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Abstract

Graphical models are useful tools for describing structured high-dimensional prob-
ability distributions. Development of efficient algorithms for generating unbiased
and independent samples from graphical models remains an active research topic.
Sampling from graphical models that describe the statistics of discrete variables
is a particularly challenging problem, which is intractable in the presence of high
dimensions. In this work, we provide the first method that allows one to provably
generate unbiased and independent samples from general discrete factor models
with a quantum circuit. Our method is compatible with multi-body interactions and
its success probability does not depend on the number of variables. To this end,
we identify a novel embedding of the graphical model into unitary operators and
provide rigorous guarantees on the resulting quantum state. Moreover, we prove
a unitary Hammersley-Clifford theorem—showing that our quantum embedding
factorizes over the cliques of the underlying conditional independence structure.
Importantly, the quantum embedding allows for maximum likelihood learning
as well as maximum a posteriori state approximation via state-of-the-art hybrid
quantum-classical methods. Finally, the proposed quantum method can be imple-
mented on current quantum processors. Experiments with quantum simulation as
well as actual quantum hardware show that our method can carry out sampling and
parameter learning on quantum computers.

1 Introduction

Modelling the structure of direct interaction between distinct random variables is a fundamental
sub-task in various applications of artificial intelligence [36], including natural language processing
[21], computational biology [18], sensor networks [31], and computer vision [38]. Thus, discrete
graphical models build the foundation for various classes of machine techniques.

For structures with high-order interactions, probabilistic inference is particularly challenging in
graphical models defined over discrete variables, for which computation of the normalizing constant
(and thus the data likelihood) is in general computationally intractable. A common way to circumvent
the explicit normalization of the probability mass function is to compute the quantities of interest
based on samples which are drawn from the graphical model. The problem of generating samples
from graphical models traces back to the seminal work on the Metropolis-Hastings algorithm [24, 14]
and Gibbs-sampling [10], and as of today Markov chain Monte Carlo (MCMC) methods are still at the
center of attention when samples are be generated from high-dimensional graphical models. MCMC
methods are iterative—an initial guess is randomly modified repeatedly until the chain converges
to the desired distribution. The actual time until convergence (mixing) is model dependent, hard to
derive, and exponential in the number of variables [8]. A more recent, promising line of research
relies on random perturbations on the model parameters. These perturb-and-MAP (PAM) techniques
[15] compute the maximum a posterior (MAP) state of a graphical model whose potential function is
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perturbed by independent samples from a Gumbel distribution. The resulting perturbed MAP state can
be shown to be an unbiased independent sample from the underlying graphical model. Assigning the
correct Gumbel noise and solving the MAP problem are both exponential in the number of variables.
Efficient perturbations have been discovered [27], sacrificing the unbiasedness of samples while
delivering viable practical results. However, the exponential time complexity of MAP computation
renders the method intractable in the worst-case.

In this work, we propose a method for generating unbiased samples from graphical models on a
quantum processors. Instead of an interative construction of samples as in MCMC or a perturbation
as in PAM, our method generates samples from the probabilistic nature of a collapsing quantum state.
However, since there is no free lunch, the success probability of our method decreases exponentially
with the number of maximal cliques of the underlying conditional independence structure. As
opposed to MCMC or PAM samplers, our method is a Las-Vegas type randomized algorithm. That is,
it has an additional output that indicates if a generated samples was created successfully or if it has to
be discarded.

Indeed, quantum algorithms for learning and inference of specific probabilistic models have been
proposed, including quantum Bayesian networks [22], quantum Boltzmann machines [2, 19, 37, 42],
and Markov random fields [40, 4, 25]. However, many of these methods are either approximate
or require so-called fault-tolerant quantum computers—a concept that cannot yet be realized with
the state-of-the-art quantum hardware. Instead, we derive the first quantum circuit construction
that is exact and compatible with current quantum computing hardware. To prove the practical
viability of our approach, we provide experimental results on a quantum simulation as well as actual
quantum hardware, showing that our method can reliably carry out sampling and parameter learning
on quantum computers.

2 Problem formulation

In this section, we formalize the problem of generating samples from a graphical model with a
quantum circuit.

2.1 Parametrized family of models

We consider positive joint probability distributions over n discrete variables Xv with realizations
xv ∈ Xv for v ∈ {1, . . . , n}. The set of variable indices V is referred to as vertex set and its elements
v ∈ V as vertices. Without loss of generality, the positive probability mass function (pmf) of the
n-dimensional random vectorX can be expressed as

Pθ,φ(X = x) =
1

Z(θ)
exp

 d∑
j=1

θjφj(x)

 (1)

where φ = (φ1, . . . , φd) is a set of basis functions or sufficient statistics that specify a family of
distributions and θ ∈ Rd are parameters that specify a model within this family. When φ is clear
from the context, we simply write Pθ and drop the explicit dependence on φ. The quantity Z(θ)
denotes the model’s partition function and is required for normalization such that P becomes a proper
probabiliy mass function. When Φ covers the conditional independence structure ofX , (1) can be
rewritten as

Pθ(X = x) =
1

Z(θ)

∏
C∈C

exp

 ∑
y∈XC

θC,yφC,y(x)

 =
1

Z(θ)

∏
C∈C

ψC(xC) (2)

where C denotes the set of maximal cliques, i.e., a sub-set of V , for some arbitrary but fixed undirected
graphical structure G over V . The equality between (1) and (2) is known as Hammersley-Clifford
theorem [13]. Setting

φC,y(x) =
∏
v∈C

1(xv = yv) (3)

is sufficient for representing any arbitrary pmf with conditional independence structure G [32, 3, 35].
In this case, the graphical model is called Markov random field. Moreover, φ(x) = (φC,y(x) :
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C ∈ C,y ∈ XC) represents an overcomplete family, since there exists an entire affine subset of
parameter vectors θ, each associated with the same distribution. Non-overcomplete, e.g., minimal,
statistics facilitate uniqueness of models and are hence in favor when analyzing the learning process.
Overcomplete families appear frequently when designing and analyzing algorithms for probabilistic
inference [35].

