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While engineered quantum systems are a general route to the manipulation of multipartite quan-
tum states, access in a physical system to a continuous quantum phase transition under sufficient
control offers the possibility of an intrinsic source of entangled states. To this end we realize the
quantum version of the linear-zigzag structural transition for arrays of up to five ground state-
cooled ions held in a linear Paul trap and we demonstrate several of the control requirements
towards entangled-state interferometry near the critical point. Using in-situ spectroscopy we probe
the energy level structure and occupation of the soft mode associated with the structural transition,
and show a stable critical point and majority ground state occupation crossing the transition. We
resolve biases arising from trap electrode asymmetries that change the nature of the transition, show
that they can be suppressed by varying the ion number, and demonstrate control of the transition
bias using optical dipole forces.

By virtue of their Coulomb interactions, laser-cooled
trapped arrays of ions intrinsically present a strongly in-
teracting condensed matter system that forms a variety of
Wigner ion-crystal configurations [1–5] and at the same
time is dilute enough to be optically manipulated down
to single atom resolution. The ion-crystal configurations
are separated by a hierarchy of structural phase transi-
tions driven by either the confinement geometry or ion
density [3, 4, 6–9]. In a linear radio-frequency Paul trap
the first such transition is the 1D linear to 2D zigzag tran-
sition [6, 7], which for small arrays of ions is the meso-
scopic analog of a continuous phase transition [10, 11].
Prior experiments with the linear-zigzag (LZ) transition
have focused on its classical behaviour including both
equilibrium properties [6, 9, 12] and dynamics [13–17].
Here, using ground-state cooling we investigate the tran-
sition in the quantum regime, and we assess the feasibil-
ity of the system for double-well interferometry [18] and
the sensing of ambient electric field noise in the ion-trap
environment. As an important step towards interferom-
etry, we investigate the near-adiabatic crossing of the LZ
transition in the ground state, which in the ideal scenario
prepares a Schrodinger cat superposition of the symme-
try broken zigzag structures.

The predominant paradigm underlying quantum con-
trol of trapped arrays of ions, including in quantum com-
puting and quantum simulations, uses the set of vibra-
tional normal modes of the ion crystal in the linearized
small oscillation limit [19]. Near the LZ critical point
this work explores the opposite limit where the nonlin-
earity in the interactions dominates the effective poten-
tial of the relevant zigzag vibrational mode. As a fur-
ther contrast, dynamical Schrodinger cat states involving
entangled states of spin and coherent motion [20] and
generalized Greenberger–Horne–Zeilinger (GHZ) states
of spin [21, 22] have both been previously prepared in
ion traps. Here, the limit of quantum state preparation

in an ion trap can be explored down to dc excitation fre-
quencies due to the softening of the zigzag mode at the
LZ transition, and coherent state manipulation on the
zigzag side of the transition would provide a testbed to
probe sources of static and fluctuating bias affecting the
double-well zigzag potential [18]. Unlike prior quantum
dynamics studies near the critical point for a three-ion
rotor mode [23], the LZ transition is a system that is
readily extensible to a varied and larger number of ions,
and in-situ measurement of near ground-state energies is
shown here to be feasible close to the critical point.

Our experiments are simultaneously motivated by the
fact that the LZ transition at ultracold temperatures is
marked by a sharp spectral signature in the zigzag mode
with strong dependence on the trap potential param-
eters. This allows for sensitive in-situ and broadband
electric field noise measurement, which is of direct conse-
quence to the performance of trapped ion quantum com-
puters [19, 24], and offers advantages over the standard
sensing technique based on the center-of-mass mode of
a single trapped ion [25, 26]. First, the measurement of
slow drifts in the strength of the ion-trap potential can
be achieved with more than an order-of-magnitude im-
provement in single-shot sensitivity without the need for
high-order motional Fock-state superpositions [27]. Sec-
ond, as a resonant absorptive sensor the zigzag mode near
the LZ transition offers wide frequency tunability from
dc to 1 MHz for only minimal adjustment of the trap
voltages (∼1 V), which is advantageous in the character-
ization of the spectral dependence of noise to identify its
sources [26].

Assuming that one transverse axis of the ion trap is
tightly confining, we can describe the 2D dimensionless
potential for N ions in a linear radio-frequency (rf) Paul
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FIG. 1. Linear-zigzag transition. (a) Schematic realiza-
tion of the 1D linear to 2D zigzag structural transition for
a four-ion crystal confined in a linear rf Paul trap, consist-
ing of four rod electrodes and two endcap needles as shown.
Color inset shows an end view of the trap superposed with
the transverse quadrupole electric field generated from rod
voltages ±Vq and used to weaken the transverse confinement
along the y-axis to induce the transition. (b) Classical energy-
minimum values of the zigzag order parameter, proportional
to the transverse zigzag displacement from the z-axis and
scaled to the axial Coulomb length scale az, as a function of
control parameter νy−νyc. νy is the transverse-y secular trap
frequency; νyc = 740 kHz and az = 5.4µm for the four-ion
simulation shown. (c) Simulated quantum energy-level spec-
trum for the first two excited states of the transverse-y zigzag
mode of a four-ion crystal, measured relative to the ground
state. A small linear bias C1 = 10−14 is assumed. Color shad-
ing of the levels indicates the strength of Raman sideband
coupling to the ground state for a central ion (see sidebar
scale). Also shown is the classical small-oscillation predic-
tion and the form of the zigzag potential on either side of
the transition. (d) Experimental Raman sideband spectrum
of all transverse vibrational modes for a four-ion crystal. A
Raman probe of the center-of-mass mode provides in-situ as-
sessment of the control parameter, while a probe of the zigzag
mode provides access to order-parameter properties including
energy-level spectrum, level occupancy and coherence.

trap as

V (y, z) =

N
∑

i=1

1

2

(

αy2i + z2i
)

+

n
∑

i<j

1

|~ri − ~rj |
+ Vpert(y, z)

(1)
which includes the harmonic rf pseudopotential,
Coulomb interactions and perturbative imperfections
Vpert in the trap potential. The aspect ratio of the har-
monic trap is characterized by the quantity α = (ωy/ωz)

2

in terms of the secular trap frequencies νi = ωi/2π.

The dimensionless potential is expressed in terms of the

Coulomb length az =
(

q2

4πǫ0mω2
z

)1/3

, which sets the ax-

ial ion spacing, and the corresponding Coulomb energy
q2

4πǫ0az
. The perturbation potential captures the effect

of deformations of the electrode geometry away from an
ideal linear trap, with select terms in a polynomial expan-
sion leading to symmetry breaking of the LZ transition.
The LZ transition for an ion crystal with fixed num-

ber of ions is controlled by the trap aspect ratio α. This
can be modified by applying a dc quadrupole potential
in the transverse trapping plane to weaken the trans-
verse confinement along one of the principal axes, here
assumed to be the y-axis (Fig. 1a). For strong trans-
verse confinement the ions form a linear string along the
axial z-direction of the linear trap. At a critical point
αc which depends on the number of ions [12], the ions
undergo a structural phase transition to a 2D zigzag
configuration (Fig. 1a). The dynamics of the linear ion
string restricted to 2D can be described in terms of its
2N collective vibrational modes. The transverse-y zigzag
mode represents a “soft mode” [28] that classically goes
to zero frequency at the LZ critical point according to
νzz = νz

