψwqi /∈ ΨvA.
fm,j(v

′), if there is j ∈ S0 s.t. Ψwqi = Ψvqj .

Noticing that there are at most 6 many v ∈ Λn such that Ψwqi ∈ ΨvA, we can easily see that
for some C1 > 0,

Dn+m(gw,m,i) ≤ 6Dm(fm,1) ≤ C1σ
−1
m , ∀m ≥ m0,

where the second inequality is due to (5.4) and Corollary 5.2.
Finally, let

gw,m =
(

sup
i∈S0

gw,m,i
)
∨ 1Bm(w),

where 1Bm(w) ∈ l(Λn+m) is the indicator function of Bm(w). Then one can checkgw,m|Bm(w) ≡ 1, gw,m|Bm
(
N c

2 (w)
) ≡ 0,

Dn+m(gw,m) ≤ Dn+m

(
sup
i∈S0

gw,m,i
)
≤ N0C1σ

−1
m .

Hence
Rn+m

(
Bm(w),Bm(N c

2 (w))
)
≥ N−1

0 C−1
1 σm, ∀m ≥ m0.

Since the argument works for any n ≥ 1 and w ∈Wn, the condition (B) holds. �

6. Half-side resistance estimates for bordered polygon carpets

The existence problem of standard self-similar Dirichlet forms on general polygon carpets
is much more difficult and interesting, since we have seen evidences that the result depends
on the geometry of the fractal. In particular, inspired by Sabot’s work on p.c.f. fractals [20],
two of authors [8] found a Sierpinski carpet like fractal without a standard form, a bordered
square carpet whose opposite sides are strongly connected with large cells in the middle, but
the four corner vertices are loosely connected to the center, see Figure 6.

In this section, we introduce a class of bordered polygon carpets where we can obtain some
resistance estimates. Notice that a bordered polygon carpet must have N0 = 3 or 4, so we
are dealing with triangle carpets and square carpets. To prove condition (B), we need some
technique and an analogous extension theorem from [7], and require some extra conditions
about the geometry. We hope our work will inspire further investigation.
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Figure 6. A bordered square carpet without standard self-similar Dirichlet form.

For each i ∈ S0, we specify Ψi to be the contracting similarity which fixes the vertex qi.

We introduce the following loop intersection condition for the development of this section.
Specifically, we will focus on a class of fractals satisfying the condition:

(LI). Say a bordered polygon carpet satisfies the loop intersection condition, if A∩Ψ1A 6= ∅
for any path connected closed G -symmetric A ⊂ K such that A ∩ L′i 6= ∅, ∀i ∈ S1.

Theorem 6.1. Let K be a bordered polygon carpet and assume (LI) holds. Then, there exist
C > 0 and m0 ≥ 1 such that Rm(w, v) ≥ Cσm for any m ≥ m0, w ∈ ∂′1Λm, v ∈ ∂′iΛm with
i ∈ S1 and dS1(1, i) ≥ 1.

6.1. Examples of bordered polygon carpets with (LI). Before proving Theorem 6.1,
let’s first see some classes of bordered polygon carpets that satisfy (LI).

In particular, we consider the following conditions (H), (C-3) and (C-4) imposed on
bordered polygon carpets. Here 3, 4 stands for the different cases N0 = 3 or N0 = 4. The
condition (H) is called the hollow condition, while (C-3), (C-4) indicate how ΨiK, i ∈ S0

is connected to the outside. See the left two pictures in Figure 1 for two carpets satisfying
these conditions.

(H). For any i ∈ S, ∂A ∩ΨiA 6= ∅. In addition, for any i 6= j ∈ S \ S0, ΨiA ∩ΨjA is either
empty or a line segment.

(C-4). N0 = 4, and (Ψ1K) ∩ cl
(
K \Ψ1K) ⊂ Ψ1(L′2 ∪ L′7/2).

(C-3). N0 = 3, and (Ψ1K) ∩ cl
(
K \Ψ1K) = {Ψ1q2,Ψ1q3}.

Proposition 6.2. (a). If a bordered polygon carpet K satisfies conditions (H) and (C-4),
it satisfies (LI).

(b). If a bordered polygon carpet K satisfies conditions (H) and (C-3), it satisfies (LI).

Proof. Let A be a path connected G -symmetric closed subset of K such that A∩L′i 6= ∅,∀i ∈
S1. If q1 ∈ A, then there is nothing to prove. Hence in the following, we always assume
q1 /∈ A.

Observation 1. If z1, z2 belong to a same connected component of K \A, then there is a simple
curve γ : [0, 1]→ K \A so that γ(0) = z1, γ(1) = z2.
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Let z ∈ K \ A, and let Cz = {z′ ∈ K \ A : there is a simple curve γ : [0, 1] → K \
A s.t. γ(0) = z, γ(1) = z′}. Then it is not hard to see that Cz is open in K, and Cz is closed
in K \A. Hence Cz is a connected component of K \A. Observation 1 follows immediately.

Observation 2. If z1, z2 belong to a same connected component of K \ (
⋃
i∈S0

ΨiA), then there
is a simple curve γ : [0, 1]→ K \ (

⋃
i∈S0

ΨiA) so that γ(0) = z1, γ(1) = z2.

The proof of Observation 2 is exactly the same as Observation 1.

Observation 3. Let i, j ∈ S1 with dS1(i, j) ≥ 1. Then for any z1 ∈ L′i \ A and z2 ∈ L′j \ A,

z1, z2 belong to different connected components of K \A.

We prove Observation 3 by contradiction. Assume z, z′ belong to a same component of
K \ A, then one find a simple curve γ in K \ A connecting z, z′ by Observation 1. One can
extend γ to be a simple closed curve γ̃ by gluing it with γ′ : [0, 1]→ cl(R2 \A) that connects
z, z′. Assume i < j, then one can see that (

⋃
i<k<j L

′
k) ∩ A and (

⋃
S1\[i,j] L

′
k) ∩ A belong to

different components of R2 \ γ̃([0, 1]). A contradiction to the fact that A is connected.

(a). We prove (a) by contradiction. Assume A∩(
⋃
i∈S0

ΨiA) = ∅. Noticing that
⋃
i∈S0

ΨiK

is not connected, A contains some point z ∈ K \ (
⋃
i∈S0

ΨiK). Let z′ = Γ1(z), then since A
is path connected, by Observation 2, we can find a path γ : [0, 1] → K \ (

⋃
i∈S0

ΨiA) such

that γ(0) = z, γ(1) = z′.
Let X be the unique connected component of K \

⋃
i∈S0

ΨiK containing z. Then by letting

t1 = sup{0 < t < 1 : γ(t) ∈ X}, t2 = inf{t > t1 : γ(t) ∈ K \ (
⋃
i∈S0

ΨiK)},

one can see γ([t1, t2]) ⊂ ΨiK for some i ∈ S0 by (H), and by (C-4), Ψ−1
i ◦ γ connects L′i+1

and L′i+5/2. Hence, γ intersects ΨiA by using Observation 3. A contradiction.

(b) can be proved with a same argument as (a). �

6.2. From (LI) to half-side resistance estimates. We can prove a same result as Lemma
5.1 for bordered polygon carpets satisfying (LI).

Definition 6.3. Let m ≥ 0 and A ⊂ K.
(a). We write

Im(A) = {w ∈ Λm : ΨwK ∩A 6= ∅}.
For convenience, we write Imx = Im({x}) for x ∈ K.

(b). For w ∈W∗, we write

Im(A,w) = {v ∈ Im(A) : ΨvK ⊂ ΨwK}.
Lemma 6.4. For any n ≥ 1, there exists C(n) > 0 such that

Rm
(
Im(Ψwx,w), Im(Ψwy, w)

)
≤ C(n) ·Rm

(
Imx, Imy

)
,

for any m > n, w ∈W∗ satisfying ρw ≥ ρn∗ and x, y ∈ K.

Proof. It suffices to consider the case that Rm
(
Im(Ψwx,w), Im(Ψwy, w)

)
> 0. Choose f ∈

l(Λm) so that f |Im(Ψwx,w) = 0, f |Im(Ψwy,w) = 1 and Dm(f) = R−1
m

(
Im(Ψwx,w), Im(Ψwy, w)

)
.

Denote Cm(w) = {v : w · v ∈ Λm}. Define g ∈ l(Λm) by

g(ι) = f(w · v), for each ι ∈ Λm such that ΨιK ⊂ ΨvK with v ∈ Cm(w).
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Clearly g|Imx = 0, g|Imy = 1. In addition, for each v ∈ Cm(w), noticing that ρv ≤
ρm∗ ρ

−1
w , by a volume calculation, the collection {ι ∈ Λm : ΨιK ⊂ ΨvK} consists of at

most (ρm∗ ρ
−1
w /ρm+1

∗ )dH ≤ ρ
−(n+1)dH
∗ many elements. Thus by the construction of g, there

exists C(n) > 0 depending only n such that Dm(g) ≤ C(n)Dm(f). The lemma follows
immediately. �

Next, we estimate the resistances between half-sides. We will take two steps. In the
first step, we use a similar argument as in [7, Lemma 4.11] on USC to show a lower bound
estimate of resistances between boundary vertices. This step holds for general bordered
polygon carpets, which also motivates the construction of the counter-example considered in
[8]. In the second step, we will apply (LI) and Proposition 4.5.

Lemma 6.5. Let K be a bordered polygon carpet. Then there exists C > 0 such that

Rm
(
Imq1, Imq2

)
≥ Cσm, ∀m ≥ 1.

Proof. By Lemma 4.2, noticing that δm = maxι,κ∈Λm Rm(ι, κ), it is easy to see that there
exist some ι, κ ∈ Λm so that Rm(ι, κ) ≥ C1σm for some C1 > 0 independent of m. It
suffices to consider m large enough. By Proposition 3.2 and Lemma 4.2 we can choose n > 0
independent of m so that δm−n ≤ C1σm/4. In addition, by Proposition 3.2, when m is large
enough, we always have σm � 1.