2.2 Sampling and the quantum state preparation problem

Generating samples from (1) via plain inverse transform sampling is intractable as there are Ω(2n)
distinct probabilities involved. However, this exponentially large set has a native representation in
terms of quantum states.

In quantum computing, information is represented via a quantum state |r〉 living in a qubit register of
some fixed width w. While an ordinary (classical) w-bit register r stores a single bit string of length
w, the corresponding quantum state |r〉 stores a full joint probability distribution over all possible 2w

bit strings, referred to as basis states. Quantum processors do not grant access to the raw probabilities.
Instead, the qubit register can be measured to yield one specific bit string x ∈ {0, 1}w–corresponding
to one of the 2w basis states |x〉. Notably, each possible bit string is measured with the probability
that is stored in the quantum state. Transferring some initial qubit state |rin〉 to some desired output
state |rout〉 = C |rin〉 can be achieved, e.g., by application of a unitary quantum circuit C acting on
all w qubits. Any unitary operator U satisfies U†U = UU† = I and its eigenvalues have modulus 1.
Here, I denotes the identity and † denotes the conjugate transpose. Quantum states are always `2
normalized. This normalization is preserved by unitary operations. The probability for measuring a
specific bit string x as the output of the circuit is given by the Born rule:

PC(x) = | 〈x|rout〉 |2 = | 〈x|C |rin〉 |2, (4)

where 〈x| = (|x〉)†.
In practice, one often uses one or two-qubit unitaries. These operations can be composed via
matrix multiplication and Kronecker products to form higher-order qubit transformations. Borrowing
terminology from digital computing, unitary operators acting on qubits are also called quantum gates.
In the context of this work, we will be especially interested in the gates

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, I =

[
1 0
0 1

]
,

and H = 1√
2
(X + Z). The matrices X , Z, and I are so-called Pauli matrices and H represents the

Hadamard gate, with |+〉 := H |0〉 = 1√
2

(|0〉+ |1〉). Higher-order operators are derived by taking
the Kronecker product of the above, e.g., X ⊗ I⊗2. Finally, the action of any quantum circuit C can
be written as a product of unitaries: C = UdUd−1Ud−2 . . . U1, where d is the depth of the circuit.
It is important to understand that a gate-based quantum computer receives its circuit symbolically,
typically as a sequence of Kronecker and matrix products of low dimensional unitaries—the implied
2n × 2n matrix does not have to be materialized. A detailed introduction into this topic can be found
in [26].

Definition 2.1 (Graphical model quantum state preparation problem) Given any discrete
graphical model over n binary variables, defined via (θ, φ), find a quantum circuitC which maps an
initial quantum state |rin〉 to an output state |rout〉 such that

PC = Pθ (5)
as specified by (1) and (4).

In what follows, we explain how to find C that solves (5) for an appropriate |rin〉.

3 Main Results

We devise a quantum algorithm in which each vertex of a graphical model over binary variables is
mapped to one qubit of a quantum circuit. In addition, 1 + |C| auxiliary qubits are required to realize
specific operations as explained below. Our result consists of two parts. First, we present a derivation
of the Hamiltonian Hθ encoding the un-normalized, negative log-probabilities. Then, we employ Hθ
to construct a quantum circuit that allows us to draw unbiased and independent samples from the
respective graphical model.
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Algorithm 1: Computing Pauli-Markov sufficient statistics in linear time.
Require: C ⊆ V , y ∈ XC
Ensure: ΦC,y = Φ

1: Φ← 1
2: for v ∈ V do
3: if v 6∈ C then
4: Φ← Φ⊗ I
5: else if v ∈ C and yv = 1 then
6: Φ← Φ⊗ (I − Z)/2
7: else if v ∈ C and yv = 0 then
8: Φ← Φ⊗ (I + Z)/2
9: end if

10: end for
11: return Φ

3.1 The Hamiltonian

We start by transferring the sufficient statistics of the graphical model family into a novel matrix
form. This allows us to construct a Hamiltonian matrix that encodes the parameters θ as well as the
conditional independence structure G.

Definition 3.1 (Pauli-Markov Sufficient Statistics) Let φC,y : X → R for C ∈ C and y ∈ XC
denote the sufficient statistics of some overcomplete family of graphical models. The diagonal matrix
ΦC,y ∈ {0, 1}2

n×2n , defined via (ΦC,y)i,j = φC,y(xj) iff i = j (and 0 otherwise), denotes the
Pauli-Markov sufficient statistics. Where xj denotes the j-th full n-bit joint configuration w.r.t. some
arbitrary but fixed order.

A naive computation of the Pauli-Markov sufficient statistics for any fixed (C,y)-pair is intractable
due to the sheer dimension of ΦC,y. However, it turns out that the computation can be carried out
with a linear number of Kronecker product evaluations via Alg. 1. Thus, a symbolic representation of
ΦC,y can be computed in linear time.

