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Characterizing the most efficient evolution, the quantum speed limit (QSL) plays a significant
role in quantum technology. How to generalize the well-established QSL from closed systems to
open systems has attracted much attention. In contrast to the previous schemes to derive the QSL
from the reduced dynamics of open system, we propose a QSL bound from the point of view of
the total system consisting of the open system and its environment using a quantum-state-diffusion
method. The application of our scheme to a two-level system reveals that the system possesses an
infinite speedup capacity in the noiseless case, which is destroyed by the environment under the
Born-Markovian approximation. It is interesting to find that the capacity in the noiseless case is
recovered in the non-Markovian dynamics as long as a bound state is formed in the energy spectrum
of the total system. Enriching the characterization schemes of the QSL, our result provides an
efficient way to control the QSL of open systems.

I. INTRODUCTION

Quantum mechanics imposes a fundamental limit on
the evolution speed of quantum systems, which is called
the quantum speed limit (QSL). Mandelstam and Tamm
originally found that a lower bound on time taken by a
system to evolve to its orthogonal state is determined by
the energy variance [1–6] due to the celebrated energy-
time uncertainty relation [7, 8]. Margolus and Levitin
found another bound of the QSL governed by the mean
energy relative to the ground state [9]. Sun and Zheng
derived a QSL bound relating to the geometric phase via
the gauge invariant distance [10]. These three bounds
are unified into an elegant form for both Hermitian and
non-Hermitian systems [11]. The QSL is of significance
in understanding the performance of various protocols
in quantum technology [12–16]. It determines the com-
putation limits in quantum computing [14, 17–19], the
ultimate precisions in quantum metrology [20–22], and
the maximal power in thermodynamic devices, such as
quantum engines and batteries [23–25]. It has been ex-
perimentally demonstrated in Refs. [26–29].

There is an increasing interest in exploring the QSL in
open systems [30–46]. First, people desire to know if the
well-established QSL in closed systems is generalizable to
open systems. From an application perspective, the QSL
of open systems governs how the performance limits of
different quantum protocols are impacted by the envi-
ronment. A Mandelstam-Tamm-type bound on the QSL
time for pure initial states was derived by using a com-
pletely positive nonunitary map [30, 31], which was gen-
eralized to the non-Markovian dynamics [32]. After some
debates [47], a unified bound on the QSL time includ-
ing the Mandelstam-Tamm [1], Margolus-Levitin [9], and
Sun-Zheng [10] types for time-dependent non-Hermitian
systems was established in Ref. [11]. A QSL for arbi-
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trary initial states was obtained by introducing the rela-
tive purity [35] and the Hilbert-Schmidt product of oper-
ators [36] as distance measures. The distinguished roles
played by the non-Markovian effect [32, 41, 48–50], initial
entanglement [34, 51], and quantum criticality [52–54] in
the QSL of open systems have been extensively studied.
However, almost all these studies rely on the reduced dy-
namics of open systems described by master equations.
Unfortunately, exact master equations are available only
for very few open systems. This dramatically constrains
the exploration of the QSL in open systems. The utiliza-
tion of certain approximations, e.g., the Born-Markovian
and secular approximations, or the perturbation meth-
ods in the weak-coupling condition, e.g., the Nakajima-
Zwanzig method [55], may be possible solutions, but they
might miss important physics. A natural question is if
it is possible to derive a QSL bound without a priori
knowledge of the reduced dynamics of open systems.

We propose a scheme to answer this question by using
the quantum-state-diffusion (QSD) method [56–63]. Our
scheme characterizes the QSL from a global perspective
of the total system consisting of the open system and its
environment instead of from the reduced density matrix.
It is particularly useful for the non-Markovian dynam-
ics, where the system and the environment are highly
entangled such that the separation of their degrees of
freedom becomes hard. We apply our formulation to a
two-level system and reveal its sufficient speedup capac-
ity in the noiseless case. However, such a capacity is
destroyed by the Born-Markovian approximate decoher-
ence [39, 43, 64–66]. A mechanism to restore the speedup
capacity is found in the non-Markovian dynamics. It is
due to the formation of a bound state in the energy spec-
trum of the total system. This result supplies us an in-
sightful instruction to suppress the destructive effect of
the environment on the QSL of the open system.
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II. QSL FROM A QSD METHOD

The QSL can be established in a geometric formalism
[37, 39, 67–71]. Consider an evolution from |ψ(0)〉 to
|ψ(τ)〉, which forms a path in the state space connecting
|ψ(0)〉 and |ψ(τ)〉. The length of this path is the line in-
tegral ` ≡

∫ τ
0
dt
√
gtt, where gtt is a metric determined by

the evolution. Thus, the average speed of the evolution is
v̄ = `/τ . However, the path ` is not the shortest one con-
necting |ψ(0)〉 and |ψ(τ)〉, which instead is the geodesic
with length L. Therefore, L gives a lower bound for the
length of the path between |ψ(0)〉 and |ψ(τ)〉. According
to Refs. [10, 11, 37, 40], the QSL time is the ratio of the
geodesic and the average speed v̄, i.e.,