One can find a path τ (0), τ (1), · · · , τ (L) with L < #Λn such that τ (k) n∼ τ (k−1) for each
1 ≤ k ≤ L, and ι ∈ Bm(τ (0)), κ ∈ Bm(τ (L)). Hence, we can pick a sequence ι(j), 0 ≤ j ≤ 2L+1,

such that ι(0) = ι, ι(2N+1) = κ, and{
{ι(2k), ι(2k+1)} ⊂ Bm−n(τ (k)), ∀0 ≤ k ≤ L,
ι(2k−1) n+m∼ ι(2k), ∀1 ≤ k ≤ L.

(6.1)

Then by a same argument in the proof of Lemma 5.1, one can find 1 < k < L such that

Rm(ι(2k), ι(2k+1)) ≥ C1σm/2−#Λn
#Λn

≥ C2σm,

where C2 > 0 is a constant independent of large enoughm. Since, {ι(2k), ι(2k+1)} ⊂ Bm−n(τ (k)),

and noticing that ι(2k), ι(2k+1) are on the boundary of Bm−n(τ (k)), one can apply Lemma 6.4
to find w, v ∈ ∂Λm so that

Rm(w, v) ≥ C3σm,

for some C3 > 0 independent of large enough m.
Next, by the triangle inequality, we can choose w′, v′ from {w, v} ∪

⋃
j∈S0
Imqj , so that

Rm(w′, v′) ≥ C3σm/3 and both w′, v′ ∈ ∂iΛm for some i ∈ S0.
Finally, we choose n′ large enough (independent of m) so that δm−n′ ≤ C3σm/12. Then,

by a chaining argument as before (arranging the chain connecting w′ and v′ along ∂iΛm), we
can find τ ∈ Λn′ so that

Rm
(
Im(Ψτqi, τ), Im(Ψτqi+1, τ)

)
≥ C4σm,

for some C4 > 0 independent of large enough m. The lemma then follows by applying Lemma
6.4 again. �
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Now we prove the main theorem of this section. For convenience of the readers, we provide
a figure (Figure 7) sketching the idea of the proof.

Figure 7. An illustration of the set B in the proof of Theorem 6.1.

Proof of Theorem 6.1. Take w ∈ ∂′1Λm, v ∈ ∂′iΛm be as stated in the theorem. By Proposition

4.5, there exists a G -symmetric Ã such that w ∈ Ã ⊂ Λm andRm(w′, v′) ≤ η
(R(w,v)

σm

)
σm,∀w′, v′ ∈

Ã, where η is the same function stated in Proposition 4.4. Let A =
⋃
w∈Ã ΨwK. Noticing

that Im(A) = {w ∈ Λm : w ∈ Ã or w
m∼ Ã}. We have

Rm(w′, v′) ≤ η
(R(w, v)

σm

)
σm + 2, ∀w′, v′ ∈ Im(A). (6.2)

By Lemma 6.5, Rm
(
Imq1, Imq2

)
≥ C1σm for some C1 > 0 independent of m. We then

choose n large enough (independent of large m) so that δm−n ≤ C1σm/4. Let n′ ≥ 0 be the

number determined by (1)n
′ ∈ Λn, where we write (1)n

′
= 111 · · · 1 (1 repeats n′ times). By

the (LI) condition, we can see that

B =
( n′⋃
k=0

Ψk
1A
)
∪
( n′⋃
k=0

Ψk
2A
)

is connected. Then by (6.2), and by using Lemma 6.4 to each 1k and 2k in W∗, 0 ≤ k ≤ n′,
we can see that there exists C2 > 0 depending only on n so that

Rm(w′, v′) ≤ C2 ·
(
η
(R(w, v)

σm

)
σm + 2

)
+ 2n′, ∀w′, v′ ∈ Im(B).

Hence, by picking w′ ∈ Im(Ψ1n′A) and v′ ∈ Im(Ψ2n′A), we get

C1σm ≤ Rm
(
Imq1, Imq2

)
≤ Rm(Imq1, w

′) +Rm(w′, v′) +Rm(v′, Imq2)

≤ C2 ·
(
η
(R(w, v)

σm

)
σm + 2

)
+ 2n′ +

C1σm
2

.
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Noticing that σm � 1 for large m, we have η(R(w,v)
σm

) ≥ C3 for some C3 > 0 independent of

m and the choice of w, v. So the theorem follows since η(c)→ 0 as c→ 0. �

7. Condition (B) for some hollow bordered polygon carpets

In this section, we will prove condition (B) for all bordered polygon carpets satisfying (H)
and (C-4), or satisfying (H) and (C-3). The main idea will be defining functions on Bm(w)
with good boundary values, which has been developed for USC by two of the authors in the
previous paper [7].

Theorem 7.1. The condition (B) holds for bordered polygon carpets satisfying (H) and
(C-4), or satisfying (H) and (C-3).

We divide the section into two parts. We will provide the main proof in the first part,
except a fundamental lemma which will be proved in the second part.

7.1. Proof of (B) by an extension argument. The key step of the proof of Theorem 7.1
is to construct a function on Bm(w) that has linear boundary values. First, we introduce
some notations.

Notations.
(1). We write τ / τ ′ or equivalently τ ′ . τ if τ ∈ τ ′ ·W1.
(2). Let Λ ⊂ W∗ be a partition, i.e.

⋃
w∈Λ ΨwK = K and µ(ΨwK ∩ ΨvK) = 0 for any

w 6= v ∈ Λ.
(2-1). We write {

∂iΛ = {τ ∈ Λ : ΨτK ∩ Li} 6= ∅, ∀i ∈ S0,

∂′iΛ = {τ ∈ Λ : ΨτK ∩ L′i} 6= ∅, ∀i ∈ S1,

and ∂Λ =
⋃
i∈S0

∂iΛ. For convenience, for i ∈ S0, also denote ∂̃iΛ = w, where w ∈ Λ and

qi ∈ ΨwK. In addition, we write ∂1Λ =
{
τ ∈ ∂1Λ : Ψτ

(
[q1, q2]

)
⊂ [q1, q2]

}
and ∂Λ =⋃

i∈S0
Γ∗i (∂1Λ), noting that only when N0 = 3, it may happen that ∂1Λ ( ∂1Λ.

(2-2). Write Θ1(Λ) =
{
v ∈W∗ : there exists τ ∈ ∂1Λ such that τ ∈ v · (W∗ \W0)

}
. Write

#Θ1(Λ) = M .

(3). Write qc = 1
N0

∑
j∈S0

qj the center of A.

To construct functions with nice boundary values, we need the following two lemmas.

Lemma 7.2. There exist 0 < α < 1 and C > 0 such that

σn+m ≤ Cσm · ρ−nα∗ , ∀m,n ≥ 1.

Proof. Let V0 = {qi}i∈S0 and define D(g) =
∑

i∈S0

(
g(qi) − g(qi+1)

)2
,∀g ∈ l(V0). For any

partition Λ, let VΛ =
⋃
w∈Λ ΨwV0 and denote DΛ(g) =

∑
w∈Λ ρ

−1
w D(g ◦Ψw),∀g ∈ l(VΛ) as a

discrete energy form on l(VΛ). Abbreviate VΛn , DVΛn
to Vn, Dn for n ≥ 0.
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Note that for Λ 6= Λ0, by using the knowledge of electrical networks, for each g ∈ l(VΛ)

and w ∈ ∂1Λ, we have
∑

i∈S0

(
g(Ψwqi)− g(Ψwqi+1)

)2 ≥ 4
3

(
g(Ψwq1)− g(Ψwq2)

)2
, and thus

ρ−1

∂̃1Λ

∑
j=1,2

(
g(Ψ∂̃jΛq1)− g(Ψ∂̃jΛq2)

)2
+

∑
w∈∂1Λ\(∂̃1Λ∪∂̃2Λ)

ρ−1
w D(g ◦Ψw)

≥ρ−1

∂̃1Λ

∑
j=1,2

(
g(Ψ∂̃jΛq1)− g(Ψ∂̃jΛq2)

)2
+

4

3
(1− 2ρ∂̃1Λ)−1

(
g(Ψ∂̃1Λq2)− g(Ψ∂̃2Λq1)

)2
≥(

3

4
+

1

2
ρ∂̃1Λ)−1

(
g(q1)− g(q2)

)2
,

which gives DΛ(g) ≥ (3
4 + 1

2ρ∂̃1Λ)−1D(g|V0) by symmetry. Choose m0 large enough so that

w−1 · Bm0(w) is finer than W2 for any w ∈W ∗, then for any n ≥ 0, g ∈ l(Vn+m0), we have

Dn+m0(g) =
∑
w∈Λn

ρ−1
w Dw−1·Bm0 (w)(g ◦Ψw) ≥ (

3

4
+

1

2
ρ∂̃1W2

)−1Dn(g|Vn) ≥ 8

7
Dn(g|Vn).

Then by induction, for any n ≥ 1, g ∈ l(Vn),

Dn(g) & (
8

7
)

n
m0D(g|V0) & (

8

7
)

n
m0

(
g(q1)− g(q2)

)2
. (7.1)

Next, for n,m ≥ 1, let us consider a function f ∈ l(Λn+m) that takes boundary values

f(∂̃1Λn+m) = 1, f(∂̃2Λn+m) = 0, and

Dn+m(f) = Rn+m(∂̃1Λn+m, ∂̃2Λn+m)−1 � σ−1
n+m, (7.2)

where the estimate is due to Lemma 6.5, Lemma 4.2, and the fact that δn+m = max{Rn+m(ι, κ) :

ι, κ ∈ Λn+m}. We then write f̃ = π−1
n ◦ Pn ◦ πn+mf ∈ l(Λn), and define a function g ∈ l(Vn)

by

g(x) =
(
#{w ∈ Λn : x ∈ ΨwK}

)−1 ·
( ∑
w∈Λn,x∈ΨwK

f̃(w)
)
.

