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Abstract. In our prior work toward Bartnik’s static vacuum extension conjecture for near Eu-

clidean boundary data, we establish a sufficient condition, called static regular, and confirm large

classes of boundary hypersurfaces are static regular. In this note, we further improve some of those

prior results. Specifically, we show that any hypersurface in an open and dense subfamily of a cer-

tain general smooth one-sided family of hypersurfaces (not necessarily a foliation) is static regular.

The proof uses some of our new arguments motivated from studying the conjecture for boundary

data near an arbitrary static vacuum metric.

1. Introduction

Let n ≥ 3 and (M, g) be an n-dimensional Riemannian manifold. We say that (M, g) is static

vacuum (or g is a static vacuum metric on M) if there is a scalar-valued function u on M satisfying

−uRicg +∇2
gu = 0

∆gu = 0.
(1.1)

Such u is called a static potential. The class of static vacuum metrics has played a fundamental role

in general relativity because when u > 0, the triple (M, g, u) gives rise to a Ricci flat spacetime

(R×M,−u2dt2 + g) that has a global Killing vector field ∂t.

A very important example of asymptotically flat, static vacuum metrics is the the family of

(Riemannian) Schwarzschild metrics gm:

gm =
(
1− 2m

rn−2

)−1
dr2 + r2gSn−1 defined on Rn \B

(2m)
1

n−2
,

with the static potential um =
√

1− 2m
rn−2 , where gSn−1 is the standard metric on the unit sphere

Sn−1. Note that the Schwarzschild metrics are rotationally symmetric. Whenm = 0, the Schwarzschild

metric becomes the Euclidean metric. When m > 0, the Schwarzschild manifold has a minimal hy-

persurface boundary, precisely at u = 0. In fact, the Schwarzschild metrics are the only asymptoti-

cally flat, static vacuum 3-manifolds with such property, by the celebrated Uniqueness Theorem of

Static Black Holes. See [13, 18, 9]. Another family of static vacuum, exact solutions was discovered

by H. Weyl. The Weyl solutions are axially symmetric and have general asymptotics at infinity, but
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a subclass of them can have asymptotically flat end. Those exact solutions can be characterized

by certain conditions (e.g. having black hole boundary), and great efforts have been made toward

the uniqueness and classification results of those static vacuum metrics. See, for example, M. Reiris

and J. Peraza [17] and the references therein.

In contrast, Robert Bartnik conjectured the following “prescribing boundary value” problem

for asymptotically flat, static vacuum manifolds [8, Conjecture 7].1 The conjecture was originated

from his quasi-local mass program in 1989, for which we refer the reader to the survey article

of M. Anderson [5] for details. The conjecture itself is also of independent interest as a natural

geometric PDE boundary value problem. Furthermore, progress toward this conjecture would give

rise to new examples of asymptotically flat, static vacuum metrics and advance our understanding

toward the structure of static vacuum metrics.

Conjecture 1 (Static Extension Conjecture). Let (Ω, g0) be a compact manifold with scalar cur-

vature Rg0 ≥ 0. Suppose the mean curvature Hg0 is positive somewhere on the boundary Σ. Then

there exists a unique asymptotically flat, static vacuum manifold (M, g) with boundary ∂M ∼= Σ

satisfying

gᵀ0 = gᵀ

Hg0 = Hg

on Σ.

Here, (·)ᵀ denotes the restriction on the tangent bundle of Σ.

Convention: The mean curvature Hg of a hypersurface Σ in a Riemannian manifold (M, g) is

defined as Hg = divg ν, where ν is the unit normal vector of Σ. When (M, g) is asymptotically flat,

we choose ν to point to infinity (and thus the unit normal for Σ in (Ω, g0) points outward).

We shall refer to the geometric boundary data (gᵀ0 , Hg0) as the Bartnik boundary data. Let us also

remark on the assumption that Hg0 is positive somewhere. The conjecture would fail without this

assumption because such extension, if exist, would contain a minimal hypersurface homologous

to the boundary (at least in dimensions n ≤ 7), and the extension must be Schwarzschild by

Uniqueness Theorem, which put strong restriction on gᵀ0 . See P. Miao [15] for n = 3. For n ≤ 7, by

minimal surface theory, there is an outermost minimal hypersurface homologous to the boundary.

By the result of D. Martin, Miao, and the second author [12, Theorem 1], the static potential u = 0

on the outmost minimal hypersurface. From there, one applies the generalization of Uniqueness of

Static Black holes in higher dimensions by G. Gibbons, D. Ida, and T. Shiromizu [11].

