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Abstract

We consider a family of inverse limits of inverse sequences of closed unit
intervals with a single upper semi-continuous set-valued bonding function
whose graph is an arc; it is the union of two line segments in [0,1]2, both of
them contain the origin (0,0), have positive slope, and extend to the opposite
boundary of [0,1]2.

We show that there is a large subfamily F of these bonding functions
such that for each f ∈ F , the inverse limit of the inverse sequence of closed
unit intervals using f as a single bonding function, is homeomorphic to the
Lelek fan.
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1 Introduction
Many famous continua such as the sin 1

x -continuum, the Knaster bucket-handle
continuum, the pseudo-arc, and many more have been obtained as inverse lim-
its of inverse sequences of closed unit intervals using a continuous single-valued
function [0,1]→ [0,1] as the only bonding function (see [11] and [15] for more
such examples). Note that only chainable continua can be obtained in such a way,
see [15, Theorem 12.19, page 246] for more details. Later, when a generalization
of such inverse limits was obtained by Mahavier in [14] by introducing so-called
generalized inverse limits or inverse limits of inverse sequences of closed unit
intervals using upper semi-continuous set-valued function from [0,1] to the set
of non-empty closed subsets of [0,1], [0,1]( [0,1], as the bonding functions,
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many new examples appeared. For example, the Ważewski’s universal dendrite
was obtained by Banič, Črepnjak, Merhar, Milutinović and Sovič in [3] as the
inverse limit of an inverse sequence of closed unit intervals using an upper semi-
continuous set-valued function [0,1]( [0,1] as the only bonding function. Also,
the universal dendrite Dm, the Gehman dendrite, and the so-called monster con-
tinuum were obtained as such inverse limits in [4, 7] (by Banič and Martínez-de-
la-Vega, and by Črepnjak and Sovič), [13] (by Lemež) and [10, Example 2.15,
page 31] (by Ingram), respectively. More beautiful examples of continua that are
presented in such an elegant way may be found in [10]. However, not every con-
tinuum can be presented as such an inverse limit of an inverse sequence of closed
unit intervals using an upper semi-continuous set-valued function [0,1]( [0,1]
as the only bonding function. It was proved in [9] by Illanes that circle cannot
be obtained in such a way, and in [16] it was proved by Nall that arcs are the
only graphs that can be obtained as such inverse limits. We conclude this list of
various continua that can or cannot be obtained as inverse limits of inverse se-
quences of closed unit intervals using an upper semi-continuous set-valued func-
tion [0,1]( [0,1] as the only bonding function by a beautiful result from [8] that
is obtained by Greenwood and Suabedissen, showing that the only 2-manifold
that can be obtained as the inverse limit of an inverse sequence of closed unit in-
tervals with upper semi-continuous set-valued bonding functions [0,1]( [0,1] is
a 2-torus. Then a generalization of this result was proved in [2] by Alvin, Green-
wood, Kelly and Kennedy that the only m-manifold that can be obtained as such
an inverse limit is an m-torus.

In this paper, we construct a non-trivial family of fans as the inverse limits
of inverse sequences of closed unit intervals using an upper semi-continuous set-
valued function [0,1]( [0,1] whose graph is an arc as the only bonding function.
In particular, our main result is Theorem 4.34, where the famous Lelek fan is
presented as such an inverse limit. To obtain this surprising result, we consider
a family of generalized inverse limits generated by two line segments in [0,1]2.
Both line segments contain the origin (0,0), have positive slope, and extend to the
opposite boundary of [0,1]2. The generalized inverse limit is generated by the
union of the two line segments.

We proceed as follows. In Section 2, the basic definitions and results that are
needed later in the paper, are presented. In Section 3, we introduce our settings and
give a non-trivial family of fans as the inverse limits of inverse sequences of closed
unit intervals using an upper semi-continuous set-valued function [0,1]( [0,1]
as the only bonding function. One of the obtained fans is homeomorphic to the
Cantor fan. In Section 4, our main results are presented; i.e., in Theorem 4.34,
we present the Lelek fan as the inverse limit of an inverse sequence of closed unit
intervals using an upper semi-continuous set-valued function [0,1]( [0,1] whose
graph is an arc as the only bonding function.
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2 Definitions and notation
Suppose X is a compact metric space. Recall that if f : X → X is a continuous
function, the inverse limit space generated by f is

lim
←−−

(X, f ) :=
{
(x1, x2, x3, . . .) ∈

∞∏
i=1

X | for each positive integer i, xi = f (xi+1)
}
,

which we can abbreviate as lim
←−

f . The map f on X induces a natural homeomor-
phism σ on lim

←−
f , which is called the shift map, and is defined by

σ(x1, x2, x3, x4, . . .) = (x2, x3, x4, . . . )

for each (x1, x2, x3, x4, . . .) in lim
←−

f .
Generalized inverse limits, or inverse limits with set-valued functions, are a

generalization of (standard) inverse limits. Here, rather than beginning with a
continuous function f from a compact metric space X to itself, we begin with
an upper semicontinuous function f from X to the non-empty closed subsets of
X. The generalized inverse limit, or the inverse limit with set-valued mappings,
associated with this set-valued function f is the set

lim
�−−

(X, f ) :=
{
(x1, x2, x3, . . .) ∈

∞∏
i=1

X | for each positive integer i, xi ∈ f (xi+1)
}
,

which is a closed subspace of Π∞i=1X endowed with the product topology. Here
again, the shift map σ defined above takes lim

�−−
(X, f ) to itself, but it is no longer a

homeomorphism: σ : lim
�−−

(X, f )→ lim
�−−

(X, f ) is a continuous function. And again,
we often abbreviate lim

�−−
(X, f ) as lim

�−−
f . The topic of generalized inverse limits is

currently an intensely studied area of continuum theory, with papers from many
authors at this point. See [10] for more references and additional information on
the topic.

Definition 2.1. Let (X,d) be a compact metric space. Then we define 2X by

2X = {A ⊆ X | A is a non-empty closed subset of X}.

Let ε > 0 and let A ∈ 2X. Then we define Nd(ε,A) by

Nd(ε,A) =
⋃
a∈A

B(a, ε).

Let A,B ∈ 2X. The function Hd : 2X ×2X → R, defined by

Hd(A,B) = inf{ε > 0 | A ⊆ Nd(ε,B),B ⊆ Nd(ε,A)},
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is called a Hausdorff metric. The Hausdorff metric is in fact a metric, the metric
space (2X,Hd) is called the hyperspace of the space (X,d).

