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Abstract—We describe and analyze an error mitigation tech-
nique that uses multiple pairs of parity checks to detect the
presence of errors. Each pair of checks uses one ancilla qubit to
detect a component of the error operator and represents one layer
of the technique. We build on the results on extended flag gadgets
and put it on a firm theoretical foundation. We prove that this
technique can recover the noiseless state under the assumption
of noise not affecting the checks. The method does not incur
any encoding overhead and instead chooses the checks based on
the input circuit. We provide an algorithm for obtaining such
checks for an arbitrary target circuit. Since the method applies
to any circuit and input state, it can be easily combined with
other error mitigation techniques. We evaluate the performance
of the proposed methods using extensive numerical simulations on
1,850 random input circuits composed of Clifford gates and non-
Clifford single-qubit rotations, a class of circuits encompassing
most commonly considered variational algorithm circuits. We
observe average improvements in fidelity of 34 percentage points
with six layers of checks.

I. INTRODUCTION

Hardware errors or noise arising from qubit imperfections
such as unwanted interactions with the environment limit
the power of near-term quantum technologies. Since these
devices lack the necessary number of qubits and error rates
to perform quantum error correction [1]–[3], error mitigation
is required in order to increase the fidelity of computations.
In this work we investigate error mitigation that uses a small
number of ancillas to suppress the effect of errors. Various
error mitigation techniques have been developed, such as zero-
noise extrapolation [4]–[6], which uses different error rates
to reduce the error in the measurement of an observable;
probabilistic error cancellation [4], which uses an ensemble of
known noisy circuits to approach the correct expectation value;
dynamical decoupling [7]–[9], which uses timed control se-
quences to suppress interactions of the target quantum system
with its environment; readout error mitigation [10], which uses
classical postprocessing techniques to mitigate measurement
errors; and symmetry verification [11]–[14], which verifies
symmetries in computational problems of interest and discards
erroneous computations.

Protocols that improve measurements of an observable have
applications in problems such as the estimation of the ground
state energy of a given Hamiltonian [15]. In contrast, protocols
that improve fidelity generally apply to any problem. A main

feature of many techniques aimed at improving measurements
of an observable or reducing readout error is that they have
no quantum overhead; in other words, they require no extra
qubits or quantum operations (gates). Thus, these techniques
are ideal for the noisy intermediate-scale quantum (NISQ) era
[16] because current state-of-the-art NISQ devices contain few
qubits, typically fewer than 50, and a limited number of gate
operations because of fast decoherence times.

As quantum technology develops, error mitigation schemes
must adapt and take advantage of improvements in qubit
count and quality [17], [18]. Qubit count and error rates vary
widely depending on the underlying qubit technology. Addi-
tionally, many of the current error mitigation techniques such
as dynamical decoupling and probabilistic error cancellation
require intricate tailoring of the protocol to the noise. Thus,
they typically require the added overhead in costly quantum
tomography [19].

In this work we theoretically and numerically study a quan-
tum error mitigation technique inspired by stabilizer codes,
that aims at improvement in quantum state fidelity. We build
on the results of [20], where they first explored the scheme
of sandwiching a circuit between pairs of parity checks. Note
that they refer to the pairs of checks as extended flag gadgets,
inspired by the work in [21], [22]. Our research puts this parity
check scheme on a firm theoretical foundation and numerically
demonstrates its efficacy on a wide variety of quantum circuits.
The main contributions of our work are: (1) extending the
analysis to greater than two layers of checks, (2) establishing
the theoretical limits of the technique, which culminates in the
unit fidelity result of Theorem 1, (3) providing parity checks in
Propositions 1 and 2 that saturate this fidelity bound and hence
answers an open question in [20] regarding optimal checks to
use, (4) providing a protocol that efficiently determines Pauli
parity check pairs that can be used for a given input circuit,
and (5) providing numerical simulations for a wide variety of
random input circuits consisting of varying qubit count, CNOT
count, non-Clifford gate count, and layer count.

The error mitigation scheme that we study in this paper
at its basic level of one layer uses one ancilla and two
controlled unitary operations, which we refer to as checks.
The parity checks sandwich the input circuit. Consequently,
the error operator is conjugated between two controlled parity
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matrices. We measure the ancilla and postselect the state on
the measurement outcomes. The net effect of the checks and
the postselection is a transformed error map, where terms of
the error map that anticommute with the checks are eliminated
in the postselected state. The performance of this technique,
measured by the improvement in quantum state fidelity, im-
proves with the depth of the input circuit. Furthermore, this
scheme is tunable, meaning that the number of layers and
ancillary qubits used can be set by the user.

This protocol shares some similarity to symmetry verifica-
tion, which also uses stabilizer-style parity checks to improve
the fidelity of the quantum state and requires no knowledge
of the noise. However, unlike symmetry verification, which
requires input states to be restricted to a specific eigenspace,
this scheme places no restriction on the input state. Thus,
the technique applies to subcircuits directly and can be easily
combined with other error mitigation methods.

In Theorem 1, we prove that in a restricted scenario where
the noise does not affect the checks (see Figs. 4a and 4b) there
exist checks such that the postselected state is noiseless and the
fidelity reaches unity. We provide an example of a randomly
generated Clifford circuit with added checks that saturates this
fidelity bound.

We also investigate the performance of the scheme with
numerical simulations in a more realistic setting where the
checks are also noisy. The numerical simulations consist of
1, 850 (unmitigated) randomly generated five- and ten-qubit
circuits composed of Clifford + arbitrary diagonal unitary
gates. Our technique shows an average fidelity gain of 34
percentage points for random input circuits consisting of 40
CNOTs with six layers of (noisy) checks; see Figs. 10a and
10b. The increase in fidelity comes at a cost of a lower proba-
bility of postselecting on the ancillas’ measurement outcomes.
We also provide Clifford simulations that give intuition that
this technique will perform well for deep circuits.

