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SELF-SIMILAR DIRICHLET FORMS ON POLYGON CARPETS

SHIPING CAO, HUA QIU, AND YIZHOU WANG

ABSTRACT. We construct symmetric self-similar diffusions with sub-Gaussian heat kernel
estimates on two types of polygon carpets, which are natural generalizations of planner Sier-
pinski carpets (SC). The first ones are called perfect polygon carpets that are natural analogs
of SC in that any intersection cells are either side-to-side or point-to-point. The second ones
are called bordered polygon carpets which satisfy the boundary including condition as SC
but allow distinct contraction ratios.

1. INTRODUCTION

We consider the existence of self-similar Dirichlet forms on polygon carpets, which are
natural generalizations of planar Sierpinski carpets (SC), see Figure In history, as a
milestone in analysis on fractals [I, 21], the locally symmetric diffusions with sub-Gaussian
heat kernel estimates on SC were first constructed by Barlow and Bass in their pioneering
works [2, 3, [4], using a probabilistic method. By introducing the difficult coupling argument,
the result was later extended to generalized Sierpinski carpets (GSC) [5], which are higher
dimensional analogues of SC. In the mean time, a different approach using Dirichlet forms
was introduced by Kusuoka and Zhou [19]. The strategy is to construct self-similar Dirichlet
forms on fractals as limits of averaged rescaled energies on cell graphs. The proof is analytic
except a key step to verify that the resistance constants and the Poincare constants are
comparable, which was achieved by the probabilistic “Knight move” argument of Barlow and
Bass’s. The two approaches are both based on the delicate geometry structure (for example,
local symmetry) of SC (or GSC), and were shown to be equivalent in 2010 in the celebrated
work by Barlow, Bass, Kumagai and Teplyaev [6].

Recently, two of the authors extended the results to unconstrained Sierpinski carpets (USC)
in [7] based on the method of Kusuoka-Zhou [19], but replacing the probabilistic argument
with a purely analytic chaining argument of resistances. The USC are more flexible in
geometry as cells except those along the boundary are allowed to live off the grids, see the
left picture in Figure [2| for an example. To overcome the essential difficulty from the worse
geometry, a “building brick” technique inspired by a reverse thinking of the trace theorem
of Hino and Kumagai [I12] was developed to construct functions with good boundary values
and controllable energy estimates.

Unexpectedly, it was shown in [8] by two of the authors that the existence of good diffusions
on Sierpinski carpet like fractals is not always the truth, see the right picture in Figure [2| for
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FIGURE 1. Some polygon carpets that have good self-similar Dirichlet forms.

a counter-example. The construction of this example was partially inspired by the work of
Sabot [20], of which corner vertices loosely connected with inner cells which causes that the
effective resistances between corner vertices are uncomparable with that between opposite
sides. Naturally, it is of great interest to see how the geometry of the fractals plays a role.

FiGURE 2. The left one is a USC. The right one is a Sierpinski carpet like
fractal without good Dirichlet form (right).

In this paper, as a sequel to [7], motivated by [8], the main aim of the authors is to extend
the existence result to more general planar symmetric fractals. We consider two type of
polygon carpets: perfect polygon carpets and bordered polygon carpets, see Definition
and also Figure [1| for an illustration. Perfect polygon carpets are natural analogs to SC in
that cells are side-to-side arranged, keeping the locally symmetric structure; while bordered
polygon carpets insist the boundary including condition as SC (and USC), but allow distinct
contraction ratios of the iterated function systems (i.f.s.), which include many irrationally
ramified fractals (see the Sierpinski cross considered in [16] by Kigami).

Indeed, the analysis on the second type of fractals is more challenging, and is of the main
interest of the paper. Due to the counter-example constructed in [8], it is no hope that the
existence result holds for all bordered polygon carpets. A new technique in this paper is
that we will show that two cells close in resistance metric can be connected by a set with
small diameter in resistance metric, and in particular if this happens for two cells on the
opposite sides of the fractal, there is a “ring” passing through the fractal with small diameter
in resistance metric. Basing on this observation, we could extend the existence result to a
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large class of hollow bordered polygon carpets, where “hollow” means all the first generation
cells are located along the boundary of the fractal.

Theorem 1. Let K be a polygon carpet with i.f.s. {¥;}ics, contraction ratios {p;}ics, that
satisfies either (1) or (2):

(1). K is a perfect polygon carpet;

(2). K is a bordered polygon carpets satisfying (H) and (C).
Let p be the normalized Hausdorff measure on K. Then, there is a local reqular self-similar
Dirichlet form (€, F) on L2(K, ) with r; = pY,i € S, such that

E(f)=)_ri'&(foW), VfeTF,

€8
for some 0 > 0. In addition, F C C(K). Moreover, there is a constant C' > 0 such that

f(@) = f)] <CEf) e —yl°, Va,ye KVf € F.

See the exact definition of (H) and (C) in Section [6] By applying [17, Theorem 15.10 and
15.11] by Kigami, we know that Theorem |1 implies that there exists a diffusion process on
K with sub-Gaussian heat kernel estimates.

We will follow the strategy of Kusuoka and Zhou [19], and extend the “building brick”
technique in [7], so that the method will be purely analytic. Although the geometry of
polygon carpets are much more complicated than post critically finite (p.c.f.) self-similar
sets [13], [14], [15] of Kigami, we can still take the advantage of the strong recurrence. In
particular, we use the simplified model, resistance forms, to describe the limit form, though
there is not a compatible sequence argument as in [15].

Finally, we briefly introduce the structure of the paper.

We recommend readers to read the definitions and notations in Section [2| and [3| carefully,
and quickly go over the other parts. In Section [2] we introduce the definition of polygon
carpets, with Proposition proved in Appendix[A] In Section [3| we show that once we have
good resistance estimates, we can construct good self-similar Dirichlet forms. This section is
not new, but a modification of [19 [7] to include the distinct ratios case. Some well-known
estimates in [I9] (which needs some modification) are provided in Appendix (Bl Also, see
Appendix [C] for the proof of Proposition [3.5

Section [} [5] [6] will be the main parts of the paper. In Section[d], we will consider important
properties about resistance metrics. The key observations are Propositions [£.4] and in
which we show if two cells on the boundary are far away in Euclidean metric, but close in
resistance metric, one can find a “ring” connecting them with small diameter in resistance
metric. Section[f]is a short section on the existence of good Dirichlet forms on perfect polygon
carpets. In Section [6], we study bordered polygon carpets. Our arguments will be based on
Corollary and the geometric conditions (H) and (C) of the fractals.

We end the story for hollow bordered polygon carpets in Section [7], where we will develop
a more flexible “building brick” technique to construct functions with good boundary values
and glue them together to verify the resistance estimates.
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Throughout the paper, we will write a < b for two variables (functions, forms) if there is
a constant C' > 0 such that a < C - b, and write a < b if both a < b and b < a hold. We will
always abbreviate that a A b = min{a, b} and a V b = max{a, b}.

2. GEOMETRY OF POLYGON CARPETS

In this section, we introduce the definition of polygon carpets, and present some basic geo-
metric properties of these fractals as well as their associated graph approximation sequences.

We consider fractals in R? in this paper. For two points z,y € R?, we write the line
segment connecting z,y as T, y, and the Euclidean distance between z,y as | — y|. For sets
A, B C R?, we write dist(4,B) = inf{|lz —y| : # € A,y € B} as the Euclidean distance
between A, B. It will always be positive providing that A, B are disjoint compact sets. For
A C R?, we write diam(A) = sup{|z — y| : 7,y € A} as the diameter of A.

We will always write A to be an equilateral polygon in R? with side length 1. Let Ny > 3
be the number of vertices of A, and ¢, - qn, be the vertices arranged counter-clockwise.
Denote Sy = {1, , No}, and write L; = G;, Gi+1,? = 1, - - N for the sides of A accordingly,
where gn,+1 = ¢1. We denote the Euclidean boundary of A as 0A := U;Nzol L; and write
A° = A — 0A for the interior of A. We denote the canonical symmetric group associated
with A as ¢, generated from Ny many axial symmetries I'; ;;1’s and Ny many rotational
symmetries I';’s, where for 1 <14, j < Ny, we denote I'; ; the axial symmetry that exchanges
gi»qj, and for 0 < ¢ < Ny, denote I'; the rotational symmetry that shifts each ¢; to g;4; for
j € So. In particular, I'g = id| 4.

Let S be a non-empty finite set with N := #5 > Ny. For each i € S, let ¥, be a contracting
similarity on R?, defined by U;(z) = £pjx + ¢; for some 0 < p; < 1, ¢; € R?, and call p; the
contraction ratio of ¥;. We require that for each i € S, ¥; A C A. Then there is a unique
non-empty compact set K C A satisfying

K =|]JwK. (2.1)
i€S
Call Z := {V, };es the iteration function system (i.f.s. for short) associated with K.

Definition 2.1 (Perfectly touching). Fori # j € S, we say ¥;, ¥; are perfectly touching if
VANV, A =V;L, = WLy for some k, k' in Sp.
We say {W;}ics a perfect i.f.s. if

a). for any 1 € 5, there exists a chain of indices ig,--- ,1; € S so that 190 = 1,1 = J, an
(a). f yiticsS, th . hain of indices i g hat i i = d
V., W, —1 are perfectly touching for any k =1,--- ,1;

b). for any i € S with VANV A 0, either W;, W, are perfectly touching, or
(b). for any i # j j : , Wj are p y 9,
UANY;A =V,q, = Vg for some k, k' € Sp.

Remark. A perfect i.f.s. always has the same contraction ratios.

Definition 2.2 (Polygon carpets).  Suppose the i.f.s. T :={V;: A — A}lics satisfies
(Open set condition). ¥;(A°) NW;(A°) =0, Vi#jeS;

(Connectivity). K is connected;

(Symmetry). I'(U;cg ¥iA) = U;eg WiA for any T € 4;

(Non-trivial). (J;cq ¥iA # A.

Call the unique compact set K C A associated with Z as in a polygon carpet.
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If in addition I satisfies
(Perfectly touching). Z is a perfect i.f.s.,

then call K a prefect polygon carpet; alternatively, if T satisfies
(Boundary included). 0A C [J;cg VA,
then call K a bordered polygon carpet.

Call both these two types of carpets regular polygon carpets.

FIGURE 3. Examples of regular polygon carpets: (a) is both perfect and bor-
dered, (b) is only perfect, and (c) is only bordered.

See Figure [3| for some examples of regular polygon carpets. Clearly, due to the open set
condition, the boundary included condition can only hold when Ny = 3 or 4, but it allows
the contraction ratios to be distinct. To deal with the possible distinct ratios case, we need
to divide the fractal K into cells of comparable sizes in later context. When Ny = 4, the
contraction ratios are the same, and the boundary included condition holds, K is a USC
considered in [7]. If in addition, N = 8, K is the standard Sierpinski carpet SC. See Figure
[] for examples.

FIGURE 4. Examples of USC, and the left one is SC.

From now on, we always assume K to be a regular polygon carpet, and {¥;};cs to be its
i.f.s.. We denote
0K := KNoA.
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Immediately, 0K = UZ-GS0 0; K with ;K = 0K N L; for i € S.

By open set condition, the Hausdorff dimension dy of K is the unique solution of the
equation ) ;g pr = 1. Since ) ;g p? < 1 by non-trivial condition, it always holds that
di < 2. We will always set p to be the normalized dg-dimensional Hausdorff measure on K,
i.e. p is the unique self-similar probability measure on K satisfying =3, g p?H J7xs) \I/i_l.

Basic notations.

(1). Let Wo = {0}, Wy, = S" ={w=wy-wy : w; €S,i=1,---,n} forn > 1, and
W, = Un>0 Wy. The elements in W, are called finite words. For each w € W,,, n > 1, we
write |w| = n for the length of w, write W,, = ¥y, 0---0 W, and p, = [[; pu;, and call
U, K an w-cell in K. In particular, || =0, ¥y = id|4, pp = 1 and Ky = K.

(2). For w € Wy,v € Wy, we denote w - v = wy - wyvy + -+ Uy € Wy, For w,v € W,
by the open set condition, ¥, A C ¥, A if and only if w - w’ = v for some w' € W,. For
A,B C W,, denote A-B ={w-v:w € A,v € B}. In particular, write w - B = {w} - B for
short.

(3). Let B C W, and v € W,, we define v=! - B = {w € W, : v-w € B}. Clearly,
v~!.v- B = B, however, it is often false that v-v~!- B = B (we still have v-v~!- B C B).

(4). We say a finite set A C Wi a partition of Wi if | J,,cp Yo K = K and p(V, KNV, K) =
0,Vw # v € A. Let A, A" C W, be two partitions. We say A’ is finer than A, if for any w € A’,
there is some v € A such that ¥, A C ¥, A.

(5). Let ps = min;es p;. Let o : W, — W, be the operator defined as o(w) = wy - - wp—1
for w=w; - w, € Wy,n>1and o()) = 0. We define Ag = Wy, and for n > 1,

Ap ={w e W, :pw <Y < pow)}-
Write A, = Unzo A,. Clearly, for each n > 0, A, forms a partition of W,, and A, is finer
than A,, for n > m. For each w € A,, call ¥, K a level-n cell (n-cell for short) in K and
write |[|w|| = n. In addition, if p; = p, for all i € S, then A,, = W, for each n > 0.
(6). For any n,m > 0, and w € A,,, we define
Bi(w) ={v € Apym : ¥V, K C U, K}.