τQSL = L/v̄ = Lτ/`, (1)

which makes a connection between the QSL and the
actual evolution path. Physically, τQSL quantifies the
smallest evolution time from |ψ(0)〉 to |ψ(τ)〉. By ma-
nipulating the actual evolution path as close as possible
to the geodesic, we can increase the speedup capacity of
the system. When τQSL = τ , the actual evolution path
tends to the geodesic and the system generally has no
more space for speedup. In contrast, when τQSL/τ ap-
proaches zero, the actual path dramatically deviates from
the geodesic and the system has a remarkable speedup
capacity. Thus, the smaller τQSL/τ is, the more speedup
capability the system may possess. Such a viewpoint has
been widely adopted [50, 51, 65, 67, 72, 73], although
there still exist some controversies on the physical ex-
planation of τQSL/τ . The geodesic and the metric for a
closed system under a unitary evolution are widely cho-
sen as the Bures angle LB = arccos |〈ψ(0)|ψ(τ)〉| and the

Fubini-Study metric gFS
tt = 〈ψ̇(t)|ψ̇(t)〉 − |〈ψ̇(t)|ψ(t)〉|2,

respectively [2, 10, 11, 74]. It is noted that the brachis-
tochrone time of certain system under a time-dependent
optimal control may be smaller than the Mandelstam-
Tamm-type QSL [75, 76].

To generalize this characterization from closed systems
to open systems, we resort to the QSD method. We study
an open system interacting with a bosonic environment.
The Hamiltonian reads (~ = 1)

Ĥ = Ĥs +
∑
k

[
ωk b̂
†
k b̂k +

(
gkL̂

†b̂k + H.c.
)]
, (2)

where Ĥs is the system Hamiltonian, L̂ is the coupling

operator of the system to the environment, b̂k is the an-
nihilation operator of the kth environmental mode with
frequency ωk, and gk is the system-environment coupling
strength. The coupling is described by the spectral den-
sity J(ω) ≡

∑
k |gk|2δ(ω − ωk). We consider an Ohmic

spectral density J(ω) = ηωe−ω/ωc , where η is a coupling
constant and ωc is a cutoff frequency [77].

The conventional methods to describe the dynamics of
open systems start from the unitary evolution of the to-
tal system formed by the system and its environment and

trace out the environmental degrees of freedom. It results
in a master equation satisfied by the reduced density ma-
trix of the system. Unfortunately, due to the involved in-
finite degrees of freedom of the environment, this process
generally cannot be exactly done and many approxima-
tions, e.g., Born-Markovian and secular approximations,
are needed. Different from those methods, we use the
QSD method. It permits us to follow each quantum tra-
jectory parametrized by the introduced stochastic vari-
able and obtain an exact non-Markovian dynamics with-
out resorting to the reduced density matrix. According
to this method, the exact dynamics of the open system is
governed by the stochastic Schrödinger equation [56–63]

i|ψ̇z̄zz(t)〉 = Ĥ|ψz̄zz(t)〉, (3)

where |zzz〉 =
⊗

k e
zk b̂

†
k |0k〉 is the coherent state of the

environment and |ψz̄zz(t)〉 = 〈z̄zz|ΨT(t)〉, with z̄zz denoting
the complex conjugate of zzz and |ΨT(t)〉 being the state
of the total system. The effective time-dependent non-
Hermitian Hamiltonian Ĥ is (see Appendix A)

Ĥ = Ĥs + iL̂z̄zzt − iL̂†Ô(t, z̄zz), (4)

where z̄zzt = −i
∑
k ḡkz̄ke

iωkt can be seen as a stochastic-

noise variable and Ô(t, z̄zz) =
∫ t

0
dsα(t− s)Ô(t, s, z̄zz), with

Ô(t, s, z̄zz) = δ
δz̄zzs

and α(t − s) =
∫∞

0
dωJ(ω)e−iω(t−s)

being the environmental correlation function. The dy-
namics in Eq. (3) governed by Eq. (4) defines a sin-
gle quantum trajectory parametrized by the stochastic

variable zzzt. Defined as M{Fz̄zz,zzz} ≡
∏
k

∫
d2zk
π e−|zk|

2Fz̄zz,zzz
for any variable Fz̄zz,zzz, the ensemble average over all the
quantum trajectories recovers the reduced density ma-
trix in the conventional methods. Assuming |ΨT(0)〉 =
|ψ(0)〉

⊗
k |0k〉, one can prove that the variable zzzt satis-

fies M{zzzt} = M{zzztzzzs} = 0 and M{zzztz̄zzs} = α(t − s).
The QSD method has been widely used in studying
quantum dissipative dynamics [61–63, 78–81]. Ô(t, z̄zz)
is analytically solvable for a multilevel system [61] and
the quantum Brownian-motion model [59]. In general

situations, Ô(t, z̄zz) is perturbatively [58, 82] or numeri-

cally [80, 81, 83] computable. As long as Ô(t, z̄zz) is known,
the dynamics of the open system is obtained. Note that
the QSD method is an exact description of the dynamics
of the open system with the quantum-jump terms self-
consistently included.