This paper is organized as follows. In Section II we review
relevant background and provide definitions that are used in
the paper. In Section III-A we provide the single-layer proto-
col. In Section III-B we describe the theoretical foundation of
the technique. In Section III-C we provide the full multilayer
scheme. In Section III-D we prove Theorem 1 and provide
bounds on the number of layers required to reach unit fidelity
for the restricted scenario where the noise does not affect the
checks. In Section III-E we discuss how our results apply
in general settings. In Section III-F we introduce techniques
for finding checks quickly by using a precalculated table of
commutation rules that eliminates the need to perform matrix
multiplication. In Section III-G we give the results of our
numerical simulations. In Section IV we discuss our results
and possible areas for future work.

II. BACKGROUND

We begin with definitions and notation. For a detailed
introduction to modeling of noise in quantum computation the
reader is referred to Chapter 8 of [23].

The most general evolution of an open quantum system is
given by a dynamical map [24]

E : ρS → ρ′S , (1)

where ρS and ρ′S are elements of the system Hilbert space
HS . HS is a subspace of the system and environment Hilbert
space HSE , where S is the system and E is the environment.

In the case of an initially unentangled system and environ-
ment, the map is completely positive and trace preserving. It
can be derived by taking the partial trace of the global unitary
evolution and yields the operator sum representation

E(ρS) = trE(USEρS ⊗ ρEU†SE)
=
∑
i

EiρSE
†
i , (2)

where USE is a unitary acting across the system and environ-
ment [25], [26]. The operators Ei in Eq. (2) are commonly
called Kraus operators [26]. A map is completely positive (CP)
if it maps all positive operators to positive operators when ex-
tended by the identity map to arbitrary higher dimensions [25],
namely,

E ⊗ In(ρ) ≥ 0 ∀n, ρ, (3)

where In is the n-dimensional identity map and ρ is a density
matrix. This extension to higher dimensions is required to
ensure that when the input state is part of a higher-dimensional
state, the output of the map is still positive. A map is trace
preserving if ∑

i

E†iEi = I. (4)

Maps that do not satisfy Eq. (3) are called not completely
positive (NCP) maps. NCP maps play a significant role in non-
Markovian evolutions [27], where the evolution of the state is
often not decomposable into a sequence of completely positive
maps. NCP maps have the form

E(ρ) =
∑
i

ηiEiρE
†
i , (5)

where ηi = ±1 and at least one ηi = −1 exists [25].
In this paper we use fidelity as a figure of merit. For two

quantum states ρ and ω, fidelity is defined as

F (ρ, ω) =

(
tr
√√

ρω
√
ρ

)2

. (6)

Fidelity is symmetric with regard to its inputs.
Let U denote the unitary operation implemented by the

target circuit that we want to error mitigate. Let ρ′ be the
density matrix representing the ideal, noiseless output of the
target circuit, ρn be the density matrix of the noisy quantum
state produced by the target circuit, and ρm be the density
matrix of the noisy error-mitigated state produced by the error
mitigated target circuit.

We denote the fidelity of the noisy state before error
mitigation as Fn = F (ρn, ρ

′), and the fidelity of the state
after application of error mitigation as Fm = F (ρm, ρ

′).



C̃1 U C̃2...

|0⟩ H • • H

Figure 1: Overview of the one-layer version of the PCS
scheme. U represents the gates of the computation and acts
across n compute qubits. U is sandwiched between two con-
trolled unitaries comprising C̃1 and C̃2 that satisfy Eq. (11).
The ancilla is the bottom qubit. The measurement is performed
in the {|0〉 , |1〉} basis. The measurement outcome one is
discarded, and zero is kept.

We define the fidelity gain (improvement due to the tech-
nique) as

Fm − Fn. (7)

We say that the method “detects all errors" when Fm = 1 or
equivalently when the error map E on the postselected state
is identity, in other words, when all the Kraus operators of E
are proportional to identity.

Next we describe the noise model used in our numerical
simulations. The depolarizing channel for dimension d is

Dp(ρ) = (1− p)ρ+ p
I
d
, (8)

where 0 ≤ p ≤ 1 [23]. For the numerical simulations of
noisy circuits the only noiseless gates are a measurement gate
or the input state, which is generated by a random circuit.
Otherwise, we apply the single-qubit depolarizing channel
after each single-qubit gate and the two-qubit depolarizing
channel after every two-qubit gate. Throughout this paper, we
set the two-qubit error rate to ten times the single-qubit error
rate, an assumption that roughly corresponds to noise observed
in current NISQ systems [28], [29].

III. METHODS

In Sections III-A and III-B we describe the single-layer
Pauli Check Sandwiching (PCS) technique and show that this
protocol leads to a transformation of the error map. In Sections
III-C and III-D we describe the multilayer protocol and prove
that we can reach a fidelity of one between a noisy-mitigated
circuit and a noiseless circuit when the error map is restricted
to a subset of qubits. We also provide a small number of checks
that achieve this fidelity. In Section III-E we investigate how
our techniques apply in a general setting. In Sections III-F
and III-G we give the results of numerical experiments across
1, 850 unmitigated random circuits.

A. Pauli Sandwich Error Mitigation Protocol: Single Layer

We begin by describing the simplest version of the Pauli
Check Sandwiching technique that consists of a single pair
of parity checks sandwiching the computation (one “layer”).

Figure 1 shows a graphical view of the protocol. The unitary
operation U represents the gates of the computation. The
bottom qubit is the single ancilla introduced by this scheme,
and we commonly refer to the n qubits above as the compute
or computation qubits.