√
α− αc [11]. This creates a dynamical insta-

bility that drives the transition [12], and below the crit-
ical point the crystal’s equilibrium structure takes on a
frozen-in version of the zigzag mode [11, 28]. Near the
transition the zigzag mode dominates the ion crystal dy-
namics for slow quenches. A coupled-mode analysis and
adiabatic elimination of the other modes leads to an ef-
fective field theory for the zigzag mode [18, 29] (see Meth-
ods). The associated dimensionless potential as a func-
tion of the zigzag order parameter ϕ (the normal mode
coordinate) up to fourth order is

U(ϕ) = C1ϕ+
1

2
C2ϕ

2 +
1

3
C3ϕ

3 +
1

4
C4ϕ

4 (2)

where the quadratic term is C2 = α − αc, and other co-
efficients are constant. This derivation ignores spatial
variation of the order parameter and propagation effects
along the ion string [30, 31], which are not relevant for
the small ion strings and slow quenches considered here.
Asymmetries in the non-ideal trap from Vpert give rise to
the linear and cubic bias terms. If C1 and C3 are zero, the
mesoscopic equivalent of a second-order phase transition
is realized for small numbers of ions. The mean order
parameter 〈ϕ〉, obtained from minimization of U , is zero
on the linear side and continuously acquires a non-zero
value on the zigzag side of critical point (Fig. 1b). On
the zigzag side of the transition there are two symmetry-
broken, and in the ideal case energy-degenerate, states
corresponding to the minima of the quartic double-well
potential that forms across the transition. We define the
two equilibrium configurations as “left” (L) and “right”
(R). In the zero temperature limit, it is relevant to con-
sider the quantum energy levels for the effective potential
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across the transition, as shown in Fig. 1d for the example
of four ions. Near the critical point the frequency split-
ting between the ground state, |0〉, and first excited state,
|1〉 deviates from the equivalent classical small oscillation
frequency. The level splitting remains finite at the crit-
ical point before approaching zero in the zigzag phase
as tunnel coupling between the two sides of the double
well, associated with the states |L〉 ≡ (|0〉 − |1〉) /

√
2 and

|R〉 ≡ (|0〉+ |1〉) /
√
2, is suppressed by the intervening

barrier. At the point of optimum tunneling the two low-
est levels are just captured below the double-well barrier.
For νy = 0.75 MHz a tunnel splitting of 3 kHz is expected
at this point, and the order parameter’s magnitude is
|〈ϕ〉| = 0.03− 0.02 or 100–50 nm for 3–5 ions.
Small nonlinearities in the trap potential from the

electrode configuration or from other ambient sources
will introduce biases changing the nature of the phase
transition. A small cubic term will change the tran-
sition from second to weak first order [32]. A linear
bias will act to smooth away the discontinuity in the
transition. From the perspective of double-well inter-
ferometry and entangled state preparation, we seek to
realize a sufficiently symmetric double well such that
quantum tunneling is not suppressed near the critical
point. To estimate the relevant level of bias, we con-
sider the optimum tunneling point for 3–5 ions where
a bias in the ground-state wavefunction limited to the
range 0.5 < |〈R|0〉|2 < 0.75 requires a potential bias of
|C1| . 5 × 10−7 or |C3| . 5 × 10−3. At the same time,
stability of the potential is required together with suffi-
ciently low noise to retain coherence.

RESULTS

Experimental system. Our investigations of the LZ
transition use 171Yb+ ions held in a stabilized lin-
ear radio-frequency (rf) Paul trap [14, 33] (Fig. 1a),
which has typical secular frequencies {νx0, νy0, νz0} of
{864, 844, 303} kHz for five ions starting on the linear side
of the transition (See Methods for further experimental
details). Near-ground-state cooling of the linear-string
configuration is achieved through 3D Sisyphus cooling of
all 3N vibrational modes to the few-phonon level [14]
followed by simultaneous resolved sideband cooling of
the transverse-y and axial modes except the center-of-
mass (COM) ones. We estimate a ground-state occu-
pation & 0.9 for the sideband cooled modes including
the transverse-y zigzag mode of interest [33, 34]. Fol-
lowing the cooling process, the approach to and crossing
of the LZ transition is controlled by a ramp of a trans-
verse dc quadrupole potential applied through the trap
rods (Fig. 1b) [14, 33] with minimal effect on the ax-
ial confinement (|∆ωz|/ωz < 0.03%). The secular fre-
quency along the y-axis weakens while the orthogonal
x-axis simultaneously strengthens such that the LZ tran-

sition is effectively confined to the 2D y− z plane. While
the ramp implementation is expected to be adiabatic for
endpoints near the critical point, we do not optimize the
ramp for endpoints deeper in the zigzag phase. At a
given final ramp value of the dc quadrupole voltage, the
vibrational modes of the ion crystal are probed by driv-
ing stimulated two-photon Raman sideband transitions
between the internal hyperfine states 2S1/2|0, 0〉 ≡ |↓〉
and 2S1/2|1, 0〉 ≡ |↑〉 of the ions, separated by ν0 ≈ 12.6
GHz [33, 34]. Subsequent readout of the transition is
obtained by state-selective fluorescence of the internal
state of the ions [35]. For individual laser addressing
of the ith ion, the Raman coupling drives the transi-
tion | ↓〉

⊗
N |nk〉 → | ↓ ... ↑i ... ↓〉|n′

k〉 at resonance
ν0 + (nk − n′

k)νk, involving the vibrational states |nk〉
and |n′

k〉 of the kth mode of the ion crystal. In practice
we use a technically simpler global illumination of the
ions, which gives rise to a simultaneous Raman coupling
of all the ions to the mode of interest (see Methods). We
measure both the carrier (n′

k = nk) and upper sideband
resonances (for example the first sideband n′

k = nk + 1)
and extract the mode frequency from the difference. The
first sidebands of the COM modes are used to measure
the secular frequencies of the trap – the control parameter
for the transition – while the sidebands for the transverse
zigzag mode give access to the spectral properties of the
order-parameter dynamics.

Transition spectroscopy. We first consider the prop-
erties of the LZ transition in the vicinity of the critical
point for a crystal of five ions. For this study both the
first and second upper sidebands of the zigzag mode are
measured as a function of secular frequency νy. A new
feature from the typical behaviour for linear ion strings
is the significant anharmonicity of the zigzag mode near
the critical point due to the nonlinearities in the effective
potential. This gives rise to non-uniform energy level
spacings and asymmetric lineshapes. We avoid signifi-
cant induced distortion of the lineshapes by limiting the
drive strength of the Raman transition. Nevertheless,
if the zigzag mode is in an initial distribution of Fock
states, for example a thermal distribution, this will lead
to an asymmetric lineshape. In cases of significant asym-
metry, we fit the sideband resonances with an exponen-
tially modified Gaussian to extract a resonance, width
and lineshape asymmetry factor (see Methods). Assum-
ing an initial motional distribution with a large ground
state occupation, we can associate the first sideband res-
onance with the 0− 1 energy level spacing and the sec-
ond sideband with the 0− 2 energy level spacing in the
potential for the zigzag mode.