Theorem 3.2 (Computing Sufficient Statistics) Let ΦvC,y be the intermediate result of Algorithm 1
after iteration v. Then, (ΦvC,y)j,j = φC∩[v],y(xj[v]).

The reader will find the proof of Theorem 3.2 in Section C of the Supplementary Material.

Obviously, the symbolic representation of the tensor product computed by Alg. 1 has length Θ(n).
Hence, the algorithm runs in linear time. Given the notion of Pauli-Markov statistics, the first part of
our main result is stated in the following theorem.

Theorem 3.3 (Hamiltonian) Assume an overcomplete binary graphical model specified by (θ, φ).
WhenHθ = −

∑
C∈C

∑
y∈XC

θC,yΦC,y , then Pθ(xj) = (expM (−Hθ)/Tr expM (−Hθ))j,j where
expM is the matrix exponential and Tr the trace.

The reader will find the proof of Theorem 3.3 in Section D of the Supplementary Material.

Thus, Hθ accumulates the conditional indepence structure G of the underlying random variable via
ΦC,y as well as the model parameters θ. Clearly, Hθ is not unitary, since it is real and hence its
eigenvalues cannot have modulus 1 when Hθ 6= I⊗n. Thus, an unitary embedding is required to
realize Hθ as part of a quantum circuit.

3.2 The Circuit

Using the Hamiltonian Hθ from the previous section, we now construct a circuit that implements
the non-unitary operation exp (−Hθ), based on unitary embeddings, a special pointwise polynomial
approximation, and the factorization over cliques. We use this quantum circuit to construct a quantum
state whose sampling distribution is proportional to that of any desired graphical model over binary
variables. Our findings are summarized in the following theorem.
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Figure 1: Exemplary quantum circuit Cθ as specified in Eq. 8 with UC =
∏
y∈XC

UC,y(θC,y). In
this example, the underlying graph has vertex set V = {v0, v1, v2} and clique set C = {A,B}. The
circuit requires |C|+1 = 3 auxiliary qubits, one for the unitary embedding Uj of the sufficient statistic
and one for the real part extraction of each clique. The auxiliary qubits a4 and a5 are measured before
the circuit has been fully evaluated. This allows for an early restart whenever real part extraction fails.

Theorem 3.4 (Quantum Circuit for Discrete Graphical Models) Given any overcomplete dis-
crete graphical model over n binary variables, defined via (θ, φ). There exists an O(d)-depth
quantum circuit Cθ over m = n + 1 + |C| qubits that prepares a quantum state whose sampling
distribution is equivalent to the graphical model such that Pθ(x) ∝ PC(x) for each x ∈ {0, 1}n

with PC(x) =
∑
z∈{ 0,1 } |(〈0|

⊗|C| ⊗ 〈z| ⊗ 〈x|)Cθ |+〉⊗m |2 .

The reader will find the proof of Theorem 3.4 in Section E of the Supplementary Material.

The construction is based on unitary embeddings UC,y(θC,y) of exp(θC,yΦC,y). An exemplary
circuit is shown in Fig. 1. The first n qubits of the circuit realize the target register |x〉, that represents
the n binary variables of the graphical model. The latter 1 + |C| qubits represent an auxiliary register
|a〉, which is required for the unitary embedding and the extraction of real parts as described in
Section C of the Supplementary Material. The Hadamard gates at the beginning are required to
bring all qubits into the state |+〉⊗m, as described in Sec. 2.2. This state realizes a uniform sampling
distribution over {0, 1}m in which any measurement result has the same probability. The unitaries
UC are then manipulating this state such that it becomes proportional to Pθ on the target register |x〉.
Note the proportionality (as opposed to equality) between Pθ and the output state of the circuit Cθ.
The measurements from the quantum circuit are taken from |a〉 ⊗ |x〉, i.e., from the joint distribution
over auxiliary and target qubits. Samples from the graphical model can, then, be extracted from the
quantum measurements by conditioning on the event that the last |C| qubits are all measured as 0.
In practice, one may discard all quantum measurements with non-zero auxiliary qubits to generate
unbiased samples from the underlying graphical model.

Notable, our circuit construction shares a defining property of undirected graphical models.

Corollary 3.5 (Unitary Hammersley-Clifford) Setting UC(θC) = (HC ⊗
I⊗(n+1))

∏
y∈XC

UC,y(θC,y) reveals the clique factorization Cθ =
∏
C∈C U

C(θC) as pre-
dicted by the Hammersley-Clifford theorem [13].

We like to stress that the clique factorization is of utmost importance for our derivation. Without
exploiting the factorization, computation of exp(−H) must be carried out directly. In that case, the
pointwise polynomial approximation of the exponential function that we utilize in the proof of Theo-
rem 3.4 would no longer suffice and we would have to resort to a uniform polynomial approximation
of exp over some interval—introducing a polynomial approximation error and increasing the depth
of the overall circuit proportional to the polynomial degree.

4 Inference

The four main inference tasks that can be done with graphical models are (i) sampling, (ii) MAP
inference, (iii) parameter learning, and (iv) estimating the partition function. The ability to gener-
ate samples from the graphical model follows directly from Theorem 3.4. Here, we provide the
foundations required to address inference tasks (ii)-(iv) based on our circuit construction.
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Figure 2: Left: Learning curve for QCGM over 30 ADAM iterations on the Qiskit QASM simulator
and an actual quantum processor. Right: The empirical success rate δ̃∗ of each training iteration.