Remark 2.2. Let (X,d) be a compact metric space, let A be a non-empty closed
subset of X, and let (An) be a sequence of non-empty closed subsets of X. When
we say A = lim

n→∞
An with respect to the Fausdorff metric, we mean A = lim

n→∞
An in

(2X,Hd).

Definition 2.3. Let X and Y be compact metric spaces. A function F : X→ 2Y is
called a set-valued function from X to Y. We denote set-valued functions F : X→
2Y by F : X( Y.

Definition 2.4. A set-valued function F : X ( Y is upper semicontinuous at a
point x0 ∈ X, if for each open set U ⊆ Y such that F(x0) ⊆ U, there is an open set
V in X such that

1. x0 ∈ V and

2. for each x ∈ V, F(x) ⊆ U.

The set-valued function F : X ( Y is upper semicontinuous, if it is upper semi-
continuous at any point x ∈ X.

Definition 2.5. The graph Γ(F) of a set-valued function F : X ( Y is the set of
all points (x,y) ∈ X×Y such that y ∈ F(x). The set-valued function F is surjective,
if

⋃
x∈X F(x) = Y.

There is a simple characterization of upper semicontinuous set-valued func-
tions ([1, Proposition 11, p. 128] and [10, Theorem 1.2, p. 3]):

Theorem 2.6. Let X and Y be compact metric spaces and F : X( Y a set-valued
function. Then F is upper semicontinuous if and only if its graph Γ(F) is closed
in X×Y.

Definition 2.7. Let X be a compact metric space and let G ⊆ X ×X be a relation
on X. If G is closed in X×X, then we say that G is a closed relation on X.

Definition 2.8. Let X be a set and let G be a relation on X. Then we define

G−1 = {(y, x) ∈ X×X | (x,y) ∈G}

to be the inverse relation of the relation G on X.
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Definition 2.9. Let X be a compact metric space and let G be a closed relation on
X. Then we call

?m
i=1G−1 =

{
(x1, x2, x3, . . . , xm+1) ∈

m+1∏
i=1

X | for each i ∈ {1,2,3, . . . ,m}, (xi+1, xi) ∈G
}

for each positive integer m, the m-th Mahavier product of G, and

?∞i=1G−1 =
{
(x1, x2, x3, . . .) ∈

∞∏
i=1

X | for each positive integer i, (xi+1, xi) ∈G
}

the infinite Mahavier product of G.

Observation 2.10. Let X be a compact metric space, let f : X→ X be a continuous
function. Then

?∞n=1Γ( f )−1 = lim
←−−

(X, f ).

Also, if F : X( X is an upper semi-continuous function, then

?∞n=1Γ(F)−1 = lim
�−−

(X, f ).

Definition 2.11. A continuum is a non-empty compact connected metric space.
A subcontinuum is a subspace of a continuum, which is itself a continuum.

Definition 2.12. Let X be a continuum.

1. The continuum X is unicoherent, if for any subcontinua A and B of X such
that X = A∪B, the compactum A∩B is connected.

2. The continuum X is hereditarily unicoherent provided that each of its sub-
continua is unicoherent.

3. The continuum X is a dendroid, if it is an arcwise connected, hereditarily
unicoherent continuum.

4. Let X be a continuum. If X is homeomorphic to [0,1], then X is an arc.

5. A point x in an arc X is called an end-point of the arc X, if there is a home-
omorphism ϕ : [0,1]→ X such that ϕ(0) = x.

6. Let X be a dendroid. A point x ∈ X is called an end-point of the dendroid X,
if for every arc A in X that contains x, x is an end-point of A. The set of all
end-points of X will be denoted by E(X).

7. A continuum X is a simple triod, if it is homeomorphic to ([−1,1]× 0)∪
({0}× [0,1]).

5



8. A point x in a simple triod X is called the top-point or, breafly, the top of the
simple triod X, if there is a homeomorphism ϕ : ([−1,1]×0)∪({0}×[0,1])→
X such that ϕ(0,0) = x.

9. Let X be a dendroid. A point x ∈ X is called a ramification-point of the
dendroid X, if there is a simple triod T in X with the top x. The set of all
ramification-points of X will be denoted by R(X).

10. The continuum X is a fan, if it is a dendroid with at most one ramification
point v, which is called the top of the fan X (if it exists).

11. Let X be a fan. For all points x and y in X, we define A[x,y] to be the arc in
X with end-points x and y, if x , y. If x = y, then we define A[x,y] = {x}.

12. Let X be a fan with the top v. We say that that the fan X is smooth if for any
x ∈ X and for any sequence (xn) of points in X,

lim
n→∞

xn = x =⇒ lim
n→∞

A[v, xn] = A[v, x].

13. Let X be a fan. We say that X is a Cantor fan, if X is homeomorphic to the
continuum ⋃

c∈C

Ac,

where C ⊆ [0,1] is the standard Cantor set and for each c ∈ C, Ac is the
straight line segment in the plane from (0,0) to (c,1).

14. Let X be a fan. We say that X is a Lelek fan, if it is smooth and Cl(E(X)) = X.

Observation 2.13. Let X be a fan and let Y be a subcontinuum of X. Then also Y
is a fan.

Observation 2.14. Suppose that a fan X with the top v in the Hilbert cube Q =∏∞
i=1[0,1] is the union

X =
⋃

x∈E(X)

Lx,

where each Lx is is a straight line segment (a convex segment) in Q from v to x.
Then X is a smooth fan.

Observation 2.15. Note that it was proved in [12] by A. Lelek that a Lelek fan
exists. Also, note that it has been proved in [6] by W. Charatonik and later, in [5]
by W. D. Bula and L. Overseegen that arbitrary Lelek fans are homeomorphic.
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3 A family of beautiful fans
In this section, we give in Example 3.6 a non-trivial family of fans presented as
inverse limits of inverse sequences of closed unit intervals using an upper semi-
continuous set-valued function [0,1]( [0,1] as the only bonding function. Before
we do that, we introduce the setting and the notation that will be used to present
our results.

Definition 3.1. For each (r,ρ) ∈ (0,∞)× (0,∞), we define the sets Lr, Lρ and Lr,ρ
as follows:

Lr = {(x,y) ∈ [0,1]× [0,1] | y = rx},

Lρ = {(x,y) ∈ [0,1]× [0,1] | y = ρx}

and
Lr,ρ = Lr ∪Lρ.

Definition 3.2. For each (r,ρ) ∈ (0,∞)× (0,∞), we define the set Mr,ρ as follows:

Mr,ρ = ?∞i=1Lr,ρ.

Definition 3.3. Let A be a set. We use AN to denote the set

{a | a : N→ A}

of all sequences in A.