Then, combining (7.1) and (7.2), one can easily check that

σ−1
n+m � Dn+m(f) & σ−1

m

∑
w∈Λn

D(g ◦Ψw) � ρn∗σ−1
m Dn(g) & (

8

7
)

n
m0 ρn∗σ

−1
m ,

and thus the lemma follows. �

Lemma 7.3. Let Λ ⊂W∗ be a non-trivial partition, i.e. Λ 6= {∅}, and assume there is n ≥ 0
so that

ρn+2
∗ < ρτ ≤ ρn∗ , ∀τ ∈ Λ.

(a). There exists a function hΛ ∈ l(Λ) such that DΛ(hΛ) ≤ Cσ−1
n where C > 0 is indepen-

dent of Λ, and for any j ∈ ∂1S,hΛ(j · •)
∣∣
∂′

1/2
(j−1·Λ)

= Li
(
Ψj·∂̃1/2(j−1·Λ)(

q1+q2
2 )

)
,

hΛ(j · •)
∣∣
∂′2(j−1·Λ)

= Li
(
Ψj·∂̃2(j−1·Λ)(

q1+q2
2 )

)
,

and

hΛ|∂′
1/2

Λ = Li
(
Ψ∂̃1Λ(

q1 + q2

2
)
)
, hΛ|∂′2Λ = Li

(
Ψ∂̃2Λ(

q1 + q2

2
)
)
,
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where Li is the linear function on q1, q2 such that Li(q1) = 0 and Li(q2) = 1.
(b). There exists a function h′Λ ∈ l(Λ) so that DΛ(h′Λ) ≤ C ′σ−1

n where C ′ > 0 is a constant
independent of Λ, and{

h′Λ|j·j−1·Λ = 0, ∀j ∈ ∂1S,

h′Λ|∂′jΛ = 1, ∀j ∈ S1,distS1(j, {1, 3/2}) ≥ 1.

The proof of Lemma 7.3 will be postponed to the next subsection. Using Lemma 7.2 and
Lemma 7.3, we can construct functions with good boundary values.

Proposition 7.4. Let li be a linear function on R2. Also let w ∈ Λ∗ and m ≥ 1. Then one
can find f ∈ l(Λ) where Λ = w−1 · Bm(w) such that

DΛ(f) ≤ C|∇li(0)|2σ−1
m

for some C > 0 independent of li, w,m, and

f(τ) = li
(
Ψτ (qc)

)
, ∀τ ∈ ∂Λ.

Proof. Let’s first construct a function g ∈ l(Λ) such that DΛ(g) ≤ Cσ−1
m for some C > 0

independent of w, m,

g|∂′
1/2

Λ = Li
(
Ψ∂̃1Λ(

q1 + q2

2
)
)
, g|∂′2Λ = Li

(
Ψ∂̃2Λ(

q1 + q2

2
)
)
,

and

g(τ) = Li
(
Ψτ (

q1 + q2

2
)
)
, ∀τ ∈ ∂1Λ,

where Li is the linear function on q1, q2 such that Li(q1) = 0 and Li(q2) = 1.
We will start with hΛ ∈ l(Λ) (defined in Lemma 7.3), and gradually improve the boundary

value:

Algorithm. 1. Let A1 = ∅, and g1 = hΛ.
2. For k ≥ 2, if Ak−1 6= Θ1(Λ), we pick w ∈ Θ1(Λ) \ Ak−1 such that there is w′ ∈ Ak−1

satisfying w / w′. Let Ak = Ak−1 ∪ {w},We define g′k ∈ l(w−1 · Λ) by (see Figure 8)

g′k(τ) = gk−1(w · τ) · h′w−1·Λ(τ) +
(
Li(Ψwq1) + ρwhw−1·Λ(τ)

)
·
(
1− h′w−1·Λ(τ)

)
for any τ ∈ w−1 · Λ, and define gk ∈ l(Λ) by

gk(τ) =

{
gk−1(τ), if τ /∈ w · w−1 · Λ,
g′k(w

−1τ), if τ ∈ w · w−1 · Λ.

3. If Ak = Θ1(Λ), we stop the algorithm and let g = gk.

Clearly, the algorithm will stop when k = M and g = gM . One can then check that g
satisfies the desired boundary value. Furthermore, by the construction of Lemma 7.3 (b),
for any 2 ≤ k ≤ M , by letting w, w′, gk−1, g′k, gk be the same as in Step 2, we always have
that gk−1(w · •) and gk(w · •) take the same boundary value at

⋃
i∈S0\{1} ∂i(w

−1 · Λ), and in

addition,

gk−1(w · τ) = Li(Ψw′q1) + ρw′hw′−1·Λ(w′−1 · w · τ), ∀τ ∈ w−1 · Λ.
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Figure 8. An illustration of the set w · w−1 · Λ.

So one can see for some C1, C2 > 0,∣∣DΛ(gk)−DΛ(gk−1)
∣∣ =

∣∣Dw−1·Λ
(
gk(w · •)

)
−Dw−1·Λ

(
gk−1(w · •)

)∣∣
= Dw−1·Λ

(
g′k
)

+Dw−1·Λ
(
ρw′hw′−1·Λ(w′−1 · w · •)

)
≤ C1ρ

2
wσ
−1
m−[log ρw/ log ρ∗]

≤ C2ρ
2−α
w · σ−1

m ,

where the first inequality is due to Lemma 7.3 and the well-known estimate E(fg) ≤ 2E(f)‖g‖2∞+
2E(g)‖f‖2∞ for any Dirichlet form (E ,F) and f, g ∈ L∞ ∩ F , and the last inequality follows
from Lemma 7.2 with the same constant α. Hence, by taking the sum of the above estimate
over 1 ≤ k ≤M (letting g0 ≡ 0), we have

DΛ(g) ≤
∑

w∈Θ1(Λ)

C2ρ
2−α
w · σ−1

m

≤ C2σ
−1
m

( ∞∑
k=0

∑
w∈(∂1S)k

ρ2−α
w

)
≤ C2σ

−1
m

∞∑
k=0

ρ∗k(1−α)
∑

w∈(∂1S)k

ρw ≤ Cσ−1
m ,

for some constant C > 0, where ρ∗ = maxj∈S ρj .

Next, we construct two basis functions g′, g′′ ∈ l(Λ), and f can be constructed easily as
the linear combination of symmetric analogues of g′′.

Let g′ ∈ l(Λ) be defined by

g′(τ) =
1

1− ρ∂̃1Λ

· (g(τ)− 1

2
ρ∂̃1Λ), ∀τ ∈ Λ,

so that g′|∂′
1/2

Λ = 0, g′|∂′2Λ = 1.

N0 = 4 case: Let g1 ∈ l(Λ) be defined by

g1(τ) =

{
g′(τ), if dist(ΨτK,L1) ≤ dist(ΨτK,L3),

g′(Γ∗1,4τ), if dist(ΨτK,L1) > dist(ΨτK,L3).

Let g′′ = (g1 ◦ Γ∗1,2) ∧ (g1 ◦ Γ1).
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N0 = 3 case: Let g′′ ∈ l(Λ) be defined by

g′′(τ) =

{
1− g(τ), if dist(ΨτK,L1) ≤ dist(ΨτK,L3),

1− g(Γ∗2,3τ), if dist(ΨτK,L1) > dist(ΨτK,L3).

Finally, we let f = li
(
Ψ∂̃1Λ(qc)

)
+
∑

j∈S0

(
li
(
ΨΓ∗j (∂̃1Λ)(qc)

)
− li

(
Ψ∂̃1Λ(qc)

))
· g′′ ◦ Γ∗−1

j . One

can check f has the desired boundary values, and its energy estimate follows from the energy
estimate of g. �

Corollary 7.5. For each x = (x1, x2) ∈ R2 and r > 0, let φx,r be a bump function defined by

φx,r(y) =
(
1− r−1|y1 − x1| − r−1|y2 − x2|

)
∨ 0, ∀y = (y1, y2) ∈ R2.

Also let w ∈ Λ∗ and m ≥ 1. Then one can find f ∈ l
(
Bm(w)

)
such that

D‖w‖+m,Bm(w)(f) ≤ C(ρ
‖w‖
∗ /r)2σ−1

m

for some C > 0 independent of x, r, w,m, and

f(τ) = φx,r
(
Ψτ (qc)

)
, ∀τ ∈ w · ∂

(
w−1 · Bm(w)

)
.

Proof. Let gl,+(y) = r−1(yl − xl) and gl,−(y) = r−1(xl − yl) for l = 1, 2. One applies
Proposition 7.4 to construct fl,+, fl,− ∈ l

(
w−1 · Bm(w)

)
, l = 1, 2 such that

Dw−1·Bm(w)(fl,+) ≤ C1(ρ
‖w‖
∗ /r)2σ−1

m , Dw−1·Bm(w)(fl,−) ≤ C1(ρ
‖w‖
∗ /r)2σ−1

m ,

for some C1 > 0 independent of x, r, w,m, and

fl,+(τ) = gl,+
(
Ψw·τ (qc)

)
, fl,−(τ) = gl,−

(
Ψw·τ (qc)

)
, ∀τ ∈ ∂

(
w−1 · Bm(w)

)
.

Finally, we let f ′ = (1 − f1,+ ∨ f1,− − f2,+ ∨ f2,−) ∨ 0, and then define f ∈ l
(
Bm(w)

)
by

f(w · τ) = f ′(τ), ∀τ ∈ w−1 · Bm(w). It is directly to check that this function f satisfies the
desired requirement of the corollary. �

Proof of Theorem 7.1. Let n,m ≥ 1 and w ∈ Λn, we need to estimateRn+m

(
Bm(w),Bm(N c

2 (w))
)
.

Assume m large enough so that ρm∗ ≤ 1
4c0 where c0 is the same constant in condition (A3).

Let k0 =
[
(1

4c0)−1
]

+ 1 be an integer and choose r = c0ρ
n
∗ .

For each pair j ∈ S0, 0 ≤ i ≤ k0, denote pi,j = Ψw

( (k0−i)·qj+i·qj+1

k0

)
. By Corollary 7.5, there

is fi,j ∈ l(Λn+m) and constant C1 > 0 independent of n,m,w such that for any v ∈ Λn and
τ ∈ v · ∂(v−1 · Bm(v)), fi,j(τ) = φpi,j ,r(Ψτqc) and Dn+m,Bm(v)(fi,j) ≤ C1σ

−1
m , where φpi,j ,r is

the same function in Corollary 7.5. Denote gj =
∑k0

i=0 fi,j for j ∈ S0.