Regarding the open system and the environment as
a total system, we can safely apply LB and gFS

tt in the
pure state |ΨT(τ)〉 as LB = arccos |〈ΨT(0)|ΨT(τ)〉| and

gFS
tt = 〈Ψ̇T(t)|Ψ̇T(t)〉 − |〈Ψ̇T(t)|ΨT(t)〉|2. Then, by in-

serting 1
π

∫
d2zzze−|zzz|

2 |zzz〉〈zzz| = 111, we obtain

LB = arccos |M{〈ψzzz(0)|ψz̄zz(τ)〉}|, (5)

gFS
tt =M{〈ψ̇zzz(t)|ψ̇z̄zz(t)〉} − |M{〈ψ̇zzz(t)|ψz̄zz(t)〉}|2. (6)

The environmental effects have been incorporated into
the nonunitary evolution and the ensemble average to
all the quantum trajectories. Equation (6) is recast into
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FIG. 1. Average speed v̄ (a) and QSL time τQSL/τ (b) as a
function of ω0τ . The red dashed and blue solid lines are the
results in the ideal case and the Born-Markovian approximate
case, respectively. The green dotted line is the analytical long-
time result limτ→∞ τQSL/τ = πκ/(3A). We use η = 0.05 and
ωc = 10ω0.

gFS
tt = M{〈ψzzz(t)|Ĥ†Ĥ|ψz̄zz(t)〉} − |M{〈ψzzz(t)|Ĥ|ψz̄zz(t)〉}|2

by using Eq. (3), which returns to the energy variance
revealed by the Mandelstam-Tamm bound in the noise-
less case [1–5]. Thus, we have succeeded in converting the
characterization of the QSL of an open system into the
well-established one of a closed system. Giving a global
picture of the QSL of an open system from the total
system, our scheme depicts a different facet of the QSL
of an open system from the conventional methods. The
similar idea of characterizing the physical properties of
an open system from the joint system-environment state
has been widely employed in the studies of geometric
phase [84, 85], non-Markovianity [86, 87], and QSL [30].

III. EXEMPLIFICATION

To verify the feasibility of our scheme, we con-
sider a two-level system with Ĥs = ω0σ̂+σ̂−, where
σ̂± are the transition operators between the ground
state |g〉 and excited state |e〉. In the noise-

less case, one calculates |ψ(τ)〉 = e−iĤsτ |ψ(0)〉
from a general initial state |ψ(0)〉 = sin(θ/2)|e〉 +
cos(θ/2)eiφ|g〉. It leads to gFS

tt = ω2
0 sin2 θ/4 and

LB = arccos[
√

3 + cos(2θ) + [1− cos(2θ)] cos(ω0τ)/2].
The maximal average speed reads v̄ = ω0/2, as con-
firmed by Fig. 1(a). The maximal QSL time τ ide

QSL =

2ω−1
0 arccos | cos(ω0τ/2)| is achieved according to Eq. (1)

when θ = π/2 [75]. We find that, after keeping in one
within a short time duration, τ ide

QSL/τ tends to zero with

increasing τ , see Fig. 1(b). This implies that the system
has a sufficient speedup capacity in the noiseless case.

In the presence of an environment, we choose L̂ = σ̂−,
which is widely used to verify the performance of dif-
ferent QSL bounds [30, 32, 37, 50]. We can derive

Ô(t) = σ̂−
∫ t

0
dsα(t− s)u(s)

u(t) and u(t) satisfying (see Ap-

pendix A)

u̇(t) + iω0u(t) +

∫ t

0

dsα(t− s)u(s) = 0, (7)

under u(0) = 1. Then the Bures angle and the Fubini-
Study metric are calculated as (see Appendix B)

LB = arccos[|1 + u(τ)|/2], (8)

gFS
tt = [|u̇(t)|2 + α(0)|u(t)|2]/2

−
∣∣i[ū(t)u̇(t)− u(t) ˙̄u(t)]− ω0|u(t)|2

∣∣2/4. (9)

We consider the QSL of the system relaxing to its steady
state by choosing a sufficiently large τ , which reflects the
equilibration efficiency of the open system. The QSL de-
rived in such a condition is an important factor in char-
acterizing the decoherence.

In the special case when the system-environment cou-
pling is weak and the typical time scale of the environ-
ment is much smaller than the one of the system, we can
apply the Born-Markovian approximation to Eq. (7). Its
approximate solution reads u(t) = e−[κ+i(ω0+∆ω0 )]t [88],
where κ = πJ(ω0) is the decay rate and ∆ω0

=

P
∫∞

0
dω J(ω)

ω0−ω is a frequency shift. Substituting it into

Eqs. (8) and (9), we have LB,BMA = arccos[|1 + e−2κτ +
2e−κτ cos(ω0τ + ∆ω0

τ)|/2] and gFS
tt,BMA ' A2e−2κt, with

A2 = [α(0) + κ2 + (ω0 + ∆ω0
)2]/2. Then we obtain

limτ→∞ v̄ = 0 and limτ→∞ τQSL/τ = πκ/(3A) (see Ap-
pendix B). Thus, the speedup capacity is destroyed by
the environment under this approximation, which is in
agreement with previous results [39, 43, 64–66]. The
Born-Markovian approximate v̄ and τQSL/τ in Fig. 1
verify our analytical conclusion that v̄ tends to zero and
τQS/τ tends to πκ/(3A) asymptotically.

