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Motivated by recent experiments, we investigate the Lieb-Liniger gas initially prepared in an
out-of-equilibrium state that is Gaussian in terms of the phonons, namely whose density matrix is
the exponential of an operator quadratic in terms of phonons creation and anihilation operators.
Because the phonons are not exact eigenstates of the Hamiltonian, the gas relaxes to a stationary
state at very long times whose phonon population is a priori different from the initial one. Thanks
to integrability, that stationary state needs not be a thermal state. Using the Bethe Ansatz mapping
between the exact eigenstates of the Lieb-Liniger Hamiltonian and those of a non-interacting Fermi
gas and bosonization techniques we completely characterize the stationary state of the gas after
relaxation and compute its phonon population distribution. We apply our results to the case where
the initial state is an excited coherent state for a single phonon mode, and we compare them to

exact results obtained in the hard-core limit.

Introduction. Phonons are a central concept in the
field of quantum gases. They are quantized sound waves,
or collective phase-density excitations, that arise in low-
energy and long wave-length description of quantum
gases, e.g. in Bogoliubov theory of Bose-Einstein con-
densates in D > 2 spatial dimensions [1], or, in 1D,
in Bogoliubov theory for quasi-condensates [2, 3] and
more generally in Luttinger liquid theory [4—6]. Phonons
are routinely used to analyze experiments with out-of-
equilibrium quantum gases, such as the dynamics gener-
ated by a quench of the interaction strength in a 1D Bose

{

gas [7], or by its splitting into two parallel clouds [8, 9], or

by a quench of the external potential [10]. In general, the
description in terms of phonons accounts remarkably well
for the observed short time dynamics [9, 11]. Crucially,

the out-of-equilibrium states produced in these experi-
mental setups are phononic Gaussian states with expec-
tation values of phononic operators obeying Wick’s the-
orem. This is because they are obtained from a thermal
equilibrium state, which is itself described by a Gaussian
density matrix, by acting on it with linear or quadratic
combinations of density and/or phase field.

However, although phonons are exact eigenstates of the
effective low-energy Hamiltonian, they are only approxi-
mations of the true eigenstates of the microscopic Hamil-
tonian. Thus, phonons have finite lifetime [12-16] and,
at long times, the phonon distribution should evolve. In
ergodic systems, this evolution would consist in the re-
laxation towards thermal equilibrium. But what if the
microscopic system is integrable? In this paper, we in-
vestigate the integrable Lieb-Liniger model of 1D Bosons
with contact repulsive interactions [17]. We express the
phonons in terms of the true, i.e. infinite-lifetime, quasi-
particles of the Lieb-Liniger model. We can then charac-
terize the final stationary state of the system after relax-
ation and we relate the phonon mode occupations to the
ones in the initial state.

Sketch of the main result. The Hamiltonian of the

Lieb-Liniger model is

L
1
H= / dz Wt (—ag + Cw*m) v, (1)
0 2% T3

with second-quantized bosonic operators obeying com-
mutation relations [¥(z), UT(y)] = d(x — y). Here ¢ > 0
is the repulsion strength, L is the length of the system
(we use periodic boundary conditions) and we use units
such that A = m = 1. For N atoms the average den-
sity is po = N/L. The density fluctuation and current
operators are

bp(a) = WH(@)¥(x) — po,
J(@) = 5 [(0:9"(@)¥(2) - ¥ (@)@, 9 ()] . (2)

At low temperature, it is customary to think of low-
energy and long wavelength excitations above the ground
state as quantized sound waves (phonons) that move to

the right or to the left at the sound velocity v. The chiral
combinations

Taju(@) = 5 (0 dp(a) + J(z) Q

are the currents carried by right-moving (R) or left-
moving (L) quasi-particles, with Fourier modes

v

Jr(z) =

K jATNT _j2nnz
R o (5 ),
n>0

(4)

with n > 0 (a similar definition holds for Ay, ,). Here
K = 7pg/v is the Luttinger parameter. Acting with
ATR/L’n on the ground state |0), one generates R/L-
phonons. We stress that the excited states generated this
way are only approzimations of the true eigenstates of the



Lieb-Liniger Hamiltonian (1). The lifetime of phonons
may be large, but it is not infinite, so the phonon pop-
ulation will evolve, until it ultimately reaches a station-
ary value, governed by the true eigenstates of the Lieb-
Liniger model.