Figure 2a shows both first and second sideband res-
onances of the zigzag mode in a 4–kHz range around
the critical point at νyc = 759.94(2) kHz. The data in-
cluding the region close to the transition is fit to the
quantum energy level theory for a biased quartic poten-
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FIG. 2. Raman sideband spectroscopy of the zigzag mode across the linear-zigzag transition for five ions. (a)
Frequency of the first and second upper Raman sidebands for the transverse-y zigzag mode as a function of the secular trap
frequency νy relative to the critical value νyc ≈ 760 kHz. The 303-kHz axial secular frequency is nearly constant (0.03%
variation). Insets show the full range of data acquisition and a close-in view near the critical point. Solid lines are quantum
energy-level differences of the n = 1 and n = 2 number states with respect to the n = 0 ground state for a quartic potential
(Eqn. 2 ) with linear bias of |C1| = 3.3×10−7. Line shading corresponds to Raman coupling strength (see side-bar scale). Green
dotted line shows the corresponding classical small-oscillation prediction. (b) Raman lineshape asymmetry for the second upper
sideband. Inset shows the full range of data acquisition. Blue lines indicate the expected scaling of the asymmetry due to the
anharmonicity of the quartic potential. The width of the line on the zigzag side shows a factor-of-two range in scaling prefactor.
Vertical gray shaded region indicates where sideband peaks are (partially) resolved as shown in d–g. (c) Sample images of the
two symmetry-broken equilibrium structures of the five-ion crystal far from the critical point. (d–g) Sample Raman sideband
lineshapes near the critical point and fits (solid red lines) to extract C1 and Fock-state population distribution P (n) of the
zigzag mode. Motional distributions from the fits are shown in adjacent panels along with the expected shape of the zigzag
potential. In (e) line centers for sidebands from different initial n–levels are indicated. (h) Summary of measured P (n) across
the transition for n ≤ 2. Lines are a quantum simulation for an initial ground state to indicate onset of non-adiabaticity.
Simulation probabilities are weighted to match the average of P (0) data on the linear side of the transition. The lowest two
energy levels in the double-well model lie below the barrier near νy − νyc = −0.100 kHz.

tial (see Methods) and provides the value of the critical
point used to set the origin of the plot. Expressed as a
trap asymmetry, the critical value, αc = 6.3007(16), is
shifted upward from the expected pseudopotential value
of 6.2374 by δαc/αc = 0.0100(2). The fractional shift
is in agreement with an estimate of 0.01050(3) due to
the higher order effect of the rf micromotion on the vi-
brational modes of the ions in the trap (see Methods
and [36]). Quoted uncertainties include both statistical
error and error associated with calibration of the trap

potential. The quadrupole voltage adjustment for points
near the transition is equivalent to a variation of 50 ppm
of the transverse secular frequency, providing an indirect
characterization of the stability of the trap potential over
several hours.

The full dataset taken over a wider range of control
parameter is shown in the left inset of Fig. 2a. The an-

alytical prediction νzz =
√

ν2y − ν2yc for the zigzag fre-

quency on the linear side of the transition matches the
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data well at points away from the critical point. Far from
the transition on the zigzag side, the measured sideband
frequencies deviate from the energy level spectrum for
the perturbative zigzag potential near the critical point
– as expected – but good agreement is recovered using a
model from classical small oscillation analysis for an ion
crystal in the pseudopotential. Near the critical point
we have a distinct deviation from the classical small os-
cillation prediction. Only very close to the transition is
this clear – within ∆νy ∼ ±0.3 kHz. The dependence
measured for five ions close to the transition approaches
that of an unbiased quantum LZ transition with the first
sideband approaching zero frequency (compare Fig. 1c).
Bias in the double well, which lifts the degeneracy be-
tween the lowest energy levels of the zigzag mode, can
be identified by a non-zero minimum frequency of the
first sideband. However, on the zigzag side of the critical
point it becomes difficult to separate the low-frequency
first sideband from the carrier; as such, the lowest fre-
quency value that can be reliably measured provides an
upper bound on the bias. Suppression of the line strength
of the first sideband resonance near the critical point ad-
ditionally constrains the bias in the double well, and a
combined analysis (discussed in detail below) is used to
obtain the fit to quantum theory with C1 = 3.3 × 10−7

shown in Fig. 2a.

In addition to the resonance center, the asymmetry
in the lineshape of the zigzag sidebands provides insight
into the zigzag potential and the motional distribution
of the order parameter. The asymmetry of the fit line-
shape is shown in Fig. 2b, where its sign switches across
the critical point due to the change in the anharmonic-
ity from the single to double well. The anharmonic
energy-level shift in the perturbative limit should scale as
1/ν2zz ∝ 1/∆νy [37]. The scaling law shows good agree-
ment on the linear side away from the critical point but
only a rough match to the behavior on the zigzag side.
The 6–12 times larger asymmetry scaling factor inferred
on the zigzag side is partly attributed to a factor-of-2
larger anharmonicity effect, and the remainder we expect
is due to a larger motional excitation out of the ground
state. The onset of increased heating of the zigzag mode
across the LZ transition arises from non-adiabatic transi-
tions due to the ramp, higher electric field noise density
at low frequencies and enhanced sensitivity to electric
field noise as the zigzag structure forms [29].

In the region closest to the critical point, the anhar-
monicity of the potential is sufficiently large to allow the
zigzag sidebands starting from the lowest vibrational lev-
els to be resolved (Figs. 2d-g). We take advantage of this
to infer the motional population distribution, P (n), in
the n-number states of the zigzag mode from the mea-
sured sideband spectrum of transitions n → n+m. The
fit model of the line strengths and centers is based on
the quantum double-well theory including bias, and the
carrier and sidebands are fit to an incoherent sum of line-

shapes which include three separate phase decoherence
parameters for the carrier, first and second sidebands. It
is not possible to constrain independent values for the
linear and cubic bias from the resolved spectra; for sim-
plicity, we assume a null cubic bias (C3 = 0) and take
the average of |C1| fit values across the range of data in
Fig. 2 to obtain a best-fit value of |C1| = 3.3(3)× 10−7.
With this value of C1 we obtain the motional population
distributions shown in Fig. 2d-h. The motional popula-
tions reveal non-thermal distributions with preferential
occupation of even n levels (for example, Fig. 2e), which
is indicative of non-adiabatic transitions due to the ramp
or parametric heating of the zigzag mode on the linear
side. From the aggregate measurements of motional pop-
ulations (Fig. 2h) the ground state is found to remain ma-
jority populated (P0 & 0.6) down to ∆νy = −0.2 kHz,
including the location of the optimum tunneling point
near−0.100 kHz where the lowest two energy levels in the
double-well model first lie below the barrier. From nu-
merical modelling of the quantum mechanical dynamics
of the ramp, we expect that it remains adiabatic down to
∆νy = −0.17 kHz, which is consistent with the observed
behavior of P (n = 1) as shown in Fig. 2h.

The linewidths of the resolved sidebands give an upper
bound on the coherence time for the zigzag order param-
eter. We find that the phase coherence time from the fits
for the first sidebands is 0.3–0.5 ms and 0.3 ms for the sec-
ond sidebands, both much shorter than the value of 3–5
ms for the motion-sensitive carrier. The value of 0.3–0.5
ms is roughly consistent with a preliminary assessment
of the Ramsey coherence time of the first upper sideband
near to the critical point. We observe that the coherence
time decreases as the LZ transition is approached from
the linear side. In part this is due to increased sensitivity
of the zigzag mode to fluctuations in the trap potential,
scaling as 1/ν2zz. A more detailed assessment of decoher-
ence near the critical point is left to future work.