Even with the mean curvature assumption, it is highly speculated that Conjecture 1 does not

hold in general as stated. Let Ω be a bounded open subset in Rn. Observed by [7, 6], if the boundary

Σ = ∂Ω is only inner embedded, i.e., Σ touches itself from the exterior region Rn \Ω, the induced

data (ḡᵀ, Hḡ) is valid Bartnik boundary data, but (ḡ, 1) in Rn \ Ω is not a valid static vacuum

extension as Rn \ Ω is not a manifold with boundary. One can further arrange so that the mean

curvature Hḡ is positive everywhere. Those inner embedded hypersurfaces are conjectured to be

1Note that the original conjecture was stated for n = 3, Ω = B3, and M = R3 \B3.
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counter-examples to Conjecture 1 by [6, Conjecture 5.2] (see also [5]), though it is not clear whether

there could be another static vacuum extension far way from (Rn \ Ω, ḡ, 1). Nevertheless, positive

results to Conjecture 1, under suitable assumptions, will provide a structure theory for the space

of static vacuum metrics (parametrized by their Bartnik boundary data). It also connects the

fundamental problem on isometric embeddings of hypersurfaces into a static vacuum manifold with

prescribed mean curvature. In particular, that question apparently has intriguing connections to

the work of P.-N. Chen, M.-T. Wang, Y.-K. Wang, and S.-T. Yau [10] where the notion of quasi-

local energy defined via isometric embeddings into a reference static metric is proposed, extending

the celebrated Wang-Yau quasi-local mass with respect to the Minkowski spacetime [19].

There are some positive results toward Conjecture 1. The existence and local uniqueness is proven

for n = 3 and for (g0, Hg0) sufficiently close to the induced Bartnik boundary data on a round sphere

from the Euclidean metric, i.e. (g0, Hg0) sufficiently close to (gS2 , 2). See Miao [14], Anderson-Khuri

[7], and Anderson [4]. In recent work [1], we give a general framework to tackle Conjecture 1 and

confirm existence and local uniqueness of Conjecture 1 for large classes of boundary data, including

those close to the induced boundary data on either any star-shaped hypersurfaces or quite general

perturbed hypersurfaces in the Euclidean space. In this present note, we improve Theorem 7 in [1],

by employing new arguments in our recent work [2]. The new results are presented as Theorem 7,

Corollary 8, and Theorem 9 below.

To describe the new results, we first recall the basic notations and definitions and review relevant

results from [1].

Let Ω be a bounded open subset in Rn whose boundary Σ = ∂Ω is a connected, embedded smooth

hypersurface in Rn. We denote by ḡ the Euclidean metric in Rn with ḡij = δij (with respect to a

fixed Cartesian coordinate chart). Our analytic framework is based on the weighted Hölder spaces

Ck,α−q (Rn \ Ω) (see its definition in Section 2.1 of [1]), and we always assume the Hölder exponent

α ∈ (0, 1) and the fall-off rate q ∈ (n−2
2 , n − 2) for asymptotical flatness. We denote by DRic|ḡ(h)

the linearization of the Ricci curvature at ḡ; namely, let g(t) be an arbitrary family of Riemannian

metrics on Rn \ Ω so that g(0) = ḡ and g′(0) = h, then DRic|ḡ(h) := d
dt

∣∣
t=0

Ricg(t). Similarly, we

define the linearizations of the mean curvature and second fundamental form on Σ by DH|ḡ(h)

and DA|ḡ(h), respectively. We will omit the subscript ḡ in those linearizations when the context is

clear.

Definition 2. The boundary Σ is said to be static regular in Rn \Ω if for any pair of a symmetric

(0, 2)-tensor h and a scalar-valued function v satisfying (h, v) ∈ C2,α
−q (Rn \ Ω) and

−DRic(h) +∇2v = 0, ∆v = 0 in Rn \ Ω,

hᵀ = 0, DH(h) = 0 on Σ,
(1.2)

we must have DA(h) = 0 on Σ.

The following fundamental result obtained in [1] says that “static regular” is a sufficient condition

for existence and local uniqueness.
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Theorem 3 ([1, Theorem 3]). Suppose the boundary Σ is static regular in Rn \Ω. Then there exist

positive constants ε0, C such that for each ε ∈ (0, ε0), if (τ, φ) satisfies ‖(τ, φ)−(ḡᵀ, Hḡ)‖C2,α(Σ)×C1,α(Σ) <

ε, then there exists an asymptotically flat pair (g, u) with ‖(g, u)− (ḡ, 1)‖C2,α−q (Rn\Ω)
< Cε such that

(g, u) is a static vacuum pair in Rn \ Ω having the Bartnik boundary data (gᵀ, Hg) = (τ, φ) on Σ.