Our main result is a general formula that relates the
phonon population at infinite time to the one in the initial
state. The latter is assumed to be Gaussian in terms of
phonons, such that correlation functions of products of
operators Jg,1,(z) reduces to sums of products of one-
and two-point correlation functions by Wick’s theorem.
In the special case of a translation-invariant initial state
(.)o» populated by R-phonons, parametrized by a single
function g(x) via [1§]

(r(@)r () = ~E=029(x —y), (5)
and (Jg(z)), = 0, our result is that the two-point func-
tion ultimately relaxes to

(T (@) Jr(y)). = L0

72 P (29(@—y)).  (6)

Thus, the phonon population evolves, unless the func-
tion g(z) satisfies 929 = —(472/L%)e*. One solu-
tion to this equation is the thermal distribution at in-
verse temperature § < L/v, for which g(z — y) =

—log (wv sinh (%)) [19]. So the thermally occu-

pied phonon modes will not evolve, but more general ini-
tial states will show a relaxation phenomenon.

In the rest of this Letter we derive Eq. (6) and its gen-
eralisation to initial Gaussian phononic states not nec-
essarly translationally invariant. We compare our pre-
dictions to exact numerical results obtained in the hard-
core (Tonks-Girardeau) limit for an state with a single
phononic mode initially displaced. We conclude by dis-
cussing perspectives for experimental observation of the
evolution of phonon populations.

FEigenstates of the Lieb-Liniger model and Bethe
fermions. For even/odd N, an N-particle eigenstate of
(1) is specified by an ordered set of half-integers/integers

I, < I, < ... < Iy which uniquely determines the set
of N rapidities A\; < Ay < ... < Ay via the Bethe equa-
tions [7, 17, 20]

Z arctan (

that eigenstate is FEg,y =
>,A2/2 and the corresponding wavefunction is
(vacuum| [T72, U(z;) {Aa}) o 3, Age! Zadatrma,
where the sum is over all permutations o of N elements
and A, | | (1 —ic sgn(rq — 1)/ (Ao(a) — )\U(b))).
In the following we assume N even. The ground
state corresponds to densely packed Bethe half-integers

() = (-8 Ry Ny

e e

The energy of

Eq. (7) provides a one-to-one mapping between the
eigenstates |{I,}) of the Lieb-Liniger model and the
eigenstates of IV non-interacting fermions with momenta
2nl,/L, a =1,...,N. This mapping preserves the total
momentum Ppy,y = >, Ao = (27/L) >, I,. Tt is natural
to introduce fermion operators b that act on the normal-
ized eigenstate |{I,}) by removing a Bethe half-integer .J
from the set {I,}, if it is present, and by annihilating the
state otherwise. Conversely, the operator bTJ inserts J in
the set {I,} unless it is already present. The eigenstate
corresponding to the modified state is then multiplied by
(=1)™a<7 where ny, < is the number of elements of {1, }
smaller than J, to enforce the correct anti-commutation
relations for the ‘Bethe fermion’ operators bTJ /by [22].