Claim. For each j ∈ S0, it holds that gj |Bm(N c
2 (w)) = 0, gj |w·(Γ∗j−1∂1w

−1·Bm(w)) ≥ 1
2 , and

Dn+m(gj) ≤ C2σ
−1
m for some constant C2 > 0 independent of n,m,w.

In fact, gj |Bm(N c
2 (w)) = 0 is an immediate consequence of (A3). For each τ ∈ w ·

Γ∗j−1∂1

(
w−1 ·Bm(w)

)
, there exists 0 ≤ i ≤ k0 such that |y1−x1|+ |y2−x2| ≤ ρn+m

∗ +k−1
0 ρw ≤

c0
2 ρ

n
∗ , where (x1, x2) = pi,j , (y1, y2) = Ψτqc. Thus fi,j(τ) ≥ 1

2 , and gj(τ) ≥ 1
2 . As for the



SELF-SIMILAR DIRICHLET FORMS ON POLYGON CARPETS 29

energy estimate, it suffices to estimate the energy of fi,j for each fixed i, j, first we have∑
v∈Λn

Dn+m,Bm(v)(fi,j) ≤ C1#N2(w)σ−1
m := C3σ

−1
m ; second we have∑

v1 6=v2∈Λn

∑
τ1∈Bm(v1),τ2∈Bm(v2)

τ1
n+m∼ τ2

(
fi,j(τ1)− fi,j(τ2)

)2 ≤ C4ρ
−m
∗ · (r−1ρn+m

∗ )2 ≤ C5ρ
m
∗

for some constant C4, C5 > 0, which together gives that Dn+m(fi,j) ≤ C3σ
−1
m +C5ρ

m
∗ ≤ C6σ

−1
m

for some C6 > 0 for large m by Lemma 7.2. Thus the claim follows.
Finally, taking h = 2

∑N0
j=1 gj , by the claim, it holds that h|Bm(N c

2 (w)) = 0, h|w·∂(w−1·Bm(w)) ≥
1, and Dn+m(h) ≤ Cσ−1

m for some C > 0 independent of n,m,w. This gives that Rm =
inf
{
Rn+m

(
Bm(w),Bm(N c

2 (w))
)
, n ≥ 1, w ∈ Λn

}
≥ C−1σm and the theorem follows. �

7.2. Proof of Lemma 7.3. We prove Lemma 7.3 for N0 = 4 and N0 = 3 cases separately.
In particular, N0 = 4 is an easy case, while we need to deal with a few possibilities when we
deal with N0 = 3 case.

The N0 = 4 case.

Proof of Lemma 7.3 for N0 = 4. It suffices to prove the lemma for Λ = Λn for n ≥ 1. In
fact, for a general partition Λ such that for some n ≥ 0, ρτ ∈ (ρn+2

∗ , ρn∗ ], ∀τ ∈ Λ, one only
needs to consider Λn+2 which is finer than Λ: let h be the function to be defined (for (a)

or (b)) on Λn+2; one can find ĥ on Λ such that ĥ satisfies the desired boundary values and

min
{
h(w) : w ∈ (τ ·W∗) ∩ Λn+2

}
≤ ĥ(τ) ≤ max

{
h(w) : w ∈ (τ ·W∗) ∩ Λn+2

}
for any rest

τ ∈ Λ; it is easy to check that ĥ satisfies the desired energy estimate by suitably adjusting
the constant C.

(a). By a same reason as in the above arguments and by Theorem 6.1, Proposition 6.2
and Lemma 4.3, for any partition Λ such that ρτ ∈ (ρn+1

∗ , ρn−1
∗ ] for each τ ∈ Λ, one can find

gΛ, g
′
Λ, g
′′
Λ ∈ l(Λ) and constant C1 > 0 independent of Λ, n such that 0 ≤ gΛ, g

′
Λ, g
′′
Λ ≤ 1 and

gΛ|(∂′
7/2

Λ)∪(∂4Λ) = 0, gΛ|∂′2Λ = 1, DΛ(gΛ) ≤ C1σ
−1
n ,

g′Λ|∂4Λ = 0, g′Λ|∂2Λ = 1, DΛ(g′Λ) ≤ C1σ
−1
n ,

gΛ|∂′
1/2

Λ = 0, gΛ|(∂′3Λ)∪(∂2Λ) = 1, DΛ(g′′Λ) ≤ C1σ
−1
n .

Let ĝΛ = g′Λ ◦ Γ∗3 (which will be used in part (b)). We write Lij,k = Li
(
Ψj·∂̃k(j−1·Λn)(

q1+q2
2 )

)
for j ∈ ∂1S and k = 1, 2 for short. One then define hΛn ∈ l(Λn) as for any j ∈ S, τ ∈ j−1 ·Λn,

hΛn(j · τ) =



Li1,1 + (Li1,2 − Li1,1) · g1−1·Λn
(τ), if j = 1,

Lij,1 + (Lij,2 − Lij,1) · g′j−1·Λn
(τ), if j ∈ ∂1S \ {1, 2},

Li2,1 + (Li2,2 − Li2,1) · g′′2−1·Λn
(τ), if j = 2,

Li1,1, if j ∈ ∂4S \ {1, 4},
Li2,2, if j ∈ ∂2S \ {2, 3},
hΛn ◦ Γ∗1,4(j · τ), if j ∈ ∂3S.

It is directly to check that hΛn satisfies the desired energy estimate and boundary conditions.
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(b). Let Li′ be a linear function on [Ψ1q4,Ψ4q1] such that Li′(Ψ1q4) = 0, Li′(Ψ4q1) = 2.
Define h′Λn

∈ l(Λn) as follows, where j ∈ S, τ ∈ j−1 · Λn,

h′′Λn
(j · τ) =


0, if j ∈ ∂1S,

2, if j ∈ ∂3S,

Li′(Ψjq1) +
(
Li′(Ψjq4)− Li′(Ψjq1)

)
ĝ(τ), if j ∈ ∂4S \ {1, 4},

h′′Λn
◦ Γ∗1,2(j · τ), if j ∈ ∂2S.

Then, we define h′Λn
= min{1, h′′Λn

} ∈ l(Λn), which is the desired function. �

The N0 = 3 case.

To make things clear, we assume q1 = (0, 0), q2 = (1, 0), q3 = (1/2,
√

3/2) be the three
vertices of a triangle A. So L1 is the bottom boundary, L2 is the right boundary and L3 is
the left boundary. As before, for i ∈ S0 = {1, 2, 3}, we assume qi is the fixed point of Ψi by
ordering Ψj , j ∈ S suitably.

As in the proof for N0 = 4 case, we only need to take care of Λn (in the following lemmas).
Then, for a general partition Λ such that for some n ≥ 0, ρτ ∈ (ρn+2

∗ , ρn∗ ], ∀τ ∈ Λ, a same
conclusion holds with the constant C slightly modified.

Lemma 7.6. Let q = (1− t)q1 + tq3 for some 0 ≤ t < 1 and let L′ = q1, q be a sub-segment
of L3. Then there exists a constant C1 > 0, such that for each n ≥ 1, one can find f ∈ l(Λn)
such that f(w) = 1 for any w ∈ {w′ ∈ Λn : Ψw′K ∩L′ 6= ∅}, and f(w) = 0 for any w ∈ ∂2Λn,
and Dn(f) ≤ Cσ−1

n .

Proof. Let’s fix m ≥ 1 and let tm = 1 − ρm3 . In the following, for n > m, we construct a
function fn ∈ l(Λn) that satisfies the boundary values and the energy estimate. The general
case will then follow immediately. Before the construction, we remark that the constant C
will depend on t, but will be independent of n.

For n > m and 0 ≤ l < m, we let

Ql,n =
⋃

w∈(3)l·∂1S

w · w−1 · Λn.

Then by Theorem 6.1, Proposition 6.2 and Lemma 4.3, there is a function gl,n ∈ l(Ql,n) so
that

gl,n|∂3Λn∩Ql,n
= 1, gl,n|∂2Λn∩Ql,n

= 0, Dn,Ql,n
(gl,n) ≤ C1σ

−1
n

for some C1 > 0 independent of n.
We also let Pn = (3)m · (3)−m · Λn for n > m, where we write (3)m = 333 · · · 3 (3 repeats

m times). Then by the same reason as above, there is a function hn ∈ l(Pn) so that

hn
(
(3)m · ∂̃1

(
(3)−m · Λn

))
= 1, hn|∂2Λn∩Pn = 0, Dn,Pn(hn) ≤ C2σ

−1
n

for some C2 > 0 independent of n.
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We glue fl,n, l < m and hn to get the desired function fn ∈ l(Λn): for any w ∈ Λn, let

fn(w) =


gl,n(w), if w ∈ Ql,n, 0 ≤ l < m,

hn(w), if w ∈ Pn,
0, otherwise and dist(q2,ΨwK) < dist(q1,ΨwK),

1, otherwise and dist(q1,ΨwK) < dist(q2,ΨwK).

One can then check that fn satisfies the desired boundary values and the energy estimate. �

In the following, for each i ∈ ∂1S \ ∂1S, we let j−1(i) 6= j1(i) ∈ ∂1S, and j−2(i) 6=
j2(i) ∈ (∂1S \ ∂1S) \ {i} (if exist) such that j−2(i) ∼S j−1(i) ∼S i ∼S j1(i) ∼S j2(i), and
Ψj−1(i)K, Ψj−2(i)K are on the left of ΨiK. For short, we write j0(i) = i, and for each n ≥ 1,

L
(n)
l,l′ = jl(i) · ∂l′(jl(i)−1 · Λn), L

′(n)
l,l′ = jl(i) · ∂′l′

(
jl(i)

−1 · Λn
)

for l ∈ {0,±1,±2} and l′ ∈ S1.