Ion-number dependence. Extending the results for
five ions, we have compared the transition spectroscopy
for ion numbers ranging from three to five (Fig. 3). The
axial confinement, and by extension the axial ion den-
sity, is adjusted to make the critical transverse secular
frequency approximately the same in all cases, within a
6% range. The critical trap asymmetries αc are found to
be {2.4251(4), 4.1967(6), 6.3007(15)} for 3–5 ions, cor-
responding to a nearly N -independent fractional shift
of {0.0103(2), 0.01012(14), 0.0100(2)} from the pseu-
dopotential prediction. This is in accord with the pre-
dicted micromotion-induced shift, which in lowest or-
der depends only on the Mathieu parameters for the ion
trap [29] (see Methods). The main feature in the tran-
sition spectroscopy of Fig. 3 is the strong reduction in
bias effect going from three to five ions. This is mani-
fest by the qualitative sharping of the LZ transition and
the reduction in the gap between the n = 0 and n = 1
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FIG. 3. Comparison of the linear-zigzag transition for

3–5 ions. First and second upper sideband frequencies for
the transverse-y zigzag mode are shown as a function of the
transverse secular trap frequency νy referenced to the mea-
sured critical value νyc. Axial confinement is chosen such that
the critical values νyc = {717, 744, 760} kHz for 3–5 ions are
close (within 6%) so that the linear-zigzag (LZ) transitions
can be directly compared. Fits (solid lines) to the quantum
energy level structure for a quartic potential are used to ex-
tract νyc and a bias |C1| of 3.62(11)× 10−5 for three ions and
4.52(17) × 10−6 for four ions. For five ions, theory is shown
for |C1| = 3.3(3) × 10−7, obtained separately from lineshape
fits (see text). Inset shows a close-in view of the critical point
region. Theory lines are shaded according to Raman coupling
for the central ion, similar to Fig. 2a. In both four- and five-
ion cases the 0 → 1 first sideband coupling vanishes below
the LZ transition due to the onset of the symmetry breaking
effect on the wavefunctions. This is precluded for three ions
since the symmetry is already fully broken by the strong bias.

energy levels near the critical point. Assuming a domi-
nant linear bias – to be justified below – we perform fits
to the quantum theory for the three- and four-ion cases,
and extract a bias coefficient |C1| of 3.62(11)× 10−5 and
4.52(17) × 10−6 respectively. The case of four ions ex-
hibits a complicated spectral structure due to the partic-
ular value of the bias; from the best-fit double-well model,
we find that the line strength of the 0 → 1 sideband van-
ishes as it approaches degeneracy with the 0 → 2 side-
band, corresponding to a level crossing between the n = 1
and n = 2 states. For three ions the bias is strong enough
that the lowest energy states are well localized in a single
well across the LZ transition, and thus neither a suppres-
sion of the 0 → 1 sideband from an onset of symmetry
breaking nor a level crossing occur. Finally, we note that
we have also confirmed the general trend in bias for 3−5
ions from measurements of the asymmetry in statistical
outcomes of the two zigzag configurations after crossing

the LZ transition [29].

Bias spectroscopy. The transition spectroscopy of
Figs. 2 and 3 is insufficient to distinguish unambiguously
between a linear and cubic bias in the zigzag potential.
To differentiate the two forms of bias, we introduce a new
technique to measure the splitting in the frequency of the
zigzag mode between the L and R zigzag configurations.
The splitting dependence on C1 and C3, considering a
classical perturbative model derived from Eqn. 2 on the
zigzag side of the LZ transition and for |νL−νR| ≪ νL,R,
is

νL − νR
νz

≈ −3C1

√

2C4
ν2z
ν2R

− C3√
2C4

, α < αc (3)

where the axial secular frequency νz is used to set the
scale. The linear bias is characterized by a rapid ν−2

R

decay away from the transition since it cannot affect the
local curvature in the minima of the double well once the
wells are deep enough.
To prepare the ion crystal deterministically in either of

the zigzag configurations, we use the optical dipole force
from a off-resonant laser beam focused to the order of
the ion spacing and displaced transversely from a cen-
tral ion in the string (see Fig. 4c and Methods). This is
sufficient to bias the transition globally to achieve initial-
ization of either configuration with >90% fidelity for 3–5
ions. The same experiment sequence as for the transi-
tion spectroscopy is used with the addition of the biasing
beam applied as the critical point is traversed (Fig. 4(e)).
The frequency splitting between the two zigzag config-
urations is measured as a function of proximity to the
critical point on the zigzag side of the transition, and the
results are plotted self-consistently in terms of the natu-
rally biased zigzag mode frequency ν0 ≈ νR (Fig. 4a). For
both three and four ions a rapid reduction of the splitting
away from the transition is observed. This is indicative
of a dominant linear bias. We fit the measurements to
the unapproximated version of Eqn. 3 to extract the coef-
ficients C1 and C3 (see Fig. 4 for values). The linear bias
decreases in magnitude from three to four ions in agree-
ment with the transition spectroscopy of Fig. 3. The
value of C1 for three ions, for which the bias is strongest,
agrees with that obtained from transition spectroscopy,
and the value for four ions agrees within a factor of 2. For
five ions, data fluctuations are such that only an upper
bound on the small bias coefficients is possible. While
this technique is not as precise as a fit to transition spec-
troscopy, it provides clear evidence of a dominant linear
bias for three and four ions, and justifies the fitting of
the transition spectroscopy to C1 alone in these cases.

Connection of bias coefficients to the trap. Moving
beyond an interpretation of the data in terms of the phe-
nomenological effective potential of Eqn. 2, we have ex-
plored theoretically the origin of the zigzag bias in terms
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FIG. 4. Spectroscopic characterization of the bias in

the linear-zigzag transition. (a) Difference in zigzag mode
frequency, νR − νL, for an ion crystal of 3–5 ions initialized
into opposite zigzag configurations, defined as left (L) and
right (R) sides of the double well. Data plotted as a function
of mode frequency ν0 without any applied initialization. In all
cases, νR ≈ ν0 within 0.7 kHz. Solid lines are fits to classical
small-oscillation theory (see text). Bias coefficients from the
fits are C1 = −4.0(3)×10−5 and C3 = −7(7)×10−4 for three
ions, and C1 = −9.5(1.7)×10−6 and C3 = 1.7(1.4)×10−4 for
four ions. Data fluctuations for five ions only allow a partial
constraint on the biases: a fit of all data (solid gray line) gives
C1 = 1(4)×10−5 and C3 = −4(5)×10−3, while a fit excluding
the left-most data point (dotted line) gives C1 = −6(5)×10−6

and C3 = −2(3)×10−3. The zigzag mode experiences increas-
ing excitation away from the critical point without substan-
tive effect on results expected. (b) Sample lineshapes with fits
for three ions at ν0 = 80 kHz. (c) Illustration of scheme for
initialization into either zigzag structure. Controlled biasing
of the transition is achieved with a repulsive optical dipole
potential from an off-resonant beam focused with near single-
ion resolution. (d) Experiment sequence showing initial laser
cooling, ramp of transverse secular frequency νy across the
transition biased by the optical potential, and Raman spec-
troscopy on the zigzag side of the transition to measure νR or
νL.