Clearly, By, (w) = w-w™!- Ay, 1., represents the collection of (n +m)-cells contained in F,, K.
Write B (A) = Uyea Bm(w) for A C Ay,

Lemma 2.3. For w € A, and m > 1, w™! - By, (w) is finer than A1, and Ay is finer
than w= - By, (w).
Proof. The lemma follows from the fact that, for w € A, v € w™! - B,,(w), we always have

_ _ — 1 _
Pl = T <y = pupyt < g Y =

g

Remark. Unlike the case that p; = ps for any i € S, w™! - B,,(w) may not belong to
{An}nZO-

Proposition 2.4. There exists C > 0 depending only on p. such that C_lp*_de < #B(w) <
Cpy ™ for any w € Ay and m > 0. In particular,

Cflp;de < #Am < C,O;de.
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Proof. Suppose w € A, m > 0, then we have
o= ) wWK) = p(T,K) = plr.
VEBm (w) VEBm (w)
So on one hand

d 1)d
pll“’“ o> pdn Z pdn > Z pimle\H ) "
VEBm (w) vEBm, (W)

which gives #B,,(w) < p. (m+1)ds , and on the other hand

+1)d + d
At ™ e S el
VEBm (w) VEBm (w)

which gives #8,,(w) > p;(m_l)d’{. O
Definition 2.5 (m-boundary of cells). For m,n >0 and w € A,,, define
0B, (w) = {U € Bn(w): ¥, KNV,0K # @}.
In particular, we write O\, := 0By, (0).
Obviously, ¥, K D UveaBm(w) U, K D UveaBm+1(w) V,K for any w € A, and m > 0. We

have
U,0K = ﬂ U U, A.

m>0 vEABym (w)
Proposition 2.6. The Hausdorff dimension of 0K is strictly smaller than dg.

Proof. By the symmetry condition, we see the dimension of 0K is equal to that of 01K,
denoted as dimg (01 K). So we only need to show dimpy (01 K) < dy.

Let " ={i e S:V; AN L, is a line segment},S”" = {i € S: ¥;,,AN Ly is a point} (it may
happen that S” = 0). Let Ey = U;cgn(ViA N L1), By = Ujeg YiEn—1 for n > 1. Then
01K = Fy U F, where F} is the unique attractor of {U;};csr, Fo = ;- En is a countable
set. By taking the open interval L{, F satisfies the open set condition, which means

> )y,

€S’
However, by the non-trivial condition and the symmetry condition, there is at least one
map U;, such that ig ¢ S’. So we have ), o p] < > ,cqp; for any s > 0, which gives
dimH(E)lK) <dpg. O

By this proposition, we see that the Hausdorff dimension of [ J,,c,. WwOK is strictly less
than dg, which implies that for any n > 0, for almost every x € K, there is only one w € A,
such that z € ¥, K.

Basic notations of graph approximation sequences.

Let A C W, be a partition.

(1). For w # v € A, define w ~p v if ¥, K N ¥, K # 0, then (A,~,) is a graph. For
w,v € A, we write dp(w,v) € Z4 as the graph distance between w,v in A. In particular,
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{(An, ) }n>0 is a graph approximation sequence of K where ~ is a short of ~y, , and we
write dy, :==dp,. For k > 0,w € A, say

Ni(w) = {v €A, dp(w,v) < k:}

the k-neighborhood of w in A,. Write Ni(A) = U,ea Ni(w) for A C A,,.

(2). For A C A, say A is connected if each pair w # v in A is connected by a path in A,
i.e. there exists a chain of cells {T(i)}fzo c A with 700 = w, 7®) =y and 7 ~, 70-D for
1 <i < k. Call k the length of the path. For a connected A C A, let [(A) = {f : A —» R},
and define a non-negative bilinear form Dp 4 on I(A) as

Daalfi9)= Y, (flw)—f©)(g(w)—g(v)), Vf gelA).
wrAVEA
We write Dy a(f) := Da a(f, f) for short, and Dp := Dy p,Dp 4 := Dp,,4,Dn :=Dy,. In
this way, D 4 can be viewed as a quadratic form on [(A).

(3). We define %, as the o-field generated by {\Ile twE A}. There is a natural bijection
mp from [(A) to L?(K, Za, ) as ma(f)(z) = f(w) for any # € ¥,, K and w € A. Notice that
we ignore the conflict definition on J,,c) YwOK since by Proposition it is just a null set
of pu. Write .%,, := Z\,,, ™, := ma,, for short.

(4). Since each L?(K, .7, i) is a closed subspace of L?(K, u1), we define Py as the orthog-
onal projection from L?(K, ) to L?(K, Za, ). Write P, := Py, for short.

(5). With the operators Py and s, we can shift the domain of Dy from I(A) to L?(K, 1)
by define

DA(fvg) = ,DA(WXIOPAfvﬂxloPAg)7 vfageLQ(Kvu)a
still using the notation Dj with a slight abuse of notation. Then Dy is a continuous non-
negative bilinear form on L?(K, ).

The following proposition is almost the same in [19] [7]. We leave its proof in Appendix

Proposition 2.7. A reqular polygon carpet K defined in Definition always satisfies the
condition (A1)-(A4) below.

(A1). There is an open set O such that ¥;O NV;0 =0 for anyi#j € S, and ¥;0 C O
foranyie€ S.

(A2). (A, %) is a connected graph for any n > 0.

(A3). There is a constant ¢y > 0 satisfying

min {dist(\Ile, UV, K):w,v € Ay, dyp(w,v) > 2} > coplt

for anyn > 1.
(A4). There exists m > 1 such that By, (w) # 0By, (w) for any w € A,.

3. SELF-SIMILAR FORMS OF KUSUOKA AND ZHOU

In this section, we will follow Kusuoka-Zhou’s strategy [19]: first, we introduce three
kinds of Poincare constants \p,, Ry and o, (with slight modifications due to the possible
distinctness of contraction ratios, and also note that there is another kind of constants )\,(nD ) in
[19]); second, under a resistance assumption, we prove the existence of self-similar Dirichlet

forms on regular polygon carpets.
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Throughout this paper, we will fix a regular polygon carpet K with Hausdorff dimension
d.

Definition 3.1 (Poincare constants). Let m > 0, A be a non-empty subset of A,, and

fel(Ay). We write
Fla= (D)™ D2 ol f(w)

weA weA
as the (weighted) average of f on A.
(a). Form>1,n>0,w € A,, we define

Am(w) = sup {pP - " (f(0) = [flanw)’ : f € UBm(W)), Do, 5, ) (f) = 1}.

VEBm (w)
And for m > 1, define
Am = sup {)\m(w) Tw E A*}.
(b). Form >1,A,B C A, and AN B = (), we define the resistance between A, B as
Rin(A, B) = (inf {Dp(f) : f € l(Am), fla=1,flz =0})"".
In particular, we write R,,(w,B) = Ry, ({w}, B) and Ry (w,v) = Ry({w}, {v}) for short,
and write Ry, (A, B) =0 if AN B # (. We define

Ry = inf { Ry pon (B (W), Br(N5 (w))) : n > 1,w € Ay},
where N (w) := Ay, — Ni(w) for w € A,,.
(c). Form>1,n>1,w~w €A,, we define
2
O'm(wvw,) = sup {([f]Bm(w) - [f]Bm(w')) : f € Z(Bm({w7w/}))aDn+m,Bm({w,w’})(f) = 1}
And for m > 1, define
Om = Sup {am(w,w') n>lw~uw e An}.

One of the important result in [19] is the comparison of the above Poincare constants
basing on the conditions (A1)-(A4).

Proposition 3.2 ([19], Theorem 2.1). There is a constant C > 0 such that
C 2=y < O R A < A < CAnOm (3.1)
for any m,n > 1. In addition, all the constants Ay, Ry and o, m > 1 are positive and

finite.

Remark. The first inequality in 1' is exactly that R, > C~! p&dH M1t was extensively
explored by Kigami on more general compact metric spaces, see [I8, Lemma 4.6.15] for a
generalized version. In particular, this inequality implies that the process is recurrent since
dr < 2 by the non-trivial condition. On the other hand, it is not hard to verify that the
second and third inequalities in (3.1)) implies

C™R,, <A < Cop, (3.2)
for some C' > 0 independent of m. In fact, by taking m = 1, we see A\, < Ap41, then taking

n =1, we see (3.2)).

The following is another important observation.
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Proposition 3.3 ([19, Theorem 7.2]). There is C > 0 such that

(F©) = [f1Bw)” < CNa Do) ()
for anym >1,n>0,w € Ay, v € By(w) and f € (B (w)).

Since the proof of Proposition and are essentially same as in [19] with suitable
modification due to the distinctness of contraction ratios, we leave them in Appendix
Following Kusuoka-Zhou’s strategy, we will need another inequality:

(B). There is a constant C' > 0 such that o, < CR,, for any m > 1.

Combining Propositionand (B), by a routine argument [19], there is 0 < r < pz_dH <1
such that R, =< A\, < o, < v~ ™. Kusuoka-Zhou’s approach for SC is analytic except the
verification of (B) (see (B2) in [19], in a slightly different version). They achieved (B) by
a probabilistic “Knight moves” method due to Barlow and Bass [2], see [19, Theorem 7.16].
Two of the authors fulfilled this gap in a recent work [7]. In particular, they developed a
pure analytic method for (B) for a more general planar (square) carpets USC. In some sense,
USC are more flexible in geometry as cells except those along the boundary are allowed to
live off the grids. Due to the possible irrationally ramified situation for USC, the method in
[7] also non-trivially extends Barlow and Bass result [2] since the last one heavily depends
on the local symmetry of SC. In this paper, we will extend the method to regular polygon
carpets.

3.1. Existence of self-similar forms under assumption (B). Let K,y be the same as
before. Recall that a Dirichlet form on L?(K, p1) is a non-negative quadratic form on L?(K, p)
which is densely defined, closed and satisfies the Markov property. Please refer to [10] for
the general definition of Dirichlet forms and some necessary properties. In our situation, we
only focus on the recurrent case.

Definition 3.4. A Dirichlet form (£, F) on L*(K, ) is called self-similar if
(a). f € F implies f oW, € F for each i € S;

(b). feC(K) and foV,; € F for each i € S implies f € F;

(c). the self-similar identity holds, i.e.

E(f)=>_r'e(foW), VfeF,
€S
where 0 < r; < 1,1 € S are called renormalization factors.
In Kusuoka-Zhou’s original strategy [19] (where they dealt with the case that p;’s are the
same), the existence of (£, F) (taking r; = r for all i € S) follows by two steps: first, they
construct a local regular Dirichlet form (&£, F) which is a limit of 7~"D,,; then, they construct

(€, F) to be a limit of the Cesaro mean of (3,5 r"EoW,, F). We still follow this strategy
but with little adjustment, since the renormalization factors 7;’s in our case may be distinct.

First, there is a limit Dirichlet form (€, F) on L*(K, u).
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Proposition 3.5. Assume (B). There is a reqular Dirichlet form (€, F) on L*(K,u) with
r € (0,1), such that for some constant C' > 0,

Clsupr™"D,(f) < E(f) < Climinfr="Dy(f), Vf€F.
TLZl n o0

In addition, F C C(K).

1
Moreover, denote = 22~

log px« ?
f(z) = f))? < CE(f)- |z —yl’, Va,ye K VfeF.

This proposition essentially follows from a combination of Theorem 5.4, 7.2 in [19]. For
the convenience of the readers, we provide its proof in Appendix [C] but alternatively follows
from [7, Theorem 3.8] by two of the authors by using the technique of I'-convergence. Note
that the method of I'-convergence in the construction of Dirichlet forms on self-similar sets
was also used by Grigor’yan and Yang in [11].

then there is a constant C' > 0 such that

Next, we transform (£, F) into a self-similar one.

Theorem 3.6. Assume (B). There is a local regular self-similar form (£, F) on L*(K, u)
with r; = pz‘?,i € S, such that

E(f)=) _ri'&(foW), VfeF.
1€S
In addition, F C C(K) and E(f) =< E(f),Vf € F. Here £ and 6 are same as that in
Proposition [3.5
Proof. Let (€, F), r be the same in Proposition For w € W,, denote 7y = 1y, - - T -

Obviously, 7, =< r™ for any w € A,,n > 0. For any partition A C W,, denote Fp = {f €
C(K): fo¥, € F,Vwe A} and

EX(f) =) _r,'E(foly),  VfEFA.
weEA
In particular, for n > 0, denote F,, = Fa,,, Fi, = Fw,,» En = SAMS;Z = ENWn for short.