Furthermore, the solution (g, u) is geometrically unique in a neighborhood U of (ḡ, 1) in the

C2,α
−q (Rn \ Ω)-norm.

We remark that the “local uniqueness” in the above theorem is precisely described under the

static-harmonic gauge and the orthogonal gauge. Since we will not explicitly use them in the present

paper, we refer the reader to the discussion right after Theorem 3 in [1].

In [1], we furthermore show that large classes of hypersurfaces in Rn are static regular. In

particular, we show that static regular hypersurfaces are “dense” in the following concrete sense. A

family of embedded hypersurfaces {Σt} ⊂ Rn is said to form a smooth generalized foliation if the

deformation vector X of {Σt} is smooth and on each Σt, ḡ(X, ν) = ζ where ζ > 0 in a dense subset

of Σt, and ν is the unit normal of Σt. In other words, {Σt} is slightly more general than a foliation

in that the leaves can overlap on a nowhere dense subset.

Theorem 4 ([1, Theorem 7]). Let δ > 0, t ∈ [−δ, δ], and each Ωt ⊂ Rn be a bounded open subset

with hypersurface boundary Σt = ∂Ωt embedded in Rn. Suppose the boundaries {Σt} form a smooth

generalized foliation. Then there is an open dense subset J ⊂ (−δ, δ) such that Σt is static regular

in Rn \ Ωt for all t ∈ J .

The above theorem has the following strong consequence because of the dilation property of the

Euclidean static vacuum pair.

Corollary 5 ([1, Corollary 8]). Let Ω be a bounded open subset in Rn whose boundary Σ = ∂Ω is

a star-shaped hypersurface. Then Σ is static regular in Rn \ Ω.

The purpose of this note is to extend Theorem 4.

Definition 6. A collection of embedded hypersurfaces {Σt} ⊂ Rn is a smooth one-sided family of

hypersurfaces foliating along Σ̂t ⊂ Σt with relatively simply-connected Σt \ Σ̂t if the deformation

vector X of {Σt} is smooth and on each Σt, ḡ(X, ν) = ζ ≥ 0 with ζ > 0 in a dense subset of each

Σ̂t ⊂ Σt satisfying π1(Σt, Σ̂t) = 0.

For a subset U in M , the condition π1(M,U) = 0 says that U is connected and the inclusion map

U ↪→ M induces a surjection π1(U) → π1(M). In our setting, we clearly have π1(Rn \ Ω,Σ) = 0.

Thus, the additional condition for a subset Σ̂ ⊂ Σ to satisfy π1(Σ, Σ̂) = 0 implies π1(Rn \Ω, Σ̂) = 0.

In loose terms, the later condition implies that for any point x ∈ Rn \ Ω, all paths from x to Σ̂

are (homotopically) equivalent. See Figure 1 below. This property is used in Theorem 2.5 below to

ensure certain global extensions of local vector fields.

Note that a smooth generalized foliation {Σt} defined earlier is necessarily a smooth one-sided

family of hypersurfaces foliating along Σ̂t ⊂ Σt with relatively simply-connected Σt \ Σ̂t (by letting
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Figure 1. Each figure illustrates Definition 6 that {Σt} foliates along Σ̂t with rela-

tively simply-connected Σt \ Σ̂t. In the left figure, a one-sided family of (topological)

spheres {Σt} is shown where Σ̂t can be very small. In other words, Σt can largely

overlap on Σt \ Σ̂t. The right figure illustrates a one-sided family of (topological)

tori with π1(Σt, Σ̂t) = 0.

Σ̂t = Σt). However, a smooth one-sided family {Σt} in the above sense may not form a foliation

because the leaves can overlap on Σt \ Σ̂t. The following theorem generalizes Theorem 4.

Theorem 7. Let δ > 0, t ∈ [−δ, δ], and each Ωt ⊂ Rn be a bounded open subset with hypersurface

boundary Σt = ∂Ωt embedded in Rn. Suppose the boundaries {Σt} form a smooth one-sided family

of hypersurfaces foliating along Σ̂t ⊂ Σt with relatively simply-connected Σt \ Σ̂t. Then there is an

open dense subset J ⊂ (−δ, δ) such that Σt is static regular in Rn \ Ωt for all t ∈ J .