Lemma 7.7. There exists a constant C > 0 such that for each n ≥ 1, i ∈ ∂1S\∂1S, there is a
function fi ∈ l(Λn) supported on

⋃
l=−2,−1,1,2 jl(i)·jl(i)−1 ·Λn such that fi|L′(n)

−1,2

= fi|L′(n)
1,7/2

= 1

and Dn(fi) ≤ C · σ−1
n .

Proof. We only focus on the case that j−2(i) 6= j2(i) exist. In fact, the lemma is easier to
prove if one of them does not exist (or both do not exist). For short, we drop the supscript

(n) of L
(n)
l,l′ and L

′(n)
l,l′ . Our goal is to construct gi :

⋃
l=0,1,2 jl(i) · jl(i)−1 ·Λn → [0, 1] such that

gi|L0,3∪L′1,7/2
= 1 and gi|L2,3 = 0,

with estimate Dn,⋃l=0,1,2 jl(i)·jl(i)−1·Λn
≤ C1σ

−1
n for some C1 > 0 independent of n, i. We also

construct, by a same argument, g′i :
⋃
l=0,−1,−2 jl(i) · jl(i)−1 · Λn → [0, 1] such that

g′i|L0,2∪L′−1,2
= 1 and g′i|L−2,2 = 0.

Then, one can define the desired fi ∈ l(Λn) by taking values of gi or g′i on
⋃
l=−2,−1,1,2 jl(i) ·

jl(i)
−1 · Λn, and taking the minimum of gi, g

′
i on i · i−1 · Λn and 0 outside.

For the construction of gi, we need to consider all the possibilities based on the sizes of the
cells. We only explain why the construction is feasible. Readers can fulfill the details easily.

Case 1. ρi < ρj1(i). In this case, we apply Lemma 7.6 to construct gi on j1(i) · j1(i)−1 · Λn
and extend gi such that gi = 1 on i · i−1 · Λn and gi = 0 on j2(i) · j2(i)−1 · Λn with desired
energy estimate.
Case 2. ρi = ρj1(i). In this case, we apply Theorem 6.1 and symmetry to

⋃
l=0,1 jl(i) · jl(i)−1 ·

Λn. In particular, we can enable gi = 0 on j2(i) · j2(i)−1 · Λn.
Case 3. ρi > ρj1(i) = ρj1(2). This is similar to Case 2. This time, we apply Theorem 6.1 and

symmetry to
⋃
l=1,2 jl(i) · jl(i)−1 · Λn. In particular, we can enable gi = 1 on i · i−1 · Λn.

Case 4. ρi > ρj1(i) > ρj2(i). Just as in Case 1, we apply Lemma 7.6 to j1(i) · j1(i)−1 ·Λn. �

Proof of Lemma 7.3 for N0 = 3. Still as before, we only need to consider Λn, n ≥ 1. The
constructions of hΛn and h′Λn

are essentially same as that of the N0 = 4 case. The only
difference is that we need to use Lemma 7.7 to adjust functions on upside-down triangles. �
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Appendix A. Proof of Proposition 2.7

In this appendix, we prove Proposition 2.7. First, we present some geometric properties of
the regular polygon carpets.

Lemma A.1. There exists c > 0 such that for any n > m ≥ 0 and v ∈ Λm,

min
{

dist(ΨwK,ΨvL1) > 0 : w ∈ Bn−m(v)
}
≥ cρn∗ , (A.1)

where min ∅ = +∞.

Proof. By the symmetry condition, there is at least one w ∈ Λ2 such that ΨwK ∩ L1 = ∅,
which gives c1 := min

{
dist(ΨwK,L1) > 0 : w ∈ Λ2

}
∈ (0,∞). When N0 is odd, for k ∈ S0,

we define `k to be the straight line passing through qk, parallel to the side Li opposite to qk.
Let c2 = min{dist(ΨwK, `1) > 0 : w ∈ Λ2} ∈ (0,∞). Then take c0 = c1 ∧ c2.

First, we consider the case m = 0. By the definition of c1, we have min{dist(ΨwK,L1) >
0 : w ∈ Λ1} ≥ c1 > c0ρ∗. So (A.1) holds for n = 1. Assume (A.1) holds for n. By
induction, we turn to prove (A.1) for n+ 1. Let w ∈ Λn+1 and ΨwK ∩ L1 = ∅. Pick τ ∈ Λn
so that w ∈ B1(τ), we only need to consider the case that ΨτK ∩ L1 6= ∅. By Lemma
2.3, Λ2 is finer than τ−1 · B1(τ), so we can choose w′ ∈ Λ2 so that Ψτw′K ⊂ ΨwK and
dist(Ψτw′K,L1) = dist(ΨwK,L1). There are two possible cases: 1. ΨτK ∩ L1 = ΨτLk for
some k ∈ S0, then from the definition of c1, we have dist(ΨwK,L1) = ρτdist(Ψw′K,Lk) >
c1ρ

n+1
∗ ≥ c0ρ

n+1
∗ ; 2. ΨτK ∩ L1 = Ψτqk for some k ∈ S0, then from the definition of c2, we

still have dist(ΨwK,L1) = ρτdist(Ψw′K, `k) > c2ρ
n+1
∗ ≥ c0ρ

n+1
∗ as desired.

Next, we consider the general m > 0 case. Denote In the left side of (A.1), then we have
In = ρv ·min{dist(ΨwK,L1) > 0 : w ∈ v−1 · Bn−m(v)}. By Lemma 2.3, Λn−m+1 is finer than
v−1 ·Bn−m(v), so we have In ≥ ρv ·min{dist(ΨwK,L1) > 0 : w ∈ Λn−m+1} > ρm+1

∗ ·c0ρ
n−m+1
∗ ,

where the last inequality follows from the previous argument. This proves that In > c0ρ
n+2
∗

as desired. �

Lemma A.2. Suppose K is a bordered polygon carpet. Let n > m > 0, w
m∼ v ∈ Λm and

w′ ∈ Bn−m(w), v′ ∈ Bn−m(v). There exists c > 0 such that dist(Ψw′K,Ψv′K) < cρn∗ implies
dn(w′, v′) ≤ 2.

Proof. By the boundary included condition, N0 = 3, 4. Consider the case N0 = 4. Let
c = c̃ ∧ ρ∗, where c̃ is the constant in Lemma A.1. By Lemma A.1, both Ψw′K ∩ ` 6= ∅ and
Ψv′K∩` 6= ∅, where ` is a straight line passing through Ψw∂K∩Ψv∂K. In addition, we could
pick x ∈ Ψw′K ∩ ` and y ∈ Ψv′K ∩ ` so that |x− y| ≤ dist(Ψw′K,Ψv′K) < cρn∗ ≤ ρn+1

∗ . Then
by the boundary included condition, we could pick w′′ in ∂Bn−m(w) ∪ ∂Bn−m(v) such that
{x, y}∩Ψw′′K 6= ∅ and Ψw′′K ∩ ` 6= ∅. Since ρw′′ > ρn+1

∗ , we further have both x, y ∈ Ψw′′K.

This gives that w′′
n∼ w′ and w′′

n∼ v′, thus dn(w′, v′) ≤ 2. The N0 = 3 case follows in a
similar way by a suitable adjustment of c. �

Proof of Proposition 2.7. (A1). This condition is just the open set condition. Ao is an open
set that satisfies the requirement.

(A2). Since K is connected, (Λn,
n∼) is also connected for any n ≥ 0.

(A4). Since by Lemma 2.3, w−1 · Bm(w) is finer than Λm−1, we need only to prove that
∂Λn 6= Λn for some n ≥ 1.
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If Λn = ∂Λn for any n ≥ 1, we have K ⊂ ∂A. So K = ∂K and dimH(∂K) = dH , a
contraction to Proposition 2.6.

Note that if the boundary included condition holds, it is direct to check that ∂Λ2 6= Λ2.
(A3). We divide the proof into two cases.

Case 1. K is a perfect polygon carpet.

In this case ρi = ρ∗ for any i ∈ S, so Λn = Wn. Define

c0 = min
{
ρ−n−1
∗ dist(ΨwiK,ΨvjK) > 0 : w

n∼ v in Λn, n ≥ 0, i, j ∈ S
}
,

where c0 > 0 since there are only finite intersection types of ΨwK and ΨvK. Then we see
that min

{
dist(ΨwK,ΨvK) > 0 : w, v ∈ Λn

}
= c0ρ

n
∗ , which implies (A3).

Case 2. K is a bordered polygon carpet.

We define

c1 = min
{

dist(ΨwK,ΨvK) > 0 : w, v ∈ Λ2

}
,

and c0 = c1 ∧ c, where c is the same constant in Lemma A.2.
When w, v ∈ Λ1 with dist(ΨwK,ΨvK) > 0, then by the definition of c1, we have

dist(ΨwK,ΨvK) ≥ c1 > c0 · ρ∗.

So (A3) holds with n = 1. Suppose (A3) holds for all k ≤ n. By induction, we will prove
(A3) with k = n + 1. Otherwise, there should exist w, v ∈ Λn+1 such that dn+1(w, v) > 2
and dist(ΨwK,ΨvK) < c0ρ

n+1
∗ . We will consider two cases to see it is impossible.

Case 2.1. There is τ ∈ Λn so that w, v ∈ B1(τ).

In this case, we have

dist
(
Ψ−1
τ ΨwK,Ψ

−1
τ ΨvK

)
= ρ−1

τ dist
(
ΨwK,ΨvK

)
< c0ρ

−(n+1)
∗ ρn+1

∗ = c0.

Since Λ2 is finer than τ−1 · B1(τ) by Lemma 2.3, we can choose w′, v′ ∈ Λ2 so that
Ψτw′K ⊂ ΨwK,Ψτv′K ⊂ ΨvK and

dist(Ψw′K,Ψv′K) = dist(Ψ−1
τ ΨwK,Ψ

−1
τ ΨvK) < c0 ≤ c1.