All eigenstates of (1) with a total atom number N are
generated by acting on the ground state with an equal
number of Bethe fermion creation and annihilation oper-
ators. In particular, the low energy states are obtained
by acting with creation/annihilation operators close to
the R/L Fermi points. For a half-integer [, we define the
operators

le;tl _bN+l’ ci,l:bT,%,l' (8)
The low energy eigenstates |¢)) with ¢ R-excitations are
of the form

q q
=TI ks, T] crim, 10} (9)
i=1 j=1

for sets of half-integers I; > 0 and m; < 0, with
¢ < N, and [[;|,|m;] < N. To lighten our formu-
las, we consider eigenstates with R-excitations only; it is
straightforward to generalize our results to include also L-
excitations. The energy of the low-energy eigenstate (9)
isE= Z?Zl(e(lj) —e€(m;)) with the ‘dressed’ energy [23]
given approximately by the quadratic dispersion relation

e(l) = 2L 4 L (QT”Z)2 + O(1/L3) with the effective
mass m* = (1 + (po/v)0v/0po) [24-20].

Phonons. We will make extensive use of the following
simple formula for the matrix elements of AfR » (Eq. (4))
between two low-energy states of the form (9) in the ther-

modynamic limit,

1
(o] AL, 11) N ﬁ<¢2| D ChonriCry 1)
€2+ %

(10)
Eq. (10) follows from known results about form factors
of the density operator in the Lieb-Liniger model, see
Refs. [ , 4=0] and [31]. It shows that a phonon created
by AR » is a coherent superposition of Bethe fermion
partlcle hole pairs and that phonons are obtained by
bosonization of the Bethe fermions [19, 32]. This implies
that Ag,, and ATRm satisfy bosonic canonical commuta-
tion rules [19, 32]

[Ag s AL ] = G- (11)



Bosonization allows to invert Eq. (10) and represent

the Bethe fermion operators CR( r)=) e g CTR /VL
as

(tach ()

E e~ WPR(T) .. SiPR(Y) .

cr(Y)|P1) = (P2 Y1)/ L,

(12)
where the notation : . : denotes normal ordering and
or(z) = _izn>0( i27rn:c/LA11'%n _ e—zZTrnac/LA )/\f
is the chiral field, related to the chiral current by
Jr(z) = vV K /(2m)8,¢r (2). The bosonization formulas
require that (pr(z)pr(y)) has the same short-distance
logarithmic divergence as the one in the ground state,
(er(@)pr(y)) = —log(2m(x —y +i€)/il) as y — x [33],
which implies that the phonon population <AE7nAR,n>
decays at least exponentially with n.

Initial state preparation and short time dynamics.
For short times the nonlinearity of the fermionic spec-
trum has small effect and, as one restricts to low-energy
and long wavelength states, one can approximate the
Lieb-Liniger Hamiltonian, Eq. (1), by the Luttinger Liq-
uid Hamiltonian

HNUZZWTL(

This Hamiltonian permits efficient calculation of equal-
time correlation functions at thermal equilibrium [34,

].  As explained in the introduction, it also de-
scribes successfully several experiments probing out-of-
equilibrium dynamics [7-9]. In those experiments, the
initial state is Gaussian in terms of phononic opera-
tors which motivates our choice to consider an initial
phononic Gaussian state. The latter is characterized by
the one- and (connected) two-point correlations functions
of the chiral currents, that we parameterize in terms of
functions f(x) and g(x,y) as

Rn +AL nAL n) . (13)

VK

(Jr(@))g = v —0ufr(z) (14)
(T () T ()™ =v2%8xa@,m<x,y>, (15)

and similarly for (Ju(@)Ju(y)g ™™,

(Ju(x)), and

as well as for the possible cross correlation
<JR(§E)JL(y)>80nn‘. Here <JR(m)JR(y)>COnn‘ _
(Jr(x)Jr(y)) — (Jr(@)) (Jr(y)). Higher order cor-

relation functions are obtained from those by Wick’s
theorem for the phononic operators.