4.1 MAP Estimation

Computing the MAP state of a discrete graphical model is required when the model serves as the
underlying engine of some supervised classification procedure. More precisely, the MAP problem
is x∗ = arg maxx∈X Pθ(x) = arg maxx∈X θ

>φ(x). Theorem 3.3 asserts that our Hamiltonian
Hθ carries −θ>φ(x) for all x ∈ X on its diagonal. Since Hθ is itself diagonal, −θ>φ(x∗) is the
smallest eigenvalue of Hθ . Computing the smallest eigenvalue and the corresponding eigenvector—
which corresponds to x∗ in the 2n-dimensional state space—is a well studied QMA-hard problem in
the quantum computing community. Heuristic algorithms like the variational quantum eigensolver
[30] can, thus, be directly applied to our Hamiltonian in order to approximate the MAP state.

4.2 Parameter Learning

Parameters of the graphical model can be learned consistently via the maximum likelihood principle.
Given some data set D that contains samples from some desired distribution P∗, we have to minimize
the convex objective `(θ) = −(1/|D|)

∑
x∈D logPθ(x) with respect to θ. Differentiation reveals

∇`(θ) = µ̂− µ̃ where µ̃ = (1/|D|)
∑
x∈D φ(x) and µ̂ =

∑
x∈X Pθ(x)φ(x). The latter quantity

can be estimated by drawing samples from the graphical model. Notably, our circuit does not require
a quantum-specififc training procedure, since the circuit Cθ is itself parametrized by the canonical
parameters θ of the corresponding family. This allows us to run any iterative numerical optimization
procedure on a digital computer and employ our circuit as sampling engine for estimating µ̂. After
each training iteration, we update the parameters of the circuit and are ready to generate the samples
for the next iteration. We have to remark that our circuit allows for an alternative way to estimate the
parameters. The circuit can be parametrized by a vector of rotation angles γ. Thus, we may learn γ
instead, utilizing a quantum gradient∇xγ where(

∇xγ
)
j

= ∂
∂γj

∑
i∈{ 0,1 }

|(〈0|⊗|C| ⊗ 〈i| ⊗ 〈x|)Cγ |+〉⊗m |2

[9, 41]. The corresponding canonical parameters can be recovered from γ via θj = 2 log cos(2γj).

4.3 Approximating the Partition Function

Estimating the partition function Z(θ) of a graphical model allows us to compute the probability
of any desired state directly via the exponential family form Pθ(x) = exp(θ>φ(x) − lnZ(θ)).
Computing Z(θ) is a well recognized problem, not least because of its sheer complexity—the
problem is #P-hard. It turns out that we can get τ(θ) = 2−n2 exp(lnZ(θ)) with probability at
least 3/4 and O(log 1/ε) extra auxiliary qubits by modifying our circuit construction to yield a
O(d(poly(n) + 1/(ε

√
τ(θ))))-depth circuit. The basic idea is to apply quantum trace estimation

as defined in [6, Theorem 7] to the matrix from Eq. 7 (Provided in Section E of the Supplementary
Material). Due to the high depth, the resource consumption of this procedure is prohibitive for current
quantum computers. Nevertheless, it opens up avenues for probabilistic inference on upcoming
fault-tolerant quantum hardware.

5 Limitations

The real part extraction, utilized in Theorem 3.4 might fail with some probability 1− δU that depends
on the specific unitary U . The practical impact of this fact is studied in the experiments. However,
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Table 1: Median fidelities (F ) over 10 runs, computed from N = 100000 samples from our method –
quantum circuits for graphical models (QCGM) – on the QASM simulator as well as an IBM Falcon
quantum processor. The same number of samples has been generated via Gibbs-sampling and PAM.
For QCGM, we also report the number of effective samples δ̃∗N , where δ̃∗ is the empirical success
probability.

QCGM F 1.000 1.000 0.998 0.874 1.000 0.999 0.999
Simulation δ̃∗N 1864 14924 5055 25 9961 9315 11485

QCGM F 0.998 0.903 0.790 0.596 0.875 0.588 0.742
Hardware δ̃∗N 17229 23614 9800 11889 35343 24298 52768

Gibbs F 1.000 0.999 0.994 0.987 0.994 0.950 0.982

PAM F 0.999 0.999 0.969 0.939 0.999 0.957 0.999

measuring the extra qubits tells us if the real part extraction succeeded. We may hence repeat the
procedure until we observe a success. The overall success probability of the circuit Cθ is denoted
as δ∗ =

∏
C∈C δC , where δC is the success probability for extracting the real part of clique C. This

quantity is a-priori unknown and depends on the specific graphical model. More specifically, it
decreases exponentially in the number of maximal cliques. The general class of quantum circuits
having this property is also called repeat-until-success circuit. In fact, computing the actual success
probability requires a full and hence exponentially expensive simulation of the quantum system.
As an alternative, we may simply run the circuit for a number of repetitions to obtain an empirical
estimate δ̃ to δ∗, as we do in the experimental evaluation.

Assuming that δ∗ (or its estimate δ̃) is not sufficiently large, amplification techniques [5, 12, 39, 11]
can help us to increase the success probability at the cost of additional auxiliary qubits or a higher
circuit depth. Specifically, applying singular value transformation [11] to the real part extraction can
raise δ∗ to 1− ε for any desired ε > 0 with additional depth Ω(log(1/ε)

√
δ) per clique.