For each n > 0, let A}, = {w € Wit po(w) > p’,}}. Then for any n > 1, A, is the “finest”
partition of W, contained in A/, and A/, N A, 11 = (0. We divide the proof into four claims.
Claim 1. For each m > 1, there is a constant c,, > 0 such that for any n > m, for any
partition A C A}, \ A and f € L*(K, ), it satisfies ¢,  Dp—m(f) < Da(f) < emDn(f).

n—m

Let w ~p v € A, then there is constant ¢, > 0 independent of n,w, v, A, such that

1) — =L o) = (P K) (W0 ) e
(e £ ) - 73 £(0) —(wngZA e e () = w10 )

_ _ 2
< > Yoo (m ) = m ()
w' ew-w= 1A, v'Evv—1Ap
SC;nDn,wﬂu*l-AnUUv*l'An (f)

By a summation over pairs w ~p v € A, the right side of the claim follows. A similar
argument gives the other side.
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Claim 2. F = Fp for any partition A. In particular, F = F, = F,, for any n > 0.

“F C FA”. For any w € A, choose m > 1so that w € A, \ Al _,. It’s easy to check that for
any k> m, it satisfies w™!- Ay C A}, \AL_,,_,, which gives Dy(f) > Dy-1.5, (fo¥y) >
cs Dy _im_a(f 0 W) for any f € F by Claim 1. Then by Proposition there is constant
C1 > 0 such that

E(f o W) < Cyliminf 7™ Dy(f 0 o) < Cresliminf 1™ Dimia(f) < CResr™ 2E(f) < +oo,
—00 —00

thus f € Fy follows.

“F D Fpn, n > 07. We first prove r*"Dn(f) < C’an(f),Vf € F, for some Cy > 0
independent of n. For each pair w ~ w' e Ay, take x € V, K "NV, K. Then for any
f € Fuyv € {w,w'}, wehave |m, Lo P f (v) = f(@)] < [ [foPu(y) — f(2)ln(dy) S VE(f o Ty)
by Proposition which gives |7, o Pnf( ) —aloP f( ’)\2 SE(foWy) +E(f oWy,
thus the desired estimate follows by a summation over w ~ w' € A,,.

Next, it’s easy to check that, for any m > 0,k > 1, it satisfies Ap, - A, C A L, \ A
so by Proposition and Claim 1, there is constant C'3 > 0 such that for any g € F,

m+k—1°

c‘:’m(g) <Czr—™ Z likn_lirolf r*ka(go\Ilw) < CgCgr*mlikIr_kicgf r*kDm+k+1(g) < 01C3¢27E(g),
’weAm

i.e. sup,,>o {c‘:'m(g)} < C4&(g), where Cy = C1C3cor. Then

feEFn=foW, e FNYwel,=sup{En(foly,):m>0,weAl,} <o
= sup{En(f) :m >n} < oo = sup{r "D, (f) :m >n} <oco= f € F.
“F D FA”. For any general partition A, take large n so that A C A],. Then f € Fy gives

foW, € F for any w € A, thus f o ¥, € F for any wv € A,, i.e. f € F,. This together
with the last paragraph gives that F D Fj.

Claim 3. There is constant Cs > 0 such that 3.1 _ EL,(f) < Cs 30 _o Em(f),YVn > 1,f € F.

First, we prove there is constant Cg > 0 such that E5(f) < CeEm_1(f) for any m > 1,
partltlon AcC A, \AN, |, f€F. Notethat for any w € A,,_1, it satisfies w™ - A - Ay C
Al o \ A}, for all k > 1. Then for any f € F, we have

E(f)= D ' Y rE(fol,oW,)

wWEAm—1 vew—1-A

<Cr >t > h}ggfr—’fpk(foqfwo\pv)

wWEAm—1 vew—L1.A

<Crey Z 7“1;1 hkrggéf T_k'Dk+2(f o \I/w) < 0107627'25771_1(]0)

wEAm— 1

for some constant C7 > 0, giving the desired estimate.

Next, since we can choose at most M = [{Egp*] + 1 partitions A; C A/, \ A/, 1<i<M

such that AJ, \ A/, _| = Uf\il A;. Then by the estimate above, D weA, \A L Tw 18(foW,) <

m—1>
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06M€m_1(f) for any m > 1,f € F. Thus 30 E,(f) < Snoy Duwearar  To &(f 0
Uy) <C5> 0, L Em(f), where C5 = CgM. The claim follows.

Take a countable & -dense set F C F with {f o ¥, : f € F,w € W,} C F, where
E()=EC)+]- HL2 (k- BY Claim 3 and the fact that supm>0 E(f) S E(f), we can choose a

strictly increasing {n;}; such that £(f) := lim; oo — o S & (f) < oo exists for any f € F.

m—1

Claim 4. E(f) < E(f) for anyf Eﬁ

Note that Y1 £ (f) > Z Em(f). Combining this with Claim 3, it’s enough to prove

< = )< E F
E(f) < I%nigéfnmz:lg <11713L8£pn7nz:15 ) SE), VfeF.

Since in the proof of Claim 2, we have "D, (f) < E.(f) < E(f) for any f € F,n > 0, the
above estimate follows by taking limit, which gives Claim 4.

By Claim 4, we can continuously extend &£ to F. By Proposition[3.5] £ is a regular Dirichlet
form on L%(K, p1), since the extension keeps E(tf) = t2E(f), E(f+9)+E(f—g) = 2E(f)+2E(9)
and E((fA1)Vv0) <E(f) forany t € R and f,g € F.

By the construction, for any f € F,

TLll

o —3;%25’ )= im DTSt 3 (oo wa) = r e (o),

m=0 ie€S wEWn, i€S

giving the self-similar property over F by continuously extension. The local property of
(€, F) follows immediately by the self-similar property.
O

Remark. Due to Proposition and Theorem it remains to verify condition (B) to
achieve our main goal, Theorem

4. RESISTANCE ESTIMATES BETWEEN SETS

In the rest of this paper, we will prove condition (B) for two classes of polygon carpets:
all the perfect polygon carpets (Section |5)) and some bordered polygon carpets (Section @ .
Before proceeding, we present some observations about resistances.

We first restate Proposition in terms of oscillations of functions.
Definition 4.1. For any non-empty set A and f € I(A), we denote
oscla(f) =sup {f(z)— f(y) : z,y € A}.
For m > 1, define
O i= sup {osc|28m(w)(f) tw € Ay, f € LB (w)), D] 4m By w) (f) = 1}

Lemma 4.2. A\, < 0, < 0y, for m > 1.
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Proof. First, for any w € A, m > 1, and f € Z(B(w)) With Djjy|-4m, B, (w) (f) = 1, it follows
from Proposition that (f(v) — [f}Bm(w))Q < Cy Ay, for some constant C; > 0 for any
v € By (w), and so osc|g,, () (f) < 2y/C1\,. This gives that 6,, < 4C1\,.

Next, for m > 1, pick a pair w ~ v € A,,n > 1, and a function f € l(Bm({w,v})) such
that Dn+m,Bm({w,v})(f) =1 and [f]Bm(w) — [f]Bm(v) > %m Pick ¢ € B,,(w) and k € By, (v)
so that ¢ "™ K, then

’f(L) - f('%)’ < \/Dn+m,8m({w,v})(f) =1

Hence,

1
SVom < [flBw) = B ) < 08¢l (fw ) (f)

< osclg,, (w)(f) + 0scls,, ) (f) + | (1) = F(K)] < 2¢/0m + 1.

By Proposition om > 1 for large m. This gives that there exists a constant Co > 0
independent of m, such that d,, > Cyopy,.

Finally, the above estimates give that C 1o, < 6,, < C\,, for some constant C' > 0.
Combing this with formula , we immediately see that A\, < o, < d,, for m > 1. O

The following lemma will help us find a lower bound estimate of resistances between sets
with only resistance estimates between points.

Lemma 4.3. Let m > 1 and A, B C A,,. For each C > 0, there is C' > 0 (depending only
on C and K ) such that if Ry, (w,v) > Cop,Vw € A,v € B, then

Ry (A, B) > C'oyp,.

Proof. 1t suffices to consider large m, so we can choose n > 0 independent of m such that
Om—n < %om for each m > n according to Proposition and Lemma
We introduce A’, B’ C A,, as “covers” of A, B by

Al ={w € Ay : Bpn(W)NA#0}, B ={v €Ay : Bpn(v)) N B # 0},
One can see that
Rm(Bm_n(w'),Bm_n(v')) > %O'm, vu' € A’V € B'.

In fact, one choose w € By,—p(w') N A and v € By, (v)) N B, and define f € I(A,,) such
that f(w) = 1, f(v) = 0 and D,,(f) = R,,}(w,v) < (Con)~t. Then by the choice of n, one
has flg,_,.(w) = 2 and fBo () < %. The estimate of Ry, (Bp—n(w'), Bm-n(v')) follows
immediately.

By the above estimate, for each pair w’ € A’,v" € B’, we can find g,y € [(A;,) such that
0< Gu' v’ <1 and

gw/,v’|8m,n(w’) = 17 gw’,v"Bm,n(v’) = O, Dm(gw’,v/) < 9(Cam)_1'
Define g € I[(A,,) by

g(w) = glea‘i{l Ullrgg/ g,w/ﬂ]/ (’LU), Vw S Am
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Then it is direct to check that g|g, .4y = 1 and g|g,_ gy = 0. Finally, noticing that
A C Byp—n(A), B C By—n(B') and Dy,(g) < Zw’eA’,v’eB’ Din(gu o) < (#A5)? - 9(Cop) 7L,
the lemma follows. O

Now, we state an important consequence of Lemma, [4.3] whose application Proposition [4.5
will be the key tool in Section [6]

Proposition 4.4. There is a function 1 : (0,00) — (0,00) (depending only on K ) such that
lin% n(c) = 0, and in addition, for each m > 1 and w,v € l(Ay,) satisfying Ry, (w,v) < cop,
c—

one can find a connected subset A D {w, v} of Ay, such that Ry, (w',v") < n(c)om,, V', v € A.

Proof. Instead of considering connected A directly, we consider cut sets that separate w,v.
More precisely, we say a set B separates w,v if A,, \ B is disconnected and w, v belongs to
different connected components of A,, \ B. Then, one can see that it suffices to take

n(c) = 4v(c) + 5e,
where
v(c) := sup {c’ : there exists m > 1 and w,v € Ay, such that R,(w,v) < copy,
and {w' € A, ¢ Ry (W', {w, v}) > o} separates w, v}

In fact, for any m > 1 and w,v € A,, satisfying R,,(w,v) < cop,, if we let B = {w’ S\ W
Ry (w',{w,v}) > (c+7(c))om}, by the definition of v(c), we can see that B doesn’t separate
w,v. Thus, we can find a connected component A of A,, \ B containing both w, v, and it is
not hard to see that R, (w',v') < 4(c+ y(c))om + coy, for any w',v’ € A.

It remains to show vy(c) — 0 as ¢ — 0. We will show that for each € > 0, there exists
d > 0 such that v(d) < e, which will finish the proof since 7 is a non-decreasing function. Let
m > 1 and w,v € Ay, and assume that B = {w' € Ay, : Rp(w', {w,v}) > €0y} seperates
w,v. Then, by Lemma there exists § depending only on ¢ (and K) such that

Rm(B, {w,v}) > dom.
Hence, we can find a function f € [(A,,) such that
flB =1, fliwey =0 and Dn(f) < (om) "

Let A, be the component of A, \ B which contains v, and define g € I[(A,,) as

no_ f(w’), if w' € Am\Am
g(w) = {1, it w € A,

Then, we have g(w) = 0, g(v) = 1 and D,,(g) < (doy,) 1. Hence,
Ry (w,v) > dop,.

Notice that the above argument holds for any m > 1 and w,v € A,, such that B = {w’ €
A Ry (w', {w,v}) > €0y, } seperates w,v, so we conclude that v(5) < e. O
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4.1. An application of Proposition In this subsection, we consider an application of
Proposition [£.4. We will use the symmetry of the polygon carpets.

Half-sides and related notations.
(1). We define Sy := SoU{i+1/2:i € Sp} equipped with a distance dg, as

ds, (i,7) == |i — j| A (No — |i — j|) for any 4,j € Si.
Denote distg, (I1,12) = min{dg, (i,j) : i € I,j € I} for I, I, C Si. In particular, write
distg, (i, I) = distg, ({i},) for short. For i € 3Z := {j/2 : j € Z}, we identify i with the
unique index i € S satisfying (i —1)/Ny € Z.
(2). For i € Sy, denote the midpoint of L; as g;11/o. We define L] = G;, G412 for i € Sy
with gny+1 = q1, the half-sides of A. Clearly, L; = L, U L;+1/2 for each 7 € S.
(3). For i € Sy, m > 0, we denote

8iAm:{U€Am:‘I/UKﬂLi7é®}

and

8Z(+1/2Am = {v € 9iA, : dist(V, K, q;) > dist(V, K, gi+1)}-

There exists mo > 1 such that for any m > my, i,7 € Sy with dg, (¢,7) > 1, agAmﬁaé-Am = (.

{@mnz{ve@Am;dmuWJg%)gdmuWJg%+oh

We also need the following notation about symmetry.

Symmetry on W.,.

For each I" € ¢, denote I'* the induced symmetry of I on W, i.e. I'* : W, — W, satisfying

\pr*(w)K =T'(V,K), YweW,.

In particular, denote F;j, I'; on W, induced by I'; ;,I'; respectively, for ¢ # j € Sp.