Long time dynamics and relaxation. The key point
of this paper is that the phononic states are not eigen-
states of the Lieb-Liniger Hamiltonian and therefore are
not well adapted to study the long time evolution. This
is clearly seen by examining the phase difference accu-
mulated between different particle-hole states entering a
phononic excitation given by the r.h.s. of Eq. (10): one
can estimate the relevant time scale for the dephasing of2 a
)

single phonon with momentum n as tqeph = hm* (ﬁ

The long-time behavior of the Lieb-Liniger gas is now
well established [36, 37]. The system shows a relaxation
phenomena: as long as local observables are concerned,
the density matrix at long times is obtained from the ini-
tial one by retaining only its diagonal elements in the
Bethe-Ansatz eigenbasis. Moreover, according to the
Generalized Eigenstate Thermalization Hypothesis [38—

] which states that all eigenstates are locally identical
provided they have the same coarse grained rapidity dis-
tribution p(A) = (1/L) >, 6(A — Ag), all diagonal den-
sity matrix sufficiently peaked around the correct rapid-
ity distribution [38—40] are acceptable. In this paper, we
choose the Gaussian density matrix [11, 12]

Poo X €XP (Z ij}t-b1> (16)
T

where the distribution of Bethe half-integers imposed by
the Lagrange multipliers §; ensures the correct distribu-
tion of rapidities [43]. A commonly used alternative is
the Generalized Gibbs Ensemble in terms of the rapidity
distribution. Both ensembles are equally valid as long as
local quantities are concerned [44].

Extracting the numbers (§;, or equivalently the expec-
tations (b}bﬁ from the correlation functions Eqs. (14)-
(15) which parameterize the initial phononic Gaussian
state, is, generally speaking, an excruciating task. How-
ever, for an initial state in the low energy sector, only
fermionic states close to the Fermi points are affected and

calculation of (b}b 1), which reduces to finding the distri-
butions (chncRm), (ancL’n% is much an easier task as
it can be done by using bosonization.

To do this we concentrate on the right movers and

introduce Gr(€) defined by

=7 Z —zle{/L

which can be rewritten as the spatially averaged fermion
two-point correlation function

G(€) = (1/L) [ dulch(u+ €/2en(u—¢/2). (19

CRl> (17)

The crucial observation is that since Ggr is time-
independent it can be evaluated using the initial state.
Since the latter is a phononic Gaussian state, one can use
Wick’s theorem for ¢g in Eq.(12) to evaluate of the two-
point fermionic correlation function. One obtains, using

(pr(2))o = fr(x) and (¢r(2)¢r(Y))5™" = grr(7,Y),

(eh(@)ex ()0 = + exp (/i (2) — f ()]
x exp |onn (v,9) — 390 () — SokE ()] (19)

where gpfy' () = limy—,, grr (2, y) +log(2n(y — 2)/(iL))
is independent of the short distance cutoff e. The func-
tion G (&) is obtained by injecting Eq. (19) into Eq. (18).
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Figure 1. Relaxation of a single displaced phononic mode, characterized by fr(x) = Acos(kox). Solid yellow lines are
g g P p Y ¥

obtained by dynamical re-fermionization, i.e. Egs. (17-18-19-21), in the thermodynamic limit L — oo. Top: Bethe-fermions

occupations in the vicinity of the Fermi sea right-border.

Bottom: Energy in each phononic mode after relaxation, e =

|k|v<A}f%’nAR,n>oo, where k = 2n7/L (resp. —2n7/L) for right-movers (resp. left-movers). The dashed-dotted black lines is the

results expected if the system would relax to a thermal equilibrium. Dashed line shows the distribution eZ’th corresponding to
thermal redistribution of the initial energy within the right-movers phonons only and the insets highlight its difference with
the dynamical refermionization results. Crosses are exact numerical results obtained in the limiting case of hard-core bosons,
performed for 100 atoms (see text), using ko = 5 X 27 /L in the left figure (resp. ko = 2 x 27 /L in the central figure) for A = 1.0
(resp. A = 3.0), and the relaxed phonon population is computed in the fermionic diagonal ensemble. Those numerical results
are performed for a lattice gas of 1000 sites, which represents faithfully the continuous gas only for small k.