Theorem 3.4. For each (r,ρ) ∈ (0,∞)× (0,∞),

Mr,ρ =
⋃

a∈{r,ρ}N
?∞i=1Lai .

Proof. Let x = (x1, x2, x3, . . .) ∈Mr,ρ. Then (xi, xi+1) ∈ Lr,ρ for each positive integer
i. For each positive integer i, we let ai = r, if (xi, xi+1) ∈ Lr, and ai = ρ, if (xi, xi+1) ∈
Lρ. It follows that x ∈ ?∞i=1Lai . Next, let x ∈ ?∞i=1Lai for some a ∈ {r,ρ}N. Since for
each positive integer i, Lai ⊆ Lr,ρ, it follows that x ∈ Mr,ρ. �

Definition 3.5. For each (r,ρ) ∈ (0,∞)× (0,∞) and for each sequence a ∈ {r,ρ}N,
we define the set La as follows:

La = ?∞i=1Lai .

For each (r,ρ) ∈ (0,∞)× (0,∞), we also define Lr,ρ = {La | a ∈ {r,ρ}N}.

Example 3.6. Let (r,ρ) ∈ (0,∞)× (0,∞). To describe Mr,ρ, we consider the fol-
lowing possible cases.
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1. r = ρ. In this case, Mr,ρ = ?∞i=1Lr. In addition,

(a) if r≤ 1, then Mr,ρ is an arc with end points (0,0,0, . . .) and (1,r,r2,r3, . . .).

(b) if r > 1, then Mr,ρ = {(0,0,0, . . .)}.

2. r , ρ. We consider the following subcases.

(a) r > 1 and ρ > 1. Here, Mr,ρ = {(0,0,0, . . .)}.

(b) r ≤ 1 and ρ ≤ 1. For each sequence a ∈ {r,ρ}N, La is a straight line
segment in the Hilbert cube Q =

∏∞
i=1[0,1] with endpoints (0,0,0, . . .)

and (1,a1,a2 · a1,a3 · a2 · a1, . . .). Note that {r,ρ}N is a Cantor set and
that

ϕ : {r,ρ}N→ {(1,a1,a2 ·a1,a3 ·a2 ·a1, . . .) | a ∈ {r,ρ}N},

defined by
ϕ(a) = (1,a1,a2 ·a1,a3 ·a2 ·a1, . . .)

for any a ∈ {r,ρ}N, is a homeomorphism. Therefore,

{(1,a1,a2 ·a1,a3 ·a2 ·a1, . . .) | a ∈ {r,ρ}N}

is a Cantor set in Q. Since Mr,ρ =
⋃

a∈{r,ρ}N La, it follows that Mr,ρ is a
Cantor fan.

(c) r = 1 and ρ > 1. Note that for each sequence a ∈ {r,ρ}N,

La = {(0,0,0, . . .)} ⇐⇒ ai = ρ for infinitely many indexes i.

For each non-negative integer n, let

An = {a ∈ {r,ρ}N | ai = ρ for exactly n indexes i},

letMn = {La | a ∈ An} and let Mn =
⋃

a∈An La. Then Mr,ρ =
⋃∞

n=0 Mn.
Note that M0 = {L(1,1,1,...)} and that for each positive integer n, Mn
is a collection of countable many arcs, each of them having diameter
less or equal to

Dn = max
{

1
ρn ,

1
2 ·ρn−1 ,

1
22 ·ρn−2 , . . . ,

1
2n−1 ·ρ

,
1
2n

}
and each of them having (0,0,0, . . .) as one of their endpoints. Also,
note that lim

n→∞
Dn = 0 and that for each non-negative integer n, for

each a ∈ An, and for each positive integer m > n, there is a sequence

8



(Li) of arcs inMm such that for for some subarc L of La, lim
i→∞

Li = L

with respect to the Hausdorff metric. In particular, M0 is the strait
line segment in the Hilbert cube Q with end points (0,0,0, . . .) and
(1,1,1, . . .), while the set M1 =

⋃∞
i=1 Li, where for each positive integer

i,

Li =

(t, t, t, . . . , t︸     ︷︷     ︸
i

,ρ · t,ρ · t,ρ · t, . . .) | t ∈
[
0,

1
ρ

] ;

see Figure 1.

...M 0

L1

L2

L3

L4

L5

Figure 1: The fan Mr,ρ for ρ = 1 and r > 1

(d) r < 1, ρ > 1 and for all integers k and `,

rk = ρ`⇐⇒ k = ` = 0.

Section 4 is dedicated to showing in Theorem 4.34 that in this case,
Mr,ρ is homeomorphic to the Lelek fan.

(e) r < 1, ρ > 1 and there are integers k and ` such that

i. k , 0 or ` , 0, and
ii. rk = ρ`.

We leave this case as an open problem; see Problem 4.36.
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4 The Lelek fan
In this section, our main results are presented. Before stating and proving them,
we give the following definitions.

Definition 4.1. Let r,ρ ∈ R. We say that r and ρ never connect or (r,ρ) ∈ NC, if

1. r < 1, ρ > 1 and

2. for all integers k and `,

rk = ρ`⇐⇒ k = ` = 0.

Definition 4.2. Let a,b ∈ R be such that a < b and let t ∈ R \ {0}. Then we define

t · (a,b) = (ta, tb).

In the theorems that follow, we prove the fundamental properties of NC that
will be used to prove Theorem 4.34, which is our main result.

Theorem 4.3. Let (r,ρ) ∈ NC. The set

{rk ·ρ` | k and ` are integers}

is dense in (0,∞).

Proof. Let
B = {rk ·ρ` | k and ` are integers}

and suppose that B is not dense in (0,∞). Then there are α,β ∈ [0,∞) such that

1. α < β,

2. (α,β)∩B = ∅, and

3. for all γ,δ ∈ [0,∞),

(α,β) ⊆ (γ,δ) and (γ,δ)∩B = ∅ =⇒ α = γ and β = δ.

Choose such numbers α and β. Note that it follows that α,β ∈ Cl(B).

Claim 4.4. For all integers k and `,

rkρ` · (α,β)∩B = ∅.

Proof of Claim 4.4. Suppose that for integers k0, `0, rk0ρ`0 ∈ rkρ` ·(α,β). It follows
that rk0−kρ`0−` ∈ (α,β)—a contradiction. This completes the proof of the claim.
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Claim 4.5. For all integers k, `, k′ and `′,

rkρ` , rk′ρ`
′

=⇒ (rkρ` · (α,β))∩ (rk′ρ`
′

· (α,β)) = ∅.