By the definition of c1, we then have dist(Ψw′K,Ψv′K) = 0, which implies dist(ΨwK,ΨvK) =
0, a contraction to dn+1(w, v) > 2.

Case 2.2. There is no τ ∈ Λn so that w, v ∈ B1(τ).

In this case, we choose m to be the largest number such that there is τ ∈ Λm with
w, v ∈ Bn+1−m(τ). Then we have m ≤ n − 1. Next we choose τ (1) 6= τ (2) ∈ B1(τ) such that

w ∈ Bn−m(τ (1)) and v ∈ Bn−m(τ (2)). Write τ (1) = τw′ and τ (2) = τv′, then

dist(Ψw′K,Ψv′K) ≤ dist(Ψ−1
τ ΨwK,Ψ

−1
τ ΨvK) < c0ρ

−1
τ ρn+1

∗ < c0ρ
n−m
∗ < c1.

Since by Lemma 2.3, Λ2 is finer than τ−1 · B1(τ), so we have τ (1) m+1∼ τ (2) ∈ Λm+1 by the
definition of c1, a contraction to Lemma A.2.

�
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Appendix B. Proof of Proposition 3.2 and 3.3

In this appendix, we provide a proof of Proposition 3.2 and 3.3 following Kusuoka and
Zhou’s strategy [19], for a regular polygon carpet K. It should be pointed out that the proof
does not involve the symmetry condition of K.

B.1. Basic facts. For convenience of readers, we collect some basic facts in this subsection.
From time to time, throughout this section, for w, v ∈ Λn, we will abbreviate w ∼ v

instead of w
n∼ v when no confusion caused. Also, for w ∈ Λ∗, recall that Nk(w) = {v ∈

Λ‖w‖ : d‖w‖(w, v) ≤ k}. Clearly, for each fixed k, there is a uniform upper bound of #Nk(w).

Lemma B.1. There is M0 <∞ such that #Nk(w) ≤Mk
0 for any k ≥ 1 and w ∈ Λ∗.

Proof. It suffices to choose M0 = 4πdiam2(A)
ρ2
∗m(A)

, where m is the Lebesgue measure on R2.

For k = 1, we let n ≥ 0, w ∈ Λn and x ∈ ΨwK. Noticing that ρn∗ ≥ ρv,∀v ∈ Λn, we have⋃
v∈N1(w)

ΨvAo ⊂
⋃

v∈N1(w)

B
(
x, diam(ΨvA) + diam(ΨwA)

)
⊂ B

(
x, 2ρn∗diam(A)

)
,

where B(x, r) = {y ∈ R2 : |x− y| < r}. Also noticing that ρv > ρn+1
∗ ,∀v ∈ Λn, we see

#N1(w) · ρ2(n+1)
∗ m(A) ≤

∑
v∈N1(w)

m(ΨvA) ≤ m
(
B
(
x, 2ρn∗diam(A)

))
= π

(
2ρn∗diam(A)

)2
.

If follows that #N1(w) ≤M0.
For general k ≥ 1, it suffices to notice that Nk(w) =

⋃
v∈Nk−1(w)N1(v). �

Lemma B.2. For k ≥ 1, there exists C > 0 depending only on k and M0 such that∑
w∈Λn

∑
v∈Nk(w)

(
f(w)− f(v)

)2 ≤ CDn(f), ∀n ≥ 1, f ∈ l(Λn).

Proof. For any w, v ∈ Λn with dn(w, v) ≤ k, choose a path τ := {τ (i)}li=0 ⊂ Λn so that

τ (0) = w, τ (l) = v and τ (i) ∼ τ (i−1) for i = 1, · · · , l, l ≤ k. Then

(
f(w)− f(v)

)2 ≤ k · l∑
i=1

(
f(τ (i) − f(τ (i−1))

)2
.

Since each pair τ ∼ τ ′ appears in at most C1 = k ·Mk−1
0 different paths τ with length at

most k, we then have
∑

w∈Λn

∑
v∈Nk(w)

(
f(w)− f(v)

)2 ≤ 2kC1Dn(f), where 2 appears since

we count each pair w, v ∈ A with dn(w, v) ≤ k twice in the left side of the inequality. �

B.2. Proof of Rm ≥ Cρ(dH−2)m
∗ . The estimate Rm ≥ Cρ(dH−2)m

∗ in Proposition 3.2 is linked
with the well known estimate of walk dimension dW ≥ 2. In particular, the estimate can
be derived as an immediate consequence of [18, Lemma 4.6.15]. For the convenience of the
readers, we still provide a direct proof here.

Proposition B.3. All the Poincare constants λm, Rm and σm for m ≥ 1 are positive and

finite. In addition, there is C > 0 such that Rm ≥ Cρ(dH−2)m
∗ for any m ≥ 1.
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Proof. It is straightforward to see λm, σm > 0 for all m ≥ 1 from their definitions.

Now we prove Rm ≥ Cρ
(dH−2)m
∗ . Let w ∈ Λn, n ≥ 1. For each w′ ∈ N c

2 (w), by (A3), we
have dist(Ψw′K,ΨwK) ≥ c0ρ

n
∗ , where c0 is the same constant in (A3). Let f ∈ L2(K,µ) be

defined as

f(x) = 1 ∧
(
dist(x,ΨwK)/(c0ρ

n
∗ )
)
.

Immediately, f |ΨwK = 0 and f |⋃
w′∈Nc

2 (w) Ψw′K
= 1, and f is a Lipschitz function with

Lip(f) = (c0ρ
n
∗ )
−1. Define f̃ ∈ l(Λn+m) as f̃ = π−1

n+m ◦ Pn+mf, and then we have f̃ |Bm(w) =

0, f̃ |Bm(N c
2 (w)) = 1. When v ∼ v′ ∈ Λn+m, we have diam(ΨvK∪Ψv′K) ≤ (ρv+ρv′)diam(K) ≤

2ρn+m
∗ diam(K). So∣∣f̃(v)− f̃(v′)

∣∣ ≤ ∫
K
|f ◦Ψv − f ◦Ψv′ |dµ ≤ Lip(f) · diam(ΨvK ∪Ψv′K) ≤ 2c−1

0 ρm∗ diam(K).

Then by Lemma B.1 and Proposition 2.4, we have

Dn+m(f̃) ≤
∑

v∈Bm(N2(w))

∑
v′∼v∈Λn+m

(
f̃(v′)− f̃(v)

)2
≤M2

0 · C1ρ
−mdH
∗ ·M0 · (2c−1

0 ρm∗ diam(K))2 = 4C1M
3
0 c
−2
0 diam2(K)ρ

(2−dH)m
∗ ,

where C1 is the constant in Proposition 2.4. This givesRn+m

(
Bm(w),Bm(N c

2 (w))
)
≥ Cρ(dH−2)m

∗
with C = (4C1M

3
0 c
−2
0 diam2(K))−1. �

B.3. Proof of λn+m+k0 ≥ CRmλn. The most difficult part of Proposition 3.2 is the inequal-
ity λn+m ≥ CRmλn. We will closely follow Kusuoka-Zhou’s idea [19] in this part to prove a
very close estimate λn+m+k0 ≥ CRmλn, where k0 ≥ 3 is a fixed number independent of m,n.

For convenience, we will always consider λm(∅) in the proof, which is feasible by the
following lemma.

Lemma B.4. ρ10dH
∗ λm(v) ≤ λm+2(w) for any m ≥ 1 and w, v ∈ Λ∗.

Proof. Take f ∈ l(Bm(v)) so that ρmdH∗
∑

τ∈Bm(v)

(
f(τ)−[f ]Bm(v)

)2
= λm(v) andD‖v‖+m,Bm(v)(f) =

1. By Lemma 2.3, w−1 · Bm(w) is finer than Λm+1, and Λm+1 is finer than v−1 · Bm(v). So
we can define g ∈ l(Bm+2(w)) by g(w · τ) = f(v · τ ′), where τ ′ is uniquely determined by
τ ∈ τ ′ ·W∗. Still by Lemma 2.3, ρτ ≥ ρm+3

∗ , ρτ ′ ≤ ρm−1
∗ , and so each τ ′ determines at most

ρ−4dH
∗ different τ ’s. One can see

D‖w‖+m+2,Bm+2(w)(g) ≤ ρ−8dH
∗ D‖v‖+m,Bm(v)(f) = ρ−8dH

∗ .

In addition, noticing that [g]Bm+2(w) = [f ]Bm(v), we have

ρ
(m+2)dH
∗

∑
ι∈Bm+2(w)

(
g(ι)− [g]Bm+2(w)

)2 ≥ ρ2dH
∗ λm(v).

The lemma follows immediately. �

The rest of the proof will be similar to that of Kusuoka-Zhou [19], with slight modifications.
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Lemma B.5. Let n,m ≥ 1, and {ϕw}w∈Λn be a collection of non-negative functions in
l(Λn+m) such that supp(ϕw) ⊂ Bm(N2(w)) and

∑
w∈Λn

ϕw = 1. For any f ∈ l(Λn), we

define f̃ ∈ l(Λn+m) as f̃ =
∑

w∈Λn
f(w)ϕw. Then there exists C > 0 such that

Dn+m(f̃) ≤ C max
{
Dn+m(ϕw) : w ∈ Λn

}
· Dn(f).

Proof. First, if v ∈ Bm(w) for some w ∈ Λn and v′ ∼ v, we can see that {v, v′} ⊂ Bm
(
N1(w)

)
.

Hence, ϕw′(v) ∨ ϕw′(v′) > 0 only if w′ ∈ N3(w), noticing that ϕw′ supports in Bm
(
N2(w′)

)
.

As a consequence, f̃(v) − f̃(v′) =
∑

w′∈N3(w) f(w′)
(
ϕw′(v) − ϕw′(v′)

)
. Also, noticing that∑

w′∈N3(w) f(w)ϕw′(v) =
∑

w′∈N3(w) f(w)ϕw′(v
′) = f(w), one finally get

f̃(v)−f̃(v′) =
∑

w′∈N3(w)

(
f(w′)−f(w)

)(
ϕw′(v)−ϕw′(v′)

)
, ∀w ∈ Λn, v ∈ Bm(w) and v′ ∼ v.