The population of the Bethe fermions, which entirely
characterizes the state after relaxation, is then computed
inverting Eq. (17). We dub this crucial intermediate re-
sult ‘dynamical refermionization’.

Consequence: relaxation of phonon population. Mean
values of products of phononic operators after relaxation
are computed expressing them in terms of fermionic oper-
ators thanks to Eq.(10), and using Wick’s theorem, valid
for the fermionic Gaussian density matrix Eq. (16). In
particular, to compute (Jg(2)Jr(Y))oo, We use the rela-
tion Jr(z) = (vwWK/L)Y, >0 eizﬂ—nw/LC;,l—i—ncR,l’ ob-
tained injecting Eq. (10) into (4). This gives, for z # y,

(Jr(2)Jr(Y)) oo = —Kv*Gr(z — y)Gr(y — ).

Also (Jr(z)),, = 0 due to translational invariance. The
phonon population reads

1
=3 ek genorira) (1= (chyera)

1
(21)
Note that one should consider its weighted sum over a
small but non-vanishing width in k = 27n/L, to ensure
that the quantity is local so Eq. (16) applies.

Egs. (20)-(21) constitute the main result of this paper.
The translation-invariant case, Eq. (6), announced ear-
lier, is obtained by using fr(z) = 0, grr(z,y) = g(z—vy),
gri (0) = 0. We stress that the relaxed state of the sys-
tem is no longer Gaussian in terms of the phonons, so

(20)

(AL AR Yoo

that higher order phononic correlation functions would
require a separate calculation.

Ezxample: application to the case of a single excited
phononic mode. Let us consider the situation where the
initial state is obtained from the ground state by a dis-
placement of an R-phonon: fr(x) = Acos(kox) with
the amplitude A and the wave-vector kg, while keeping
grr(z,y) equal to its ground-state value. Fig. 1 shows
the Bethe fermion distribution obtained from dynamical
refermionization, Eqs. (17),(18),(19). For small ampli-
tudes A, one observes plateaus of width kg which reflect
the quantization of phonons [31]. As A increases, more
plateaus appear, and for large A it becomes the smooth
profile <CI{.7LCR7”> = (1/m)arccos(2mn/(LAky)) expected
semiclassically [31]. The bottom row of Fig. 1 shows
the energy of each phononic mode after relaxation. The
difference of the distributions of R and L-phonons is a
strong signature of the non-thermal nature of the re-
laxed system. Within the space of R-phonons, redistri-
bution of energy among phonons is found to be very ef-
ficient: the relaxed distribution is close, albeit not iden-
tical, to that expected for a thermal state. We com-
pare the dynamical refermionization predictions to ex-
act results in the asymptotic regime of hard-core bosons
(¢ — 00): in this regime, the Hamiltonian in term of
Bethe fermions is that of non-interacting fermions and
the current operator Jg is equal to that for the Bethe
fermions, which enables exact calculations. The initial
state is obtained as the ground state of the Hamiltonian



H + (Ako/VK) [ dzJr(x)sin(koz). As seen in Fig. (1),
results are in excellent agreement with the predictions of
dynamical refermionization.

Ezxperimental perspectives. Our predictions can be
tested in cold atom experiments, where initial out-of-
equilibrium states can be generated in various ways.
By quenching the longitudinal potential from a long-
wavelength sinusoidal potential to a flat potential [10],
one produces displaced phononic states, corresponding to
non vanishing functions fr, fr,. A quench of the interac-
tion strength will produce two-modes squeezed phononic
states [7], a situation which corresponds to fr = fr, =0,
but to modified functions grgr, grL, grr. Alternatively,
modulating the coupling constant with time will para-
metrically excite only part of the phononic spectrum [45].
In the above scenarios the prepared initial state is sym-
metric under exchange of R and L-phonons. To break
this symmetry, one could expose the gas to a potential
V(z) = Vhcos(kox — vkt) for some short time duration:
then only the R-phonons would be resonantly excited.