Let C2 (C1) be a controlled unitary with control on the
ancilla that applies C̃2 (C̃1) on the compute target qubits.
Mathematically,

C1 = C̃1 ⊗ |1〉〈1|+ I⊗ |0〉〈0| (9)

C2 = C̃2 ⊗ |1〉〈1|+ I⊗ |0〉〈0| . (10)

This scheme also requires that

C̃2UC̃1 = U. (11)

Before continuing, we make an important distinction be-
tween two protocols: the efficient PCS protocol and the general
PCS protocol. For the efficient PCS protocol, we restrict C̃1

and C̃2 to be elements of the n-qubit Pauli group Pn, where

Pn = {I, X, Y, Z}⊗n × {±1,±i}. (12)

These added conditions are partly due to the difficult problem
of determining the optimal circuit that implements C̃1 from
a given C̃2 and U . Note that C̃2 and C̃1 can be much more
general and still satisfy Eq. (11). Thus, there are no additional
constraints on the checks in the general PCS protocol.

In the general PCS protocol and for a given U , any unitary
C̃2 can be used because in Eq. (11) we can always pick C̃2

and solve for C̃1. We note in the text if a result holds for a
specific case. If no statement is made, then the result holds
for both scenarios.

The single-layer protocol is as follows.

1) Initialize the ancilla to |0〉 and apply a Hadamard gate.
Perform C1 with the control on the ancilla qubit and
target on the compute qubits.

2) Perform U on the compute qubits.
3) Perform C2 with the control on the ancilla qubit and

target on the compute qubits.
4) Apply a Hadamard gate to the ancilla. Measure the

ancilla in the {P0 = |0〉〈0| , P1 = |1〉〈1|} basis, and
discard the results where the outcome is P1. We keep
the result where the outcome is P0.

B. Errors Detected by the Pauli Sandwich

We now consider the effect of this scheme on an error map
E acting on the compute qubits after U , as shown in Fig. 2a.
Let E(ρ) =∑iEiρE

†
i . Then the postselected output state of

the protocol is

ρm =∑
i[(C̃2EiC̃

†
2 + Ei)UρU

†(C̃2E
†
i C̃
†
2 + E†i )]

tr
(∑

i[(C̃2EiC̃
†
2 + Ei)UρU†(C̃2E

†
i C̃
†
2 + E†i )]

) . (13)



C̃1 U E C̃2...

|0⟩ H • • H

(a) E is a noise map.

U C̃†
2 E C̃2...

|0⟩ H • • H

(b) Equivalent noisy circuit using Eq. (11). The gates after U along
with the postselection on the ancilla can be seen as the transformed
error map.

Figure 2: Noisy single-layer scheme

As shown in Fig. 2b, this protocol transforms the error map.
We can write the postselected state given in Eq. (13) in terms
of a new error map E ′,

ρm =
E ′(UρU†)

tr[E ′(UρU†)] , (14)

where E ′ has Kraus operators

E′i =
C̃2EiC̃

†
2 + Ei
2

(15)

and the factor of 1/2 comes from multiplying Eq. (13) by
a convenient form of one, namely, (1/4)/(1/4). We can now
observe the power of this error mitigation technique. The error
operators Ei can be expanded in the Pauli basis. Thus, let

Ei =
∑
σ̃j∈Pn

αij σ̃j , (16)

where σ̃j is an element of the Pauli group and αij =
tr(Eiσ̃j)/(2

n) is a complex constant. Let C̃2 ∈ Pn. Each σ̃j
term in the expansion of Ei either commutes or anticommutes
with C̃2. Substituting Eq. (16) into Eq. (15), we see that the
σ̃j elements that anticommute with C̃2 are eliminated and

E′i =
∑
σ̃j∈P′

n

αij σ̃j , (17)

where P ′n is the Pauli group excluding the elements that
anticommute with C̃2.

The effect of the protocol on the error map shares some
similarities to that of twirling [30]–[32]. In twirling, the
twirling set T is used to conjugate the error map:

1

|T |
∑
V ∈T

V E(V †ρV )V †

=
1

|T |
∑

i,(V ∈T )

V EiV
†ρV E†i V

†. (18)

Usually, twirling is performed by using the Pauli or Clifford
group as the twirling set. When twirling is performed with a
suitable set, it transforms the noise into a Pauli channel. How-
ever, the PCS scheme is in some sense more powerful since it
completely eliminates the contribution of anticommuting Pauli
terms.

C̃1,m C̃1,2 C̃1,1 U C̃2,1 C̃2,2 C̃2,m... . . . . . .

|0⟩ H • • H

|0⟩ H • • H
...

|0⟩ H • • H

Figure 3: Multilayer scheme. There are n compute qubits, m
layers, and m ancillas. The second index in the controlled
unitaries represents the layer. Each layer uses one ancilla and
two checks. The checks sandwich the input circuit.

C. Pauli Sandwich Error Mitigation Protocol: Multiple Layers

The suppression of errors from anticommuting Pauli terms
in the postselected state can be enhanced by introducing
multiple layers of the single-layer error mitigation technique.
A graphical view of how this scheme works is given in Fig. 3.
There are m layers with each layer consisting of controlled
operations C1,k and C2,k, where the second index represents
the layer, and one ancilla corresponding to each layer. Each
pair of C1,k and C2,k satisfies

C̃2,kUC̃1,k = U. (19)

The multilayer scheme generalizes the single-layer scheme and
is performed as follows.

1) Initialize the ancillas to |0〉, and perform Hadamard gates
on the ancillas. Perform C1,k with control on the kth

ancilla qubit and target on the compute qubits.
2) Perform U on the compute qubits.
3) Perform C2,k with control on the kth ancilla qubit and

target on the compute qubits.
4) Perform Hadamard gates on the ancillas. Measure all

the ancillas in the {P0 = |0〉〈0| , P1 = |1〉〈1|} basis, and
discard the results where at least one of the outcomes is
P1. We keep the result where all the outcomes are P0.