In the general non-Markovian dynamics, the expres-
sions of v̄ and τQSL/τ are complicated. We leave them
to numerical calculations. However, via analyzing the
long-time behavior of u(t), we can obtain their asymp-
totic forms, which are helpful to us in building up a
physical picture of the QSL of the open system. We
apply a Laplace transform to Eq. (7) and find ũ(z) ≡∫∞

0
dtu(t)e−zt = [z + iω0 +

∫∞
0
dω J(ω)

z+iω ]−1. The solution

of u(τ) is obtained by applying an inverse Laplace trans-
form to ũ(z), which can be done by finding the poles
from

y($) ≡ ω0 −
∫ ∞

0

dω
J(ω)

ω −$
= $, ($ = iz). (10)

It is remarkable to find that the root of Eq. (10)

is the eigenenergy of Ĥ in the single-excitation sub-
space. To be more specific, we express the eigenstate

as |Φ〉 = (xσ̂+ +
∑
k yk b̂

†
k)|0, {0k}〉. Substituting it into

Ĥ|Φ〉 = E|Φ〉, one finds the eigenenergy equation as
E − ω0 −

∑
k g

2
k/(ωk − E) = 0, which matches Eq. (10)

in the continuous limit of the environmental frequency
after replacing E by $. This implies that the dynam-
ics of the open system is essentially determined by the
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FIG. 2. (a) Energy spectrum of the total system. Exact non-
Markovian result of the average speed (b) and the QSL time
(c) in different η and ω0τ . The dashed lines highlight the
behaviors at the critical point η = 0.1 for forming the bound
state. Parameter values are the same as Fig. 1.

energy-spectrum features of the total system. y($) is a
monotonically decreasing function when $ < 0. Thus,
Eq. (10) has one isolated root Eb in this regime provided
y(0) < 0. Because y($) is not well defined in the regime
$ > 0 due to the poles in its integrand, Eq. (10) has an
infinite number of roots in this regime, which form a con-
tinuous energy band. We call the eigenstate correspond-
ing to the isolated eigenenergy Eb the bound state [89–
91]. Using the residue theorem, we have

u(t) = Ze−iEbt +

∫ ∞
0

J(ω)e−iωtdω

(ω − ω0 −∆ω)2 + [2πJ(ω)]2
,

where the first term with Z ≡ [1 +
∫∞

0
J(ω)dω

(Eb−ω)2 ]−1 is con-

tributed by the bound state. The second term is from
the energy-band states and approaches zero in the long-
time regime due to out-of-phase interference. Thus, if the
bound state is absent, we have u(∞) = 0 implying a com-
plete decoherence, while if the bound state is formed, we
have u(∞) = Ze−iEbt implying a decoherence suppres-
sion. It is determined from y(0) < 0 that the bound state
is formed when ω0 < ηωc for the Ohmic spectral density.

In the absence of the bound state, it is natural to ex-
pect that the QSL has a consistent behavior with the
one under the Born-Markovian approximation because
u(t) approaches zero eventually. We focus on the case
in the presence of the bound state. Using the form
u(∞) = Ze−iEbt, we obtain limτ→∞ v̄ ' C and

lim
τ→∞

τQSL

τ
=

arccos[
√

1 + Z2 + 2Z cos(Ebτ)/2]

Cτ
, (11)

where C2 = Z2[α(0) +E2
b ]/2− Z4(ω0/2−Eb)2 (see Ap-

pendix B). It recovers the ideal result τ ide
QSL/τ in the limit

of gk tending to zero, which reduces Eb = ω0 and Z = 1.
Equation (11) tends to zero in the long-time limit, which

FIG. 3. (a) Steady-state average speed (red rectangles) and
QSL time (blue circles) as a function of η (a) and ωc/ω0 (b)
when ω0τ = 800. The green solid lines are from the analytical
result limτ→∞ v̄ = C. Parameter values are the same as Fig.
1.

is consistent with the result in the ideal case. This inter-
esting result reveals that, quite different from the Born-
Markovian approximate result in Fig. 1, the formation
of the bound state recovers the speedup capacity of the
open system.

We plot in Fig. 2(a) the energy spectrum of the total
system consisting of the two-level system and its environ-
ment. It is found that the energy branch of the bound
state splits the energy spectrum into two regions, with-
out the bound state when η < 0.1 and with the bound
state when η > 0.1. An obvious threshold at the critical
point η = 0.1 for forming the bound state occurs both
for the average speed v̄ and the QSL time τQSL/τ , see
Figs. 2(b) and 2(c). When η < 0.1, v̄ tends to zero
and τQSL/τ tends to a finite value. Thus the speedup
capacity of the system is completely destroyed by the en-
vironment. This result is qualitatively similar to the one
under the Born-Markovian approximation in Fig. 1. In
contrast, when η > 0.1, v̄ tends to a finite constant and
τQSL/τ tends to zero in the long-time limit. It indicates
the ideal speedup capacity of the system is recovered due
to the formation of the bound state. Figure 3 shows the
long-time behaviors of v̄ and τQSL/τ in different η and
ωc. It confirms that as long as the bound state of the
total system is formed, the speedup capacity of the open
system is restored.