By the symmetry, we have R, (9jAm, OjAm) = Ry, (F*(@{Am),f‘*([)}/&m)) for any T' € ¢,
m > myg, and i,j € Sy.
Proposition 4.5. Let m > mg and i,j € Si with dg,(i,5) > 1. For each w € 9/A,, and
v E 8§Am, one can find a connected subset A C A, such that

weA=T"4), VIle¥9,
and

Ry (w',v") < 2Non(

M)U Vw/ UleA
o my ) )

where 1 is the same function introduced in Proposition [{.4)
In particular, Ry, (w,T*w) < 2N077(Rm(w, v)/am)am foranyT € 9.

Proof. According to Proposition we can find a connected A’ such that {w,v} C A" C A,
and R, (w',v") < n(Rm(w,v)/am om, V', v € A’. Tt suffices to let

A= 4.

ey
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FIGURE 5. An illustration of the connected sets A and A’ in A,,.

We only need to show that A is connected. Readers can find an illustration of the proof in
Figure 5, Without loss of generality, we assume i = j + dg, (¢, 7), and we let

b=li-3 (k=i
Iy = |i] +1, lb=1li+3]+1
Then % =1 and % :i—i-%, so that one can then check

A/ m le,ll (A/> # 0’ FZZ,lQ © le,ll (A/) m le,ll (A/) ?é ®7 FZQ, o le,ll = FT

Thus A" = A'UTy ; (A)UTT(A') is connected, and as a consequence A = J;cq, I'1(A") is
connected. O

l2

Remark. We need the full strength of Proposition for the development of Section [6]
while in Section [5| we only need the estimate Ry, (w,*w) < 2Non(Rpm(w, v) /oy )on, for any
I' € ¢4, which accutally can be derived by an easier way.

5. CONDITION (B) FOR PERFECT POLYGON CARPETS

In this section, we prove the condition (B) for perfect polygon carpets. Noticing that
px = p; for any ¢ € S in this case, we will use an adaptation of the pure analytic argument in
[7] developed for USC by two of the authors.

The proof takes two steps: first we prove a resistance estimate between half-sides using
Proposition [£.5] and Lemma then we construct bump functions by taking advantage of
the good symmetry of the perfect polygon carpets.

For w,v € Ay, n > 1, we say Uy, V,, are perfectly touching if ¥,,ANV, A =V, L; = V,L;
for some 1,5 € Sp.

For convenience of readers, we recall the basic facts about resistances below.

Basic Facts.
Let A be a partition, A C A connected and Ay, As C A. Denote

RA,A(A17A2) = (lnf{DA,A(f) : f’A1 =1, f’AQ =0,f¢€ l(A)})_l
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Write Rp a(w,v) := Ry, a({w}, {v}) for short. Then the following holds:
(1). for AC BC A, A1, Ay C A, we have RA’A(Al,Ag) > RA,B(Al,Ag);
(2). for AC A,w ~p v e A, we have Rp g(w,v) < 1.

Remark. Since p, = p; for all ¢ € S for perfect polygon carpets, we always have A,, = W,,
for all m > 0, and in addition, for any w € Wy, m > 0, w™! - B,,(w) coincides with W,,.
First, we consider the resistance between disjoint half-sides.

Lemma 5.1. There exists a constant C' > 0 and mo > 1 such that Ry, (w,v) > Coy, for any
m > mg, w € Ay, v € 0L\, with i € Sy and dg,(1,i) > 1.

Proof. Notice that d,,, = max, ;cp,, Rm(¢,¢) for any m > 1.

It suffices to consider m large enough. By Proposition and Lemma we can choose
n > 0 independent of m so that R,,(¢,t) < %,W, (' € Ay,. By the basic fact (1) above,
we then have

0
Ryim(T-1,7+0) < nl—m, V7 € Ay, Vi, € Ay (5.1)
In addition, by Proposition [3.2, when m is large enough, we always have #A,, < "*m.
Now for w € 1A, v € 8Z’Am, we fix a pair ¢, & € Apym. One can find a path 7(© ),T(l), o7&

with L < #A, such that ¥_u),¥_u-1) are perfectly touching for each 1 < k£ < L, and

L € Bp(t1), k € B(r(F)). Hence, we can pick a sequence :U),0 < j < 2L + 1, such that
L0 = N+ — o and

{@R) R 7 (R) AT (w) : T € 93, Vi<k<L-1, 5o
L(2h=1) mEm (28). V1<k<L. (52)

Then, by Proposition and by the basic fact (1) above, we have
Ry (128), (2D < 2N0n(7Rm(w’”)) om, V1<k<L-1, (5.3)

m
where 7 is the same function in Proposition .4
Hence, combining (5.1)-(5.3]), by the basic fact (2), we can see

2L

N Ry (w,v 1
Rn—l—m(La 5) < Z Rn+m(L(])a LJ+1) < #A, - 2N077(M) “Om T+ §5n+m + #Ay.
=0 "
By taking the supreme over ¢, k, and noticing that by Proposition [3.2and Lemmal[4.2} 6,4, >

Cioy, for some Cp > 0, we see that U(M) > (5 for some C5 > 0 independent of m and

the choice of w,v. The lemma then follows immediately since n(c) — 0 as ¢ — 0. O

Corollary 5.2. There exists C > 0 and mqg > 1 such that for any m > mg,

2Np—1
R (01 Am U, )y, | O johm) = Com.
k=4

Proof. By Lemma there is C1 > 0 so that R, (w,v) > Cioyy, for any w € 91A,, U 81/2A
and v € UkNO ! o, /2A . Hence, by Lemma the corollary holds. O
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Theorem 5.3. The condition (B) holds for perfect polygon carpets.
Proof. For each m > my, define f,,1 € {(A;;,) as the unique function satisfying

Fntlogamuoy ,am = 1 fm,lfuif:vgfla,;mzxm =0

and
2Np—1

Din(fmi) = B (91 8m U o, | O johm), (5.4)
k=4

where my is the same number in Corollary Define fr,; = fm,10 (lel)_l for each i € Sp.

Next, we fix n > 1 and w € A,,. For each i € Sy, we define gy m,i € {(Aptm) by gluing
together scaled copies of f, j so that gy m.; is positive only in a neighbourhood of ¥,,q;. More
precisely, for each v € A,,,v’ € A,,,, we define

/ 07 if \I/in ¢ ‘Ilv-A
gw,m,i(v v ) = / . ..
fm, (W), if thereis j € Sp s.t. Wyq = Wyg;.
Noticing that there are at most 6 many v € A,, such that ¥,,q; € ¥, A, we can easily see that
for some C7 > 0,
Dn+m(gw,m,i) < 6Dm(fm,l) < 010';1,17 vYm > my,
where the second inequality is due to (|5.4) and Corollary
Finally, let

Juwm = (SUP gw,m,i) \ 1Bm(w)¢
1€So

where 1p, () € [(An+m) is the indicator function of By, (w). Then one can check

Jwm B w) =1, gw’m’Bm(NQC(w)) =0
Drtm(gwm) < Dner( sup gw,mvi) = NOC1U77_11~

€S0
Hence
Ry (B (w), By (N5 (w))) > Ny 'Oy Lo, Vm > my.
Since the argument works for any n > 1 and w € W, the condition (B) holds. O

6. HALF-SIDE RESISTANCE ESTIMATES FOR BORDERED POLYGON CARPETS

The existence problem of standard self-similar Dirichlet forms on general polygon carpets
is much more difficult and interesting, since we have seen evidences that the result depends
on the geometry of the fractal. In particular, inspired by Sabot’s work on p.c.f. fractals [20],
two of authors [8] found a Sierpinski carpet like fractal without a standard form, a bordered
square carpet whose opposite sides are strongly connected with large cells in the middle, but
the four corner vertices are loosely connected to the center, see Figure [6]

In this section, we introduce a class of bordered polygon carpets where we can obtain some
resistance estimates. Notice that a bordered polygon carpet must have Ny = 3 or 4, so we
are dealing with triangle carpets and square carpets. To prove condition (B), we need some
technique and an analogous extension theorem from [7], and require some extra conditions
about the geometry. We hope our work will inspire further investigation.
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FIGURE 6. A bordered square carpet without standard self-similar Dirichlet form.

For each i € Sy, we specify V; to be the contracting similarity which fizes the vertex q;.

We introduce the following loop intersection condition for the development of this section.
Specifically, we will focus on a class of fractals satisfying the condition:

(LI). Say a bordered polygon carpet satisfies the loop intersection condition, if ANV A # ()
for any path connected closed ¢-symmetric A C K such that AN L, # 0,Vi € S;.

Theorem 6.1. Let K be a bordered polygon carpet and assume (LI) holds. Then, there exist
C >0 and mg > 1 such that Ry, (w,v) > Cop, for any m > mo, w € 01 Ay, v € O\, with
i €S and dg,(1,7) > 1.

6.1. Examples of bordered polygon carpets with (LI). Before proving Theorem
let’s first see some classes of bordered polygon carpets that satisfy (LI).

In particular, we consider the following conditions (H), (C-3) and (C-4) imposed on
bordered polygon carpets. Here 3,4 stands for the different cases Ng = 3 or Ny = 4. The
condition (H) is called the hollow condition, while (C-3), (C-4) indicate how ¥, K, i € S
is connected to the outside. See the left two pictures in Figure [I| for two carpets satisfying
these conditions.

(H). For any i € S, 0AN Y, A # (). In addition, for any i # j € S\ So, ¥;, ANV, A is either
empty or a line segment.

(C-4). Ny =4, and (\IllK) N CI(K \ V1K) C \Ill(LIQ U L/7/2).
(C-S). No =3, and (\IllK) N CI(K \ \I/lK) = {\IJ1QQ, \I/1q3}.

Proposition 6.2. (a). If a bordered polygon carpet K satisfies conditions (H) and (C-4),
it satisfies (LI).
(b). If a bordered polygon carpet K satisfies conditions (H) and (C-3), it satisfies (LI).

Proof. Let A be a path connected ¢-symmetric closed subset of K such that ANL, # (,Vi €
S1. If ¢¢ € A, then there is nothing to prove. Hence in the following, we always assume

Q1¢A.

Observation 1. If z1, zo belong to a same connected component of K\ A, then there is a simple
curve 7y : [0,1] = K \ A so that v(0) = z1,v(1) = 2.
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Let z € K\ A, and let C, = {#/ € K\ A : thereis a simple curve v : [0,1] — K\
A s.t. v(0) = z,7(1) = 2’}. Then it is not hard to see that C, is open in K, and C. is closed
in K\ A. Hence C. is a connected component of K \ A. Observation 1 follows immediately.

Observation 2. If z1, 23 belong to a same connected component of K\ (U, ViA), then there

is a simple curve v : [0,1] = K\ (U;cg, WiA) so that v(0) = z1,7(1) = 22.
The proof of Observation 2 is exactly the same as Observation 1.

Observation 3. Let i,j € Sy with dg, (i,j) > 1. Then for any z1 € Li\ A and zo € L\ A,
21, 29 belong to different connected components of K \ A.

We prove Observation 3 by contradiction. Assume z, 2’ belong to a same component of
K \ A, then one find a simple curve v in K \ A connecting z, 2’ by Observation 1. One can
extend ~y to be a simple closed curve 7 by gluing it with 4/ : [0, 1] — cI(R?\ A) that connects
z,7". Assume i < j, then one can see that (U;<; L)) N A and (Ug,\; ;7 L) N A belong to

different components of R? \ ([0, 1]). A contradiction to the fact that A is connected.

(a). We prove (a) by contradiction. Assume AN(U;cg, ¥iA) = 0. Noticing that | J;cq, Wil
is not connected, A contains some point z € K \ (U;cg, ViK). Let 2’ = T'1(2), then since A
is path connected, by Observation 2, we can find a path v : [0,1] = K \ (U;cq. ¥:A) such
that v(0) = z, v(1) = 2.

Let X be the unique connected component of K\ (J;cg, ¥iK containing z. Then by letting

tp =sup{0 <t < 1l:9(t) € X}, tp=inf{t >t () € K\ (| J WK)},
IS

i€So

one can see Y([t1,t2]) C U;K for some i € Sy by (H), and by (C-4), ¥; ! oy connects Li

and L] +5/2° Hence, 7 intersects ¥; A by using Observation 3. A contradiction.
(b) can be proved with a same argument as (a). O

6.2. From (LI) to half-side resistance estimates. We can prove a same result as Lemma
for bordered polygon carpets satisfying (LI).