D. Upper Bounds on Fidelity and Required Number of Checks

Now let us consider a noise map E(ρ) =∑iEiρE
†
i acting

after U on a subset of qubits as shown in Fig. 4a. From
Eq. (15), in the expansion of Ei in the Pauli basis, we know
that the kth layer eliminates Pauli terms that anticommute
with C̃2,k. This immediately leads to the observation that we
can detect all errors under the noise model shown in Fig. 4a,
which we prove in the following theorem. Theorem 1 holds
in general for the general PCS protocol and it holds for the
efficient PCS protocol when the checks are in the Pauli group,
in other words, when U is Clifford. Note that we discuss why



C̃1,m C̃1,2 C̃1,1 U E C̃2,1 C̃2,2 C̃2,m... . . . . . .

|0⟩ H • • H

|0⟩ H • • H
...

|0⟩ H • • H

(a) E is an arbitrary noise map.

U C̃†
2,m C̃†

2,2 C̃†
2,1 E C̃2,1 C̃2,2 C̃2,m... . . . . . .

|0⟩ H • • H

|0⟩ H • • H
...

|0⟩ H • • H

(b) Equivalent circuit using Eq. (19). Reminiscent of the single-layer
scheme, the gates after U along with the postselection on the ancillas
can be seen as the transformed error map.

Figure 4: Noisy multilayer scheme

these results hold for NCP errors as well later at the start of
Section III-E.

Theorem 1 (Unit Fidelity). If errors are restricted to act only
on the compute qubits, for any noisy unitary quantum circuit
U acting on n compute qubits, there exist checks (see Fig. 4a)
such that the fidelity between the post selected state and a
noiseless run (noiseless execution of U only) reaches one.

Proof. First, note that if the error map E(ρ) = ∑iEiρE
†
i is

the identity map, then the fidelity between the output ρm of
the error-mitigated circuit and the output ρ′ of a circuit with
only U (a noiseless run) is

F (ρm, ρ
′) = 1. (20)

This directly follows from Eq. (19). Thus, if we can transform
all the Kraus operators Ei of the error E to identity in the
postselected state, then we have the result.

Notice that from Eq. (19), Fig. 4a is equivalent to Fig. 4b
and the error map is conjugated by multiple layers of checks.
Expanding the error in the Pauli basis, we have

Ei =
∑
σ̃j∈Pn

αij σ̃j , (21)

where σ̃j is an element of the Pauli group Pn and αij =
tr(Eiσ̃j)/(2

n) is a complex constant. Let C̃2,i ∈ Pn,∀i.
We now make the results given in Section III-B recursive.

First, we label the check layers from 1 to m starting with the
innermost layer. Then, Eq. (15) can be written recursively as

E
(k)
i =

C̃2,kE
(k−1)
i C̃†2,k + E

(k−1)
i

2
, (22)

where (k) represents the layer and E
(0)
i is the initial error

Kraus operation. This leads to the recursive form of Eq. (17),

E
(k)
i =

∑
σj∈G(k)

n

αij σ̃j , (23)

where G
(k)
n is the Pauli group excluding the elements that

anticommute with {C̃2,1, C̃2,2, · · · , C̃2,k}. Letting k equal the
size of Pn (excluding global phases), namely, 4n, we get
E

(k)
i = αiI . The αi is a constant that cancels out under

renormalization, and the result follows.

Before proceeding, we need to clarify the implications of
Theorem 1. In that theorem, if we satisfy the conditions, we
will have unit fidelity in the postselected state. However, the
probability of postselecting is

P (0) = tr
(
E(m)(UρU†)

)
, (24)

where the Kraus operators of E(m) are given by Eq. (23).
In Eq. (23) the checks will eliminate all the Pauli terms that
are nonidentity. Thus, we see that if all the Kraus operators
of the error map are traceless, in other words, contain no
identity term in their expansion in the Pauli basis, all the
Kraus operators for the error map in the postselected state
will be the zero matrix, and the probability of postselecting is
zero. This makes sense because we are not correcting errors,
but mitigating errors by post selecting outcomes. The theorem
holds trivially in this scenario because there is no post selected
state.

Moreover, from Fig. 4a and Theorem 1, it seems that we
can set E(ρ) = U†ρU , which eliminates U , and use only the
checks for the implementation of the circuit. While this is
certainly true, we must consider the postselection probability.
If U is traceless, the probability of postselecting is zero.

Next we provide a small number of C2 checks that can reach
unit fidelity in the setting of Theorem 1. The following results
given in Propositions 1 and 2 are for the general PCS protocol.
Propositions 1 and 2 hold for the efficient PCS protocol given
that the C̃1 checks are in the Pauli group, in other words, U is
Clifford. Propositions 1 and 2 hold for the noise model give
in Fig. 4a. For arbitrary weight-one Kraus errors, that is, the
Kraus error operators, Ei act only on a single qubit; there
exist two layers, where C̃2,1 and C̃2,2 are max weight, and
we reach unit fidelity in the postselected state.

Proposition 1 (Weight-One Kraus Operators: Two layers of
max weight checks are sufficient). For the noise model given
in Fig. 4a and for all E consisting of only weight-one Ei, there
exist two layers of checks such that we have unit fidelity in the
postselected state. The C2 part of the checks requires a total
of 2n CNOT gates, where n is the number of compute qubits.

Proof. Each of the single-qubit errors can be expanded in
terms of the single-qubit Pauli gates. Thus,

Ei,k =
∑
j

αi,jσj,k, (25)

where k is the qubit it is acting on, σj is a Pauli matrix or
identity, and αi,j is a complex constant. Let our checks be

C̃2,1 = X⊗n (26)

and

C̃2,2 = Z⊗n. (27)



These checks are inspired by the parity checks used in Shor’s
code [33]. The C̃2,1 consist of tensors of Pauli X and anticom-
mutes with Pauli Y and Pauli Z errors in Eq. (25). The C̃2,2

consist of tensors of Pauli Z and anticommutes with Pauli X
errors in Eq. (25). From Theorem 1, the anticommuting terms
in the error operators are suppressed. Thus, these two layers
of checks are sufficient to reach fidelity one.