of asymmetries in the ion trap potential. The perturba-
tions from an ideal trap can be expressed as a polynomial
expansion, Vpert(yi, zi) =

∑

n,m λnmyni z
m
i . A coupled-

mode analysis in the pseudopotential limit for perturba-

tions up to 6th order and for ion crystals up to N = 7
shows that there are only a few trap asymmetries crit-
ical to creating the biases C1ϕ and C3ϕ

3 in the zigzag
potential. The linear bias will in general dominate close
to the transition where |〈ϕ〉| ≪ 1. We find that the lin-
ear bias is induced by axial-transverse terms yzj in the
trap potential with j ≥ 2 and j even (odd) for an odd
(even) number of ions N . Importantly, the coefficients
λ1,j are suppressed for j < N − 1 due to low coupling of
the asymmetry to the zigzag mode, which is consistent
with the observed rapid suppression of linear bias from 3
to 5 ions. The cubic bias arises from terms yzj and y3zk

where j ≥ 2 and k ≥ 0 are even (odd) for odd (even) N .
Rotations of the trap principal axes and shifts in the trap
minimum will induce additional, typically smaller, con-
tributions to the zigzag bias. A linear ion trap potential
also has various nonlinearities that do not break zigzag
symmetry but can lead to shifts in the critical point, for
example quartic terms arising from the endcaps of form
z4 and y2z2 with λi,j coefficients in our case of order
10−4 − 10−5.
We use numerical modelling of the trap potential as

well as estimates of mechanical tolerances to identify
likely sources of asymmetry in the trap potential that
contribute to the zigzag bias. For our linear trap de-
sign (Fig. 1a), the bias for three ions can arise from a
number of different trap asymmetries including trans-
verse co-shifts of the endcaps or various displacements
of the trap rods [29, 38] of order 10 µm. We find that
the same deformations are also roughly consistent with
the bias measured for five ions. For four ions, the most
likely source of asymmetry is from opposing transverse
displacements of the endcaps of order 100 µm, which is
possible given that the endcaps are not positionally well
constrained in our trap design.
The theoretical results imply that a highly symmetric

zigzag transition can be readily achieved for moderate
numbers of ions N . With an improved trap with elec-
trodes constrained to a few microns and N ≥ 4, the lin-
ear bias C1 can be highly suppressed to below the target
10−7 level, which we already approach for N = 5 in our
current setup. For odd N this will still leave cubic biases
at a level of < 10−3 that decrease only gradually with
number of ions. However, ion crystals with even N can
be used to advantage to obtain a high degree of double-
well symmetry with |C3| . 10−6, since their transverse
symmetry suppresses the effect of the lowest order λ1,2

and λ3,0 terms on the zigzag mode. For example for
N = 6 and in our existing trap, we expect to achieve
biases of C1 = −2.5× 10−8 and C3 = 1.6× 10−5.

DISCUSSION

We have extended previous demonstrations of the LZ
transition in linear ion traps to probe the region close
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to the critical point for ion crystals near the quantum
ground state. Stabilized trap potentials, reduced ther-
mal fluctuations and the use of a spectroscopic probe of
the zigzag mode have allowed for a precision determina-
tion of the critical point beyond previous assessments of
the order parameter variation through fluorescence im-
ages of the ions [12, 13], and have revealed the effect of
small asymmetries in the trap potential on the nature of
the transition. We have realized a novel method for mea-
suring the motional population distribution of the zigzag
mode near the critical point and demonstrated key in-
gredients towards the goal of double-well interferometry
with this system. A direct extension of this work is to
probe the decoherence of the order parameter near the
LZ critical point using both a Raman Ramsey measure-
ment of T2 relaxation of the zigzag mode and Raman
sideband thermometry to assess the T1 relaxation asso-
ciated with motional heating. An estimate of the funda-
mental decoherence limit of image current damping on
the zigzag dynamics [39, 40] shows that it is negligible
for our ion-electrode distance in comparison to the mea-
sured decoherence rate of 0.3–0.5 ms−1 near the critical
point. Given that we expect the origin of the decoher-
ence is technical in nature, improvements are possible by
increasing the ion confinement with smaller trap struc-
tures to scale up the characteristic frequencies, and by
the reduction of phase noise in the trapping potentials
through optimization of the active trap voltage stabiliza-
tion and the use of additional passive measures, including
rf filtering from a higher quality factor rf resonator in a
cryogenic trap system.

Extension of this work to a larger number of ions re-
quires a consideration of the scaling of the energy gaps,
which impact on diabatic excitation out of the ground
state including the formation of spatial domains [41].
Relevant to this, a calculation of the quantum suppres-
sion of long range order in the thermodynamic limit for
the case of a homogeneous ion density has been per-
formed [30]. It provides an estimate of a quantum critical
point for the LZ transition with a small shift below νyc, of
order 0.1–1 Hz for the central ion density in our trap. A
vanishing gap, however, is central to this critical behav-
ior. The non-zero energy gap for a finite number of ions
allows for adiabatic evolution of the ground state through
the critical point for sufficiently slow quench time [41].
For our inhomogeneous case in a harmonic trap and out
to N = 50, we find theoretically that the location of the
optimum tunnel point relative to the critical point νyc
and the tunnel splitting energy remain nearly constant
for a fixed central ion density. As well, the closing of the
excitation gap to the next normal mode, which brings
with it the possibility of spatial variation in the order pa-
rameter, only becomes relevant for very long ion strings,
outside the typical 100-ion limit in a linear trap.

Measurements of the decoherence in the zigzag mode
provide an assessment of the ambient electric field noise

in the trap environment, which is of general relevance to
quantum information applications where the ions’ mo-
tion is used to engineer controlled interactions. While
the zigzag mode in a linear ion crystal is less sensitive
to fluctuating electric fields than the COM mode due to
the higher-order coupling to gradients, the zigzag mode
has the useful feature near the LZ transition that it can
resolve electric field noise over a wide spectral range from
the transverse secular frequency down to dc with mini-
mal variation of the dc trap voltages. In particular this
can be performed without change in the rf trap voltage.
Furthermore, taking advantage of the high sensitivity of
the LZ critical point to both transverse and axial sec-
ular confinement, we can gain an enhancement in the
measurement of drifts in the trap secular frequencies by
using the zigzag mode over a direct measure of the COM
modes at the cost of a small additional time overhead re-
quired to ramp to near the LZ transition. The single-shot
gain over a first-sideband measurement of the transverse
COM mode is G ≈ νy/νzz on the linear side of the tran-
sition and reaches a maximum near the critical point due
to the energy level structure. For example, we calculate
for five ions a gain of up to 67.
Finally, we briefly note additional potential applica-

tions of this work. The precise detection of small trap
asymmetries with the LZ transition, either via sideband
spectroscopy or ultimately with double-well interferome-
try, should be useful to constrain the effect of trap nonlin-
earities in quantum computing and quantum simulation
with long ion crystals [42] and in linear ion trap mass
spectrometry [38]. The spectroscopic sensitivity of the
transition and the demonstrated stability of the trap po-
tential open up the possibility to measure finer shifts in
the critical point. For example, shifts in the critical point
due to cross-mode coupling [33, 43] in the dispersive Kerr
regime [44] are small, up to 3 Hz/phonon depending on
the contributing mode, but are measurable with the cur-
rent setup for higher levels of mode excitation. Other
potential applications in the quantum regime that build
on the techniques presented here include entanglement of
the internal spin of the ions and the zigzag mode using
a spin-dependent optical dipole force to modify the criti-
cal point [45], and quantum dynamics of topological kink
defects seeded into the zigzag structure and prepared in
the ground state [46, 47].
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METHODS