Definition 6.3. Let m >0 and A C K.
(a). We write
In(A) ={w € Ay, : Uy K N A # 0}

For convenience, we write Zy,x = I,,({x}) for z € K.
(b). For w € W,, we write

In(A,w) ={vel,(A): ¥V, K C ¥V, K}.
Lemma 6.4. For any n > 1, there exists C(n) > 0 such that
R, (Im(\I/wx,w),Im(\I/wy,w)) <C(n) R (Im:c,Imy),
for any m > n, w € W, satisfying py, > pt and z,y € K.
Proof. Tt suffices to consider the case that R,, (Im(\Ilwx,w),Im(\I/wy,w)) > 0. Choose f €

[(Ay,) so that f|Im(\Ifwa:,w) =0, f|Im(\Ilwy,w) =1land D,,(f) = R;ll (Im(\llwx,w),Im(\Iiwy,w)).
Denote Cpp(w) = {v:w-v € Ay, }. Define g € [(A;,) by

g(t) = f(w-v), for each ¢ € Ay, such that ¥, K C U, K with v € Cp,(w).
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Clearly g¢|z,,= = 0, g|z,,, = 1. In addition, for each v € C,,(w), noticing that p, <
P pnt, by a volume calculation, the collection {+ € A,, : ¥,K C W,K} consists of at
most (pMpgt/prt)dH < py (nt+1)dz many elements. Thus by the construction of g, there
exists C(n) > 0 depending only n such that Dp,(g9) < C(n)D,,(f). The lemma follows

immediately. O

Next, we estimate the resistances between half-sides. We will take two steps. In the
first step, we use a similar argument as in [7, Lemma 4.11] on USC to show a lower bound
estimate of resistances between boundary vertices. This step holds for general bordered
polygon carpets, which also motivates the construction of the counter-example considered in
[8]. In the second step, we will apply (LI) and Proposition

Lemma 6.5. Let K be a bordered polygon carpet. Then there exists C > 0 such that
Rm(Im%ImQQ) > Cop, vm > 1.

Proof. By Lemma noticing that 0,, = max, xen,, Bm(t, k), it is easy to see that there
exist some ¢,k € A, so that R, (t,k) > Cioy,, for some C; > 0 independent of m. It
suffices to consider m large enough. By Proposition [3.2] and Lemma [£.2) we can choose n > 0
independent of m so that d,,—, < Cioy,/4. In addition, by Proposition when m is large
enough, we always have o, > 1.

One can find a path 7O 7 ... (L) with L < #A,, such that 7 2 7¢=1 for each
1<k<L,and: e Bm(T(O)), K € Bm(T(L)). Hence, we can pick a sequence 1), 0 < j < 2L+1,
such that (0 =, ;@N+1) — . and

{R) CRHDY @ B (), YO< k<L, (6.1
L(2k=1) M (2K) Vi<k<L. '
Then by a same argument in the proof of Lemma one can find 1 < k < L such that
Ciom/2 — #A
(2k) ,(2k+1)y ~ Z19m no
Ry (1259 ) > Y. > Coom,

where Cy > 0 is a constant independent of large enough m. Since, {t(2%), kD) < B,, (),
and noticing that +(2%) ,(2*+1) are on the boundary of B,_,(7¥)), one can apply Lemma
to find w, v € OA,, so that

Rm(wa U) > O30,

for some C'3 > (0 independent of large enough m.

Next, by the triangle inequality, we can choose w',v" from {w,v} U J;
Ry, (w',v") > C304,/3 and both w',v" € 9;A,, for some i € Sy.

Finally, we choose n' large enough (independent of m) so that d,,_,» < C30y,/12. Then,
by a chaining argument as before (arranging the chain connecting w’ and v’ along 9;A,,), we
can find 7 € A, so that

5o Imgj, so that

Ry, (Im(\Iqui7 7-)7 Im(\Iqui+17 7_)) > C’40-m7

for some Cy > 0 independent of large enough m. The lemma then follows by applying Lemma
[6.4] again. O
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Now we prove the main theorem of this section. For convenience of the readers, we provide
a figure (Figure [7)) sketching the idea of the proof.

=
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7 ~-_
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B
.
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\ -
' < ot
o A -
D

FIGURE 7. An illustration of the set B in the proof of Theorem

Proof of Theorem [6.1l Take w € 9] Ay, v € 0/Ay, be as stated in the theorem. By Proposition
there exists a @-symmetric A such that w € A C A, and R, (w',v") < n(%)am, V', v e
A, where 7 is the same function stated in Proposition Let A = UwE i YwK. Noticing
that Z,,,(A) = {w € Ay, : w € A or w < A}. We have

R(w,v)

Om

Ry (w',0") < n( Jom + 2, vuw', v € T, (A). (6.2)

By Lemma R,, (Imql,Imqg) > (10, for some Cq > 0 independent of m. We then
choose n large enough (independent of large m) so that d,,—p < Croy,/4. Let n’ > 0 be the
number determined by (1)” € A, where we write (1)” = 111---1 (1 repeats n’ times). By
the (LI) condition, we can see that

TL,

B:(O\I/’fA)U(U\IJ’g’A)

k=0
is connected. Then by (6.2)), and by using Lemma to each 1% and 2% in Wi, 0 < k < 7/,
we can see that there exists Co > 0 depending only on n so that

R(w,v)

Ry (w',v") < Cy - (17( Jom + 2) +2n/, Vuw',v' € I,,(B).

Hence, by picking w’ € Z,,,(¥,,v A) and v’ € Z,, (¥, A), we get
Clam S Rm (qu17Imq2) S Rm(ImQL wl) + Rm(w/7 U,) + Rm(’U,, Imq2)

<Oy - (U(M

m

C
)Jm +2) +2n' + 1;7”.
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Noticing that o, > 1 for large m, we have n(MWZU)) > (3 for some C3 > 0 independent of

m and the choice of w,v. So the theorem follows since n(c) — 0 as ¢ — 0. O

7. CONDITION (B) FOR SOME HOLLOW BORDERED POLYGON CARPETS

In this section, we will prove condition (B) for all bordered polygon carpets satisfying (H)
and (C-4), or satisfying (H) and (C-3). The main idea will be defining functions on B,,(w)
with good boundary values, which has been developed for USC by two of the authors in the
previous paper [7].

Theorem 7.1. The condition (B) holds for bordered polygon carpets satisfying (H) and
(C-4), or satisfying (H) and (C-3).

We divide the section into two parts. We will provide the main proof in the first part,
except a fundamental lemma which will be proved in the second part.

7.1. Proof of (B) by an extension argument. The key step of the proof of Theorem [7.1]
is to construct a function on B,,(w) that has linear boundary values. First, we introduce
some notations.

Notations.

(1). We write 7 <7/ or equivalently 7/ > 7 if 7 € 7/ - W

(2). Let A C W, be a partition, i.e. |J,cp YK = K and pu(¥,,K NV, K) = 0 for any
w#veEA.

(2-1). We write

aiA:{TEA:\I/TKﬂLi}#@, Vi € S,
ON={reAN: U, KNL}#0, Vies,

and OA = Uz‘eSo 0;A. For convenience, for i € Sy, also denote A = w, where w € A and
gi € VK. In addition, we write ;A = {7’ € 0A \IJT([ql,qz]) C [qqu]} and OA =
Uies, I'7 (@1A), noting that only when Np = 3, it may happen that 0;A C 01 A.

(2-2). Write ©1(A) = {v € W, : there exists 7 € 0; A such that 7 € v- (W, \ Wy)}. Write
#0O1(A) =M.

(3). Write ¢, = Nio >_jes, 4 the center of A.

To construct functions with nice boundary values, we need the following two lemmas.
Lemma 7.2. There exist 0 < a < 1 and C > 0 such that

Ontm < Cop, - pi "%, VYm,n > 1.

Proof. Let Vo = {qi}ics, and define D(g) = ;g (9(qi) — g(qi+1))2,Vg € [(Vp). For any
partition A, let Vi = J,cp YwVo and denote Dp(g) = Y cn P D(g 0 ¥y), Vg € [(V)) as a
discrete energy form on [(V}y). Abbreviate Vi, , Dy, to Vi, Dy, for n > 0.
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Note that for A # Ag, by using the knowledge of electrical networks, for each g € I(V})
and w € 9;A, we have Zieso (g(\I/wqi) — g(\I/wqu))2 > %(g(\llwa) — g(\I/qu))2, and thus

2 _
'06 A Z V35,041) g(q’éjA%)) + E P D(go W)
5=12 wed, A\ (1 AUBA)

_ 2 4 _ 2
ZpéllA (g(qléjAQI) - g(\I/ng(p)) + g(l - 2p51A) 1(g(\I/(§lAq2) — g(\I/52Aq1))
j=1,2
3 1 _ 2
Z(Z + 5051,\) Yglq) — 9(q))7,
which gives Da(g) > (3 + %PglA)_lD(QWO) by symmetry. Choose my large enough so that
w™t - By, (w) is finer than Wy for any w € W*, then for any n > 0, g € I(Vy4m,), We have

B 301 B 8
Drimy(9) = Y Pu'Du1.5, ()90 V) = (5 + =p5,w,) " Dnlglv,) = =Dnlglv,).
weEA ’ 4 2 7

Then by induction, for any n > 1, g € [(V},),
8. n 8 n 2
Da(9) Z (Z)™ D(glve) Z (Z)™ (9(a1) = 9(g2))" (7.1)

Next, for n,m > 1, let us consider a function f € [(Ap+m) that takes boundary values
f(O1Mn1m) =1, f(O2Apim) = 0, and

Dn+m(f) — Rn+m(5lAn+m>52An+m) ! = O'n_'l_m, (72)

where the estimate is due to Ler~nma Lemma and the fact that d,, 4, = max{R,4m (¢, k) :

L,k € Ay }. We then write f = 7,1 o P, o Tpemf € [(Ay), and define a function g € I(V},)
by

g@)=(#{we A,z e \Ile})fl - Z f(w))

WEAp, eV, K
Then, combining (|7.1)) and ([7.2)), one can easily check that

O-n-ﬁ-mADn-i-m(f)ZO-;zl Z D(go\IJ )Ap* mlD ( ) ( )mopf 7;17
wEAy

and thus the lemma follows. O

Lemma 7.3. Let A C W, be a non-trivial partition, i.e. A # {0}, and assume there isn >0
so that
prt<pr<pl,  VTeEA
(a). There exists a function hy € I(A) such that Dy(hp) < Co, b where C > 0 is indepen-
dent of A, and for any j € 0,5,

ha(j - o)

_ 7 N +
075G 1A) T Lz(qjj-al/g(j—l-/\)(ql2q2)>’

Pl - )gy1.) = Li¥50 1) (M5%))
and
h = Li(y (B BY)  hplgs = Li(w, , (D02
A|81/2 - Z( BlA(T))7 AlGLA = Z( By 5 )7
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where Li is the linear function on q, gz such that Li(q1) =0 and Li(g2) = 1.
(b). There exists a function by € I(A) so that Dy (k) < C'o,;t where C' > 0 is a constant
independent of A, and

h/A|j~j*1-A =0, Vje 815,
h/A|8§-A = 1’ VJ € SladiStsl(ja {133/2}) > L

The proof of Lemma [7.3] will be postponed to the next subsection. Using Lemma and
Lemma we can construct functions with good boundary values.

Proposition 7.4. Let li be a linear function on R2. Also let w € A, and m > 1. Then one
can find f € I(A) where A = w™! - By, (w) such that

Da(f) < C’|Vli(0)|207;1
for some C > 0 independent of li,w, m, and
f(T) =1l (\II’T(qC))y V1 € QA

Proof. Let’s first construct a function g € I(A) such that Dy(g) < Co,,! for some C > 0
independent of w, m,
, @+ a2
glor A = Ll(‘l’élA(T))v

1/2

. q1+ @
gloga = LZ(\II((;QA(T))’
and

g(r) = Li(w (& ’2“12)), Vr € 9,A,

where Li is the linear function on g, g2 such that Li(q1) = 0 and Li(g2) = 1.
We will start with hp € I(A) (defined in Lemma [7.3)), and gradually improve the boundary

value:

Algorithm. 1. Let A1 =0, and g1 = hy.
2. For k > 2, if Ax_1 # O1(A), we pick w € ©1(A) \ Ax_1 such that there is v’ € Ap_;
satisfying w <w’. Let Ay = Ap_; U{w},We define g} € l[(w™'- A) by (see Figure

91(7) = ge—1(w - 7) - hyyor ( (1) + (Li(Voq1) + puhy-1.4(T)) - (1= By 4 (7))
for any 7 € w™! - A, and define g € I(A) by

gr—1(7), ifrdw-wl-A,
gulr) = {9 0) T
g(w™r), ifrew-wt-A

3. If Ay = ©1(A), we stop the algorithm and let g = g.

Clearly, the algorithm will stop when k¥ = M and g = gp;. One can then check that ¢
satisfies the desired boundary value. Furthermore, by the construction of Lemma (b),
for any 2 < k < M, by letting w, w’, gx—1, g, gr be the same as in Step 2, we always have
that gx—1(w - @) and gi(w - @) take the same boundary value at U;cq,\ (1 Oi(w~t-A), and in
addition,

Gh—1(w - 7) = Li(Vyq1) 4 purhyr—1.4 (w0 ™ - w - 7), Vrew A
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FIGURE 8. An illustration of the set w - w=1 - A.

So one can see for some Cy,Cy > 0,

|DA(gk) — Dalgr—1)| = |Du-1.4 (gk(w - @) = Dy1.4 (gr—1(w - o))
= Dy-1.4(9) + Dy1.p (puwr b1 4 (W' ™" - w - @)

2 1 2—a -1
< Clpwamf[logpw/logp*] < Copy © O

where the first inequality is due to Lemmal7.3/and the well-known estimate £(fg) < 2€(f)]g]|%+
28(9) |1 fII%, for any Dirichlet form (£, F) and f,g € L N F, and the last inequality follows
from Lemma [7.2] with the same constant «. Hence, by taking the sum of the above estimate
over 1 <k < M (letting go = 0), we have

Dalg) < Y. Coply ™0y
weB1 (A)

o0 o
<G (Do Y. pu ) <G Y T Ty < Oyl
k=0 we(9, S)* k=0 we (9, 5)k
for some constant C' > 0, where p* = max;cg p;.