The checks given in Proposition 1 can detect all errors E that
consist of weight-one Kraus operators Ei. This class of errors
contains error maps that are more general than just single-
qubit error maps. For example, E1 can act on qubit one, and
E2 can act on qubit two. E1 and E2 are weight-one errors,
but the overall map affects multiple qubits.

Remark. At least two layers are necessary to reach fidelity
one in Proposition 1. To see this, we need only show that
a single layer is insufficient for arbitrary weight-one errors.
Consider a circuit with only one compute qubit. For an
arbitrary single-layer scheme, let C̃2 =W be the check. Then
let the error map be E =W . The check and the error do not
anticommute so the error map in the postselected state is not
identity. Thus, a single layer is insufficient to detect all weight-
one errors; at least two layers are necessary. Proposition 1
shows that we can always saturate this lower bound on the
number of required checks.

We can also reach fidelity one for arbitrary weight errors
for the error model given in Fig. 4a with a small number
of weight-one C̃2,k. These checks are generators of the Pauli
group and require 2n layers, but the C2 components of
the checks require the same number of CNOT gates as in
Proposition 1. Thus, generally at the cost of more ancillas,
we can detect all errors on the postselected state. Consider
two weight-one C̃2 checks of σ1 and σ3 on the kth compute
qubit. All Pauli group elements that are nonidentity on the
kth qubit anticommute with either σ1 or σ3. This leads to the
following small set that can reach fidelity one.

Proposition 2 (Any Error: 2n number of weight-one checks
are sufficient). For the noise model given in Fig. 4a and
arbitrary errors, let n be the number of compute qubits.
Then there exist 2n number of distinct (ignoring the global
phase) weight-one C̃2,k such that we have unit fidelity in the
postselected state.

Proof. Let the kth compute qubit have two layers acting on it
with C̃(k)

2,r = σ
(k)
1 and C̃(k)

2,l = σ
(k)
3 . All Pauli group elements

that are nonidentity on the kth qubit anticommute with at least
one of the checks. Thus, this eliminates all Pauli terms in the
expansion of the error Kraus operators that do not have identity
on the kth qubit for the postselected state. We repeat these
checks for the other compute qubits. The same argument holds
in general for {σ(k)

i , σ
(k)
j |i 6= j} and the result follows.

Figure 5 shows an example of a random Clifford circuit
consisting of two compute qubits and 30 CNOT gates that
gives unit fidelity for the postselected state. This matches the
prediction of Theorem 1. We use a Clifford circuit to guarantee

Figure 5: Example of checks that detect all errors. The upper
bound on fidelity is saturated at four layers for this randomly
generated Clifford input circuit consisting of two qubits and
30 CNOT gates. We use depolarizing noise for the given
noise model in Fig. 4a. The two-qubit error rate is ten times
the single-qubit error rate. The single qubit-error rate ranges
from 10−5 to 10−1. At 10−1, each CNOT gate (acting on the
compute qubits only) is followed by a two-qubit maximal
depolarizing channel. Regardless, the postselected state is
noiseless, as predicted by Theorem 1.

that we can get the desired checks with the efficient PCS
protocol. We use the checks provided in Proposition 2. The
two checks on each compute qubit are σ(k)

1 and σ(k)
2 , and we

vary the number of layers from zero to four. Interestingly,
at the single-qubit error of 0.1, the two-qubit depolarizing
channel is maximally depolarizing, but the fidelity remains
at one for the postselected state (as predicted).

The gain in fidelity comes at the cost of a lower probability
of measuring all zeros for the ancillas. This trade-off is
demonstrated in Fig. 5b. The probability of measuring all zeros
p(0) drops to around 7% for this circuit at the high single-qubit
error of 0.1. Note that the overhead in the number of runs is
1
p(0)

.



E. General Errors and Hardware Considerations

C̃1,m C̃1,2 C̃1,1 U

E

C̃2,1 C̃2,2 C̃2,m... . . . . . .

|0⟩ H • • H

|0⟩ H • • H
...

|0⟩ H • • H

(a) E is a general noise map that acts across all qubits.

U C̃†
2,m C̃†

2,2 C̃†
2,1

E

C̃2,1 C̃2,2 C̃2,m... . . . . . .

|0⟩ H • • H

|0⟩ H • • H
...

|0⟩ H • • H

(b) Using Eq. (19), the error map is still conjugated between the checks.

Figure 6: Noisy multilayer scheme

In the preceding sections, we restricted E to CP maps, but
our results hold also for general linear Hermitian maps, which
includes NCP maps. As previously mentioned, NCP maps play
a major role in non-Markovian evolutions, where the maps
tend to be non-CP divisible. NCP maps have a similar form
to CP maps and are written as E(ρ) =

∑
i ηiEiρE

†
i , where

ηi = ±1 and there exists at least one ηi = −1. The coefficients
ηi are not used in any of our proofs, and thus the results hold.

Also, we restricted E to act only on the compute qubits.
Obviously this is a restricted case, and in physical systems the
checks are noisy and the error map would generally act across
all the qubits, as shown in Fig. 6a. In this situation, the checks
still conjugate the error, as shown in Fig. 6b. Consequently, the
technique is effective when E is dominated by Kraus operators
that mainly affect the compute qubits; that is, the majority of
the noise is from U .

On non fully connected quantum computers, the parity
checks may be difficult to perform with resulting minimal
noise on the ancillas due to the need for swapping qubits.
Thus, applications of this technique likely need to carefully
map the circuit to the hardware to minimize the swaps between
ancillas and compute qubits or execute the circuits on a fully
connected device.

Since single-qubit gates introduce less noise than nonlocal
gates, the Pauli group is a good candidate for the C̃2 part of
the checks. Furthermore, when U is a deep circuit, the noise
it induces will generally act across multiple qubits. In this
scenario, low-weight C̃2 will act nontrivially on these errors.
Thus, in general it is better to use low-weight checks in order
to avoid introducing too many errors.