Hence

Dn+m(f̃) =
1

2

∑
w∈Λn

∑
v∈Bm(w)

∑
v′∼v

(
f̃(v)− f̃(v′)

)2
=

1

2

∑
w∈Λn

∑
v∈Bm(w)

∑
v′∼v

( ∑
w′∈N3(w)

(f(w′)− f(w))(ϕw′(v)− ϕw′(v′))
)2
.

Next we apply the Cauchy-Schwarz inequality to see

Dn+m(f̃) ≤ 1

2

∑
w∈Λn

∑
v∈Bm(w)

∑
v′∼v

( ∑
w′∈N3(w)

(
f(w′)− f(w)

)2 ∑
w′′∈N3(w)

(
ϕw′′(v)− ϕw′′(v′)

)2)

=
1

2

∑
w∈Λn

( ∑
w′∈N3(w)

(
f(w′)− f(w)

)2) · ( ∑
w′′∈N3(w)

∑
v∈Bm(w)

∑
v′∼v

(
ϕw′′(v)− ϕw′′(v′)

)2)
≤ 1

2

∑
w∈Λn

( ∑
w′∈N3(w)

(
f(w′)− f(w)

)2) · ( ∑
w′′∈N3(w)

2Dn+m(ϕw′)
)

≤
∑
w∈Λn

∑
w′∈N3(w)

(
f(w′)− f(w)

)2 ·#N3(w) ·max
{
Dn+m(ϕw′′) : w′′ ∈ Λn

}
.

The desired estimate follows, since
∑

w∈Λn

∑
w′∈N3(w)

(
f(w′) − f(w)

)2 ≤ C1Dn(f) for some

C1 > 0 by Lemma B.2, and #N3(w) ≤M3
0 by Lemma B.1. �

Lemma B.6. Let n,m ≥ 1. For any w ∈ Λn, let uw ∈ l(Λn+m) satisfy uw|Bm(w) =

1, uw|Bm(N c
2 (w)) = 0, and Dn+m(uw) = Rn+m

(
Bm(w),Bm(N c

2 (w))
)−1

. Define u =
∑

w∈Λn
uw

and ϕw = uw/u for any w ∈ l(Λn). Then there exists C > 0 such that

Dn+m(ϕw) ≤ CR−1
m , ∀w ∈ Λn.

Proof. Immediately, we have Dn+m(uw) ≤ R−1
m for any w ∈ Λn, n ≥ 1. So for any w ∈ Λn,

we have Dn+m(ϕw) =
∑

v∼v′∈Λn+m

(uw(v)−uw(v′)
u(v) − uw(v′) · u(v)−u(v′)

u(v)u(v′)

)2
, and thus
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Dn+m(ϕw) ≤ 2Dn+m(uw) + 2
∑

v∼v′∈Λn+m

( ∑
w′∈N3(w)

(uw′(v
′)− uw′(v))

)2
≤ 2Dn+m(uw) + 2#N3(w) ·

∑
w′∈N3(w)

∑
v∼v′∈Λn+m

(
uw′(v

′)− uw′(v)
)2

≤ 2Dn+m(uw) + 2(#N3(w))2 ·max{Dn+m(uw′) : w′ ∈ Λn} ≤ 2(1 +M6
0 )R−1

m ,

where the first inequality follows from u ≥ 1 and uw ≤ 1, and the last inequality follows from
Lemma B.1. �

The following is a weak version of the second inequality of Proposition 3.2.

Proposition B.7. There exists C > 0, k0 ≥ 3 such that λn+m+k0 ≥ CRmλn for any
n,m ≥ 1.

Proof. First, we let f ∈ l(Λn+2) so thatDn+2(f) = 1 and ρ
(n+2)dH
∗

∑
w∈Λn+2

(
f(w)−[f ]Λn+2

)2
=

λn+2(∅).
Next, we fix l ≥ 1 so that for any w ∈W∗ there exists τ(w) ∈ Bl(w) such that N2(τ(w)) ⊂

Bl(w). Define f ′ ∈ l(Λn+l+2) as f ′ = π−1
n+l+2 ◦ πn+2f . As in the proof of Lemma B.4, one can

easily see that Dn+l+2(f ′) ≤ C1Dn+2(f) = C1 for some constant C1 > 0 depending on l.
Finally, we define f ′′ =

∑
w∈Λn+l+2

f ′(w)ϕw with each ϕw ∈ l(Λn+m+l+2) as in Lemma

B.5, where the existence of good ϕw’s is guaranteed by Lemma B.6. Hence, we have

Dn+m+l+2(f ′′) ≤ C2Dn+l+2(f ′)R−1
m ≤ C1C2R

−1
m ,

for some constant C2 > 0. On the other hand, by the choice of l, we have f ′′(v) = f(w)
for each w ∈ Λn+2 and v ∈ Bm

(
τ(w)

)
, where τ(w) is the same as in the previous para-

graph. Noticing that ρn+3
∗ < ρw ≤ ρn+2

∗ ,∀w ∈ Λn+2, and by Proposition 2.4, #Bm(τ) ≥
C3ρ

−mdH
∗ , ∀m ≥ 1, τ ∈W∗ for some C3 > 0, we can see that

ρ
(n+m+l+2)dH
∗

∑
v∈Λn+m+l+2

(
f ′′(v)− [f ′′]Λn+m+l+2

)2
≥ρldH∗

∑
w∈Λn+2

ρ
(n+2)dH
∗ · ρmdH∗

∑
v∈Bm(τ(w))

(
f(w)− [f ′′]Λn+m+l+2

)2
≥C3ρ

ldH
∗

∑
w∈Λn+2

ρdHw
(
f(w)− [f ′′]Λn+m+l+2

)2 ≥ C3ρ
ldH
∗

∑
w∈Λn+2

ρdHw
(
f(w)− [f ]Λn+2

)2
≥C3ρ

(l+1)dH
∗ ρ

(n+2)dH
∗

∑
w∈Λn+2

(
f(w)− [f ]Λn+2

)2
= C3ρ

(l+1)dH
∗ λn+2(∅) ≥ C3ρ

(l+11)dH
∗ λn,

where the last inequality is due to Lemma B.4. The proposition follows immediately. �

B.4. Proof of Proposition 3.2. To fulfill the proof of Proposition 3.2, we need two more
lemmas.

Lemma B.8. Let n,m ≥ 1, and f ∈ l(Λn+m). Define f̃ ∈ l(Λn) as f̃ = π−1
n ◦ Pn ◦ πn+mf ,

i.e. f̃(w) = [f ]Bm(w) for any w ∈ Λn. Then there exists a constant C > 0 independent of n,m
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and f such that

Dn,A(f̃) ≤ CσmDn+m,Bm(A)(f)

for any non-empty connected set A ⊂ Λn.

Proof. By the definition of σm, for each pair w ∼ v ∈ A, we have
(
f̃(w) − f̃(v)

)2 ≤
σmDn+m,Bm({w,v})(f). Summing up the both sides over w ∼ v ∈ A, we get the desired
estimate. �

Lemma B.9. There exists C > 0 such that Cλn+m ≤ ρndH∗ λm + λnσm for any m,n ≥ 1.

Proof. Let m,n ≥ 1, l ≥ 0, w ∈ Λl, and f ∈ l
(
Bn+m(w)

)
. Define f̃ ∈ l(Bn(w)) as f̃(v) =

[f ]Bm(v) for any v ∈ Bn(w). Then we have∑
τ∈Bn+m(w)

(
f(τ)− [f ]Bn+m(w)

)2
=

∑
v∈Bn(w)

∑
τ∈Bm(v)

(
f(τ)− [f ]Bm(v) + f̃(v)− [f̃ ]Bn(w)

)2
≤ 2

∑
v∈Bn(w)

∑
τ∈Bm(v)

(
f(τ)− [f ]Bm(v)

)2
+ C1ρ

−mdH
∗

∑
v∈Bn(w)

(
f̃(v)− [f̃ ]Bn(w)

)2
≤ 2

∑
v∈Bn(w)

ρ−mdH∗ λm(v)Dl+n+m,Bm(v)(f) + C1ρ
−(m+n)dH
∗ λn(w)Dl+n,Bn(w)(f̃)

≤ Cρ−(m+n)dH
∗ · (ρndH∗ λm + λnσm) · Dl+n+m,Bn+m(w)(f),

for some C1, C > 0, where the first inequality follows from Proposition 2.4, and the last

inequality follows from Lemma B.8. This gives λn+m ≤ C(ρndH∗ λm + λnσm). �

Now we give the proof of Proposition 3.2.

Proof of Proposition 3.2. By Proposition B.3, it remains to prove C−1Rmλn ≤ λn+m ≤
Cλnσm for any m,n ≥ 1, for some constant C > 0.

Combining Proposition B.7 and Lemma B.9 together, we have

(C1Rm−k0 − ρmdH∗ )λn ≤ λmσn.
for some C1 > 0, for all m > k0, n ≥ 1, where k0 is the same constant in Proposition B.7.

By Proposition B.3, we can choose m0 large enough so that C1Rm0−k0 − ρ
m0dH
∗ > 0, which

gives that for all n ≥ 1,

λn ≤ (C1Rm0−k0 − ρm0dH
∗ )−1λm0σn := C2σn. (B.1)

On the other hand, again by Proposition B.7 and B.3, we have λn+k0+1 ≥ C3Rn ≥
C4ρ

ndH−2n
∗ , and thus λn ≥ C5ρ

ndH
∗ for some C3-C5 > 0. Combining this with Lemma B.9

and (B.1), we get

λn+m ≤ C6(λn + ρndH∗ )σm ≤ C7λnσm (B.2)

for some C6, C7 > 0. Still by Proposition B.7, we then have

C8Rmλn ≤ λn+m+k0 ≤ C7λn+mσk0 (B.3)

for some C8 > 0. The desired result follows from (B.2) and (B.3). �
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B.5. Proof of Proposition 3.3. At last, we prove Proposition 3.3.