Next, we construct two basis functions ¢, ¢” € I(A), and f can be constructed easily as
the linear combination of symmetric analogues of g”.

Let ¢’ € I(A) be defined by

g'(r) = : !

o (g(T) = Zps ), VT EA,
S GUREN

so that 9"6;/2/\ =0,9'loga = 1.
Ny =4 case: Let g1 € [(A) be defined by

(r) = 9'(7), if dist(U, K, L1) < dist(¥, K, L),
W=\ g (0gar), it dist(U K, Ly) > dist(¥, K, Ls).

Let ¢" = (g1 017 ) A(g1oT).
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Ny = 3 case: Let ¢” € [(A) be defined by

vy = {19 if dist(U, K, L) < dist(U, K, Ls),
T =
g —g(T547),  if dist(¥, K, L) > dist(V, K, Lg).

Finally, we let f = li(\IlélA(qc)) + 2 jes (Li(w F*(BIA)( qc)) — li(¥ BlA(qC))) -g"oI‘;f_l, One

can check f has the desired boundary values, and 1ts energy estimate follows from the energy
estimate of g. O

Corollary 7.5. For each x = (x1,22) € R? and r > 0, let ¢z be a bump function defined by

Gar(y) = (1 =17 yr — 21| = r7Mgo —22) VO, Vy = (y1,42) € R®.
Also let w € A, and m > 1. Then one can find f € [(By,(w)) such that

Dyjusfm B () (f) < COL )20

for some C' > 0 independent of x,r,w,m, and
f(7) = ¢ur (\IJT(qc)), V1 ew -Q(w_1 -Bm(w)).

Proof. Let g1+ (y) = 7Yy — x;) and g, _(y) = r~Y(z; — y) for I = 1,2. One applies
Proposition to construct fi 1, fi— € l(uﬁ1 . Bm(w)),l = 1,2 such that

D15, () (fir) < C1(p)N /)20t Doty (i) < Ca(pl® /)20

for some C7 > 0 independent of x,r, w, m, and

fl,Jr(T) =g+ (\II’UJ'T(qC))7 fl,*(7-> =4gi,— (\IIIU'T<qC))7 VT € Q(wil : Bm(w))

Finally, we let f' = (1 — fi+ V fi— — fo+ V fo,—) V0, and then define f € Z(Bm(w)) by
flw-7)= f(r),vr € w™l - By(w). Tt is directly to check that this function f satisfies the
desired requirement of the corollary. O

Proof of Theorem[71,. Let n,m > 1and w € Ay, we need to estimate Ry, 1, (B (w), By (N5 (w))).

1¢o where ¢g is the same constant in condition (A3).

Assume m large enough so that p* <
Let kg = [( co)” ] + 1 be an integer and choose r = cypl.

For each pair j € Sp,0 <7 < ko, denote p; j = \pw((ko_i)g#), By Corollary there
is fij € l(Ap4+m) and constant C1 > 0 independent of n,m,w such that for any v € A,, and
T €v- v Bn(v)), fij(1) = bpi;r(Vrae) and Dy s, () (fij) < Cioy,", where ¢y, r is

the same function in Corollary Denote g; = Z?io fi,j for j € Sp.
Claim. For each j € Sp, it holds that gj|s,, (ng(w)) = 0, gj|w,(p;filglw71.3m(w)) > %, and

Dyim(g;) < Caopt for some constant Cy > 0 independent of n,m,w.
In fact, g]\ Bm(Ng(w)) = 0 is an immediate consequence of (A3). For each 7 € w -
101 (W™ B (w)), there exists 0 < i < ko such that |y —x1| +y2 — 2| < PP kgt py <

COn 1

G oL, where (x1,72) = pij, (y1,42) = ¥Yrq.. Thus f; (1) > , and gj(1) > 5. As for the
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energy estimate, it suffices to estimate the energy of f; ; for each fixed 4,7, first we have
> ver, Prtm, B (w)(fig) < Cr#Na(w)oy,! := C30,,'; second we have

2 — _
> > (fig(m1) = fij(12))" < Capl™ - (r™ T2 < Csplf
V1FV2E€AR T1EBm (v1),72EBm (v2)
7_1ni—)m7_2

for some constant Cy, Cs > 0, which together gives that D, (fi ;) < C30,14+Cs5p™ < Coot
for some Cg > 0 for large m by Lemma [7.2l Thus the claim follows.
Finally, taking h = 2", g;, by the claim, it holds that h|s,, (Vg (w) = 0, 2lwa(w-1-5(w)) =

1, and Dy ym(h) < Co,! for some C' > 0 independent of n,m,w. This gives that R,, =
inf { Ry (B (w), Brn(N§(w))),n > 1,w € A} > Ctoy, and the theorem follows. O

7.2. Proof of Lemma We prove Lemma [7.3] for Ny = 4 and Ny = 3 cases separately.
In particular, Ng = 4 is an easy case, while we need to deal with a few possibilities when we
deal with Ny = 3 case.

The Ny = 4 case.

Proof of Lemma[7.3 for Ng = 4. It suffices to prove the lemma for A = A,, for n > 1. In
fact, for a general partition A such that for some n > 0, p, € (p?+2,p7?], V7 € A, one only
needs to consider A, ;o which is finer than A: let h be the function to be defined (for (a)
or (b)) on A,i2; one can find h on A such that h satisfies the desired boundary values and
min {h(w) : w € (7- Wi) N Apya} < h(r) < max {h(w) : w € (7-W,) N Apso} for any rest
T € A; it is easy to check that h satisfies the desired energy estimate by suitably adjusting
the constant C.

(a). By a same reason as in the above arguments and by Theorem (6.1} Proposition
and Lemma for any partition A such that p, € (p2*! p?~1] for each 7 € A, one can find
gn, g, gx € [(A) and constant C; > 0 independent of A, n such that 0 < g, gy, 9x <1 and

gl ,au@in) = 0 galapa =1, Dalga) < Cio, ",

g;\‘&xl\ =0, g;\‘azl\ =1, 'DA(Q;\) < Cla';la

galer, A =0, gal@ayu@an) = 1, Palgh) < Cioy,

1/2

Let g = g) o 'y (which will be used in part (b)). We write Lij; = Li(¥; 5 ;1. An)(‘h‘;ﬂ))
for j € 01,5 and k = 1,2 for short. One then define hy, € I(A,) as for any j € S,7 € j71-A,,

(Lipy + (Livg — Lity) - giova, (7),  ifj=1,
Lijq + (Lijo — Lijq) - gé'*l-An(T)’ ifj €S\ 1,2,
ha, (- 7) = LZ:2,1 + (Lizg — Liza) - g1, (7). lfj _o
Liq 1, if j € 0,5\ {1,4},
K22, if j € 825\ {2,3},
ha, o745 - 7), if j € 058.

It is directly to check that hy, satisfies the desired energy estimate and boundary conditions.
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(b). Let Li’ be a linear function on [¥q4, ¥4q1] such that Li'(Uy1q4) = 0, Li'(Vyqr) = 2.
Define hy € I(A,) as follows, where j € S,7 € j1 - Ay,

0, if j € 015,
" . 25 lfj E 8387
Py, (G-m) =19, ) ) . L
Li'(Wjq1) + (Li'(Vjqa) — Li'(P5q1))g(r),  if j € S\ {1,4},
X, oT19( - 7), if j € 0,S.
Then, we define b}y = min{1,h} } € l(A,), which is the desired function. O

The Ny = 3 case.

To make things clear, we assume ¢q; = (0,0),q2 = (1,0),q3 = (1/2,/3/2) be the three
vertices of a triangle A. So L; is the bottom boundary, Lo is the right boundary and Lj is
the left boundary. As before, for i € Sy = {1,2, 3}, we assume ¢; is the fixed point of ¥; by
ordering ¥;, j € S suitably.

As in the proof for Ny = 4 case, we only need to take care of A,, (in the following lemmas).
Then, for a general partition A such that for some n > 0, p, € (p?*2,p2], V7 € A, a same

conclusion holds with the constant C' slightly modified.

Lemma 7.6. Let ¢ = (1 —t)q1 + tqs for some 0 <t <1 and let L' = q1,q be a sub-segment
of Ly. Then there exists a constant C1 > 0, such that for each n > 1, one can find f € l(A;,)
such that f(w) =1 for any w € {w" € Ay, : Uy KN L' # 0}, and f(w) =0 for any w € 92\,
and D, (f) < Co;t.

Proof. Let’s fix m > 1 and let ¢,, = 1 — p5'. In the following, for n > m, we construct a
function f, € I(A,) that satisfies the boundary values and the energy estimate. The general
case will then follow immediately. Before the construction, we remark that the constant C
will depend on ¢, but will be independent of n.

For n > m and 0 <1 < m, we let

Ql,n = U w-w_l 'An-
we(3)-0,8

Then by Theorem m, Proposition and Lemma there is a function ¢, € [(Q;) so
that

Ginloshnn@in =1 Ginlozrnn@i, =0, Dno, (9in) < Croy!

for some C7 > 0 independent of n.
We also let P, = (3)™ - (3)™™ - Ay, for n > m, where we write (3)" = 333---3 (3 repeats
m times). Then by the same reason as above, there is a function h,, € [(P,) so that

R ((3)™ -1 ((3) ™™ An)) =1,  hnlopannr, =0, Dyp,(hy) < Coopt

for some Cy > 0 independent of n.
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We glue f,,l < m and h, to get the desired function f,, € I(A,): for any w € A,, let

gn(w), fweQ,0<1<m,

hn(w), ifwe P,

0, otherwise and dist(qa, ¥, K) < dist(q1, ¥, K),
1, otherwise and dist(q1, ¥, K) < dist(qa, Uiy K).

f(w) =

One can then check that f,, satisfies the desired boundary values and the energy estimate. [

In the following, for each i € 915\ 9,5, we let j_1(i) # 71(i) € 9,5, and j_o(i) #
Jo(i) € (WS '\ 9;5) \ {i} (if exist) such that j_o(i) ~g j_1(i) ~g i ~g j1(i) ~g j2(i), and
U, i)K, ¥, K are on the left of W; K. For short, we write jo(i) = 7, and for each n > 1,

LYy = ui) - v Gn(i) ™ An), L5 = (@) - 8} (ju(i) ™" - An) for L € {0, 41,42} and I € Si.

Lemma 7.7. There exists a constant C > 0 such that for eachn > 1,4 € 9;5\0,5, there is a
function f; € I(Ay) supported on U= 5 11 G1(8)-51(0) 7t Ay, such that fi|L,(7ll)2 = fi|L/<n)/ =1
-1, 1,7/2

and D (f;) < C -0,

Proof. We only focus on the case that j_o(i) # ja(i) exist. In fact, the lemma is easier to
prove if one of them does not exist (or both do not exist). For short, we drop the supscript

(n) of Ll(7;,) and L/(ﬁ). Our goal is to construct g; : ;g1 2 Ji(7) 1))t~ A, — [0, 1] such that

9ilLosur, ,,, =1 and gilr,, =0,

with estimate D —1., < Cyo,, ! for some Cy > 0 independent of n,i. We also

”7Ul=0,172jl(i)'jl(i)
construct, by a same argument, g/ : Ul:07_17_2 G1(8) - 51(i) " - Ay, — [0, 1] such that

/ /
gi’LO,ZULI,lz =1 a'nd gi’L72,2 = 0

Then, one can define the desired f; € [(A;,,) by taking values of g; or g; on U o 1 1951(7) -
J1(i))~t - Ay, and taking the minimum of g;, ¢! oni-i~!- A, and 0 outside.

For the construction of g;, we need to consider all the possibilities based on the sizes of the
cells. We only explain why the construction is feasible. Readers can fulfill the details easily.
Case 1. p; < pj,(;)- In this case, we apply Lemma to construct g; on j1(4) - j1 (i)~ - A,
and extend g; such that g; = L oni-i~!-A, and g; = 0 on j2(i) - jo(i) "' - A, with desired
energy estimate.

Case 2. p; = pj,(s)- In this case, we apply Theorem [6.1/and symmetry to (J;_q ; ji(?) ()t
A,,. In particular, we can enable g; = 0 on j2(i) - jo(i) ™! - A,.

Case 3. pi > pj (i) = Pji(2)- This is similar to Case 2. This time, we apply Theorem and
symmetry to Ul:1,2 51(3) - 51(1) ' - Ap,. In particular, we can enable g; = 1 on i-i~1 - A,.
Case 4. pi > pj (i) > Pjy(i)- Just as in Case 1, we apply Lemma [7.6[to ji (i) @)t A, O
Proof of Lemma[7.3 for Ny = 3. Still as before, we only need to consider A,, n > 1. The

constructions of hy, and hkn are essentially same as that of the Ny = 4 case. The only
difference is that we need to use Lemma|[7.7)to adjust functions on upside-down triangles. [J
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APPENDIX A. PROOF OF PROPOSITION

In this appendix, we prove Proposition 2.7} First, we present some geometric properties of
the regular polygon carpets.