Ion trap system. The ion trap is a linear radio-
frequency (rf) Paul trap [14, 33] consisting of four rods
and two endcap needles with an ion-to-rod distance of
R = 0.66 mm and two needle endcaps with a tip-to-tip
separation of 2.5 mm (Fig. 1a). The trap operates at a
radio frequency Ωrf/2π = 16.9 MHz, rf voltage ampli-
tude Vrf = 770 V, and endcap voltage Vec = 67 − 155
V depending on ion number. The trap has typical secu-
lar frequencies νi = ωi/2π of 864 kHz and 844 kHz along
the transverse x and y principal axes and 303 kHz along
the axial z axis for five ions starting in the linear phase.
Stabilization of the trap potential against drifts is imple-
mented through passive and active techniques that in-
clude a servo of the rf amplitude and provide a stability
of < 10 ppm over 100 s for the secular frequencies [48].
Real-time monitors of the trap rf and endcap voltages
provide an assessment of drifts and are used as inputs to
a calibrated trap potential model for calculating secular
trap frequencies. Excess micromotion is monitored for,
but drifts in the background electric field for the majority
of datasets are small enough that we can avoid compen-
sation adjustments that could shift the critical point.

We make use of the internal clock states in the 171Yb+

hyperfine ground state manifold, 2S1/2|F = 0,mF =
0〉 ≡ | ↓〉 and 2S1/2|F = 1,mF = 0〉 ≡ | ↑〉, for ground
state cooling and Raman spectroscopy. The general ex-
perimental sequence for all data consists of laser cooling
the ion string to near the ground state on the linear side
well away from the critical point, initialization of the ions
into the internal state | ↓〉

⊗
N , a ramp of the transverse

trap frequency to the vicinity of the zigzag transition,
application of the Raman sideband spectroscopic probe
and finally readout of the internal state of the ions using
state selective fluorescence. The total fluorescence from
all ions is collected simultaneously onto a single photo-
multiplier tube.

Ground-state laser cooling. Near ground-state cool-
ing of the ion crystal in the linear-string configuration
is achieved through Doppler pre-cooling, 3D Sisyphus
cooling of all 3N vibrational modes to the few-phonon
level [34], and finally interleaved resolved sideband cool-
ing of the zigzag mode of interest along the y axis, the x-
zigzag mode and all other modes along the y and z axes
except the center-of-mass (COM) ones. We estimate a
ground-state occupation for the sideband cooled modes
to be & 0.9 based on measured sideband Rabi oscilla-
tions [33, 34]. Ground-state cooling of modes other than
the zigzag mode of interest aids to suppress heating of
the zigzag mode due to cross-mode coupling resonances
that are encountered during the ramp to the linear-zigzag
(LZ) transition.

Ramp across the LZ transition. The approach to and
crossing of the LZ transition is controlled by a hyperbolic-

tangent ramp of a transverse dc quadrupole potential
applied through the trap rods (Fig. 1b) [14, 33] with
minimal effect on the axial confinement (|∆ωz |/ωz <
0.03%). In terms of the quadrupole voltage Vq, the sec-
ular frequency along the y-axis weakens according to
ωy = ωy0

√

1− Vq/Vq0 for Vq > 0, and the orthogonal

axis strengths as ωx = ωx0

√

1 + Vq/Vq0, such that the LZ
transition is effectively confined to the 2D y − z plane.
The quadrupole voltage begins at 0 V and crosses the
transition near 2.5 V. For Vq ramp endpoints close to
the critical point or those passing into the zigzag phase,
a two-stage ramp is used with a slower final stage over
1 ms. Using simulations (see below) we find that this
provides sufficient adiabaticity for ramp endpoints near
the critical point, but we do not optimize the ramps for
endpoints deeper into the zizgag side. An example ramp
sequence can be seen in Fig. 4d.

The endpoint of the voltage ramp is converted to a
value of transverse secular trap νy using a calibrated trap
potential model. We plot results in terms of the control
parameter νy rather than the theoretically more natu-
ral trap aspect ratio α (Eqn. 1) since the axial secular
frequency changes only minimally during the quadrupole
voltage ramp. The in-situ calibration of the trap po-
tential model is derived from prior separate experiments
using a single ion and is updated using values of COM
modes measured at select points during data collection
to correct for daily drifts in the calibration. The trap po-
tential model is a parameterized version of a symmetric
linear Paul trap potential up to second order in coor-
dinates and incorporates the next leading order of the
Mathieu expansion for the secular frequencies [5]. The
calibrations achieve < 0.03 kHz error from the fits near
the critical point. As part of the trap calibration model
we implicitly infer the Mathieu a and q parameters [5]
for all three trap axes.

Raman spectroscopy. We use motion sensitive two-
photon Raman transitions to probe the various vibra-
tional modes in the ion crystal, including the zigzag
mode. Different Raman beam pairs allow access to mo-
tional sidebands in both the axial and transverse direc-
tions. The Raman beams’ large size provides nominal
uniform illumination of the ion crystal, giving rise to
global Raman sideband coupling weighted by the mode
participation of each ion [49]. Since all N ions are si-
multaneously illuminated by the Raman beams, up to N
phonon levels can be excited from a given initial state.
While the global coupling complicates the theoretical de-
scription of the Raman transition, in practice we keep the
average sideband excitation to one phonon or less by lim-
iting the Raman pulse time to simplify the interpretation
of measurements. We suppress sideband resonance shifts
due to the ac Stark shift of the Raman beams (. 0.3
kHz) by measuring the carrier and sidebands at the same
Raman beam power. Near the critical point, reduced Ra-
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man beam power helps to resolve close-in sidebands that
lie a few kilohertz from the carrier.

Bias spectroscopy. The bias spectroscopy uses the
force from an off-resonant beam, focused and offset from
a central ion in the linear crystal, to achieve deterministic
initialization into either the L or R zigzag configuration
before the Raman probe of the zigzag mode is performed.
The biasing beam is blue-detuned by 0.7 THz, and its
power (1–9 mW) is adjusted to minimize spontaneous
emission while still achieving a high fidelity of initializa-
tion. The application of the biasing beam is limited to
the portion of the quadrupole ramp close to the LZ tran-
sition to further minimize spontaneous emission heating.
For the data for three and five ions, a controllable tempo-
ral amplitude profile has also been implemented to limit
non-adiabatic excitation from the bias beam. The fi-
delity of the zigzag initialization is confirmed over the
range of bias spectroscopy data by direct imaging of the
zigzag structure following a fast projection ramp deep
into the zigzag region. The lineshape asymmetries for
the L and R configurations are compared to ensure that

the bias beam does not introduce a differential heating
effect, which could incur a systematic shift in the reso-
nance line centers. The comparison of zigzag sideband
resonances between the L and R configurations is also
sensitive to slow drifts in the trap potential. For exam-
ple, the five-ion bias measurements shown in Fig. 4a are
limited by anomalous excess drifts due to electrode con-
tamination.