In the special case that Σ is simply-connected (e.g., Σ is a topological sphere), we trivially have

π1(Σ, Σ̂) = 0 for any nonempty connected subset Σ̂. Slight perturbation on Σ̂ produces a one-sided

family {Σt} with Σ0 = Σ that foliates along small subsets Σ̂t ⊂ Σt so that Σt \ Σ̂t coincides with

Σ \ Σ̂ for all t. See the left figure in Figure 1. Theorem 7 says that Σt is static regular for t in an

open and dense set. Together with Theorem 3, we give the following corollary that one can solve

for static vacuum extensions whose boundary data are arbitrarily close to the induced boundary

data (ḡᵀ, Hḡ) on Σ, except a small subset Σ̂ ⊂ Σ.

Corollary 8. Let Σ = ∂Ω be a simply-connected, closed, embedded hypersurface in Rn. Given any

nonempty open subset Σ̂ ⊂ Σ and any δ > 0, there exists (τ0, φ0) ∈ C2,α(Σ)×C1,α(Σ) and constants

ε0, C > 0 satisfying

(τ0, φ0) = (ḡᵀ, Hḡ) on Σ \ Σ̂

‖(τ0, φ0)− (ḡᵀ, Hḡ)‖C2,α(Σ̂)×C1,α(Σ̂) < δ
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such that for each ε ∈ (0, ε0), if (τ, φ) satisfies ‖(τ, φ)− (τ0, φ0)‖C2,α(Σ)×C1,α(Σ) < ε, then there exists

an asymptotically flat pair (g, u) with ‖(g, u) − (ḡ, 1)‖C2,α−q (Rn\Ω)
< Cε such that (g, u) is a static

vacuum pair in Rn \ Ω having the Bartnik boundary data (gᵀ, Hg) = (τ, φ) on Σ.

Furthermore, the solution (g, u) is geometrically unique in a neighborhood U of (ḡ, 1) in the

C2,α
−q (Rn \ Ω)-norm.

The proof to Theorem 7 involves several new arguments used in our recent work for general

asymptotically flat, static vacuum background metrics [2]. One of the key arguments is the following

theorem, which can be viewed as a uniqueness theorem for “localized” boundary data.

Theorem 9. Let Σ̂ be an open subset of Σ (can be the entire Σ) satisfying π1(Σ, Σ̂) = 0. Let

(h, v) ∈ C2,α
−q (Rn \ Ω) solve {

−DRic(h) +∇2v = 0

∆v = 0
in Rn \ Ω


hᵀ = 0

DA(h) = 0

D(∇νA)(h) = 0

on Σ̂

where D(∇νA)(h) denotes the linearization of ∇νA. Then there is a vector field X ∈ C3,α
loc (Rn \ Ω)

satisfying X = 0 on Σ̂ and X−K ∈ C3,α
−q (Rn\Ω) for some Euclidean Killing vector field K (possibly

zero) such that

h = LX ḡ and v = 0 in Rn \ Ω.

Furthermore, if hᵀ = 0 and DH(h) = 0 everywhere on Σ, then X = 0 everywhere on Σ and thus

DA(h) = 0 on Σ.

Theorem 9 says that the solutions must be “trivial” in the sense that (h, v) must arise from

“infinitesimal” diffeomorphisms. More precisely, if we let X be a vector field as in the above theorem

and let φt be the family of diffeomorphisms on Rn \ Ω generated from X (in particular, φt is the

identity map on Σ for all t). Then the family of static vacuum pairs (gt, ut) = φ∗t (ḡ, 1) as the

pull-back pairs of (ḡ, 1) would also satisfy (1.1) and have the same boundary data (ḡᵀ, Aḡ,∇νAḡ)
on Σ̂ (in fact on the entire Σ).2 The linearization of (gt, ut) becomes (LX ḡ, X(1)) = (LX ḡ, 0), which

satisfies the linearized system in Theorem 9. On the other hand, Theorem 9 says that those are the

only solutions.

The rest of this note is organized as follows: Theorem 9 is proved in Section 2, and then Theorem 7

is proved in Section 3.

2. Localized boundary data

The major motivation for the definition of static regular, Definition 2, is the following uniqueness

theorem for Cauchy boundary data from [1].

2Here ∇νgAg means the νg-covariant derivative of the second fundamental forms of g-equidistant hypersurfaces

to the boundary Σ.