Moreover, for some executions of this scheme, the postse-
lection probability may be smaller than desired. The postse-
lection probability can be increased by reducing the number
of check layers.

h z

s Rz(2.55) • z

h y

s Rz(2.95) x z

(a) We assign ZYZZ to C̃2

h z z

s Rz(2.55) z • z

h y y

s Rz(2.95) z x z

(b) We propagate one layer to the left and determine the intermediate
check gate ZYZZ.

h z z

s z Rz(2.55) • z

h y y

s z Rz(2.95) x z

(c) We propagate the intermediate check gate one layer to the left and
determine the intermediate check gate ZYZZ. Notice that the Z gate
commutes with RZ.

x h z

z s Rz(2.55) • z

−y h y

z s Rz(2.95) x z

(d) We propagate through the last layer and assign the result −ZYZX
to the C̃1 gate.

Figure 7: Visual example of “pushing" the checks through the
circuit. We start with C̃2 and find C̃1. No multiplication is
performed since the propagation of the C̃2 gate is determined
through lookups of predetermined commutation relations.

F. Protocol for Finding Checks Quickly

While checks always exist for a given U , in practice it is
difficult to directly compute C̃1 from Eq. (19) for a given C̃2.
Here we introduce our searching protocol for the efficient PCS
protocol for determining the check pairs quickly and without
matrix multiplication. Note that this protocol can fail to find
any checks or may not find the desired number of checks. This
can happen when the circuit contains many non-Clifford gates.
We refer to the checks searching protocol as the finding checks



−zyzx

h

zyzz
s Rz(2.55) •

h

s Rz(2.95) x

|0⟩ h • • H

Figure 8: Final error-mitigated circuit for the example de-
scribed in Fig. 7

protocol. For our implementation, we constrained C̃1 and C̃2

to be in the Pauli group. We leave the potential searching
protocol of a non-Pauli C̃1 for future work.

The goal is to determine the gates comprising C̃1 from a
given C̃2 ∈ Pn and a given U . Instead of performing matrix
multiplication, we transpile the input circuit to an equiva-
lent circuit that uses the gate set {X, Y,RZ, S, H, CNOT} and
perform lookups of the commutation relations. This method
applies to circuits consisting of Clifford + arbitrary diagonal
gates, which is a universal gate set since diagonal gates contain
the gate T .

To determine the checks, we use the equality U1U2 =
U2(U

†
2U1U2) = U2U

′
1, where U ′1 = U†2U1U2 and U1 and

U2 are unitary. We refer to this technique as “pushing" U1

through U2. Figure 7 gives a visual example of the pushing
of the C̃2 gates to determine C̃1. Figure 8 is the completed
error-mitigated circuit. This process is efficient since the cost
of each lookup call is constant O(1).

Algorithm 1 is the pseudocode for the main script for finding
a desired number of Pauli check pairs. It iterates through the
minimum weight Pauli checks first and terminates when a
sufficient number of layers of checks have been found. The
protocol focuses on using low weight checks to minimize
the noise introduced by the checks as discussed previously in
Section III-E. The main script calls on Alg. 3 to see whether
it is possible to push the current gate through. In Alg. 2 the
lookup call is a preset table that has commutation relations.
This symbolic “pushing" of Pauli gates through U works for all
gates in the basis set except for RZ. For RZ, if the gate being
pushed is not in {Z, I}, which are operators that commute
with an arbitrary diagonal gate, then we skip that Pauli group
element.

Note that mathematically, any C̃2 ∈ Pn can be used because
C̃1 can be determined from Eq. (11). Thus, one should be able
to expand the current algorithm to allow for finding of general
C̃1. This problem is nontrivial.

G. Numerical Results

The analytical results presented above assume perfect
checks. Here we numerically investigate the scheme in a more
realistic setting where most gates are noisy, including those
involved in the parity checks (the only gates that are not noisy
are measurements and the circuit that generates the random
input state).

Algorithm 1 Main script: find pairs of Pauli checks

1: circ← quantum circuit
2: paulis ← +1 phase Pauli group for N qubits. paulis is

sorted by weight from smallest to largest
3: c1 is initialized to None
4: c2 is initialized to None
5: layersFound← 0
6: numberLayers← number of layers to find for circ.
7: for pauli in paulis do
8: if layersFound equals numberLayers then
9: BREAK . Found the necessary number of layers.

10: end if
11: op2← pauli
12: for op1 and index in circ do
13: if CANCONTINUE(op1, op2) then
14: op2← PUSH(op1, op2)
15: else
16: BREAK . This check attempt didn’t work so

break out and try the next Pauli.
17: end if
18: if index is the last index then
19: layersFound← layersFound+ 1
20: c1 ← append op2
21: c2 ← append pauli
22: end if
23: end for
24: end for

Algorithm 2 Push Pauli gate left

1: Input:
2: op1: The current gate that we need to pass through.
3: op2: The gate being pushed through gate.
4: Output:
5: The gate after it is pushed through op1. Should be

equivalent to op1† ∗ op2 ∗ op1
6: function PUSH(op1, op2)
7: if op1 is X then
8: return lookup X(op2)X
9: else if op1 is Y then

10: return lookup Y (op2)Y
11: else if op1 is H then
12: return lookup H(op2)H
13: else if op1 is S then
14: return lookup S†(op2)S
15: else if op1 is RZ then
16: return op1 . op1 will commute with RZ from the

previous check performed in the function CanContinue
17: else if op1 is CNOT then
18: return lookup CX(op2)CX
19: end if
20: end function



Algorithm 3 Checks if it is possible to pass the gate through

1: Input:
2: op1: The current gate that we need to pass through.
3: op2: The gate being pushed through gate.
4: Output:
5: True if the gate can be pushed through and false if not.
6: function CANCONTINUE(op1, op2)
7: return op1 is not RZ or (op2 is I or Z)
8: end function

Intuitively, given a Clifford circuit and using the efficient
PCS protocol, we should be able to perform long computations
with high fidelity. For a given Clifford circuit, we can keep
the C2 checks constant and independent of the depth of U .
Thus, the noise induced by our C2 checks should be relatively
constant.