Transition spectroscopy analysis. To extract the
first and second sideband frequencies of the zigzag mode
across the LZ transition, as shown in Fig. 2a and Fig. 3,
we fit Raman spectra to a set of incoherently summed
peaks without reference to a specific model for the zigzag
potential. We assume a Rabi lineshape for the carrier,
and for the sidebands we use a Gaussian or exponentially
modified Gaussian lineshape depending on proximity to
the critical point. The exponentially modified Gaussian
is motivated by a model of anharmonicity and a thermal-
like distribution of number states for the zigzag mode;
however, the functional form is taken as a heuristic func-
tion that is found to work well in practice. It is defined
as

g(f, f0, w,∆a) = A
√
π

w

2|∆a|
exp

(

−f − f0
∆a

+

(

w

2∆a

)2
)

erfc

(

− sgn(∆a)
f − f0

w
+

w

2|∆a|

)

+ b0 (4)

in terms of frequency f , resonance location f0, width w,
lineshape asymmetry ∆a, amplitude A and baseline offset
b0. The normalization is chosen such that the lineshape
area, Aw

√
π, matches that of a Gaussian A exp(−f2/w2)

with the same width and amplitude.

If the lineshape asymmetry obtained from a fit is be-
low a minimum threshhold (∆a/w < 0.5) we revert to
a Gaussian lineshape. Thus, far from the critical point
where anharmoncity is negligible, Gaussians lineshapes
are relevant, and they are used again close to the crit-
ical point where the sidebands are sufficiently resolved.
Exponentially modified Gaussian lineshapes are relevant
in the intermediate region where the anharmonicity is
significant but not large enough to resolve the sidebands
from different initial n-number states of the zigzag mode.
Identification of the resonances for the first sideband
(n → n+1) and second sideband (n → n+2) is done by
considering continuity of data and by assuming that the
initial state is majority populated in the n = 0 ground
state for data close to the critical point. Close to the
critical point on the zigzag side, sideband identification
becomes challenging since below νy − νyc = −0.2 kHz
the sidebands for five ions lie under the carrier lineshape
or have vanishing line strength, and for four ions the
0 → 1 and 0 → 2 resonances approach degeneracy. In the
case of five ions below −0.2 kHz, low-frequency peaks ex-

tracted from underneath the carrier lineshape have been
included conservatively as the upper first sideband 0 → 1
in Fig. 2a but may be due to the lower first sideband
1 → 0 or an upper sideband n → n+ 1 for n > 0.

LZ transition fit. We fit the sideband frequency de-
pendence across the LZ transition in an iterative fashion
to obtain the critical point νyc and the bias in the zigzag
potential. The fitting procedure is as follows: (i) An
initial value of νyc is extracted from a fit to the ideal
classical dependence of the zigzag mode on the linear

side, νzz =
√

ν2y − ν2yc, for a data range limited to &1

kHz above the critical point. This avoids bias and quan-
tum effects that manifest near the critical point. (ii)
An initial value for the bias is determined from a fit to
the numerical quantum theory for the zigzag potential
(Eqn. 2) using νyc from (i). (iii) A refined value of the
critical point is determined from a fit of each sideband
to the quantum theory on the linear side of the transi-
tion and the results are averaged. (iv) A refined value
for the bias is determined from a fit of both sidebands
to the quantum model. Refinement of the critical point
is less than 0.05 kHz for the data presented. Statistical
error in the critical point from fitting and systematic er-
ror from determination of the secular trap frequencies are
< 0.02 and < 0.03 kHz respectively for νyc = 717 − 760
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kHz. Critical trap asymmetries αc are calculated using
the measured axial secular frequency. The data does not
allow to distinguish a linear from cubic bias. Using addi-
tional information from bias spectroscopy, we determine
for three and four ions that a linear bias dominates, and
so fits to a linear bias with C3 = 0 are presented in Fig. 3.
For five ions the bias is small enough that the sideband
frequency dependence alone can only roughly constrain
the bias. An alternative fitting approach is taken to con-
strain the bias further (see discussion below).
For higher data density in spectroscopy plots of the LZ

transition (Figs. 2a and 3 for four and five ions), we take
advantage of the stability of the experiment to combine
data sets from two or more days. Data sets are combined
by fitting each set for the critical point using the above
method and then using the fit value as the reference for
the horizontal axis, νy − νyc, to remove small day-to-
day drifts. The critical points quoted in the main text
represent a weighted statistical average over values from
all data sets.

Motional state and bias assessment from line cen-

ters and strengths. For the five-ion Raman spectra
close to the critical point where the sideband peaks from
different initial number states of the zigzag mode are
resolved or partially resolved, we use the relative peak
heights and center frequencies of the sidebands to ex-
tract both the motional population distribution of the
number states and the bias in the zigzag potential. We
fit spectra including the carrier, multiple upper sidebands
and the first lower sideband as an incoherent sum of line-
shapes. Refined models of the lineshapes are incorpo-
rated into the fit: both the carrier and sidebands are
modelled as Rabi lineshapes with pure phase damping.
The lineshapes are obtained from numerical solution of
the optical Bloch equations [50], and in practice lie be-
tween the limits of Rabi and Lorentzian forms. The value
of the sideband Rabi couplings are calculated using (i)
wavefunctions obtained for a given zigzag potential, (ii)
a global Raman interaction arising from uniform laser
illumination of the ions, and (iii) no assumption of the
Lamb-Dicke approximation [49]. For a resolved sideband
from an initial n-number state, the Raman transition
with global coupling simplifies to that for a two-level
system, | ↓〉

⊗
N |n〉 ↔ | ⇑eff 〉|m〉 where | ⇑eff 〉 is a su-

perposition of single-excitation spin states. The effective
Rabi frequency is

Ωnm = Ω0

√

√

√

√

N
∑

j=1

|Mnm,j|2 (5)

where the matrix element Mnm,j for the jth ion is

Mnm,j = 〈Ψn(ϕ)|e(ikeff,jazϕ)|Ψm(ϕ)〉 (6)

in terms of zigzag wavefunctions |Ψn〉, scaled zigzag nor-
mal mode coordinate ϕ, Coulomb length scale az, and
effective wavenumber keff ,j = ~kL · D̂j

zz , which captures

the projection of the Raman wavevector ~kL onto the di-
rection D̂j

zz of the jth ion’s displacement in the zigzag
mode. The wavefunctions are obtained from numerical
solution of the time-independent Schrodinger equation
for the zigzag potential (see below). An approximate lin-
ear model for the axial components of the zigzag mode
vector is used on the zigzag side of the transition. The
model works well out to a zigzag mode frequency of 60
kHz on the zigzag side, which is adequate for the data
range of interest.
Fit parameters for a measured carrier and sideband

spectrum include a baseline offset, offset from the critical
point νy − νyc, potential parameters C1 and C3, a carrier
Rabi frequency Ω0 that sets the overall coupling scale, a
carrier phase damping rate γcar and carrier amplitude
correction factor near unity, first and second sideband
phase damping rates γ1 and γ2 and an overall relative
amplitude correction to the carrier, and finally motional
populations P (n) for the number states of the zigzag
mode. Fit parameters and uncertainties are obtained
from unweighted fits using χ2 minimization.
We find that C1 and C3 values from the fits are strongly

correlated, but the motional populations P (n) are insen-
sitive to the choice. Without additional constraining in-
formation, we choose C3 = 0 and determine an average
value of C1 = 3.3(3)× 10−7 from the resulting fits to the
data. We use this value to obtain final fit values for the
motional distributions P (n) as shown in Fig. 2. The fits
could be improved by including a set of lower sideband
measurements but at the expense of longer data collec-
tion times.