Our result is generalizable to the spin-boson model af-
ter relaxing the rotating-wave approximation. It is in-
teresting to find that the distinguished role played by
the bound state in restoring the speedup capacity still
works (see Appendix C). Further, although only the two-
level system is studied, our scheme can be readily ap-
plied in the continuous-variable systems, where a similar
dominated role played the bound state in determining
the decoherence dynamics exists [91, 92]. These indicate
the generality of the insight of the QSL of open systems
gained by our scheme.
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IV. DISCUSSIONS AND CONCLUSION

Our result implies that we can control the QSL and
manipulate the speedup capacity of the open system via
engineering the formation of the bound state, which can
be realized by the quantum reservoir engineering tech-
nique [93–95]. It is noted that, although only the Ohmic
spectral density is considered, our bound-state mecha-
nism is applicable to other forms, where the explicit con-
dition for forming the bound state may be different, but
the bound-state mechanism does not change. The bound
state and its dynamical effect have been experimentally
observed in circuit QED [96] and ultracold atom [97, 98]
systems. These experimental progresses provide strong
support to test our characterization scheme of the QSL
and to verify our mechanism of recovering the speedup
capacity of open systems.

As a global-picture characterization of the QSL of the
open system from the total system formed by the system
and its environment, our proposed QSL bound reflects
different facets of the QSL of open system from the one
derived from the reduced density matrix. In Appendix D,
we discuss the relation between our proposed QSL bound
and the previous bound based on the reduced density
matrix. On the other hand, we only use the Fubini-Study
metric as an example to illustrate our method of deriving
the QSL bound. The validity of our method and the
obtained conclusion does not depend on the specific form
of the used metric.

In summary, we have proposed a scheme to charac-
terize the QSL of open systems using the QSD method.
Without resorting to the reduced density matrix, it is
a global reflection of the QSL of an open system from
the total system consisting of the open system and its
environment. The application in a two-level system re-
veals that the system has a remarkable speedup capacity
in the ideal case, which is fully destroyed by the Born-
Markovian approximate decoherence. A mechanism to
retrieve the capacity by engineering the formation of a
bound state in the energy spectrum of the total system
has been found in the non-Markovian dynamics. Our
result enriches the characterization scheme of the QSL
and supplies an insightful guideline to control the QSL
of open systems. It might attract experimental interests
in controlling decoherence and evaluating the ultimate
performance of various quantum protocols.
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Appendix A: QSD method

We consider an open system interacting with an envi-
ronment governed by Eq. (2). The Schrödinger equation

in the rotating frame of Ĥe is

i|Ψ̇T(t)〉 =
[
Ĥs +

∑
k

(
gkL̂b̂

†
ke
iωkt + H.c.

)]
|ΨT〉. (A1)

In the representation formed by the coherent state |zzz〉 =⊗
k |zk〉 with |zk〉 ≡ ezk b̂

†
k |0k〉, Eq. (A1) reads

i|ψ̇z̄zz(t)〉 =
[
Ĥs +iL̂z̄zzt+L̂

†
∑
k

g∗ke
−iωkt∂z̄k

]
|ψz̄zz(t)〉, (A2)

where |ψz̄zz(t)〉 = 〈z̄zz|ΨT(t)〉, z̄zzt = −i
∑
k gkz̄ke

iωkt,

〈z̄k|b̂†k = z̄k〈z̄k|, and 〈z̄k|b̂k = ∂z̄k〈z̄k| have been

used [56, 57]. The chain rule ∂z̄k =
∫ t

0
ds ∂z̄zzs∂z̄k

δ
δz̄zzs

=

−igk
∫ t

0
dseiωks δ

δz̄zzs
converts Eq. (A2) into

i|ψ̇z̄zz(t)〉 = Ĥ|ψz̄zz(t)〉, (A3)

Ĥ = Ĥs + iL̂z̄zzt − iL̂†Ô(t, z̄zz), (A4)

where α(t−s) =
∑
k |gk|2e−iωk(t−s) is the environmental

correlation function and Ô(t, z̄zz) ≡
∫ t

0
dsα(t− s)Ô(t, s, z̄zz),

with Ô(t, s, z̄zz) = δ
δz̄zzs

. Equation (A3) can be seen as
a stochastic Schrödinger equation governed by a non-
Hermitian Hamiltonian (A4). As long as Ô(t, z̄zz) is de-
termined, the dynamics of the open system is obtained.

The form of Ô(t, s, z̄zz) for a two-level system with Ĥs =

ω0σ̂+σ̂− and L̂ = σ̂− must be [59, 62]

Ô(t, s, z̄zz)|ψz̄zz(t)〉 = f(t, s)σ̂−|ψz̄zz(t)〉, (A5)

where f(t, s) is under determined, because the term with

σ̂+ multiplying L̂† = σ̂+ equals to zero. Differentiating
Eq. (A5) with respect to t, we obtain

ḟ(t, s)σ̂−|ψz̄zz(t)〉 =
[ δ
δz̄zzs
− f(t, s)σ̂−

]
|ψ̇z̄zz(t)〉. (A6)

The substitution of Eqs. (A3) and (A5) into Eq. (A6)
results in

ḟ(t, s) = f(t, s)[iω0 +

∫ t

0

ds′α(t− s′)f(t, s′)]. (A7)