NEW ASYMPTOTICALLY FLAT STATIC VACUUM METRICS 7

Theorem 2.1. Let (h, v) ∈ C2,α
−q (Rn \ Ω) solve{
−DRic(h) +∇2v = 0

∆v = 0
in Rn \ Ω{

hᵀ = 0

DA(h) = 0
on Σ.

Then there is a vector field X ∈ C3,α
loc (Rn \ Ω) satisfying X = 0 on Σ and X −K ∈ C3,α

1−q(Rn \ Ω)

for some Euclidean Killing vector field K (possibly zero) such that

h = LX ḡ and v = 0 in Rn \ Ω.

Proof. From the proof of Lemma 4.8 in [1], we see that v = 0 in Rn \ Ω. Therefore, h is a Ricci

flat deformation in the sense that DRic(h) = 0 in Rn \ Ω. Then by Theorem 2.8 of [1], we get the

desired conclusion. �

The goal of this section is to prove Theorem 9, whose main difference from the above theorem

is that the boundary conditions for Theorem 9 are “localized” only on a subset Σ̂ ⊂ Σ satisfying

π1(Σ, Σ̂) = 0.

We will first establish some basic results, and then Theorem 9 follows immediately after proving

Proposition 2.4 and Proposition 2.6 below.

We say that a symmetric (0, 2)-tensor h is said to satisfy the geodesic gauge (of order 2) on Σ if

h(ν, ·) = 0, (∇νh)(ν, ·) = 0, (∇2
νh)(ν, ·) = 0 on Σ

where ν is the unit normal vector of Σ parallelly extended into a collar neighborhood of Σ.

Following the same argument as in [1, Lemma 2.5], we see that any tensor h can be “transformed”

to satisfy the geodesic gauge.

Lemma 2.2 (Cf. [1, Lemma 2.5]). Let h ∈ C2,α
loc (R \ Ω) be a symmetric (0, 2)-tensor. Then there

exists a vector field V ∈ C3,α with V = 0 on Σ and V vanishing outside a collar neighborhood of Σ

such that k := h+ LV ḡ satisfies the geodesic gauge on Σ.

The following lemma gives an analytic interpretation for the geometric boundary conditions of

Theorem 9.

Lemma 2.3. Let Σ̂ be an open subset of the boundary Σ (can be the entire Σ). Suppose h ∈
C2,α

loc (Rn \ Ω) satisfies the geodesic gauge and

hᵀ = 0, DA(h) = 0, D(∇νA)(h) = 0 on Σ̂.

Then

h = 0, ∇h = 0, ∇2h = 0 on Σ̂.

Proof. The first identity is an immediate consequence of hᵀ = 0 and the geodesic gauge.
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To show the second identity, it suffices to show (∇νh)ᵀ = 0 because (∇arbitraryh)(ν, ·) = 0 and

(∇tangentialh)ᵀ = 0 from h = 0 and geodesic gauge. Recall the formula (see [1, Equation (2.3)])

DA(h) = 1
2(∇νh)ᵀ +A ◦ h− 1

2Lωg
ᵀ − 1

2h(ν, ν)A (2.1)

where the one-form ω is defined by ω(·) = h(ν, ·), A is the second fundamental form of Σ ⊂ (Rn, ḡ),

and (A ◦ h)ab = 1
2(Aach

c
b + Abch

c
a). Therefore, the assumption DA(h) = 0 implies that (∇νh)ᵀ = 0

and thus ∇h = 0.

To show ∇2h = 0, we just need to show that (∇2
νh)ᵀ = 0 because ∇tangential(∇h) = 0 and

∇ν∇tangentialh = ∇tangential∇νh plus terms involving h and ∇h, which are all zero on Σ̂. Note that

since h satisfies the geodesic gauge, we also have ∇ν(DA)(h) = D(∇νA)(h) on Σ̂. To see this, we

compute, for tangential vectors ea, eb to Σ:(
D(∇νA)(h)

)
(ea, eb) :=

d

dt

∣∣∣∣
t=0

(
∇νg(t)Ag(t)

)
(ea, eb)

=
(
∇ν(DA)(h)

)
(ea, eb) +

(
(∇νg(t))

′A
)
(ea, eb)

=
(
∇ν(DA)(h)

)
(ea, eb)

(2.2)

where in the the second line (∇νg(t))′ := d
dt

∣∣
t=0
∇νg(t) and one can verify that

(
(∇νg(t))′A

)
(ea, eb)

because h = 0 and ∇h = 0 on Σ̂.