Classical small-oscillation analysis. Small-
oscillation analysis is performed for an N -ion crystal in
the 2D pseudo-potential (Eqn. 1) to extract the equilib-
rium crystal structure and normal modes. The critical

value α
(0)
c for the LZ transition in the pseudopotential

approximation is extracted from the eigenvalue spectrum
of the normal modes [12]. Values for 3–5 ions in an

ideal linear trap are α
(0)
c = {2.4000, 4.1542, 6.2374}. The

frequency of the zigzag mode experiences a shift from
the pseudo-potential value due to micromotion effects in
the ion trap [36, 51], which in turn leads to a shift in the
critical point at the percent level. We apply approximate
Mathieu equations for the normal modes of a linear ion
string [36] to derive the micromotion-corrected frequency
for the zigzag mode and the micromotion-shifted critical
point

αc ≈ α(0)
c

[

1 +
q2y
2

(

1 +
3

8
q2y +

5ω2
z

2Ω2
rf

α(0)
c

)]

(7)

in terms of the Mathieu parameter qy along the relevant
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transverse y-axis. For this result we assume q2y ≪ 1,
neglect small corrections due to Mathieu parameter ay,

and neglect weak ωy dependence by setting ω2
y ≈ ω2

zα
(0)
c .

Since the lowest order effect on the zigzag mode for lin-
ear or nearly linear ion crystals is a frequency shift, we
use the pseudopotential result for the small-oscillation
curve shown in Fig. 2a. Far from the critical point on the
zigzag side of the transition, the micromotion-corrected
frequency of the zigzag mode needs to be determined nu-
merically from the crystal structure and normal mode
vector [36, 51], but this is not necessary for this work.

Zigzag potential. To derive the effective potential for
the zigzag mode near the critical point we perform a
classical, perturbative, coupled-mode analysis and adi-
abatically eliminate modes other than the soft zigzag
mode. Using this semi-analytical method, we can obtain
the sensitivity of the potential coefficients C1 through C4

(Eqn. 2) to trap perturbations λi,jy
izj in Vpert (Eqn. 1).

We briefly summarize the method with further details
to be presented elsewhere [29]. We Taylor-expand the
pseudo-potential (Eqn. 1) to order ≥ 5 in the ions’ dis-
placements and express the result in terms of the mode
coordinates ϕi of the linear crystal’s 2N normal modes,
which are re-diagonalized at lowest order of coupling to
account for the trap perturbations Vpert. Working from
the nonlinear coupled oscillator equations near the crit-
ical point, we assume that all other modes adiabatically
follow the soft zigzag mode and so adiabatically eliminate
them to arrive at an effective force for the zigzag mode
in terms of the zigzag order parameter, ϕ ≡ ϕzz , alone.
Integration of the force provides the effective zigzag po-
tential, which is limited to 4th order. We retain up to 1st

order in the polynomial coefficients of Vpert, which give
rise to bias coefficients C1 and C3, shifts in the critical
point and modifications to C4. The value of C4 also in-
cludes the effect of axial collapse of the ion crystal as the
zigzag structure grows, which is encoded in the coupling
between the zigzag and axial breathing modes. The ef-
fect is significant (order unity) and its inclusion extends
the double-well calculation performed in [18]. Values of
C4 in an ideal linear trap are {0.9307, 2.1906, 4.5409} for
3–5 ions. We ignore in our fits to data the small effects of
the trap perturbations on C2 (i.e. on the critical point)
and on C4. Also in our calculation the coupling to the
zigzag mode is limited to the effect of the mean order pa-
rameter for the non-zigzag modes, 〈ϕi6=zz〉, and excludes
the effect of fluctuations arising from terms 〈ϕ2

i 〉 – for ex-
ample due to thermal fluctuations – that induce a shift
in the critical point [33]. We expect these effects to be
small given the near-ground-state initial cooling of the
relevant modes.

Quantum theory. We assume the quartic form of the
effective zigzag potential U(ϕ) as defined in Eqn. 2 as the
starting point for quantum mechanical calculations of the
zigzag mode. This implicitly ignores axial spatial varia-

tion of the zigzag order parameter ϕ [30], which applies
for the small ion crystals being considered. The effective
zigzag potential, derived from the classical coupled mode
theory, also ignores the effect of quantum fluctuations
from the other modes, which is reasonable given their
high frequency. The values of αc and C4 in the poten-
tial are obtained from the classical theory in the absence
of trap imperfections, and the bias coefficients C1 and
C3 are treated as adjustable model parameters obtained
from fits. The quantized energy levels and zigzag wave-
functions Ψ(ϕ), used in the preparation of Figs. 1–3, are
obtained as a function of α from a numerical solution
of the 1D time-independent Schrodinger equation for the
potential U(ϕ). The wavefunctions are used to calculate
Raman sideband couplings, as discussed above. Adia-
baticity of the ramp across the transition (Fig. 2h) is as-
sessed from numerical solution of the 1D time-dependent
Schrodinger equation in which the applied quadrupole
voltage ramp introduces a time varying trap aspect ra-
tio α(t) to the zigzag potential. The form of the quartic
zigzag potential derived perturbatively near the critical
point begins to break down significantly for & 100-kHz
mode frequency on the zigzag side, which provides suffi-
cient range for comparison to experiment.

Trap potential simulation. To understand the role
of the trap electrode imperfections in generating zigzag
bias, we simulate the electric potentials from the trap
electrodes using commercial Charged Particle Optics
(CPO) software [52]. For a given trap electrode con-
figuration, the potentials are least-squares fit to a set of
spherical harmonics, which are subsequently used to ob-
tain the 3-D Cartesian coefficients λi,j,k for the xiyjzk

polynomial expansion of the trap potential in the pseu-
dopotential approximation. The Cartesian coefficients
are expressed in a coordinate basis with origin defined by
ideal micromotion compensation and with axes defined
by the principal axes of the pseudopotential. In conjunc-
tion with the sensitivities of the zigzag biases C1 and C3

to the λ coefficients (see above), we assess the role and
magnitude of various electrode deformations in generat-
ing bias in the zigzag potential [29]. Assuming that the
lowest-order asymmetry is the dominant contribution,
the linear bias coefficient for three ions is C1 ≈ −0.95λ12.
This can arise from a number of different rod and end-
cap deformations of order 10 µm. The same deformations
make contributions to C3 of order 10−3−10−4. They are
also reasonably consistent with the linear bias measured
for five ions, where C1 ≈ −7.6 · 10−4λ1,2 + 1.50λ1,4. For
four ions, the linear bias at lowest order of perturbation
is C1 ≈ 1.14λ13, which is likely due to transverse shifts
in the endcap positions of the trap.
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