Moreover, the number of required auxiliary qubits—one per clique—can be prohibitive for the
realization of large models with current quantum computers. It should hence be noted that the number
of auxiliary qubits may be reduced with intermediate measurements. Since the real part extractions
are applied in series, one may use a single auxiliary qubit for all real part extractions which is
measured and reset to |0〉 after every single extraction. Intermediate measurements are, however, still
technically challenging on current quantum devices and can, in fact, increase the system noise.

Due to limited coherence times and physical noise induced by cross-talk between qubits, increasing
the qubit number or the circuit depth makes it harder to run the algorithm with near-term quantum
hardware. We refer to Section A in the Supplementary Material for an explanation of terms that are
specific to quantum computing. Thus, we do neither apply intermediate measurements nor probability
amplification in order to ensure feasibility of our approach on actual quantum computing hardware.

The hardware related limitations of our method can be summarized as follows.

Theorem 5.1 (Resource Limitations) The circuit construction from Theorem 3.4 requires |C|+ 1

extra qubits. The expected runtime until a valid sample is generated is O(1/δ
|C|
min) with δmin =

minC∈C δC , and hence, exponential in the number of cliques.

Finally, our method assumes a discrete graphical model family with binary variables and overcom-
plete sufficient statistics. Nevertheless, any discrete family with vertex alphabets of size k can be
transformed into an equivalent family with O(n log2 k) binary variables. Clearly, increasing the
number of variables increases the number of required qubits, which complicates the execution of our
method on actual quantum processors.

Moreover, any model family with minimal statistic can be converted into one with overcomplete
statistics [35]. We hence treat this limitation as not crucial.

7



6 Experimental Evaluation

Here, we want to evaluate the practical behavior of our method, named QCGM, by answering a
set of questions which are discussed below. Theorem 3.4 provides the guarantee that the sampling
distribution of our QCGM is identical to Pθ of some given discrete graphical model. However,
actual quantum computers are not perfect and the computation is influenced by various sources
of quantum noise, each having an unknown distribution [26]. Hence, we investigate: (Q1) How
close is the sampling distribution of QCGM on actual state-of-the-art quantum computing devices
to a noise-free quantum simulation, Gibbs-sampling, and perturb-and-MAP? According to Sec. B,
measuring the auxiliary qubits of Cθ tells us if the real part extraction has failed or not. The actual
success probability is however unknown. The second question we address with our experiments is
hence: (Q2) What success probability should we expect and what parts of the model influence δ̃∗?
Third, as explained in Section 4.2, the parameter learning of QCGM can be done analogously to
the classical graphical model, based on a data set D and samples S from the circuit. As explained
above, samples from the actual quantum processor will be noisy. However, it is known since long that
error-prone gradient estimates can still lead to reasonable models as long as inference is carried out
via the same error-prone method [34]. Our last question is thus: (Q3) Can we estimate the parameters
of a discrete graphical model in the presence of quantum noise?

6.1 Experimental Setup

For question (Q1), we design the following experiment. First, we fix the conditional independence
structures shown in Tab. 1. For each structure, we generate 10 graphical models with random
parameter vectors drawn from U[−5, 0)d which allows for a rather large dynamic range of the random
model. QCGM is implemented using Qiskit [1] (available under Apache License 2.0) and realized by
applying the circuit Cθ to the state |+〉. The probabilities for sampling x are evaluated by taking N
samples from the prepared quantum state and computing the relative frequencies of the respective
x.The quantum simulation is carried out by the Qiskit QASM simulator which is noise-free. Any
error that occurs in the simulation runs is thus solely due to sampling noise, i.e., due to the fact that
we draw a finite number of samples. The experiments on actual quantum computers are carried out
on five devices, each being a 27-qubit IBM Falcon superconducting quantum processor [16], and
employ tensored error mitigation [7]. Gibbs-sampling is performed with a fixed burn-in of b = 100
samples. Moreover, each variable is re-sampled n times and we discard b samples between each two
accepted Gibbs-samples to enforce independence. However, these choices are heuristics and prone to
error. Lastly, we apply perturb-and-MAP sampling [29, 15] with sum-of-gamma (SoG) perturbations
[27]. The SoG approach is superior to other inexact PAM approaches. However, since different clique
factors will be perturbed with non-independent noise terms, each PAM sample comes from a biased
distribution. N = 100000 samples are drawn from each sampler, including the number of samples
discarded by QCGM and Gibbs-sampling. The quality of each sampling procedure is assessed by the
fidelity, defined for two probability mass functions P and Q via F (P,Q) = (

∑
x∈X

√
P(x)Q(x))2.

F is a common measure to assess the reliability of hardware qubits and quantum gates. Moreover,
whenH(P,Q) is the Hellinger distance, thenH(P,Q)2 = 1−

√
F (P,Q).

For question (Q2), we consider the very same setup as above, but instead of F , we compute the
empirical success rate of the QCGM as δ̃∗ = number of succeeded samplings/N . This is computed
for each of the 10 runs on each quantum computer and the quantum simulator. Finally, for question
(Q3), we draw N samples from a graphical model with edge set {(0, 1), (1, 2)} via Gibbs-sampling.
These samples are then used to train the parameters θ of a QCGM via ADAM [20] to compensate
for the noisy gradient information. For each of the 30 training iterations, we report the estimated
negative, average log-likelihood and the empirical success rate. Training is initialized at θ = 0.