Proof of Claim 4.5. Let k, `, k′ and `′ be such that rkρ` , rk′ρ`
′

and suppose that
(rkρ` · (α,β))∩ (rk′ρ`

′

· (α,β)) , ∅. Let

z ∈ (rkρ` · (α,β))∩ (rk′ρ`
′

· (α,β)).

It follows that
r−kρ−` · z ∈ (α,β)∩ (rk′−kρ`

′−` · (α,β)).

Since r−kρ−` · z ∈ (α,β) and since (α,β)∩B = ∅, it follows that r−kρ−` · z <B. Also,
since (α,β) and (rk′−kρ`

′−` · (α,β)) are both open intervals, each of them containing
the point r−kρ−` ·z, it follows that (α,β)∪(rk′−kρ`

′−` ·(α,β)) is also an open interval
in R. It follows from 3 that rk′−kρ`

′−` · (α,β) ⊆ (α,β). Therefore,

(α,β) ⊆ rk−k′ρ`−`
′

· (α,β).

By Claim 4.4, rk−k′ρ`−`
′

· (α,β)∩B = ∅. and it follows from 3 that

(α,β) = rk−k′ρ`−`
′

· (α,β).

Therefore, rk−k′ρ`−`
′

= 1 and
rk′−k = ρ`−`

′

follows. Hence, k′ = k and `′ = `, meaning that rkρ` = rk′ρ`
′

—a contradiction.
This completes the proof of the claim.

Next, we define a sequence z : N→ [0,1]∩B by defining z1 = 1, z2 = r, and
for each positive integer n ≥ 2,

zn+1 =

ρ · zn; ρ · zn ≤ 1
r · zn; ρ · zn > 1.

Claim 4.6. For each positive integer n,

r
ρ
≤ zn ≤ 1.

Proof of Claim 4.4. It follows from the construction of the sequence z that for
each positive integer n, zn ≤ 1. It follows from r<ρ that 1≥ r

ρ and r≥ r
ρ . Therefore,

z1 ≥
r
ρ and z2 ≥

r
ρ . Let n be a positive integer and suppose that zn ≥

r
ρ . To prove

that zn+1 ≥
r
ρ , we consider the following cases.
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1. zn+1 = ρ · zn. Then
zn+1 = ρ · zn ≥ zn ≥

r
ρ

and we are done.

2. zn+1 = r · zn. Then ρ · zn > 1 and it follows that zn >
1
ρ . Therefore,

zn+1 = r · zn > r ·
1
ρ

=
r
ρ
.

This completes the proof of the claim.

Next, let
A = {zn · (α,β) | n is a positive integer}.

It follows from Claim 4.5 that for all positive integers m and n,

m , n =⇒ (zm · (α,β))∩ (zn · (α,β)) = ∅.

Also, note that for each positive integer n,

1. zn · (α,β) ⊆ [0,β], since 0 < zn ≤ 1, and

2. znβ− znα = zn(β−α) ≥ r
ρ · (β−α).

Therefore, there are infinitely many pairwise disjoint open intervals of length at
least r

ρ · (β−α) in the interval [0,β], which is not possible. This completes the
proof. �

Definition 4.7. Let (r,ρ) ∈ NC. We define

B1(r,ρ) = {rk ·ρ` | k and ` are non-negative integers},

B2(r,ρ) = {rk ·ρ` | k and ` are negative integers},

B3(r,ρ) = {rk ·ρ` | k is a non-negative integer and ` is a negative integer},

B4(r,ρ) = {rk ·ρ` | k is a negative integer and ` is a non-negative integer},

and
B(r,ρ) = B1(r,ρ)∪B2(r,ρ)∪B3(r,ρ)∪B4(r,ρ).

Lemma 4.8. Let (r,ρ) ∈ NC. Then B3(r,ρ) and B4(r,ρ) are nowhere dense in
(0,∞).

Proof. Note that for each x ∈ (0,∞),

1. B3(r,ρ)∩ (x,∞) is finite, and that

12



2. B4(r,ρ)∩ (0, x) is finite.

Therefore, both, B3(r,ρ) and B4(r,ρ), are closed in (0,∞) and neither of them
contains an open interval. It follows that B3(r,ρ) and B4(r,ρ) are nowhere dense
in (0,∞). �

Lemma 4.9. Let (r,ρ) ∈ NC. Then for all x,y ∈ B2(r,ρ) ,

x < y =⇒ (x,y)∩B1(r,ρ) , ∅.

Proof. Let x,y ∈ B2(r,ρ) such that x < y. Also, let k1, k2, `1 and `2 be positive
integers such that

x = r−k1ρ−`1 and y = r−k2ρ−`2 .

Note that

1. (0, x)∩B1(r,ρ) , ∅ and

2. (y,∞)∩B1(r,ρ) , ∅.

We consider the following cases.

1. k1 = k2. First, note that

x < y⇐⇒ r−k1ρ−`1 < r−k2ρ−`2 ⇐⇒ ρ−`1 < ρ−`2 ⇐⇒−`1 < −`2⇐⇒ `2 < `1.

Suppose that (x,y)∩B1(r,ρ) = ∅. First, we prove the following claim.

Claim 4.10. There are a positive integer k and a non-negative integer ` such
that

rkρ` < x < y < rkρ`+1.

Proof of Claim 4.10. Let k be a positive integer such that rk ≤ x. Since
ρ > 1, it follows that

(a) for each non-negative integer n, rkρn < rkρn+1 and

(b) lim
n→∞

rkρn =∞.

Therefore, there is a non-negative integer ` such that rkρ` ≤ x and rkρ`+1 >
x. Since (x,y)∩B1(r,ρ) = ∅, it follows that rkρ`+1 ≥ y. All that is left to
see is that rkρ` , x and rkρ`+1 , y. Suppose that rkρ` = x. It follows that
rkρ` = r−k1ρ−`1 . Therefore, rk+k1 = ρ−`1−` and this implies that k+k1 = 0 and
−`1 − ` = 0. Therefore, k = −k1—a contradiction, since k1 and k are both
positive integers. Suppose that rkρ`+1 = y. It follows that rkρ`+1 = r−k2ρ−`2 .
Therefore, rk+k2 = ρ−`2−`−1 and this implies that k +k2 = 0 and −`2− `−1 =

0. Therefore, k = −k2—a contradiction, since k2 and k are both positive
integers. This completes the proof of the claim.
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Let k be a positive integer and let ` be a non-negative integer such that

rkρ` < x < y < rkρ`+1.