To probe the phonon distribution after relaxation,
one possibility is to measure the in situ long-wavelength
density fluctuations [46] and access dp(z) = (Jr(z) +
Ju(z))/v, see Eq. (2). Alternatively, one can use the
density ripple techniques to probe the long wavelength
phase fluctuations [7, 47], whose gradient is the velocity
field proportional to J(z) = Jr(z) — Ji(z). The above
methods however do not discriminate between right and
left movers. In order to probe selectively R-phonons, one
needs to probe the dynamics, for instance using sequences
of non-destructive images [13].

At very long times, one expects integrability breaking
perturbations to bring the system to a thermal equili-
birum. However, such perturbations can be weak enough
to have negligible effect during the relaxation time of the
Lieb-Liniger phonons, as is observed experimentally in
Ref. [10] and modeled recently in Ref. [19].

Interestingly, the occupation of Bethe fermions
<01T{ CR,n) —which, in this Letter, is used as an interme-
diate result — could also be measured experimentally. To
measure it, one could first perform an adiabatic increase
of the repulsion strength ¢, which preserves the distribu-
tion of Bethe fermions [50], until the hard-core regime is
reached. In this regime the distribution of Bethe fermions
is the same as the rapidity distribution, which can be
measured by a 1D expansion [51, 52].

Prospects. This work calls for further investigations
in several directions. First, one could investigate higher
order functions of the chiral currents or of the phonons
populations to show that the relaxed state is non Gaus-
sian with respect to the phonons. Secondly, our predic-
tions call for numerical studies of relaxation in the Lieb-
Liniger model away from the strongly interacting regime.
Finally, as discussed above, the predictions of this Letter
are to be confirmed experimentally.
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Matrix element of density and current operators
between two low-energy eigenstates of the
Lieb-Liniger Hamiltonian

Density operator

Various formulas are available in the literature for form
factors of the density operator dp(x), see e.g. [1-0]. Here
we use formula (8) of Ref. [(] as a starting point. That
formula says that the matrix element between a Bethe
state |¢) and another Bethe state |¢'), multiplied by the
system size L, vanishes in the thermodynamic limit, un-
less |¢') is obtained from [¢) by a single particle-hole
excitation. In that case, if p is the rapidity of the par-
ticle and h is the rapidity of the hole, then the matrix
element is
o —h AY(F(Xo|p)—F(Xolh))

L' ép(x) |4)] pv—

g

¥ () \

(22)
where k(A) is the dressed momentum as a function of the
rapidity A, Ag is the rapidity at the Fermi point, A is
the height of the discontinuity of the occupation ratio at
the Fermi point (here, for the ground state, we simply
have AY = 1), and F(A|)\') is the backflow, see Ref. [6].
For low-energy excitations around the ground state, both
p and h are very close to Ag, so

K (o) FOoNdinvmg (=h) log| 325

LI op(x) [)] =

p,h— Ao
= K(X)(1+O(p = hllog|p — hl)),

and the derivative of the dressed momentum at the Fermi
rapidity is the square root of the Luttinger parameter,
E'(XNo) = VK (see e.g. Ref. [7]). So, in the notations
of our main text, we have that the matrix element of
the Fourier mode dp,, = fOL e/ L§p(x)dx between two
low-energy Bethe states |¢1), [1)2) in the thermodynamic
limit is

(Vo] dpn [1h1) = (23)
VE (s Z C;7n+lcR,l+ Z CLnHCL,l 91) 5
leZ+3 leZ+3

up to corrections of order O(log L/L).