6.2 Experimental Results

The results of our experimental evaluation are shown in Tab. 1 and Fig. 2. Numbers reported are
median values over all runs. Regarding question (Q1), we see that the fidelity of the simulation
attains the maximal possible value—as predict by Theorem 3.4—whenever enough samples could
be gathered from the model. The limited number of effective samples δ̃∗N is due to the fact that
we kept the number of sample trials N constant over all experiments. Increasing N for increased
model complexity would mitigate this effect. Moreover, the fidelity on actual quantum hardware
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degrades as the model becomes more complex. It is important to understand that this is an artifact of
the noise in current state-of-the-art quantum processors that will be reduced with improved quantum
processor technology. When one considers the best result on each structure (and not the median),
QCGM frequently attains fidelities of > 0.9 also on quantum hardware. Finally, we see with quantum
simulation that QCGM has the potential to outperform classical sampling methods with respect to
the fidelity when enough samples are available. This can be explained by the fact that QCGM is
guaranteed to return unbiased and independent samples from the underlying model. Gibbs-sampling
can only achieve this if the hyper-parameters are selected carefully, or, in case of PAM, when an exact
perturbation and an exact MAP solver are considered. For question (Q2), we see from Tab. 1 that the
success probability degrades when the number of maximal cliques increases. The sheer number of
variables or model parameters does not have any impact, since perfect samples can be generated by
the QCGM even for high-order models where the maximal clique size is ≥ 3. Although the fidelities
are better for the simulation, higher δ∗ are observed with quantum hardware. We conjecture that this
is due to hardware noise induced false sample acceptance. Interestingly, the second plot of Fig. 2
reveals that δ∗ also degrades as a function of the model’s entropy. Since we initialize the training with
all elements of θ being 0, we start at maximum entropy. Parameters are refined during the learning
and the entropy is reduced. However, the first plot of the figure shows that the training progresses for
both, simulated and hardware results. The answer to (Q3) is hence affirmative.

7 Conclusion

We introduce an exact representation of discrete graphical models with a quantum circuit construction
that acts on n+1+ |C| qubits and is compatible with current quantum hardware. This method enables
unbiased, hyper-parameter free sampling while keeping the theoretical properties of the undirected
model intact, e.g., our quantum circuit factorizes over the set of maximal cliques as predicted by
the Hammersley-Clifford theorem. Although, our results are stated for binary models, equivalent
results for arbitrary discrete state spaces can be derived, where multiple qubits encode one logical
non-binary random variable. The full compatibility between the classical graphical model and our
unitary embedding is significant, since it allows us to benefit from existing theory as well as quantum
sampling. A distinctive property of QCGM is that the algorithm itself indicates whether a sample
should be discarded. Unlike related approaches, our method is based on a structured quantum circuit
construction and is, thus, conjectured to be more robust against exponentially vanishing gradients
than many QML approaches [23]. The experiments conducted with numerical simulations and actual
quantum hardware show that QCGMs perform well for certain conditional independence structures
but suffer from small success probabilities for structures with large |C|. In particular, in the latter
case QCGM could significantly benefit from amplitude amplification techniques to boost the success
probability. It remains open for future research to potentially remove the dependence of δ∗ on the
number of maximal cliques and to study the relationship of limiting factors between classical and
quantum sampling methods. In any case, our results open up new avenues for probabilistic machine
learning on quantum computers by show-casing that the natural stochasticity of quantum models can
be beneficial for a large model class.
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A State-of-the-Art in Quantum Computing

In recent years, the first generations of quantum computers became broadly available. The systems
that are available today are so-called noisy quantum computers [17] which are still strongly impaired
by physical limitations. More explicitly, there are various sources of physical noise which impact a
quantum circuit.

One problem is decoherence. After a certain time – which is currently still relatively short – a qubit
state cannot be maintained due to interaction with the environment. Hence, the information encoded
in the qubit gets lost. Furthermore, various qubits in one quantum processor can influence each other
in an undesired fashion. This is termed cross-talk. The application of quantum operations (gates) and
the readout of measurements are also impacted by physical disturbances and, thus, introduce noise in
a quantum circuit. If a circuit is, thus, to be executed on today’s quantum hardware, the number of
qubits and the number of consecutive quantum gates have to be limited. Otherwise, the impact of
physical noise can be too strong to receive meaningful circuit results. In order to cope with those
noise sources, researchers are investigating error mitigation [7] and error correction [28] methods.
While the broad realization of error correction is still an open task for future research, error mitigation
is already helpful in improving results from existing quantum hardware with smart mathematical
tools.

Due to the given limitations in the depth (number of operations) and the width (number of qubits) of
a quantum circuit, many quantum algorithms that are tested and run on existing quantum hardware
are variational quantum algorithms. These algorithms are based on short-depth, parameterized
(variational) quantum circuits, where the parameters are trained with classical optimization tools to
get a certain type of quantum state measurement. The choice of a suitable Ansatz circuit is crucial to
achieve good results. However, it is typically a-priori unknown what choice would be suitable. This
issue can lead to limitations. We would like to point out that the quantum circuit, suggested in this
work, does not rely on a variational Ansatz. Instead, we provide a constructive derivation for a circuit
that generates the desired statistics.