Setting f(t, s) = u(s)/u(t), we rewrite Eq. (A7) as

u̇(t) + iω0u(t) +

∫ t

0

α(t− s)u(s)ds = 0. (A8)

Therefore, we find

Ô(t, z̄zz) =

∫ t

0

dsα(t− s)u(s)

u(t)
σ̂− ≡ F (t)σ̂−, (A9)

with F (t) =
∫ t

0
dsα(t− s)u(s)/u(t).
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FIG. 4. Numerical results (green solid lines) of v̄ (a) and
τQSL/τ (b) as a function of ω0τ when ωc = 13ω0. The red
dots are the results evaluated by Eqs. (B10) and (B11), re-
spectively. We use η = 0.1.

Next, we prove that Eq. (A3) recovers the exact master
equation after making the average over z̄̄z̄zt. Substituting
Eqs. (A9) and (A4) into Eq. (A3), we obtain

|ψ̇z̄zz(t)〉 = [−iω0σ̂+σ̂−+z̄zztσ̂−−F (t)σ̂+σ̂−]|ψz̄zz(t)〉. (A10)

The equation of motion of ρ(t) =M{|ψz̄̄z̄z(t)〉〈ψzzz(t)|} is

ρ̇(t) = −i[Ĥs, ρ(t)]− F (t)σ̂+σ̂−ρ(t)− F ∗(t)ρ(t)σ̂+σ̂−

+[σ̂−M{z̄̄z̄zt|ψz̄̄z̄z(t)〉〈ψzzz(t)|}+ H.c.]. (A11)

According to the Furutsu-Novikov theorem M{z̄̄z̄ztPt} =∫ t
0
dsM{z̄̄z̄ztzzzs}M

{
δPt

δzzzs

}
[56, 57, 63], with Pt =

|ψz̄̄z̄z(t)〉〈ψzzz(t)| being the projection operator, we have

M{z̄̄z̄zt|ψz̄̄z̄z(t)〉〈ψzzz(t)|} = F ∗(t)ρ(t)σ̂+. (A12)

Then we obtain

ρ̇(t) =iIm

[
u̇(t)

u(t)

]
[σ̂+σ̂−, ρ(t)]− Re

[
u̇(t)

u(t)

]
× [2σ̂−ρ(t)σ̂+ − σ̂+σ̂−ρ(t)− ρ(t)σ̂+σ̂−],

(A13)

where F (t) = −iω0 − u̇(t)/u(t) from Eq. (A8) has been
used. It is just the non-Markovian master equation [99].

Appendix B: QSL for a dissipative two-level system

We derive the QSL time for a dissipative two-level sys-
tem. Equation (A4) reads Ĥ = iu̇(t)/u(t)σ̂+σ̂− + iz̄zztσ̂−.

Consider that the initial state is |ψz̄zz(0)〉 = (|g〉+ |e〉)/
√

2.
Its evolution is expanded as |ψz̄zz(t)〉 = cg(t)|g〉+ ce(t)|e〉.
The substitution of this state into Eq. (A3) results in

ce(t) =
u(t)√

2
, cg(t) =

1√
2

+
1√
2

∫ t

0

dsz̄zzsu(s). (B1)

Then, the geodesic length is given by

LB = arccos

∣∣M{cg(τ) + ce(τ)}
∣∣

√
2

= arccos
|1 + u(τ)|

2
,(B2)

where M{z̄zzs} = 0 has been used. In the limit of gk
approaching zero, we have uideal(τ) = e−iω0τ and thus
Lideal

B = arccos | cos( 1
2ω0τ)|. Similarly, one obtains

gFS
tt = [|u̇(t)|2 + α(0)|u(t)|2]/2

−
∣∣i[ū(t)u̇(t)− u(t) ˙̄u(t)]− ω0|u(t)|2

∣∣2/4, (B3)

with reduces to 1
4ω

2
0 in the ideal limit.

In the Born-Markovian approximation, the solution of
u(t) reads uBMA(t) ' e−{κ+i[ω0+∆(ω0)]}t. Substituting
uBMA(t) into Eqs. (B2) and (B3), we obtain

LB,BMA = arccos[|1 + e−2κτ + 2e−κτ

× cos(ω0τ + ∆ω0
τ)|/2], (B4)

gFS
tt,BMA =

e−2κt

2
[α(0) + κ2 + (ω0 + ∆ω0

)2]

−e
−4κt

4
(ω0 + 2∆ω0)2 ' A2e−2κt, (B5)

where A2 = [α(0)+κ2+(ω0+∆ω0
)2]/2. Thus, the average

speed v̄ is calculated as

v̄BMA =
1

τ

∫ τ

0

dt
√
gFS
tt =

A(1− e−κτ )

κτ
, (B6)

which vanishes in the long-time limit. The QSL time is

lim
τ→∞

τQSL,BMA

τ
=
πκ

3A
, (B7)

which is a constant.
In the non-Markovian dynamics, we focus on the case

in the presence of the bound state. The substitution of
u(∞) = Ze−iEbτ into Eqs. (B2) and (B3) results in

lim
τ→∞

LB = arccos
|1 + Ze−iEbτ |

2
, (B8)

lim
t→∞

gFS
tt = C2 (B9)

with C2 = Z2[α(0)+E2
b ]/2−Z4(ω0/2−Eb)2. We obtain

lim
τ→∞

v̄ = C, (B10)

lim
τ→∞

τQSL

τ
=

arccos[
√

1 + Z2 + 2Z cos(Ebτ)/2]

Cτ
. (B11)

We plot in Fig. 4 the exact results by numerically solv-
ing Eq. (A8) and the analytical results in Eqs. (B10) and
(B11). We see that the analytical results are in qualita-
tive agreement with those of the numerical results.