Lemma A.1. There exists ¢ > 0 such that for any n > m >0 and v € Ay,
min {dist(V, K, ¥, L1) > 0:w € By_m(v)} > cpl, (A.1)
where min () = +o0.

Proof. By the symmetry condition, there is at least one w € Ag such that ¥, K N L; = 0,
which gives ¢; := min {dist(¥,,K,L1) > 0:w € Ay} € (0,00). When Ny is odd, for k € Sp,
we define £ to be the straight line passing through ¢, parallel to the side L; opposite to g.
Let co = min{dist(V,K,¢1) > 0:w € Ay} € (0,00). Then take ¢y = c1 A co.

First, we consider the case m = 0. By the definition of ¢1, we have min{dist(¥,, K, L) >
0:w € A1} > c1 > cops. So holds for n = 1. Assume holds for n. By
induction, we turn to prove forn+1. Let w € Apyq and Y, K N Ly = (. Pick 7 € A,
so that w € Bi(7), we only need to consider the case that W, K N L; # (). By Lemma
Ao is finer than 771 - Bi(7), so we can choose w’ € As so that ¥, K C ¥,K and
dist(V, K, L) = dist(¥,, K, L1). There are two possible cases: 1. W, K N Ly = ¥, L for
some k € Sy, then from the definition of ¢1, we have dist(V,, K, L1) = prdist(V, K, L) >
c1pt > copt; 2. W K N Ly = V,q for some k € Sy, then from the definition of ¢y, we
still have dist(V,, K, L1) = pydist(V, K, £) > copTt > cop?t! as desired.

Next, we consider the general m > 0 case. Denote I, the left side of , then we have
I, = pp - min{dist(¥, K, L1) > 0:w € v - By_m(v)}. By Lemma Ay —ma1 is finer than
v By (v), so we have I, > p,-min{dist(V, K, L1) > 0:w € Ay_pi1} > plHlcopn—m+1,
where the last inequality follows from the previous argument. This proves that I,, > cop??
as desired. O

Lemma A.2. Suppose K is a bordered polygon carpet. Let n > m > 0,w ~ v € A, and
w' € Bp_m(w),v' € Bu_m(v). There exists ¢ > 0 such that dist(V, K, ¥,y K) < cp? implies
dp(w',v") < 2.

Proof. By the boundary included condition, Ny = 3,4. Consider the case Ny = 4. Let
¢ = & A px, where ¢ is the constant in Lemma [A.1] By Lemma both ¥, K N ¥ # () and
V. KN{# D, where £ is a straight line passing through ¥, 0 K N¥,0K . In addition, we could
pick z € U,y KNl and y € ¥,y K N/ so that |z —y| < dist(V K, Uy K) < cp? < p?*L. Then
by the boundary included condition, we could pick w” in OB,_,(w) U 0By,—pm,(v) such that
{2,9} NV K # () and W,,n KN L # (). Since pyr > pTt we further have both 2,y € ¥, K.
This gives that w” ~ w' and w” ~ o/, thus d,(w’,v') < 2. The Ny = 3 case follows in a
similar way by a suitable adjustment of c. O

Proof of Proposition[2.7. (A1). This condition is just the open set condition. A is an open
set that satisfies the requirement.

(A2). Since K is connected, (A,,~) is also connected for any n > 0.

(A4). Since by Lemma w™! - By (w) is finer than A,,_1, we need only to prove that
OA,, # A, for some n > 1.
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If A, = OA,, for any n > 1, we have K C 0A. So K = 0K and dimy(0K) = dy, a
contraction to Proposition [2.6]

Note that if the boundary included condition holds, it is direct to check that OAs # As.

(A3). We divide the proof into two cases.

Case 1. K is a perfect polygon carpet.
In this case p; = p, for any i € S, so A,, = W,,. Define

co = min { p; " dist (Vi K, Uy K) > 0w ~ v in Ay,n > 0,i,5 € S},

where ¢g > 0 since there are only finite intersection types of ¥, K and V,K. Then we see
that min {dist(V,, K, ¥, K) > 0: w,v € Ap} = copl, which implies (A3).
Case 2. K is a bordered polygon carpet.
We define
c1 = min {dist(\IfwK, U,K)>0:w,ve Ag},

and ¢y = ¢1 A ¢, where c is the same constant in Lemma,
When w,v € Ay with dist(V,, K, ¥, K) > 0, then by the definition of ¢;, we have

dist(V K, U, K) > ¢1 > ¢p - ps.

So (A3) holds with n = 1. Suppose (A3) holds for all £ < n. By induction, we will prove
(A3) with £k = n 4+ 1. Otherwise, there should exist w,v € A, such that d,41(w,v) > 2
and dist(V, K, ¥, K) < cop™t. We will consider two cases to see it is impossible.

Case 2.1. There is T € Ay, so that w,v € By(1).

In this case, we have
dist (0,10, K, U210, K) = prtdist (U, K, U, K) < cops "0 it = ¢

Since As is finer than 77! - Bi(7) by Lemma we can choose w',v’ € Ay so that
UV o KCcV, KV K CV,K and

dist(V K, Uy K) = dist(V 10, K, U1 K) < ¢ < .

By the definition of ¢1, we then have dist(V,, K, ¥,» K) = 0, which implies dist(V,, K, V, K ) =
0, a contraction to d,11(w,v) > 2.

Case 2.2. There is no 7 € Ay, so that w,v € By(r).

In this case, we choose m to be the largest number such that there is 7 € A,, with
w,v € Bpi1_m(7). Then we have m < n — 1. Next we choose 7(1) # 7(2) € By (7) such that
w € Bp_m(tW) and v € By (1?)). Write 7)) = 70’ and 7(3) = 74/, then

dist (U K, Uy K) < dist(V'0, K, U710, K) < copr tpl ™t < cop?™™ < ¢y
Since by Lemma Ay is finer than 771 - By(7), so we have 71 I L2) ¢ Ap41 by the
definition of ¢;, a contraction to Lemma
O
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APPENDIX B. PROOF OF PROPOSITION [3.2] AND [3.3]

In this appendix, we provide a proof of Proposition [3.2] and [3.3 following Kusuoka and
Zhou's strategy [19], for a regular polygon carpet K. It should be pointed out that the proof
does not involve the symmetry condition of K.

B.1. Basic facts. For convenience of readers, we collect some basic facts in this subsection.

From time to time, throughout this section, for w,v € A,, we will abbreviate w ~ v
instead of w ~ v when no confusion caused. Also, for w € A,, recall that Nj(w) = {v €
Ajjw|| ¢ )| (w,v) < k}. Clearly, for each fixed k, there is a uniform upper bound of #N,(w).

Lemma B.1. There is My < 0o such that #Ni(w) < Mé“ for any k >1 and w € A,.

o
Proof. Tt suffices to choose My = %W, where m is the Lebesgue measure on R2.

For k=1, welet n>0,w € A, and z € ¥, K. Noticing that p > p,,Vv € A,,, we have

U v,A% C U B(z,diam(¥,A) + diam(¥,,A)) C B(z,2p}diam(A)),
veENT (W) vENT (w)

where B(z,r) = {y € R?: |z — y| < r}. Also noticing that p, > p2™! Vv € A, we see
#Ni(w) - p nH)m(.A) < Z m(¥,A) < m(B(z,2pfdiam(A))) = W(prdiam(.%l))z.
vEN] (W)
If follows that #N7(w) < M.
For general k > 1, it suffices to notice that Ny(w) = Uyen; _, (w) M1(v)- O

Lemma B.2. For k > 1, there exists C' > 0 depending only on k and My such that

> Z @) <ODu(f), Vn>1,fel(Ay).

Proof. For any w,v € A,, with d,(w,v) < k, choose a path 7 := {T(i)}ézo C A, so that
70 = w, 70 = v and 7@ ~ 70D for § =1,--- 1, I < k. Then

l
(f(w) = F@) < k-3 (Fr@ — p(rED))%,
=1

Since each pair 7 ~ 7/ appears in at most C; = k - Mé’“_l different paths 7 with length at
most k, we then have -, >~ cns () (f(w) - f(v))2 < 2kC1Dy(f), where 2 appears since
we count each pair w,v € A with d,,(w,v) < k twice in the left side of the inequality. O

B.2. Proof of R,,, > C’pgdH_Q)m. The estimate R,,, > C’pidH_mm in Propositionis linked
with the well known estimate of walk dimension dy > 2. In particular, the estimate can
be derived as an immediate consequence of [I8, Lemma 4.6.15]. For the convenience of the
readers, we still provide a direct proof here.

Proposition B.3. All the Poincare constants Ay,, Ry, and o, for m > 1 are positive and

finite. In addition, there is C > 0 such that R,, > Cp(dH 2)m for any m > 1.
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Proof. 1t is straightforward to see Ay, 0, > 0 for all m > 1 from their definitions.

Now we prove Ry, > Cpl%% ™™ Let w € A, n > 1. For each v’ € N§(w), by (A3), we

have dist(W, K, ¥, K) > cop, where g is the same constant in (A3). Let f € L?(K, ) be
defined as

Fla) = 1A (dist(a, W K) /(cop™))-

Immediately, flo,x = 0 and ff = 1, and f is a Lipschitz function with

~ ,GNQC(’UJ) ‘Iiw/K _
Lip(f) = (cop)~t. Define f € l(Apym) as f = w;im o Ppymf, and then we have f|g  (w) =
0, f‘Bm(Ng(w)) =1. When v ~ v € A4, we have diam (¥, KUV, K) < (py+py )diam(K) <
2p0 M diam(K). So

f)=fN] < [ |foW, — foWUyldu < Lip(f) - diam(¥,K UV, K) < 2¢; ' prdiam(K).
X 0
Then by Lemma and Proposition we have
Dum(f) < Y > (f0) - fw)”

VEBm (Na(w)) v/ ~vEAn4m
S M02 . Clp;de . MO . (QCalpleam(K))Q — 4ClMg’c(;2diam2(K)piQ_dH)m7
where (' is the constant in Proposition This gives Ry m (Bm(w), By (N5 (w))) > Cpfde—2)m
with C' = (401 M@, *diam?(K)) ™. O

B.3. Proof of \,, 1+, > CR,uA,. The most difficult part of Proposition @ is the inequal-
ity Ap+m = CRpA,. We will closely follow Kusuoka-Zhou’s idea [19] in this part to prove a
very close estimate A, 4k, > CRpmAp, where kg > 3 is a fixed number independent of m, n.

For convenience, we will always consider A,,()) in the proof, which is feasible by the
following lemma.

Lemma B.4. piOdH)\m(v) < Am2(w) for any m > 1 and w,v € A,.

m 2
Proof. Take f € (B (v)) so that p# 2 reBm(v) (f(T)=[f1Bm@) = Am(v) and D)jy||-41m.,Bm (v) (f) =
1. By Lemma w™! - By, (w) is finer than Ay, 11, and A,y 1 is finer than v=! - B,,(v). So
we can define g € [(B,12(w)) by g(w-7) = f(v-7'), where 7" is uniquely determined by
7€ 7' W,. Still by Lemma 2.3} p, > p3 p < p™~!, and so each 7’ determines at most
—4dg - 9
P different 7’s. One can see

Dl tm+2.8ms2(w)(9) < 03 M Dy, B (F) = 5.

In addition, noticing that [g]g,..,w) = [f]B,.(v), We have

PRI NT (900~ [lBatw)” = P2 A (v).

LEBm42(w)

The lemma follows immediately. O

The rest of the proof will be similar to that of Kusuoka-Zhou [19], with slight modifications.
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Lemma B.5. Let n,m > 1, and {©w}wen, be a collection of non-negative functions in

I(Antm) such that supp(pw) C Bm(N2(w)) and 3 cp, pw = 1. For any f € I(Ay), we
define f € I(Apym) as f = > wen, f(W)pw. Then there exists C' > 0 such that

Dn+m(f) < C'max {Dn+m(<pw) Tw E An} - Dn(f)

Proof. First, if v € By, (w) for some w € A, and v/ ~ v, we can see that {v, v} C By, (N (w)).
Hence, ¢, (v) V ¢y (v') > 0 only if w’ € N3(w), noticing that ¢, supports in By, (Na(w')).