To conclude, we get ∇ν(DA)(h) = 0 on Σ̂ using (2.2) and the assumption that D
(
∇νA

)
(h) = 0

on Σ̂. Covariant differentiating (2.1) in ν, we obtain (∇2
νh)ᵀ = 0.

�

Proposition 2.4. Let Σ̂ be an open subset of Σ (can be the entire Σ). Let (h, v) ∈ C2,α
−q (Rn \ Ω)

solve {
−DRic(h) +∇2v = 0

∆v = 0
in Rn \ Ω


hᵀ = 0

DA(h) = 0

D
(
∇νA

)
(h) = 0

on Σ̂.

Then v ≡ 0 and DRic(h) = 0 in Rn \ Ω.

Proof. By Lemma 2.2, we may assume h satisfies the geodesic gauge. The boundary conditions and

Lemma 2.3 imply that h = 0,∇h = 0,∇2h = 0 on Σ̂.

Note that DRic(h) involves h and its derivatives up to the second order; precisely, in local

coordinates (see, e.g. [1, Equation (2.1)]):

(DRic|g(h))ij = −1
2g
k`hij;k` + 1

2g
k`(hik;`j + hjk;`i)− 1

2(trh)ij

+ 1
2(Ri`h

`
j +Rj`h

`
i)−Rik`jhk` for all i, j = 0, 1, . . . , n− 1.

Restricting −DRic(h) +∇2v = 0 on the boundary, we see ∇2v = 0 on Σ̂.
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Next, we define the function f = ∂v
∂xi

for some i = 1, . . . , n, where (x1, . . . , xn) are the Cartesian

coordinates. Since v is harmonic, f is also a harmonic function in Rn \ Ω. The conditions that

∇2v = 0 on Σ̂ imply

∇Σf = 0 and ν(f) = 0 on Σ̂.

The first identity implies f ≡ c for some constant c in a connected open subset of Σ̂. Together

with the second identity and uniqueness of Cauchy boundary value for the harmonic equation, we

conclude that f ≡ c everywhere in Rn \Ω. Since f → 0 by the fall-off rate of v, we see that f = ∂v
∂xi

is identically zero. Since i is arbitrary, we see that ∇v = 0 and thus v is constant. Since v → 0 at

infinity, we conclude that v is identically zero. �

In the above proposition, we have shown DRic(h) = 0 in Rn\Ω. Proposition 2.6 below generalizes

Theorem 2.8 of [1], where Σ̂ was assumed to be the entire boundary Σ. The key argument is the

following extension theorem for h-Killing vector fields, that extends the classical result of Nomizu

for the case h is identically zero [16].

Theorem 2.5 ([2, Theorem 7], Cf. [3, Lemma 2.6]). Let (M, g) be a connected, analytic Riemannian

manifold. Let h be an analytic, symmetric (0, 2)-tensor on M . Let U ⊂M be a connected open subset

satisfying π1(M,U) = 0. Then if h = LXg in U , there is a unique global vector field Y such that

Y = X in U and h = LY g in the whole manifold M .

Proposition 2.6. Let Σ̂ be an open subset of Σ satisfying π1(Σ, Σ̂) = 0. Let h ∈ C2,α
−q (Rn \ Ω)

satisfy

DRic(h) = 0 in Rn \ Ω{
hᵀ = 0

DA(h) = 0
on Σ̂.

Then there is a vector field X ∈ C3,α
loc (Rn \Ω) satisfying X = 0 on Σ̂ and X −K ∈ C3,α

−q (Rn \Ω) for

some Euclidean Killing vector field K (possibly zero) such that

h = LX ḡ in Rn \ Ω.

Furthermore, if hᵀ = 0 and DH(h) = 0 everywhere on Σ, then X = 0 everywhere on Σ and thus

DA(h) = 0 on Σ.

Proof. We may without loss of generality assume that h satisfies the geodesic gauge on Σ. We

extend h by 0 across Σ̂ into some small open subset U ⊂ Ω so that the “extended” manifold

M̂ = (Rn \ Ω) ∪ U has smooth embedded boundary ∂M̂ and π1(M̂, U) = 0. Denote the extension

of h by k ∈ C1
loc(M̂):

k =

{
h in Rn \ Ω

0 in U

Let Z ∈ C1,α
1−q(M̂) be a vector field that weakly solves ∆Z = βk in M̂ with Z = 0 on ∂M̂ where the

Bianchi operator βk = −divḡ k+ 1
2d(trḡk). Or equivalently, k+LZ ḡ weakly solves β(k+LZ ḡ) = 0
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in M̂ . Together with the assumption that DRic(h) = 0 in Rn \ Ω and the boundary condition

h = 0,∇h = 0 on Σ, we have that k+LZ ḡ is a weak solution to ∆(k+LZ ḡ) = 0 in M̂ . So far, the

argument has followed closely [1, Theorem 2.8], to which we refer the analytic details.