B Extracting Real Parts

The real part of any complex z ∈ C can be written as (z+z̄)/2 where z̄ denotes the complex conjugate
of z. Similarly, (U + U†)/2 extracts <U such that it may act on the n-qubit state |ψ〉. To see how
this can be implemented on a gate-based quantum computer, as e.g., in [33], consider the unitary
R = |0〉 〈0|⊗U + |1〉 〈1|⊗U†. To construct R, we introduce an additional, so called, auxiliary qubit.
When we initialize this extra qubit |a〉with |0〉, the joint state of the system is |0〉⊗|ψ〉. Now, bringing
the extra qubit in the superposition state |+〉 and running the circuit, we get the state R (H |0〉⊗ |ψ〉).
Notably, the |0〉 (|1〉) component of |a〉 controls the application of U (U†) onto |ψ〉, weighted equally
by 1/

√
2. Finally, another H-gate is applied to |a〉 and the auxiliary qubit is measured. The action of

the real part extraction is derived as follows: (H ⊗ I⊗n) R (H ⊗ I⊗n) (|0〉 ⊗ |ψ〉) =

1/2

(
U + U† U − U†
U − U† U + U†

)(
|ψ〉
0

)
= 1/2

(
(U + U†) |ψ〉
(U − U†) |ψ〉

)
.

Clearly, when we measure |a〉 = |0〉, then the output of the circuit is successful, i.e., |ψ〉+ =
1/2(U + U†) |ψ〉 = (<U) |ψ〉. On the other hand, when we measure |a〉 = |1〉, then the output of the
circuit is |ψ〉− = 1/2(U − U†) |ψ〉 = (=U) |ψ〉, and thus, is incorrect. The implication are discussed
in Section 5

C Proof of Theorem 3.2

Without loss of generality, let V = [n] and 0 ≤ j < 2n. When v = 1—after the first iteration—we
have to distinguish the cases v ∈ C and v 6∈ C. When v 6∈ C, Φ1

C,y = I , which satisfies the statement
of the theorem due to the empty product in the definition of the sufficient statistic being 1 and
thus (Φ1

C,y)j,j = 1 =
∏
w∈C∩[v] 1{xC∩[v]=y}. If instead v ∈ C, we have Φ1

C,y = (I + Z)/2 and
Φ1
C,y = (I − Z)/2 for y1 = 0 and y1 = 1, respectively. Since X[1] = {0, 1}, the statement holds.

Now, consider the induction step v → v + 1. For Φv+1
C,y = ΦvC,y ⊗ A, we have to distinguish three
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cases, namely:

A =


I , if v + 1 6∈ C
(I − Z)/2 , if v + 1 ∈ C ∧ yv+1 = 1

(I + Z)/2 , if v + 1 ∈ C ∧ yv+1 = 0.

If A = I , then v + 1 is not contained in C and adding that variable does not alter the value of the
sufficient statistic. Specifically, φC∩[v],y(xj[v]) = φC∩[v+1],y(xk[v+1]) for k ∈ {2j, 2j + 1} and all
0 ≤ j < 2v . Thus, ΦnC,y ⊗ I satisfies the statement of the theorem. Now, consider the case where the
newly added variable v+1 is contained inC. When φC∩[v],y(xj[v]) = 0, taking the Kronecker product
with A implies φC∩[v+1],y(xk[v+1]) = 0 for k ∈ {2j, 2j + 1} and all 0 ≤ j < 2v. Finally, when

φC∩[v],y(xj[v]) = 1, we either have φC∩[v+1],y(x2j
[v+1]) = 1 or φC∩[v+1],y(x2j+1

[v+1]) = 1, depending

on whether yv+1 is 0 or 1. Noticing that φC∩[v],y(xj[v])A realizes the appropriate situation completes
the proof. �

D Proof of Theorem 3.3

For the graphical model, we have Pθ(X = x) = exp(θ>φ(x) − A(θ)), where θ>φ(x) =∑
C∈C

∑
y∈XC

θC,yφC(x). According to Def. 3.1, the i-th diagonal entry of each ΦC,y coin-
cides with φC,y(xi) and hence (Hθ)i,i = −θ>φ(xi). Since Hθ is diagonal and real-valued,
(expM (−Hθ))i,i = exp(θ>φ(xi)). Observing that log Tr exp(−Hθ) = A(θ) completes the proof.
�

E Proof of Theorem 3.4

Graphical models with overcomplete statistics are shift invariant. To see this, let 1 be the d-
dimensional vector of ones and c ∈ R an arbitrary constant. Now, notice that

Pθ+1c(x) =
exp((θ + 1c)>φ(x))∑
x′ exp((θ + 1c)

>
φ(x′))

=
exp(θ>φ(x) + c|C|)∑
x′ exp(θ>φ(x′) + c|C|)

= Pθ(x) .

Equality holds, since the vector φ(x) is binary with exactly |C| ones (c.f., (3)).