As a consequence, f(v) — f(v') = 3. "N (w )f(w’) (¢w (V) — @ur(v')). Also, noticing that
5 wrerisor F0)2w (0) = Sorenyqu £(0)gw () = f(w), one finally get

f(v)_f(vl) = Z (f(wl)_f(w)) (‘Pw’(v)_sow’ (U,))v Yw e Ap,v € Bm(w) and v’ ~ v.
w’'eN3(w)
Hence

Doy f ZZZf ~f'

wGAn VEBm (w) v/ ~v

%2 Y S () - f0) o) — o))

WEA, vEBy, (w) v'~v  w eN3(w)

Next we apply the Cauchy-Schwarz inequality to see

Dol <2 ) DS ()= s 3 (ur(0) — ()

wEAn VEBm, (w) v'~v S w! EN3(w w” eN3(w)

SO Z (')~ f<w>)2) X 2 Y (pwr) = ewr()))
wEA,  w EN3(w) w"” EN3(w) VEBm (w) v/ ~v

S % Z ( Z (f(w,) - f(w))Q) ' ( Z 2,Dn-‘rm(()ow’))
wehn  w ENG(w) w" €N (w)

< Z Z (f(w') — f(w))2 - #N3(w) - max {Dpim (pur) : 0" € Ay}

WEA w EN (w)

The desired estimate follows, since »-, cx. > uens (w) (f(w') = f(w))2 < C1Dy(f) for some
C1 > 0 by Lemma [B.2| and #N3(w) < Mg by Lemma[B.1] O

Lemma B.6. Let n,m > 1. For any w € Ap, let uy € U(Anim) satisfy uwls,,(w) =
. ~1
L B, Wew)) = 0, and Dyt (tw) = Rotm (B (w), B (N5 (w))) . Define u =3, cx Uy
and py = Uy /u for any w € I(Ay,). Then there exists C' > 0 such that
Dim(pw) < CRL Yuw € A,.

L for any w € A, n > 1. So for any w € A,

U (V) = U (V' u(v)—u(v’')\2
we have D n(9u) = Spnven,,, (“5 — w(v) - S50 and thus

Proof. Immediately, we have D,y (uy) < R,
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Dm(#w) € 2pim(un) +2 > (D] (uw(v) — uw(v)))’

vv €A tm w’ENg(w)
< 2Dn+m(uw) + 2#N3(w) : Z Z (uw’(vl) — Uy’ (U))2
w’ ENs(w) v~v' €Ay pm
< 2D () + 2(#N3(w))? - max{ Dy (uy) s w' € Ay} < 2(1 4+ MY)R,,L,

where the first inequality follows from u > 1 and u,, < 1, and the last inequality follows from
Lemma Bl O

The following is a weak version of the second inequality of Proposition [3.2]

Proposition B.7. There exists C > 0, kg > 3 such that \yimir, > CRnA, for any
n,m > 1.

Proof. First, welet f € I(Ay42) so that Dy 4o(f) =1 and plnt2dn D wehni (f(w)—[f}AnJrQ)2 =
An+2(0).

Next, we fix [ > 1 so that for any w € W, there exists 7(w) € Bj(w) such that No(7(w)) C
Bi(w). Define f' € l(Ap4i42) as f/ = W;il+2 oTp42f. As in the proof of Lemma one can
easily see that D, 112(f") < C1Dyi2(f) = Cy for some constant C; > 0 depending on .

Finally, we define [’ = D wehniits f(w)py with each ¢, € I(Apimiiio) as in Lemma
where the existence of good (,,’s is guaranteed by Lemma [B.6] Hence, we have

Dysmiir2(f") < CoDpriio(f)R,! < C1CR;,)

for some constant Cy > 0. On the other hand, by the choice of I, we have f”(v) = f(w)
for each w € Apy2 and v € By, (7(w)), where 7(w) is the same as in the previous para-
graph. Noticing that p?™3 < p, < p"2,Vw € A, 2, and by Proposition #B, (1) >
C’gp;de,Vm > 1,7 € W, for some C3 > 0, we can see that

pin+m+l+2)dH Z (f”(v) — [f/,]An+m+l+2)2

U€A7L+m+l+2

D DN D DN (R I

WENA 42 VEBm (T(w))

>Cypl > pln (F(w) = [ Ampmiren)” > Capldn > A (Fw) = [fans.)

WEAn 12 WEAn 42

203p£z+1)dgp£n+2)df; Z (f(w) _ [f]An+2)2 _ O3p£l+1)dHAn+2(®) > Cgpgﬂl)d’f)\m

wWEAp+2

2

where the last inequality is due to Lemma The proposition follows immediately. O

B.4. Proof of Proposition To fulfill the proof of Proposition [3.2] we need two more
lemmas.

Lemma B.8. Let n,m > 1, and f € l(Ap+m). Define f € l(A,) as f =na1 0P, omimf,
i.e. f(w)= [f]Bm(w) for any w € A,,. Then there exists a constant C > 0 independent of n,m
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and f such that .
Dn,A(f) < CUmDn+m,Bm(A)(f)
for any non-empty connected set A C A,,.

Proof. By the definition of oy,, for each pair w ~ v € A, we have (f(w) — f(v))2 <

O Drgm, B ({w,w}) (f).  Summing up the both sides over w ~ v € A, we get the desired
estimate. O

Lemma B.9. There exists C > 0 such that Chpip < pndH)\ + Apom for any m,n > 1.

Proof. Let m,n > 1,1 >0, w € Aj, and f € I(Byim(w)). Define f € l(Bn(w)) as f(v) =
[f]B,,(v) for any v € B, (w). Then we have

ST () = )’

T€8n+m( )

= > > | Ay + F@) = [flaaw)”

vEBy, (W) TEBm (U)

<2 Z Z Bm(v)) + Cyp; ™ Z (f(v)—[f]zsn(w))2

VEBy, (W) TEB (v) vEBy, (w)
<2 3 A A(0) D ) () + Crp TN (W) D, ) ()
vEBy, (w)

m-+n)d 70
< Cpy TN X)) - Dt () ()

for some C1,C > 0, where the ﬁrst inequality follows from Proposition [2.4) and the last
inequality follows from Lemma This gives Ap+m < C(p ndu 4 )\nam). O

Now we give the proof of Proposition

Proof of Proposition[3.9. By Proposition it remains to prove C 'R\ < Ay <
CApoy, for any m,n > 1, for some constant C' > 0.
Combining Proposition and Lemma [B.9] together, we have
(ClRm—k‘o - pTdH)/\n < >\m0'n'

for some Cy > 0, for all m > ko, n > 1, where kg is the same constant in Proposition [B.7]
By Proposition we can choose mg large enough so that C1R—k, — ps- mods 0, which
gives that for all n > 1,

A < (C1Rpmy—ko — PO IV 00 = Chop. (B.1)

On the other hand, again by Proposition [B.7] and B.3} we have A,ip,41 > C3R, >
CuptH 72" and thus A, > Cspl for some C5-Cs > 0. Combining this with Lemma

and (| -, we get

)\n-l—m < C6( + pndH)O'm < Crhgom (B2)
for some Cs, C7 > 0. Still by Proposition [B.7, we then have
CgR )\ < )\n+m+k0 < C7)\n+m0'k0 (B3)

for some Cg > 0. The desired result follows from (B.2) and (| - O
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B.5. Proof of Proposition At last, we prove Proposition

Proof of Proposition[3.3. For | =0,---,m, we denote w® as the unique element in Aprm—t
such that v € By(w®). In particular, w(® = v and w(™ = w. Define f; € I(By_i(w)) as
filt) = [flp,(r) for any 7 € By, y(w). Then for each [ =1,--- ,m, we have

(fier (@) = fi(w™)* = (IFp_, o) — B’
< Pw(z 1) Z pﬁH (f(T) - [f]zgl(w(l)))2

TeB_1 (wl=1)
_ 2 _
<A ST (1) = i)’ < 07 N Dot B (w) (-
B (w)

Since by Proposition A < Cl)\mR;nl_l < Cngﬁmfl)(zfdm)\m for some C7,C5 > 0, we then
have

[NIES

1 m
|f(7}) - [f m(w)‘ < 03 ()\ Dn-i—m Bm w) 2 Z . dH/2 S C% ()\mDn+m7Bm(w) (f))
=1

for some C5, C' > 0. This gives that (f(v) — [f]Bm(w))2 < CAin Dyt By (w) (f) as desired. O

AprPENDIX C. PROOF OF PROPOSITION

First, we recall the concept of I'-convergence. Please refer to the book [9] for general
discussion on I'-convergence.

Definition C.1 (I'-convergence). Let (X,d) be a metric space, and f, fn, n > 1 be functions
from X to [0, +oc]. If for any x € X,

(a). for any sequence x,, converging to x in (X,d), f(x) <liminf, o fn(zn);

(b). there exists a sequence x,, converging to x in (X,d), such that f(x) = lim,_o0 frn(xn),
we say fn I'-converges to f.

Proof of Proposition|3.5. It follows from Proposition and Assumption (B), there is 0 <
r<1suchthatRmA)\mAUmAr m DenoteDn—r "D, for n > 1.
By Proposition there is C; > 0 such that, for n,m > 1 and f € L?(K, p),

Du(f) =Y (1 oPuf(w)—m, 0P f (1)) < Ctdm . Dot (fuowh) () < C17 " Do (£),
which gives Dy, (f) < C1Dnim(f). By [7, Proposition 3.8], there is a subsequence {D.,)}o2,

of {D,}22; I'-converging to a closed symmetric non-negative quadratic form, denoted as £.
Let F = {f € L*(K,p) : E(f) < oo}.

Claim 1. For any f € F, Cy! sup,,>1 Dn(f) < E(f) < Crliminf, o Dy(f).
On one hand, by the definition of I'-convergence,

E(f) <liminf Dy (f) < Crliminf inf Dy (f) < Oy lim inf Dy (f).
n—oo

v n—ro0 mZ'y(n) m—00
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On the other hand, take f, € L*(K, ﬂ( )» ) such that Jn = [ in L2(K, ) and E(f)

limy, 00 Dy (n)(fn). Then for any m > 1, Dy (f) = limp 00 Din(fr) < C1limy 00 Dy (frn) =
C1&(f). So Claim 1 follows.

For n > 1,f € L*(K,u), as P,f is the orthogonal projection of f to L*(K,.%,,u), we
may choose the value of P, f(x) to be ! o P, f(w) for each z € ¥,,(K \ 0K),w € A,,. Let
Ko := K\ Uyen, YwOK. Note that pu(Ko) = 1.

Claim 2. There is C3 > 0 such that |P,f(z) — Pnf(y)‘2 < C9Du(f) - v — y|? for any
n>2f € L*K,u) and z,y € Ko with |v — y| > cop?, where ¢ is the same constant in
(A3).

For |z — y| > cop«, by Proposition [3.3] for some C3 > 0,
|Puf(x) = Puf(y)|* < C5Du(f) < Cs(cops) D (f)|z — yl’.
For |z — y| < cop«, choose m > 1 so that cop”' < |z —y| < cop. It follows that
m < n. By (A3), there are w ~ ' m}u” € A, so that z € U, Ky, y € VU,nKp, giving
|Prf(z) — P f(y)|? < 2D, (f) < 2C1r"Dy(f). Still by Proposition there is a constant

Cy>0 such that |Pof(2) = Puf(2)]? < Cyr= =D, (f) = Cyr™ D, (f) for z = x,y. Combine
the estimates above, noticing the choice of m, for some C5 > 0,

|Paf(@) = Paf(y)]* < 3(2C1r™ Do (f) + 200 ™ Do (f)) < CsDu(f)]a — yl’.

So Claim 2 follows by taking Cy = C3(cop«)~? V Cs.

For each f € F, since P,f — f in L?(K,pu), there is a subsequence P, f converging
to f ae. p, ie. there exists A C K with pu(A) = 1 so that P, f(z) — f(x) for any
r € A. Thus by Claim 1 and 2, for each  # y € AN Kg, we have |f(z) — f(y)|* =
limg 0 |Pnkf($)_Pnkf(y)|2 <y SuPp, >1 an(f)Ix—yIH < CGg(f)|x_y|9> where Cg = C1C5.
In particular, u(A N Kp) = 1 implies that f € C(K) and |f(x) — f(y)|? < C6&(f)|x — y|? for
any z,y € K.

It remains to verify the Markov property and regular property of (£, F). Denote f =
(fVO)A1for any f € L?(K,u). For each f € F, choose a sequence f, € L*(K, M., ) 1)
such that f, — f in L?(K,p) and E(f) = lim, 0o D (n) (fn)- Then we have f, — f in
L?*(K, i), and by the Markov property of D,, £(f) > hmmfnﬁoo n)(fn) > £(f). This
gives the Markov property of (&, F).

As for the regular property of (£, F), it is enough to prove F is dense in C'(K). To this
end, we will prove F is an algebra and separates points in K, and then apply the Stone-
Weierstrass theorem. First, for f,g € F C C(K), since P, f — f, ng — g in L°(K, p) and
P, f, P,g are uniformly bounded, we have P, f - P,g — f-g in L®(K, ), thus in L?(K, p).
So by Claim 1,

(f g) < hmlnfD ( v(n) f (n)g)
< lim inf (IIPw(mf e (a0 * D) (9) + Py 9l 70w 1 ) * Doy (1))
< Cr(I1f 7oz ) - €(@) + 911700 (52 ) - E(F)) < 00,
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which gives that F is an algebra. Next, for any x # y € K, we choose w € A,,, for some ng > 1
so that x € ¥, K and y € UveNg(w) V,K. Then for any n > ng, we pick a function f, €

L2(K, p) so that folw,x =1, faly

x =0and D, (f) < R, . Let f be a weak limit

: 4
’UENQC(’LU) v
of fn. Then f € F since for any m > 1, Dy, (f) = limy 00 D (frn) < C1liminf,, 00 Dp(fr)-
Moreover, f(x) =1, f(y) =0, so that f separates x and y. O
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