Then

r−k1ρ−`2 = r−k2ρ−`2 = y < rkρ`+1 = rkρ` ·ρ < x ·ρ = r−k1ρ−`1 ·ρ = r−k1ρ−`1+1.

It follows that r−k1ρ−`2 < r−k1ρ−`1+1. Note that

r−k1ρ−`2 < r−k1ρ−`1+1⇐⇒ ρ−`2 < ρ−`1+1⇐⇒−`2 < −`1 +1⇐⇒ `1−1 < `2.

It follows that `1 ≤ `2—a contradiction, since `2 < `1. Therefore, (x,y)∩
B1(r,ρ) , ∅.

2. `1 = `2. Note that

x < y⇐⇒ r−k1ρ−`1 < r−k2ρ−`2 ⇐⇒ r−k1 < r−k2 ⇐⇒−k1 > −k2⇐⇒ k1 < k2.

Suppose that (x,y)∩B1(r,ρ) = ∅. First, we prove the following claim.

Claim 4.11. There are a non-negative integer k and a positive integer ` such
that

rk+1ρ` < x < y < rkρ`.

Proof of Claim 4.11. Let ` be a positive integer such that ρ` ≥ y. Since r < 1,
it follows that

(a) for each non-negative integer n, rn+1ρ` < rnρ` and

(b) lim
n→∞

rnρ` = 0.

Therefore, there is a non-negative integer k such that rkρ` ≥ y and rk+1ρ` < y.
Since (x,y)∩B1(r,ρ) = ∅, it follows that rk+1ρ` ≤ x. All that is left to see
is that rk+1ρ` , x and rkρ` , y. Suppose that rk+1ρ` = x. It follows that
rk+1ρ` = r−k1ρ−`1 . Therefore, rk+1+k1 = ρ−`1−` and this implies that k + 1 +

k1 = 0 and −`1 − ` = 0. Therefore, ` = −`1—a contradiction, since `1 and
` are both positive integers. Next, suppose that rkρ` = y. It follows that
rkρ` = r−k2ρ−`2 . Therefore, rk+k2 = ρ−`2−` and this implies that k + k2 = 0
and −`2 − ` = 0. Therefore, ` = −`2—a contradiction, since `2 and ` are
both positive integers. This completes the proof of the claim.
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Let k be a non-negative integer and let ` be a positive integer such that

rk+1ρ` < x < y < rkρ`.

Then

r−k2+1ρ−`1 = r ·r−k2ρ−`1 = r ·r−k2ρ−`2 = r ·y < r ·rkρ` = rk+1ρ` < x = r−k1ρ−`1 .

It follows that r−k2+1ρ−`1 < r−k1ρ−`1 . Note that

r−k2+1ρ−`1 < r−k1ρ−`1 ⇐⇒ r−k2+1 < r−k1 ⇐⇒−k2 + 1 > −k1⇐⇒ k2−1 < k1.

It follows that k2 ≤ k1—a contradiction, since k1 < k2. Therefore, (x,y)∩
B1(r,ρ) , ∅ follows.

3. k1 < k2. First, we prove the following claim.

Claim 4.12. If `2 < `1, then (x,y)∩B1(r,ρ) , ∅.

Proof of Claim 4.12. Suppose that `2 < `1. It follows that ρ`1 > ρ`2 and it
follows from this that ρ−`1 < ρ−`2 . Note that rk2−k1 < 1. Therefore,

y = r−k2ρ−`2 > r−k2ρ−`2 · rk2−k1 = r−k1ρ−`2 > r−k1ρ−`1 = x.

Let y′ = r−k1ρ−`2 and let k′ = k1 and `′ = `2. We have

x = r−k1ρ−`1 and y′ = r−k′ρ−`
′

.

Note that x < y′ and that k1 = k′. In the first case, we have seen that in this
case, (x,y′)∩B1(r,ρ) , ∅. Therefore (x,y)∩B1(r,ρ) , ∅. This completes the
proof of the claim.

Suppose until the end of this case that `1 < `2 (note that we have already
covered the cases `2 < `1 and `1 = `2).

Claim 4.13. rk1−k2ρ`1−`2 > 1.

Proof of Claim 4.13. The claim follows from x < y and

x · rk1−k2ρ`1−`2 = r−k1ρ−`1 · rk1−k2ρ`1−`2 = r−k2ρ−`2 = y.

This completes the proof of the claim.

Claim 4.14. For each positive integer `,

ρ` < {y · rn(k1−k2)ρn(`1−`2) | n is a positive integer}.
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Proof of Claim 4.14. Suppose that ` and n are positive integers such that

ρ` = y · rn(k1−k2)ρn(`1−`2).

It follows that
ρ` = r−k2ρ−`2 · rn(k1−k2)ρn(`1−`2).

Therefore,
rn(k1−k2)−k2 = ρ`+`2−n(`1−`2).

Since (r,ρ) ∈ NC, it follows that n(k1− k2)− k2 = 0 and `+ `2−n(`1− `2) =

0. Therefore, k2 = n(k1 − k2). Since k1 − k2 < 0, it follows that k2 < 0—a
contradiction. This completes the proof of the claim.

Let ` be a positive integer such that ρ` > y. By Claim 4.14,

ρ` ∈ (y,∞) \ {y · rn(k1−k2)ρn(`1−`2) | n is a positive integer}.

It follows from Claim 4.13 that for each non-negative integer n,

y · rn(k1−k2)ρn(`1−`2) ≥ y,

y · r(n+1)(k1−k2)ρ(n+1)(`1−`2) > y · rn(k1−k2)ρn(`1−`2),

and
lim

n→∞
y · rn(k1−k2)ρn(`1−`2) =∞.

Therefore, there is a non-negative integer n such that

ρ` ∈ (y · rn(k1−k2)ρn(`1−`2),y · r(n+1)(k1−k2)ρ(n+1)(`1−`2)).

Let n be such an integer and let

z = ρ` · r(n+1)(k2−k1)ρ(n+1)(`2−`1).

To complete the proof of this case, we prove the following claim.

Claim 4.15. z ∈ (x,y)∩B1.

Proof of Claim 4.15. To show that z ∈ B1, observe that

z = ρ` · r(n+1)(k2−k1)ρ(n+1)(`2−`1) = r(n+1)(k2−k1)ρ(n+1)(`2−`1)+`.