Current operator

A similar formula is obtained for the expectation value
of the Fourier modes of the current operator, J, =
fOL 2 J(z)dz. It follows from the one for the density
operator, and from continuity equation. Indeed, using

Oy J(x) = —0dp(x) = —i[H, dp(x)) (24)

one finds
2m™n

i (Va2 Jn 11)

—i (Vo] [H, 0py] [¥1)
—i(Ey — Ey) (12| 6pn |t1) ,(25)

where F; and F, are the energies of the eigenstates
[th1), |12). According to the expression given in the
main text, the difference between energies for a single
particle-hole excitation of momentum p — h = QWT" is
Ey — By = €(p) — e(h) ~ 252 This, together with
Eq. (23), gives the matrix element of the current operator
in the thermodynamic limit,

(Pa| I [h1) = (26)
WK (| > Ch psiCrL— > o} nicLa ),

lez+3 lez+3

up to corrections of order O(log L/L). The matrix el-
ements (23) and (26) then lead to formula (10) in the
main text.

Asymptotic behavior of the Bethe fermion
distribution for a displaced phonon mode at 7'=0

0 L 0 L 0 L

Figure 2. Illustration of dynamical refermionization in the
semiclassical limit, when the number of phonons in the ini-
tial states is large. For simplicity we focus on the hard-core
limit, where the dynamics of the bosons maps to the one
of non-interacting fermions. Semiclassically, the fermions at
zero temperature fill a region of phase space (grey area). In
the initial state, this region is the set of all points (z, p) with
0<z< Landmpy <p < mwpo— Aokosin(kox). Then, at later
times ¢, all points in phase space get translated at the veloc-
ity v(p) = p. Consequently, the initial oscillations around the
right Fermi point get deformed into waves that are more and
more elongated in the z-direction. This results in thin layers
of alternating empty/filled regions along the p-direction. At
very long times, this layered structure can be locally averaged,
resulting in a smooth distribution around the R-Fermi point.
Although here we formulated the argument for the hard-core
limit, it is easily adapted to the finite repulsion case using
Generalized Hydrodynamics [3, 9], see in particular [10].

Let us consider the particular case of an initial state
parameterized by (in this Appendix we set the sound
velocity to v = 1)

VK

(Jr(z))y = gafR(fE% (27)
(%E)?
(r(2) T ()™ = — 2 (28)



This is a state obtained from the ground state, by displac- evaluate the integral by the stationary phase ap-
ing some of the R-phonons. Then the fermion two-point proximation. Because of the denominator in (29),
function in the initial state is the integral is dominated by the neighborhood of

. emifn@) i) v=2xz —y =0, and we find

I = 2
<CR(IZ’)CR(y)>O o Lsin<7f(fl’*£!+if)) 5 ( 9) ) 1 Ld 00 . i ei[%Tn—afR(u)]U
<CR,nCRyn> ~ Z/O ULW ’UET(BO)
and the occupation of the R-fermions, 1 2

L
<C;ra,nCR,n> = / P <c£(v/2)cR(fv/2)> dv.
0 where ©(.) is the Heaviside step function. This
is precisely what is expected from the geometric

© intuition illustrated in Fig. 2.
Limiting cases

e Small density of phonons: |fg(z)] < 1. In that
e Large number of phonons: |fg(z)| > 1. In that case we can simply expand the exponential in the
case efr(utv/2) ogcillates very fast, and we can numerator of (29),

J

L L aen, 0 1 —i[fr(u+v/2) — fr(u—v/2)] -1 u+v/2) — fr(u—v/2))?
N n)} JJ;R< +0/2) = fr(u—v/2)]
I A 1 [ )
:@(—n)—g/o dv gw <L/0 [fr(u+v/2) — fr(u—v/2)] du). (32)

The first order term in the expansion does not contribute because [[fr(u+v/2) — fr(u—v/2)]du = 0.
[

Special case: sinusoidal wave. corresponding to a single phonon excited w.r.t the ground
state, then formula (30) gives the fermion occupation

It alize t 1 2mn/L
we specialize to <C};L nCR,n) © —arccos ( mn/ > ) (34)
i T

Ao k‘o

fr(z) = Ag cos(kox), (33)  while formula (32) gives

The result (34) can be interpreted semi-classically, see
Fig. 2. The result (35), on the other hand, where one
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