Appendix C: QSL for the spin-boson model

For the spin-boson model, i.e., Ĥs = 1
2∆σ̂z and L̂ =

1
2 σ̂x, an exact QSL is not obtainable due to the complex-
ity of the model itself. An approximate form can be de-
rived in the weak-coupling condition. We apply a polaron
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FIG. 5. Numerical results of v̄ (a) and τQSL/τ (b) as a func-
tion of ω0τ for the spin-boson model. The blue solid lines
are results in the presence of the bound state when η = 0.25.
The red dashed lines are the results in the absence of the
bound state when η = 0.1. The spectral density is chosen as
J(ω) = ηωsω1−s

c e−ω/ωc with s = 0.6 and ωc = 30∆.

FIG. 6. Steady-state v̄ (red rectangles) and τQSL/τ (blue
circles) as a function of η with ωc = 30∆ (a) and ωc/∆ with
η = 0.2 (b) when ∆τ = 103. The green solid lines are obtained

from the analytical results by using ũ(∞) ' Z̃e−iẼbt. The
black dashed lines mark the critical points of forming the
bound state. Other parameters are the same as Fig. 5.

transformation eŜ , with Ŝ = exp[
∑
k
gkξk
2ωk

(b̂†k − b̂k)σ̂x],

and obtain Ĥ ′ = Ĥ ′0 + V̂ ′ [100–102], where

Ĥ ′0 =
1

2
∆Θσ̂z +

∑
k

ωk b̂
†
k b̂k +

∑
k

g2
k

4ωk
ξk(ξk − 2), (C1)

V̂ ′ =
1

2
σ̂x
∑
k

gk(1− ξk)(b̂†k + b̂k)− i

2
∆σ̂y sinh χ̂

+
1

2
∆σ̂z(cosh χ̂−Θ), (C2)

with χ̂ =
∑
k
gkξk
ωk

(b̂†k−b̂k) and Θ = 〈{0k}| cosh χ̂|{0k}〉 =

exp
(
−
∑
k
g2kξ

2
k

2ω2
k

)
. The value of ξk is determined by mini-

mizing the Bogoliubov-Feynman upper bound of the free

energy FB = − 1
β ln

(
Tre−βĤ

′
0

)
+ 〈V̂ ′〉Ĥ′

0
, where 〈V̂ ′〉Ĥ′

0
is

the thermal expectation value with respect to the Gibbs
state of Ĥ ′0. Thus, one obtains ξk = ωk

ωk+Θ∆ . Then, V̂ ′ is

rewritten as V̂ ′ = V̂ ′1 + V̂ ′2 with

V̂ ′1 =
∑
k

g̃k(b̂kσ̂+ + b̂†kσ̂−), (C3)

V̂ ′2 =
1

2
∆σ̂z(cosh χ̂−Θ)− i

2
∆σ̂y(sinh χ̂−Θχ̂), (C4)

where σ̂± = (σ̂x ± iσ̂y)/2 and g̃k = gkΘ∆/(ωk + Θ∆)
is the renormalized coupling strength. It is observed
that V̂ ′2 is the multiboson transition of the order O(g̃4

k).
Such multiboson processes can be neglected if the system-
environment coupling is weak. Thus, we finally have

Ĥ ′eff = Θ∆σ̂+σ̂− +
∑
k

[ωk b̂
†
k b̂k + g̃k(b̂kσ̂+ + H.c.)],(C5)

where the constant term has been dropped. We see that
Eq. (C5) has the same structure as Eq. (2), with the
system frequency and the coupling strength renormalized
by the polaron transformation.

Substituting Eq. (C5) into (A4), we obtain

ĤSBM = Θ∆σ̂+σ̂− + iz̄zztσ̂−

−i
∫ t

0

dsα̃(t− s) ũ(s)

ũ(t)
σ̂+σ̂−, (C6)

where α̃(t) =
∑
k |g̃k|2e−iωkt and ũ(t) is determined by

˙̃u(t) + iΘ∆ũ(t) +

∫ t

0

dsα̃(t− s)ũ(s) = 0. (C7)

A similar analysis obtains that a bound state with
eigenenergy Ẽb is formed provided ỹ(0) < 0, where

ỹ($) = Θ∆−
∫ ∞

0

dω
J(ω)

ω −$

(
Θ∆

Θ∆ + ω

)2

. (C8)

Then, ũ(∞) ' Z̃e−iẼbt with Z̃ = [1 +∫∞
0
dω J(ω)

(Ẽb−ω)2
( Θ∆

Θ∆+ω )2]−1. In contrast, if ỹ(0) ≥ 0,

no bound state is formed and ũ(∞) = 0. With ĤSBM

at hand, the QSL for the spin-boson model is readily
obtained by using the same method as the main text.
As plotted in Figs. 5 and 6, one can conclude that the
bound-state mechanism to retrieve the ideal speedup
capacity still works for the spin-boson model.