Since k2 > k1 and `2 > `1, it follows that (n + 1)(k2− k1) ≥ 0 and (n + 1)(`2−

`1) + ` ≥ 0. Therefore, z ∈ B1. To see that z ∈ (x,y), observe that it follows
from

ρ` ∈ (y · rn(k1−k2)ρn(`1−`2),y · r(n+1)(k1−k2)ρ(n+1)(`1−`2))
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and
z = ρ` · r(n+1)(k2−k1)ρ(n+1)(`2−`1)

that
r(n+1)(k2−k1)ρ(n+1)(`2−`1) · y · rn(k1−k2)ρn(`1−`2) < z

and
z < r(n+1)(k2−k1)ρ(n+1)(`2−`1) · y · r(n+1)(k1−k2)ρ(n+1)(`1−`2)).

Since

r(n+1)(k2−k1)ρ(n+1)(`2−`1) · y · rn(k1−k2)ρn(`1−`2) = r−k1ρ−`1 = x

and
r(n+1)(k2−k1)ρ(n+1)(`2−`1) · y · r(n+1)(k1−k2)ρ(n+1)(`1−`2)) = y,

it follows that z ∈ (x,y). This completes the proof of the claim.

4. k1 > k2. First, we prove the following claim.

Claim 4.16. `2 < `1.

Proof of Claim 4.16. It follows from k1 > k2 that r−k1 > r−k2 . Therefore,
0 < rk1−k2 < 1. Observe that

x < y⇐⇒ r−k1ρ−`1 < r−k2ρ−`2 ⇐⇒ ρ`2−`1 < rk1−k2 .

Therefore, ρ`2−`1 < 1. It follows that `2 < `1. This completes the proof of
the claim.

Claim 4.17. rk2−k1ρ`2−`1 < 1.

Proof of Claim 4.17. The claim follows from x < y and

y · rk2−k1ρ`2−`1 = r−k2ρ−`2 · rk2−k1ρ`2−`1 = r−k1ρ−`1 = x.

This completes the proof of the claim.

Claim 4.18. For each positive integer k,

rk < {x · rn(k2−k1)ρn(`2−`1) | n is a positive integer}.
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Proof of Claim 4.18. Suppose that k and n are positive integers such that

rk = x · rn(k2−k1)ρn(`2−`1).

It follows that
rk = r−k1ρ−`1 · rn(k2−k1)ρn(`2−`1).

Therefore,
rk+k1−n(k2−k1) = ρn(`2−`1)−`1 .

Since (r,ρ) ∈ NC, it follows that k + k1−n(k2− k1) = 0 and n(`2− `1)− `1 =

0. Therefore, `1 = n(`2 − `1). Since `2 − `1 < 0, it follows that `1 < 0—a
contradiction. This completes the proof of the claim.

Let k be a positive integer such that rk < x. By Claim 4.18,

rk < {x · rn(k2−k1)ρn(`2−`1) | n is a positive integer}.

It follows from Claim 4.17 that for each non-negative integer n,

x · rn(k2−k1)ρn(`2−`1) ≤ x,

x · r(n+1)(k2−k1)ρ(n+1)(`2−`1) < x · rn(k2−k1)ρn(`2−`1),

and
lim

n→∞
x · rn(k2−k1)ρn(`2−`1) = 0.

Therefore, there is a non-negative integer n such that

rk ∈ (x · r(n+1)(k2−k1)ρ(n+1)(`2−`1), x · rn(k2−k1)ρn(`2−`1)).

Let n be such an integer and let

z = rk · r(n+1)(k1−k2)ρ(n+1)(`1−`2).

To complete the proof of this case, we prove the following claim.

Claim 4.19. z ∈ (x,y)∩B1.

Proof of Claim 4.19. To show that z ∈ B1, observe that

z = rk · r(n+1)(k1−k2)ρ(n+1)(`1−`2) = rk+(n+1)(k1−k2)ρ(n+1)(`1−`2).

Since k2 < k1 and `2 < `1, it follows that k + (n + 1)(k1 − k2) ≥ 0 and (n +

1)(`1 − `2) ≥ 0. Therefore, z ∈ B1. To see that z ∈ (x,y), observe that it
follows from

rk ∈ (x · r(n+1)(k2−k1)ρ(n+1)(`2−`1), x · rn(k2−k1)ρn(`2−`1))
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and
z = rk · r(n+1)(k1−k2)ρ(n+1)(`1−`2)

that
r(n+1)(k1−k2)ρ(n+1)(`1−`2) · x · r(n+1)(k2−k1)ρ(n+1)(`2−`1) < z

and
z < r(n+1)(k1−k2)ρ(n+1)(`1−`2) · x · rn(k2−k1)ρn(`2−`1)).

Since
r(n+1)(k1−k2)ρ(n+1)(`1−`2) · x · r(n+1)(k2−k1)ρ(n+1)(`2−`1) = x

and

r(n+1)(k1−k2)ρ(n+1)(`1−`2) · x · rn(k2−k1)ρn(`2−`1)) = r−k2ρ−`2 = y,

it follows that z ∈ (x,y).

This completes the proof. �

In the proof of Theorem 4.23, we also use the following well-known lemmas.
Since the proofs are short, we give them here for the completeness of the paper.

Lemma 4.20. Let X be a metric space and A,B ⊆ X such that A is dense in X and
B is nowhere dense in X. Then A \B is dense in X.

Proof. Let U be a non-empty open set in X. Since B is nowhere dense in X, it
follows that Int(Cl(B)) = ∅. Therefore U * Cl(B) and it follows that U \Cl(B) , ∅.
Since U \Cl(B) is non-empty and open in X and since A is dense in X, it follows
that A∩ (U \Cl(B)) , ∅. Therefore, U ∩ (A \B) , ∅. �

Lemma 4.21. Let A,B ⊆ (0,∞) be such sets that A∪ B is dense in X, A∩ B = ∅

and for all x,y ∈ B,
x < y =⇒ (x,y)∩A , ∅.

Then A is dense in X.

Proof. Let a,b ∈ R be such that a < b. Since A∪ B is dense in (0,∞), it follows
that (a,b)∩ (A∪ B) , ∅. Let x ∈ (a,b)∩ (A∪ B). Since A∪ B is dense in (0,∞),
it follows that (x,b)∩ (A∪ B) , ∅. Let y ∈ (x,b)∩ (A∪ B). If x ∈ A or y ∈ A, then
we are done. If not, then x,y ∈ B. By the assumption, (x,y)∩ A , ∅. Therefore,
(a,b)∩A , ∅. �

Lemma 4.22. Let X be a metric space and A,B ⊆ X such that A is nowhere dense
in X and B is nowhere dense in X. Then A∪B is nowhere dense in X.
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Proof. To prove that A∪B is nowhere dense in X, we show that X \ (Cl(A∪B)) is
dense in X. Let U be a non-empty open set in X. Since A and B are nowhere dense
in X, it follows that X \ (Cl(A)) and X \ (Cl(B)) are dense in X. Also, note that X \
(Cl(A)) and X \ (Cl(B)) are both open in X. Therefore, since U ∩ (X \ (Cl(A))) , ∅
and since X \(Cl(B)) is dense in X, it follows that U∩(X \(Cl(A)))∩(X \(Cl(B))),
∅. Therefore,

∅ , U ∩ (X \ (Cl(A)))∩ (X \ (Cl(B))) = U ∩ (Int(X \A))∩ (Int(X \B)) =

U ∩ (Int((X \A)∩ (X \B))) = U ∩ Int(X \ (A∪B)) = U ∩ (X \ (Cl(A∪B)))

It follows that X \ (Cl(A∪B)) is dense in X. �

Theorem 4.23. Let (r,ρ) ∈ NC. Then B1(r,ρ) is dense in (0,∞).