But in the current setting we cannot conclude k+LZ ḡ is identically zero as in [1, Theorem 2.8].

(In [1], it was possible to extend the harmonic k + LX ḡ globally on the entire Rn.) Here we apply

Weyl’s lemma to see that k + LZ ḡ is analytic in Int(M̂). Since k + LZ ḡ = LZ ḡ in U (remember

k ≡ 0 there), by Theorem 2.5, there is a unique vector field Y such that Y = Z in U and

k + LZ ḡ = LY ḡ in M̂.

To summarize, we obtain X = Y − Z with X = 0 on Σ̂ and

h = LX ḡ in Rn \ Ω.

Note that X ∈ C3,α
loc (R \ Ω) because of the regularity h.

The rest of the conclusions follow from basic arguments as in [2], so we just give a sketch below.

To show the desired asymptotic of X toward infinity, one first considers the ODE for X along any

ray to infinity to show that X = o(|x|2). Then writing the equation DRic(LX ḡ) = 0 in the harmonic

gauge gives a harmonic expansion for X. Thus X is asymptotic to a Euclidean Killing vector field

K, using the fall-off rate LX ḡ = h ∈ C2,α
−q .

Lastly, to show that X = 0 on Σ under the added assumptions hᵀ = 0 and DH(h) = 0 on Σ, we

write X = ην + Xᵀ, where Xᵀ is tangential to Σ. The assumptions hᵀ = 0 and DH(h) = 0 on Σ

imply η,Xᵀ satisfies a linear PDE system on Σ. Since η,Xᵀ are identically zero on Σ̂, by unique

continuation, they are identically zero everywhere on Σ.

�

Proof of Theorem 9. Let (h, v) be as in the statement of Theorem 9. By Proposition 2.4, v ≡
0 in Rn \ Ω, and thus h satisfies the assumptions in Proposition 2.6, which implies the desired

conclusion. �

3. A smooth one-sided family of hypersurfaces

Let δ > 0 and let Ωt ⊂ Rn, t ∈ [−δ, δ], be bounded open subsets such that their boundaries Σt

are connected, embedded hypersurfaces and {Σt} form a smooth one-sided family foliating along

Σ̂t ⊂ Σt with relatively simply-connected Σt \ Σ̂t. Namely, their deformation vector X is smooth

and on each Σt, ḡ(X, ν) = ζ ≥ 0 with ζ > 0 in a dense subset of Σ̂t ⊂ Σt satisfying π1(Σt, Σ̂t) = 0.

Let ψt : Rn \ Ωt → Rn be the flow of X. Let us denote Ω = Ω0,Σ = Σ0, and Σ̂ = Σ̂0. Then

Ωt = ψt(Ω),Σt = ψt(Σ). Denote by gt = ψ∗t (ḡ|Rn\Ωt) the pull-back metric defined on Rn \ Ω. We

also note g0 = ḡ.

Let us define a family of linear operators, with respect to gt, as

Lt : C2,α
−q (Rn \ Ω)→ C0,α

−q−2(Rn \ Ω)× B(Σ)
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Lt(h, v) =

{
−DRic|gt(h) +∇2

gtv

∆gtv
in Rn \ Ω{

hᵀ

DH|gt(h)
on Σ

.

Here, B(Σ) = C2,α(Σ)×C1,α(Σ) is the function space for the boundary operator. Note that each Lt

is the pull-back of the operator corresponding to the boundary value problem (1.2) in Rn \ Ωt.

In [1], we observed that the kernel spaces KerLt have the following properties.

Proposition 3.1 (Cf. [1, Proposition 6.6]). There is an open dense subset J ⊂ (−δ, δ) such that

for every a ∈ J and every (h, v) ∈ KerLa, there is a sequence {tj} in J such that tj ↘ a,

(h(tj), v(tj)) ∈ KerLtj and (p, z) ∈ C2,α
−q (Rn \ Ω) such that, as tj ↘ a,(

h(tj), v(tj)
)
→ (h, v)(

h(tj), v(tj)
)
− (h, v)

tj − a
→ (p, z)

where both convergence are taken in the C2,α
−q (Rn \ Ω)-norm.

Remark 3.2. In [1, Proposition 6.6], we actually proved the statement for the kernel of the corre-

sponding “gauged” operators, which extends directly to the above statement.