The C1 checks depend on U , but they are elements of
the Pauli group and hence limited in size and complexity.
Therefore, the noise induced by the C1 checks should also
be limited and independent of the depth of U .

We demonstrate this intuition on simulations consisting of
550 randomly generated Clifford circuits with two compute
qubits. Note that these Clifford simulations provide only
intuition that the protocol is suitable for deep circuits be-
cause Clifford circuits can in general be optimized to use
O(n2/log(n)) CNOT gates, where n is the number of qubits
[34]. Thus, two-qubit Clifford circuits can be optimized to
be shallow. It may be possible to prove this performance on
Clifford circuits with higher qubit counts.

We considered random circuits with CNOT counts that varied
from 1, 2, 4, · · · , 1, 024. For each CNOT count we generated
50 random circuits, and we used single-qubit depolarizing
noise of 0.00126 (0.0126 two-qubit noise). This lies within
the range of current noise levels found in state of the art
quantum computers [29], [35]. We used four layers of checks;
the form of the checks was provided in Proposition 2. As
shown in Fig. 9a, we maintained an average fidelity Fm
for the postselected state of greater than 90% for circuits
consisting of up to 1,024 CNOT gates. The average fidelity
of the unmitigated circuits drops to 25% at 256 CNOTs. Note
that this comes at the cost of a lower postselection rate of
6.25% as shown in Fig. 9b.

For optimized Clifford circuits, we would likely not want
to use all the checks from Proposition 2 because we would
probably exceed the CNOT count of the input circuit. Still, as
shown in Fig. 9a, fewer layers can produce significant fidelity
improvement.

These simulations establish the general trend that fidelity
is positively correlated with the number of layers up to some
value. We suspect that these results also hold for general (non-
Clifford) circuits.

We also randomly generated 1,850 input circuits consisting
of Clifford + arbitrary diagonal unitary gates. Of these, 1,350
input circuits consist of five qubits with CNOT counts of
{1, 5, · · · , 40}; 500 input circuits consist of ten qubits with

Figure 9: Two-qubit Clifford simulation with single-qubit
error of 0.00126 (0.0126 two-qubit error). Note that while
these input circuits can be optimized to use O(n2/log(n))
CNOT gates (i.e., O(2) CNOT gates), these simulations provide
intuition that the protocol is suitable for deep circuits.

CNOT counts of {1, 5, · · · , 40, 80}. We varied the single-qubit
error from 10−5 to 10−2 with 21 equally spaced points in log
scale.

For the ten-qubit circuits we also generated circuits with
CNOT gate counts of 80 to match the max CNOT count to qubit
ratio of the five qubit case. Each random circuit was generated
first as a random Clifford gate, which we truncated to reach the
desired CNOT count. Next, we inserted RZ gates with random
rotation angles and random locations in the circuit. We used
RZ gate counts of {5, 10, 15}. Each RZ value for five qubits
consists of 450 circuits. This covers a large class of variational
quantum eigensolver and quantum approximate optimization
algorithm circuits [36].

We achieved an average peak fidelity gain Fm − Fn of 34
percentage points for five-qubit circuits with a CNOT gate
count of 40, five RZ gates, and six layers of checks, as
shown in Fig. 10a. For input circuits with a low CNOT count,
the fidelity gain is negative because the checks introduce
more errors than they eliminate in the post selected state.



The average postselection probability is given in Fig. 10b.
We also give in Fig. 11a a plot that breaks down this peak

Figure 10: Six layers. (a) The peak average fidelity gain of
34 percentage points occurred at a single-qubit error of ap-
proximately 0.00251 (0.0251 two-qubit error) and 40 CNOTs.
(b) The probability of postselecting decreases with increasing
error rate and increasing CNOT count.

fidelity gain. At the peak fidelity gain, the nonmitigated circuit
has about 33% fidelity, and the six-layer mitigated circuit
has about 67% fidelity. As shown in Fig. 11a, the mitigated
circuits perform significantly and consistently better than the
unmitigated circuits. Even for lower-layer counts such as
two, the average fidelity gain reached 20 percentage points.
Fig. 11b gives the corresponding post selection probabilities
and demonstrates that we have significant control over the
probabilities by changing the number of layers.

Each additional layer increased the average fidelity provided
enough circuit depth. We show this in more detail in Fig. 12a,
where we fixed the single-qubit error rate to 0.00251 (0.0251
two-qubit error) the value that gave the peak fidelity gain in
Fig. 10a. Circuits with more than six layers may result in even
better performance, but the amount of fidelity gained decreases

Figure 11: (a) Average fidelity for layers zero to six. At the
peak fidelity gain, the nonmitigated circuit has about 33%
fidelity, and the six-layer mitigated circuit has about 67%
fidelity. (b) Probability of postselecting.

with subsequent layers. Fig. 12b shows the corresponding
post selection probabilities and the minimum post selection
probability is about 16%.

As the number of RZ (non-Clifford) gates increases, the
number of possible low weight C̃2 checks for the efficient
PCS protocol decreases, and consequently the fidelity gain
decreases. As shown in Fig. 13a, at an RZ gate count of 10,
the peak fidelity gain is about 25%. As shown in Fig. 14a, at
an RZ gate count of 15, we cannot find six layers of checks for
random circuits with 20 CNOT gates or higher. Interestingly,
as shown in Figs. 10b, 13b and 14b, the post selection curves
are relatively unchanged. Using one layer of checks, we have
a peak fidelity gain of about 10 percentage points at 40 CNOT
gates, as shown in Fig. 15a. Fig. 15b shows the corresponding
post selection probabilities.