Proof. Recall that by Theorem 4.3,

B(r,ρ) = B1(r,ρ)∪B2(r,ρ)∪B3(r,ρ)∪B4(r,ρ).

is dense in (0,∞). By Lemma 4.8,B3(r,ρ) andB4(r,ρ) are nowhere dense in (0,∞)
and by Lemma 4.22, B3(r,ρ)∪B4(r,ρ) is nowhere dense in (0,∞). It follows from
Lemma 4.20 that

B(r,ρ) \ (B3(r,ρ)∪B4(r,ρ)) = B1(r,ρ)∪B2(r,ρ)

is dense in (0,∞). By Theorem 4.9, for all x,y ∈ B2(r,ρ),

x < y =⇒ (x,y)∩B1(r,ρ) , ∅.

Since B1(r,ρ)∩B2(r,ρ) = ∅, it follows from Lemma 4.21 that B1(r,ρ) is dense in
(0,∞). �

The following lemma is also a very known result. Since the proof is short, we
give it here for the completeness of the paper.

Lemma 4.24. Let A be dense in (0,∞) and let x ∈ (0,∞). Then {x · a | a ∈ A} is
also dense in (0,∞).

Proof. Let α,β ∈ (0,∞) such that α < β. Since A is dense in (0,∞), it follows that
A∩ (1

x ·α,
1
x · β) , ∅. Let a ∈ A∩ (1

x ·α,
1
x · β). Then x · a ∈ (α,β). It follows that

{x ·a | a ∈ A} is also dense in (0,∞). �

We use the following lemma in the proof of Theorem 4.26.
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Lemma 4.25. Let (r,ρ) ∈ NC. Then for each x ∈ (0,1), there are sequences (kn)
and (`n) of non-negative integers such that for each positive integer n,

1−
1

n + 1
< x · rknρ`n < 1.

Proof. By Theorem 4.23, B1(r,ρ) is dense in (0,∞). By Lemma 4.24,

{x · y | y ∈ B1(r,ρ)}

is also dense in (0,∞). Therefore, for each positive integer n, there are non-
negative integers kn and `n such that

1−
1

n + 1
< x · rknρ`n < 1.

�

Theorem 4.26. Let (r,ρ) ∈ NC. Then for each x ∈ (0,1), there is a sequence
a ∈ {r,ρ}N such that for each positive integer n,

(a1 ·a2 ·a3 · . . . ·an) · x ∈ [0,1]

and
sup{(a1 ·a2 ·a3 · . . . ·an) · x | n is a positive integer} = 1.

Proof. Let x ∈ (0,1) and let (kn) and (`n) be sequences of non-negative integers
such that for each positive integer n,

1−
1

n + 1
< x · rknρ`n < 1.

Such sequences do exist by Lemma 4.25. Then, let

a1 = a2 = a3 = . . . = ak1 = r and ak1+1 = ak1+2 = ak1+3 = . . . = ak1+`1 = ρ.

Since ρ > 1 and (a1 · a2 · a3 · . . . · ak1+`1) · x ∈ [0,1], it follows that for each i ∈
1,2,3, . . . ,k1 + `1,

(a1 ·a2 ·a3 · . . . ·ai) · x ∈ [0,1].

Next, we define

ak1+`1+1 = ak1+`1+2 = ak1+`1+3 = . . . = ak1+`1+k2 = r

and
ak1+`1+k2+1 = ak1+`1+k2+2 = ak1+`1+k2+3 = . . . = ak1+`1+k2+`2 = ρ.
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Obviously, for each i ∈ 1,2,3, . . . ,k1 + `1 + k2 + `2,

(a1 ·a2 ·a3 · . . . ·ai) · x ∈ [0,1].

Let n be a positive integer and suppose that we have already defined the terms a1,
a2, a3, . . ., a∑n

j=1(k j+` j) such that for each i ∈ 1,2,3, . . . ,
∑n

j=1(k j + ` j),

(a1 ·a2 ·a3 · . . . ·ai) · x ∈ [0,1].

Then we define

a∑n
j=1(k j+` j)+1 = a∑n

j=1(k j+` j)+2 = a∑n
j=1(k j+` j)+3 = . . . = a∑n

j=1(k j+` j)+kn+1 = r

and

a∑n
j=1(k j+` j)+kn+1+1 = a∑n

j=1(k j+` j)+kn+1+2 = a∑n
j=1(k j+` j)+kn+1+3 = . . . =

a∑n
j=1(k j+` j)+kn+1+`n+1 = ρ.

Obviously, for each i ∈ 1,2,3, . . . ,
∑n+1

j=1(k j + ` j),

(a1 ·a2 ·a3 · . . . ·ai) · x ∈ [0,1].

We have just constructed (inductively) our sequence a. Obviously, for each posi-
tive integer n,

(a1 ·a2 ·a3 · . . . ·an) · x ∈ [0,1].

Note that

sup{(a1 ·a2 ·a3 · . . . ·an) · x | n is a positive integer} = 1

follows from the fact that for each positive integer n,

1−
1

n + 1
< x · rknρ`n < 1.

This completes our proof. �

Observation 4.27. For each (r,ρ) ∈ NC and for each a ∈ {r,ρ}N, La is either a
straight line segment in the Hilbert cube Q with one endpoint being the point
(0,0,0, . . .) or La = {(0,0,0, . . .)}.

Definition 4.28. Let (r,ρ) ∈ NC and let a ∈ {r,ρ}N. We say that the sequence a is
a useful sequence, if La is an arc. We also define the setUr,ρ as follows:

Ur,ρ = {a ∈ {r,ρ}N | a is a useful sequence}.
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Definition 4.29. For each positive integer k, we use πk :
∏∞

i=1[0,1]→ [0,1] to
denote the k-th standard projection from

∏∞
i=1[0,1] to [0,1].