Appendix D: Relation with previous QSL bounds

We discuss the relation between our proposed QSL
bound and the previous bound obtained from the reduced
density matrix of the open system. The Fubini-Study
metric is closely related to the quantum Fisher informa-
tion as

gFS
tt =

1

4
F(t). (D1)

Here, F(t) = 4[〈Ψ̇T(t)|Ψ̇T(t)〉−|〈Ψ̇T(t)|ΨT(t)〉|2] is noth-
ing else but the quantum Fisher information with respect
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to the state of the total system. Then, based on the fact
that the quantum Fisher information of the total system
is an upper bound to that of the subsystem [30], we have

F(t) ≥ Fred(t), (D2)

where Fred(t) is the quantum Fisher information corre-
sponding to the reduced density matrix ρ(t). Using these
results, one finds

` =

∫ τ

0

dt

√
1

4
F(t) ≥

∫ τ

0

dt

√
1

4
Fred(t) = `red. (D3)

This inequality means that our proposed average speed
v̄ = `/τ is faster than the one derived from the reduced
density matrix v̄red = `red/τ .

On the other hand, the Bures angle connecting the
initial state ρ(0) = |ψ(0)〉〈ψ(0)| and the evolved state
ρ(τ) = TrE[|ΨT(τ)〉〈ΨT(τ)|] = M{|ψz̄̄z̄z(τ)〉〈ψzzz(τ)|} of

the subsystem reads Lred
B = arccos

√
F [ρ(0), ρ(τ)], where

F [ρ(0), ρ(τ)] = 〈ψ(0)|ρ(τ)|ψ(0)〉 is the so-called quantum
fidelity. Due to the facts that |ψz̄̄z̄z(0)〉 = 〈z̄̄z̄z|Ψtot(0)〉 =

⊗k〈0k|ez̄k b̂k |0k〉|ψ(0)〉 = |ψ(0)〉 and 0 ≤ e−|zzz|
2

/π ≤ 1, we
find

F [ρ(0), ρ(τ)] =〈ψ(0)|M{|ψz̄̄z̄z(τ)〉〈ψzzz(τ)|}|ψ(0)〉

=
1

π

∫
d2zzze−|zzz|

2

|〈ψ(0)|ψz̄̄z̄z(τ)〉|2

=
1

π

∫
d2zzze−|zzz|

2

|〈ψzzz(0)|ψz̄̄z̄z(τ)〉|2

≥ 1

π2

∫
d2zzze−2|zzz|2 |〈ψzzz(0)|ψz̄̄z̄z(τ)〉|2.

(D4)

Using the Cauchy-Schwarz inequality∣∣∣∣ ∫ dxA(x)

∣∣∣∣2 ≤ ∫ dx|A(x)|2, (D5)

we have

F [ρ(0), ρ(τ)] ≥
∣∣∣∣ ∫ d2zzz

π
e−|zzz|

2

〈ψzzz(0)|ψz̄̄z̄z(τ)〉
∣∣∣∣2

=|M{〈ψzzz(0)|ψz̄̄z̄z(τ)}|2.
(D6)

Considering the fact that arccos
√
x is a decreasing func-

tion in the region x ∈ [0, 1], the relation between Lred
B

and LB can be built as

Lred
B = arccos

√
F [ρ(0), ρ(τ)]

≤ arccos
√
|M{〈ψzzz(0)|ψzzz(τ)}|2

= arccos |M{〈ψzzz(0)|ψz̄̄z̄z(τ)〉}| = LB. (D7)

For the two-level system example considered in the main
text, the validity of Eq. (D7) is quite obvious

Lred
B = arccos

√
F [ρ(0), ρ(τ)]

= arccos

√
1

4
[1 + 2Reu(τ) + 1]

≤ arccos

√
1

4
[1 + 2Reu(τ) + |u(τ)|2]

= arccos
|1 + u(τ)|

2
= LB.

(D8)

We finally prove that v̄ ≥ v̄red and LB ≥ Lred
B . Thus,

beyond specific models, it is still difficult to compare
the tightness between our proposed bound τQSL = LB/v̄
and the previous bound from the reduced density matrix
τ red
QSL = Lred

B /v̄red in a universal way. However, motivated

by Ref. [30], these two QSL bounds can be further tight-
ened by introducing a hybrid bound as

τhybrid
QSL =

LB

v̄red
. (D9)
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[21] F. Fröwis, Kind of entanglement that speeds up quan-
tum evolution, Phys. Rev. A 85, 052127 (2012).

[22] S. Campbell, M. G. Genoni, and S. Deffner, Precision
thermometry and the quantum speed limit, Quantum
Science and Technology 3, 025002 (2018).

[23] A. d. Campo, J. Goold, and M. Paternostro, More bang
for your buck: Super-adiabatic quantum engines, Scien-
tific Reports 4, 6208 (2014).

[24] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri,
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