For the ten-qubit case, as shown in Fig. 16a, we achieved a
fidelity gain of about ten percentage points. This occurred at a
CNOT count to qubit ratio of eight, which matches the scenario
of the peak fidelity gain in the five-qubit case. The peak
fidelity gain occurred at a single-qubit error of about 0.000891



Figure 12: (a) Average fidelity gain vs number of layers. (b)
Probability of postselecting vs number of layers. The single-
qubit error is fixed at approximately 0.00251 (0.0251 two-
qubit error)

(0.00891 two-qubit error). Fig. 16b shows the corresponding
post selection probabilities.

The preceding simulations focus on using low-weight
checks first. We now analyze the performance of high-weight
checks. As shown in Figs. 17a and 17b, while the high-weight
checks do give a boost in fidelity, they introduce significant
amounts of noise compared to the low-weight checks.

IV. CONCLUSIONS

The quantum error mitigation technique we have studied in
this work is novel because (1) it has an adjustable quantum
overhead for any input circuit, (2) by adjusting the number
of layers of check operators, the technique allows controlling
of the post-selection probability and the error from the error
mitigation protocol, (3) the method can be applied repeatedly
and at any location in the circuit, and works for arbitrary input
states, and (4) in the setting of Theorem 1, we prove that
we can achieve unit fidelity provided that we use a sufficient
number of layers.

Figure 13: Five-qubit circuits with 10 RZ gates. (a) The max
fidelity gain is about 25 percentage points. (b) Probability of
postselecting vs single-qubit error.

We prove in Theorem 1 that if the error is restricted to the
compute qubits (see Fig. 4a), there exist checks such that the
fidelity for the postselected state reaches unity. We also give
a small number of C̃2 checks that reach unit fidelity in this
scenario in Propositions 1 and 2.

In Eq. (19), C̃2 is chosen and C̃1 can be directly determined
through our finding checks protocol given in Section III-F.
This algorithm determines the pairs of checks without matrix
multiplication. Instead, we perform lookups of predetermined
commutation relations. One limitation of our finding checks
protocol is that we are able to find only C̃1 that are in the
Pauli group. This limitation does not exist for the general PCS
protocol.

The main limitation of the proposed approach is the need
to obtain the checks C̃1 and C̃2, with cost exponential in
the number of qubits in the subcircuit. This cost can be
reduced to exponential in the number of non-Clifford gates
(and only polynomial in the number of qubits) by leveraging
the extended stabilizer formalism [37].



Figure 14: Five-qubit circuits with 15 RZ gates. After 10 CNOT
gates, we cannot find circuits with six layers.

The performance of the protocol is tested through extensive
numerical simulations on random circuits consisting of 550
Clifford and 1,850 non-Clifford circuits. We used the Clifford
simulations to provide intuition that the technique is suitable
for deep circuits.

For the non-Clifford circuits, we used five- and ten-qubit
circuits. We use the difference between the fidelity of the
mitigated circuit and the fidelity of the unmitigated circuit as
a figure of merit. Under depolarizing noise, the simulations
reached an average fidelity gain of 34 percentage points for
circuits consisting of five qubits, 40 CNOTs, and six low-
weight C̃2 checks (see Figs. 10a and 10b). It is possible
that more layers will provide further boosts in fidelity. The
single-qubit noise ranged from 10−5 to 10−1. This coincides
with current noise levels found in superconducting quantum
computers [35].

In [38], the authors derive an error mitigation scheme
based on symmetry verification, which they call the spatio-
temporal stabilizer (STS) technique. The STS technique shares
many similarities with the PCS scheme, as first introduced in

Figure 15: Five-qubit circuits with 15 RZ gates. (a) At one
layer of checks, the peak fidelity gain is about 10 percentage
points.

[20], and when there is only one pair of checks, STS is the
PCS scheme. An important difference is that when there are
multiple pairs of checks, layers are allowed to be partly nested
in the STS technique. For example, a possible STS execution
is layer one and layer two act on the same compute qubits,
but layer two begins before layer one has ended and layer one
ends before layer two. Since the STS method also allows the
standard layering of checks in PCS, our results also hold for
the STS technique.

We also note that while the results of this research are
presented in the context of quantum computing, the theoretical
results hold in general for settings where the user intends
to implement an ideal known unitary U on a quantum state.
This follows because we placed no restrictions on the unitary.
The performance of the scheme in other settings needs to be
investigated. Also, since the protocol places no restriction on
the input state, one can apply the mitigation technique on
subcircuits and easily combine it with other methods. Splitting
a large circuit into subcircuits for finding checks or combining



Figure 16: Ten-qubit circuits with 5 RZ gates. We used a
single layer of low weight checks. The 80 CNOT count case
matches the CNOT count to qubit ratio of the five-qubit case
with 40 CNOT gates. (a) The peak fidelity gain is about ten
percentage points. It occurs at a single-qubit error of about
0.000891 (0.00891 two-qubit error)

the protocol with other techniques have not been studied.
Determining the optimal number of check layers also needs
to be further investigated.

Moreover, the best type of checks to use may be non-
Pauli in the general PCS protocol. This is likely true given
some knowledge of the dominant noise. One potential line of
investigation is to use the controls in dynamical decoupling
protocols as the C̃2 parity checks [9], [39].

V. DATA AVAILABILITY

The data presented in this paper is available online at https:
//github.com/alvinquantum/noise_mitigation_symmetry.

VI. CODE AVAILABILITY

The code used for numerical experiments in this work
is available online at https://github.com/alvinquantum/noise_

(a) One layer using max weight checks for five compute qubits.

(b) One layer using max weight checks for ten compute qubits.

Figure 17: Max weight checks. The high-weight checks intro-
duce a lot of noise compared with the low-weight method, as
shown in the large negative fidelity at a high single-qubit error
rate.

mitigation_symmetry.
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