Due to shift invariance, we may subtract any fixed constant from all θj without altering the probability
mass that corresponds to the graphical model. Hence, it is safe to assume θ ∈ Rd− throughout
this proof without loss of generality. For ease of notation, let us enumerate all (C,y)-pairs from
1 to d. In this notation, we have Hθ = −

∑d
j=1 θjΦj . Define the unitary embedding Uj =

X ⊗ (I⊗n − Φj) + Z ⊗ Φj where X , Z, and I are the respective Pauli operators. Set

P y(x) = exp(0) + (exp(y)− exp(0))x2 = c0 + c2x
2. (6)

P y is a degree-2 polynomial with P y(0) = exp(0) and P y(1) = exp(y). Moreover, let U j(γj) =

((exp(iγjZ)⊗ I⊗n)Uj)
2. We have

U j(γj) =
(
(exp(iγjZ)⊗ I⊗n)Uj

)2
=((exp(iγjZ)⊗ I⊗n)(X ⊗ (I⊗n − Φj))+

(exp(iγjZ)⊗ I⊗n)(Z ⊗ Φj))
2

=(exp(iγjZ)X)2 ⊗ (I⊗n − Φj)
2+

(exp(iγjZ)Z)2 ⊗ Φ2
j+

[(exp(iγjZ)X)⊗ (I⊗n − Φj)
2,

(exp(iγjZ)Z)⊗ Φj ]+ ,

13



where the commutation relations of Pauli operators and the idempotence of Φj are used. By virtue of
trigonometric identities and identities between Pauli matrices, we derive

U j(γj) =(exp(iγjZ)X)2 ⊗ (I⊗n − Φj)+

(exp(iγjZ)Z)2 ⊗ Φ2
j

=(cos(γj)X + i sin(γj)ZX)2 ⊗ (I⊗n − Φj)+

exp(i2γjZ)⊗ Φ2
j

(I⊗n − Φj) + exp(i2γjZ)⊗ Φ2
j

=I ⊗ (I⊗n − Φj) + exp(i2γjZ)⊗ Φ2
j

=I⊗(n+1) + (exp(i2γjZ)− I)⊗ Φ2
j .

Extracting the real part of U j(γj), as explained in Appendix B, leads to

<U j(γj) =I⊗n+1 + (< exp(i2γjZ)− I)⊗ Φ2
j

=I⊗n+1 +
(
cos(2γj)− 1

)
I ⊗ Φ2

j .

Note that the involved matrices are diagonal and hence, the result is diagonal too. Inspecting the
upper left 2n × 2n block matrix reveals that each diagonal entry has the form 1 + (cos(2γj)− 1)x2,
where x2 is an diagonal entry of Φj . Equating this expression with the polynomial P y and solving
for γj yields γj = (1/2) arccos(exp(θj)) for θj ∈ R−. We thus finally have <U j(γ(y)) =
P y(Uj) = I ⊗ exp(θjΦj). The key insights to establish the second equality above are that Φj is
binary and idempotent, and that P y(x) from Eq. (6) is constructed such that it coincides with exp
on {0, y} for x ∈ {0, 1}. Note that the circuit parameters γ are computed directly from θ. One
may think about γ as a re-parametrization of the graphical model in the function space defined by
Ud(γ(θ̄d))U

d−1(γ(θ̄d−1)) . . . U1(γ(θ̄1)). In what follows, we set θ̄ = 1/2 θ, because quantum
states are defined by values proportional to the square root of the actual sampling probabilities. All
Φj are diagonal, which allows us to write

d∏
j=1

<U j(γ(θ̄j)) =

(√
exp(−Hθ) 0

0
√

exp(−Hθ)

)
. (7)

Real part extraction is in general not distributive over complex matrix products. However, expanding
j ≡ (C,y), investigating

∏d
j=1<U j(γ(θ̄j)) =

∏
C∈C

∏
y∈XC

<UC,y(γ(θ̄C,y)), and recalling
Def. 3.1 reveals that the indices of diagonal entries 6= 1 of UC,y(γ(θ̄C,y)) are distinct for all y ∈ XC .
We may hence aggregate the real part extraction for the operators UC,y(γ(θ̄C,y)) for all y ∈ XC
without introducing any error, e.g.,

<
(
z1 0

0 1

)
<
(

1 0

0 z2

)
= <

(
z1 0

0 z2

)
,

for z1, z2 ∈ C. This step is significant, since each real part extraction requires an additional auxiliary
qubit and decreases the success probability, as described in Sec. B. Invoking the real part extraction,
we arrive at the final expression for the circuit

Cθ =
∏
C∈C

HC ⊗ I⊗(n+1)
∏
y∈XC

(
|0〉 〈0|y ⊗ UC,y(γ(θ̄C,y)) + |1〉 〈1|y ⊗ UC,y†(γ(θ̄C,y))

)
,

(8)

with |z〉 〈z|y for z ∈ {0, 1} acting on the yth auxiliary qubit and HC = I ⊗ · · · ⊗ H ⊗ · · · ⊗ I ,
where HC consists of |C| terms and the H-gate is applied to the qubits that corresponds to clique C.
Samples from the discrete graphical model are drawn by measuring the joint state of auxiliary and
target qubitsCθ |+〉⊗m and discarding those samples where any of the first |C| qubits is measured as
|1〉. The statement of the theorem follows from applying the Born rule with respect to the prepared
quantum state Cθ |+〉⊗m. �

W.l.o.g., we suppress the explicit dependence on γ and θ̄ in the main part of the manuscript and write
UC,y(θC,y) := UC,y(γ(1/2θC,y)) to simplify the notation.

14


	1 Introduction
	2 Problem formulation
	2.1 Parametrized family of models
	2.2 Sampling and the quantum state preparation problem

	3 Main Results
	3.1 The Hamiltonian
	3.2 The Circuit

	4 Inference
	4.1 MAP Estimation
	4.2 Parameter Learning
	4.3 Approximating the Partition Function

	5 Limitations
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusion
	A State-of-the-Art in Quantum Computing
	B Extracting Real Parts
	C Proof of Theorem 3.2
	D Proof of Theorem 3.3
	E Proof of Theorem 3.4