Proof of Proposition 3.3. For l = 0, · · · ,m, we denote w(l) as the unique element in Λn+m−l
such that v ∈ Bl(w(l)). In particular, w(0) = v and w(m) = w. Define fl ∈ l(Bm−l(w)) as
fl(τ) = [f ]Bl(τ) for any τ ∈ Bm−l(w). Then for each l = 1, · · · ,m, we have(
fl−1(w(l−1))− fl(w(l))

)2
=
(
[f ]Bl−1(w(l−1)) − [f ]Bl(w(l))

)2
≤ ρ−dH

w(l−1)

∑
τ∈Bl−1(w(l−1))

ρdHτ
(
f(τ)− [f ]Bl(w(l))

)2
≤ ρ(l−2)dH

∗
∑

τ∈Bl(w(l))

(
f(τ)− [f ]Bl(w(l))

)2 ≤ ρ−2
∗ λlDn+m,Bm(w)(f).

Since by Proposition 3.2, λl ≤ C1λmR
−1
m−l ≤ C2ρ

(m−l)(2−dH)
∗ λm for some C1, C2 > 0, we then

have∣∣f(v)− [f ]Bm(w)

∣∣ ≤ C3

(
λmDn+m,Bm(w)(f)

) 1
2

m∑
l=1

(ρ
1−dH/2
∗ )m−l ≤ C

1
2
(
λmDn+m,Bm(w)(f)

) 1
2

for some C3, C > 0. This gives that
(
f(v)− [f ]Bm(w)

)2 ≤ CλmDn+m,Bm(w)(f) as desired. �

Appendix C. Proof of Proposition 3.5

First, we recall the concept of Γ-convergence. Please refer to the book [9] for general
discussion on Γ-convergence.

Definition C.1 (Γ-convergence). Let (X, d) be a metric space, and f , fn, n ≥ 1 be functions
from X to [0,+∞]. If for any x ∈ X,

(a). for any sequence xn converging to x in (X, d), f(x) ≤ lim infn→∞ fn(xn);
(b). there exists a sequence xn converging to x in (X, d), such that f(x) = limn→∞ fn(xn),

we say fn Γ-converges to f .

Proof of Proposition 3.5. It follows from Proposition 3.2 and Assumption (B), there is 0 <
r < 1 such that Rm � λm � σm � r−m. Denote D̄n = r−nDn for n ≥ 1.

By Proposition 3.3, there is C1 > 0 such that, for n,m ≥ 1 and f ∈ L2(K,µ),

Dn(f) =
∑
w

n∼v

(
π−1
n ◦Pnf(w)−π−1

n ◦Pnf(v)
)2 ≤ C1λm

∑
w

n∼v

Dn+m,Bm({w,v})(f) ≤ C1r
−mDn+m(f),

which gives D̄n(f) ≤ C1D̄n+m(f). By [7, Proposition 3.8], there is a subsequence {D̄γ(n)}∞n=1

of {D̄n}∞n=1 Γ-converging to a closed symmetric non-negative quadratic form, denoted as Ē .
Let F =

{
f ∈ L2(K,µ) : Ē(f) <∞

}
.

Claim 1. For any f ∈ F , C−1
1 supn≥1 D̄n(f) ≤ Ē(f) ≤ C1 lim infn→∞ D̄n(f).

On one hand, by the definition of Γ-convergence,

Ē(f) ≤ lim inf
n→∞

D̄γ(n)(f) ≤ C1 lim inf
n→∞

inf
m≥γ(n)

D̄m(f) ≤ C1 lim inf
m→∞

D̄m(f).
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On the other hand, take fn ∈ L2(K,Fγ(n), µ) such that fn → f in L2(K,µ) and Ē(f) =

limn→∞ D̄γ(n)(fn). Then for any m ≥ 1, D̄m(f) = limn→∞ D̄m(fn) ≤ C1 limn→∞ D̄γ(n)(fn) =

C1Ē(f). So Claim 1 follows.

For n ≥ 1, f ∈ L2(K,µ), as Pnf is the orthogonal projection of f to L2(K,Fn, µ), we
may choose the value of Pnf(x) to be π−1

n ◦ Pnf(w) for each x ∈ Ψw(K \ ∂K), w ∈ Λn. Let
K0 := K \

⋃
w∈Λ∗

Ψw∂K. Note that µ(K0) = 1.

Claim 2. There is C2 > 0 such that
∣∣Pnf(x) − Pnf(y)

∣∣2 ≤ C2D̄n(f) · |x − y|θ for any

n ≥ 2, f ∈ L2(K,µ) and x, y ∈ K0 with |x − y| ≥ c0ρ
n
∗ , where c0 is the same constant in

(A3).

For |x− y| ≥ c0ρ∗, by Proposition 3.3, for some C3 > 0,∣∣Pnf(x)− Pnf(y)
∣∣2 ≤ C3D̄n(f) ≤ C3(c0ρ∗)

−θD̄n(f)|x− y|θ.

For |x − y| < c0ρ∗, choose m ≥ 1 so that c0ρ
m+1
∗ ≤ |x − y| < c0ρ

m
∗ . It follows that

m < n. By (A3), there are w
m∼ w′

m∼ w′′ ∈ Λm so that x ∈ ΨwK0, y ∈ Ψw′′K0, giving
|Pmf(x) − Pmf(y)|2 ≤ 2Dm(f) ≤ 2C1r

mD̄n(f). Still by Proposition 3.3, there is a constant

C4 > 0 such that |Pmf(z)−Pnf(z)|2 ≤ C4r
−(n−m)Dn(f) = C4r

mD̄n(f) for z = x, y. Combine
the estimates above, noticing the choice of m, for some C5 > 0,∣∣Pnf(x)− Pnf(y)

∣∣2 ≤ 3
(
2C1r

mD̄n(f) + 2C4r
mD̄n(f)

)
≤ C5D̄n(f)|x− y|θ.

So Claim 2 follows by taking C2 = C3(c0ρ∗)
−θ ∨ C5.

For each f ∈ F , since Pnf → f in L2(K,µ), there is a subsequence Pnk
f converging

to f a.e. µ, i.e. there exists A ⊂ K with µ(A) = 1 so that Pnk
f(x) → f(x) for any

x ∈ A. Thus by Claim 1 and 2, for each x 6= y ∈ A ∩ K0, we have |f(x) − f(y)|2 =
limk→∞ |Pnk

f(x)−Pnk
f(y)|2 ≤ C2 supnk≥1 D̄nk

(f)|x−y|θ ≤ C6Ē(f)|x−y|θ, where C6 = C1C2.

In particular, µ(A ∩K0) = 1 implies that f ∈ C(K) and |f(x)− f(y)|2 ≤ C6Ē(f)|x− y|θ for
any x, y ∈ K.

It remains to verify the Markov property and regular property of (Ē ,F). Denote f̄ =
(f ∨ 0) ∧ 1 for any f ∈ L2(K,µ). For each f ∈ F , choose a sequence fn ∈ L2(K,Mγ(n), µ)

such that fn → f in L2(K,µ) and Ē(f) = limn→∞ D̄γ(n)(fn). Then we have f̄n → f̄ in

L2(K,µ), and by the Markov property of D̄n, Ē(f) ≥ lim infn→∞ D̄γ(n)(f̄n) ≥ Ē(f̄). This

gives the Markov property of (Ē ,F).
As for the regular property of (Ē ,F), it is enough to prove F is dense in C(K). To this

end, we will prove F is an algebra and separates points in K, and then apply the Stone-
Weierstrass theorem. First, for f, g ∈ F ⊂ C(K), since Pnf → f , Png → g in L∞(K,µ) and
Pnf, Png are uniformly bounded, we have Pnf · Png → f · g in L∞(K,µ), thus in L2(K,µ).
So by Claim 1,

Ē(f · g) ≤ lim inf
n→∞

D̄γ(n)

(
Pγ(n)f · Pγ(n)g

)
≤ lim inf

n→∞

(
‖Pγ(n)f‖2L∞(K,µ) · D̄γ(n)(g) + ‖Pγ(n)g‖2L∞(K,µ) · D̄γ(n)(f)

)
≤ C1

(
‖f‖2L∞(K,µ) · Ē(g) + ‖g‖2L∞(K,µ) · Ē(f)

)
<∞,
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which gives that F is an algebra. Next, for any x 6= y ∈ K, we choose w ∈ Λn0 for some n0 ≥ 1
so that x ∈ ΨwK and y ∈

⋃
v∈N c

2 (w) ΨvK. Then for any n > n0, we pick a function fn ∈
L2(K,µ) so that fn|ΨwK = 1, fn|⋃

v∈Nc
2 (w) ΨvK = 0 and D̄n(f) ≤ R−1

n−n0
. Let f be a weak limit

of fn. Then f ∈ F since for any m ≥ 1, D̄m(f) = limn→∞ D̄m(fn) ≤ C1 lim infn→∞ D̄n(fn).
Moreover, f(x) = 1, f(y) = 0, so that f separates x and y. �
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Math. Soc. 372 (2019), no. 6, 3985–4030.

12. M. Hino and T. Kumagai, A trace theorem for Dirichlet forms on fractals, J. Funct. Anal. 238 (2006), no.
2, 578–611.

13. J. Kigami, A harmonic calculus on the Sierpinski spaces, Japan J. Appl. Math. 6 (1989), no. 2, 259–290.
14. J. Kigami, A harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2,

721–755.
15. J. Kigami, Analysis on Fractals. Cambridge Tracts in Mathematics, 143. Cambridge University Press,

Cambridge, 2001.
16. J. Kigami, Volume doubling measures and heat kernel estimates on self-similar sets, Mem. Amer. Math.

Soc. 199 (2009), no. 932, viii+94 pp.
17. J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc.

216 (2012), no. 1015, vi+132 pp.
18. J. Kigami, Geometry and analysis of metric spaces via weighted partitions. Lecture Notes in Math. vol.

2265, Springer, 2020.
19. S. Kusuoka and X.Y. Zhou, Dirichlet forms on fractals: Poincaré constant and resistance, Probab. Theory
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