Definition 4.30. Let (r,ρ) ∈ NC. For each a ∈ Ur,ρ, we define the sequence ba :
N→ [0,1] by

ba
n = max(πn(La))

for each positive integer n.

Observation 4.31. Let (r,ρ) ∈ NC. For each a ∈ Ur,ρ,

πn(La) = [0,ba
n]

for each positive integer n.

Next, we show that Mr,ρ is a fan.

Theorem 4.32. Let (r,ρ) ∈ NC. Then Mr,ρ is a fan such that

E(Mr,ρ) = {(ba
1,b

a
2,b

a
3, . . .) | a ∈ Ur,ρ} and R(Mr,ρ) = {(0,0,0, . . .)}.

Proof. Let

E = Lr,ρ∪
([1
ρ
,1

]
×{1}

)
and let

F = ?∞i=1E.

Note that F is a Cantor fan: it is the union

F =
⋃

a∈{r,1}N
Aa,

where for each a ∈ {r,1}N, Aa is an arc with end-points (0,0,0, . . .) and (a1,a1a2,a1a2a3, . . .),
also,

{(a1,a1a2,a1a2a3, . . .) | a ∈ {r,1}N}

is homeomorphic to {r,1}N, which is a Cantor set.
Since every subcontinuum of a fan is itself a fan, it follows from Mr,ρ ⊆ F, that

Mr,ρ is a fan. Obviously,

E(Mr,ρ) = {(ba
1,b

a
2,b

a
3, . . .) | a ∈ Ur,ρ}

and
R(Mr,ρ) = {(0,0,0, . . .)}.

and this completes the proof. �
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In the following theorem, the end-points of the fan Mr,ρ are found.

Theorem 4.33. Let (r,ρ) ∈NC, let x ∈ (0,1) and let a ∈ {r,ρ}N be a sequence such
that for each positive integer n,

(a1 ·a2 ·a3 · . . . ·an) · x ∈ [0,1]

and
sup{(a1 ·a2 ·a3 · . . . ·an) · x | n is a positive integer} = 1.

Then
(x,a1 · x, (a1 ·a2) · x, (a1 ·a2 ·a3) · x, . . .) ∈ E(Mr,ρ).

Proof. Suppose that (x,a1 · x, (a1 · a2) · x, (a1 · a2 · a3) · x, . . .) < E(Mr,ρ). Let a =

(a1,a2,a3, . . .). Then x < ba
1. It follows that for each positive integer n,

(a1 ·a2 ·a3 · . . . ·an) · x < (a1 ·a2 ·a3 · . . . ·an) ·ba
1.

Let (in) be a strictly increasing sequence of positive integers such that

lim
n→∞

(a1 ·a2 ·a3 · . . . ·ain) · x = 1.

Then
lim

n→∞
(a1 ·a2 ·a3 · . . . ·ain) ·ba

1 = 1.

It follows that

0 = 1−1 = lim
n→∞

(a1 ·a2 ·a3 · . . . ·ain) ·ba
1− lim

n→∞
(a1 ·a2 ·a3 · . . . ·ain) · x =

lim
n→∞

(a1 ·a2 ·a3 · . . . ·ain) · (ba
1− x) = (ba

1− x) lim
n→∞

(a1 ·a2 ·a3 · . . . ·ain)

and since ba
1− x , 0, it follows that

lim
n→∞

(a1 ·a2 ·a3 · . . . ·ain) = 0,

which is a contradiction. Therefore,

(x,a1 · x, (a1 ·a2) · x, (a1 ·a2 ·a3) · x, . . .) ∈ E(Mr,ρ).

This completes the proof. �

The following theorem is our main result.

Theorem 4.34. Let (r,ρ) ∈ NC. Then Mr,ρ is a Lelek fan.
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Proof. By Theorem 4.32, Mr,ρ is a fan. Since it is the union

Mr,ρ =
⋃

a∈Ur,ρ

La

of straight line segments La from (0,0,0, . . .) to (ba
1,b

a
2,b

a
3, . . .) in the Hilbert cube

Q, it is smooth. To complete the proof, we prove that E(Mr,ρ) is dense in Mr,ρ. It
suffices to prove that E(Mr,ρ) is dense in Mr,ρ \ {(0,0,0, . . .)}. Let

x = (x1, x2, x3, . . .) ∈ Mr,ρ \ {(0,0,0, . . .)}

be any point. Then xn , 0 for each positive integer n. For each positive integer n,
by Theorem 4.26, there is a sequence

an = (an
1,a

n
2,a

n
3, . . .) ∈ {r,ρ}

N

such that for each positive integer k,

(an
1 ·a

n
2 ·a

n
3 · . . . ·a

n
k) · xn ∈ [0,1]

and
sup{(an

1 ·a
n
2 ·a

n
3 · . . . ·a

n
k) · xn | k is a positive integer} = 1.

For each positive integer n, choose such a sequence an and let

xn = (x1, x2, x3, . . . , xn,an
1 · xn, (an

1 ·a
n
2) · xn, (an

1 ·a
n
2 ·a

n
3) · xn, . . .).

By Theorem 4.33, xn ∈ E(Mr,ρ) for each positive integer n. Since

lim
n→∞

xn = x,

it follows that E(Mr,ρ) is dense in Mr,ρ \ {(0,0,0, . . .)}. Therefore, E(Mr,ρ) is dense
in Mr,ρ. �

Observation 4.35. Let (r,ρ) ∈ NC and let f : [0,1]( [0,1] be a set-valued func-
tion such that the graph of f equals to Γ( f ) = L−1

r,ρ. The set L−1
r,ρ is a closed subset of

[0,1]× [0,1], therefore, f is an upper semi-continuous function. By Observation
2.10 and by Theorem 4.34, the generalized inverse limit lim

�−−
(X, f ) is homeomor-

phic to the Lelek fan.

We have just presented the Lelek fan as the inverse limit of an inverse se-
quence of closed unit intervals using an upper semi-continuous set-valued func-
tion [0,1]( [0,1] whose graph is an arc as the only bonding function. Therefore,
this is a good place where we can state an open problem and finish the paper.
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Problem 4.36. Let r,r′ < 1, ρ,ρ′ > 1 and let k, `, k′ and `′ be integers such that

1. k , 0 or ` , 0, and

2. rk = ρ`,

3. k′ , 0 or `′ , 0, and

4. (r′)k′ = (ρ′)`
′

.

Are the continua Mr,ρ and Mr′,ρ′ homeomorphic?
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