Theorem 3.3. Let J ⊂ (−δ, δ) be the open dense subset as in Proposition 3.1. Then for ever a ∈ J
and every (h, v) ∈ KerLa, ,we have

DA|ga(h) = 0 and D(∇νA)|ga(h) = 0 on Σ+
a

where Σ+
a = {x ∈ Σ : ψ∗a(ζ|Σa)(x) > 0}. (In other words, ψa(Σ

+
a ) is the subset of Σa on which

ζ > 0.)

Proof. By re-paramerizing, we may assume a = 0 and hence ga = ḡ,Σa = Σ, and we denote by

La = L and Σ+
a = Σ+. We may also without loss of generality assume that h satisfies the geodesic

gauge. As proven in [1, Theorem 7 and Theorem 7′],
(
p − LXh, z − X(v)

)
is a static vacuum

deformation in Rn \ Ω satisfying the boundary conditions on Σ:

(p− LXh)ᵀ = −2ζDA(h)

DH(p− LXh) = ζA ·DA(h).
(3.1)

Recall a consequence of the Green-type identity from [1, Corollary 3.5]: If both (h, v), (k,w) ∈
C2,α
−q (Rn \Ω) are static vacuum deformations at (ḡ, 1) and h satisfies hᵀ = 0, DH(h) = 0 on Σ, then∫

Σ

〈(
vA+DA(h)− ν(v)ḡᵀ, 2v

)
,
(
kᵀ, DH(k)

)〉
dσ = 0.
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We apply the previous identity by substituting (k,w) :=
(
p−LXh, z−X(v)

)
and using the boundary

conditions (3.1) to obtain

0 =

∫
Σ

〈(
vA+DA(h)− ν(v)ḡᵀ, 2v

)
,
(
− 2ζDA(h), ζA ·DA(h)

)〉
dσ

= −
∫

Σ
2ζ|DA(h)|2 dσ

where we compute ḡᵀ ·DA(h) = 0 to get the last identity. Thus, we show that DA(h) = 0 on Σ+.

To summarize our argument, we have shown that for any a ∈ J and for any (h, v) ∈ KerLa, we

must have DA|ga(h) = 0 on Σ+
a .

Applying DA(h) = 0 on Σ+ to (3.1), the static vacuum deformation (k,w) =
(
p−LXh, z−X(v)

)
defined earlier satisfies kᵀ = 0 and DH(k) = 0 everywhere on Σ. In particular, (k,w) ∈ KerL, and

thus DA(k) = 0 on Σ+. We show that DA(k) = ∇ν(DA(h)) on Σ+: Using DA(k) = DA(p−LXh)

and

p− LXh = lim
tj→0

1

tj
(h(tj)− h)− lim

tj→0

1

tj
(ψ∗tjh− h) = lim

tj→0

1

tj

(
h(tj)− ψ∗tjh

)
,

we compute on Σ+:

0 = DA(p− LXh) = DA

(
lim
tj→0

1
tj

(
h(tj)− ψ∗tjh

))
= lim

tj→0

1
tj
DA|gtj (h(tj)− ψ∗tjh)

= − lim
tj→0

1
tj
DA|gtj (ψ

∗
tjh)

= − lim
tj→0

1
tj
ψ∗t
(
DA(h)

∣∣
Σtj

)
= −LX

(
DA(h)

)
= −ζ∇ν

(
DA(h)

)
.

where in the second equality we use h(tj) − ψ∗tjh = 0 when tj = 0, in the third equality we use

DA|gtj
(
h(tj)

)
= 0 on Σ+

tj
because

(
h(tj), v(tj)

)
∈ KerLtj and Σ+

tj
→ Σ+ as tj → 0, and in the last

equality we use DA(h) = 0 on Σ+.

To conclude the proof, we computed as in (2.2) to get

D(∇νA)(h) = ∇ν(DA(h)) = 0 on Σ+.

�

Proof of Theorem 7. Let {Σt}, t ∈ [−δ, δ], be given as in the theorem. Let J be the open dense

subset of J from Proposition 3.1. We will show that, for any a ∈ J , Σa is static regular in Rn \Ωa.

Let (h, v) ∈ KerLa. We apply Theorem 3.3 to see that DA|ga(h) = 0 and D(∇νA)|ga(h) = 0 on

Σ+ and hence on Σ̂. Then we can apply Theorem 9 to conclude that DA(h) = 0 on the entire Σ.

It completes the proof. �
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