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Abstract—A promising architecture for scaling up quantum
computers based on trapped ions are so called Quantum
Charged-Coupled Devices (QCCD). These consist of multiple
ion traps, each designed for solving specific tasks, that are
connected by transport links. In this paper we present the
backend compiler phases needed for running quantum circuits
on a QCCD architecture, while providing strategies to solve
the optimization problems that occur when generating assembly
instructions. We implement and test these strategies for the
QVLS-Q1 chip architecture.

Index Terms—Quantum Computing, Compiler, Trapped-Ions,
Optimization

I. INTRODUCTION

Trapped ions are a promising candidate for realizing univer-
sal quantum processors. This is due to their high-fidelity state
preparation, readout and universal gate operations as well as
their long qubit coherence times [1].

Several architectures have been proposed for scaling up
quantum devices based on trapped ions. In the simplest archi-
tecture, ions are arranged in a 1D string with a shared potential,
where gates are implemented by addressing individual ion
states and shared motional modes using lasers and microwaves
[1]. However, it was shown that performing high-fidelity two-
qubit gates becomes impractical for more than approximately
100 ions [1]. To overcome these challenges, an architecture,
called Quantum Charge-Coupled Design (QCCD) was pro-
posed, which consists of multiple ion traps optimized for their
specific function as well as transportation links between them
[2, 3]. The first implementation of a QCCD architecture can be
found in [4]. See [1] for a review of trapped ion architectures.

Similar to classical computers, a compiler is needed to run
algorithms on hardware. In this case, the compiler needs to
turn quantum circuits into concrete sequences of ion shuttle
operations and gate executions. The main challenge hereby is
to simultaneously optimize the order of quantum gates and
the number of ion shuttles while maintaining an appropriate
compilation time.

In the following, we present backend compilation phases
for a trapped-ion QCCD architecture and propose strategies
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Fig. 1. Simplistic illustration of the QVLS-Q1 chip architecture from a top
view showing the STORAGE, TEMPSTORAGE, SPAM and COMPUTE register
connected by an X-junction. In the depicted configuration four ions are
stored in the STORAGE register and one is located in the COMPUTE register.
Movements of ions are only allowed along the transportation links (black
lines).

to optimize gate executions and ion movements. While these
strategies are applicable to general QCCD architectures we
demonstrate our approach using a new QCCD architecture
(see Fig. 1) that is currently being developed by the Quantum
Valley Lower Saxony (QVLS) for the QVLS-Q1 quantum
computer.

The code developed for this project is available under [5].

II. CONCEPT

A. Hardware

The QCCD architecture developed for the QVLS-Q1 quan-
tum computer carries at most 50 ions and consists of the
following registers connected by an X-junction:

• SPAM: State preparation and measurement register with
a maximal trap capacity of one ion.

• STORAGE / TEMPSTORAGE: Storage registers with a
maximal trap capacity of 50 ions each.
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• COMPUTE: Computational register based on [6] with a
maximal trap capacity of 2 ions and the possibility to
apply the single-qubit gate

R(φ, θ) = cosφ eiθσx/2 + sinφ eiθσy/2 ,

where we additionally define RX(θ) ≡ R(0, θ) and
RY(θ) ≡ R(π/2, θ). We can also apply the two-qubit gate
RXX(θ) ≡ eiθσx⊗σx/2.
Here,

σx =

(
0 1
1 0

)
and σy =

(
0 −i
i 0

)
are the Pauli matrices and θ is some real angle.

In this architecture, only the ions closest to the junction
can be moved from one register to another following the
transportation links. However, directly exchanging neighboring
ions within one register is not allowed. See Fig. 1 for a
simplistic illustration of the registers and transportation links
of the QVLS-Q1 chip.

Notice also, that in contrast to other QCCD architectures the
gates can only be applied to at most two qubits simultaneously
in the COMPUTE register, while all-to-all qubit connectivity
is achieved by physically moving ions between the registers.
The behavior of the registers can be best described in terms
of multiple stack data structures: each register on the chip can
be understood as a stack where the top element is the ion
closest to the junction. Moving an ion from one register to
another can then refer to popping and pushing an ion from
the corresponding stacks.

B. Assembly Language
To describe operations on a QCCD architecture, assembly

instructions for moving the ions and applying operations on
them are needed. For the QVLS-Q1 chip this is realized
by our trapped-ion assembly language (TIASM). The main
components of the language needed for compiling a quantum
circuit to TIASM are given by:

• QUANTUM REGISTER(n): Loads n ions to the STORAGE
register.

• CLASSICAL REGISTER(n): Creates a classical register of
n bits for storing the measurement results.

• MOVE(r1, r2): Moves the ion closest to the junction of
register r1 to register r2.

• MEASURE → c: Applies a measurement to the ion in the
SPAM register and stores the measurement result (0 or 1)
in a classical bit with label c.

• PREPARE(r): If register r = SPAM a specific laser pulse
is applied to the ion in the SPAM register to prepare it in
a suitable ion state. If r = COMPUTE a microwave pulse
is applied in the COMPUTE register to prepare the ion in
the initial qubit state referred to as |0〉.

• RX(θ) istack / RY(θ) istack / R(φ, θ) istack: Applies an
RX(θ), RY(θ) or R(φ, θ) gate in the COMPUTE register
to the ion at location istack within the stack.

• RXX(θ): Applies the RXX(θ) two-qubit gate to both ions
in the COMPUTE register.

See [5] for the complete TIASM grammar.

Frontend

Source code

IR

Translate to native gates

Circuit optimizations

Generate circuit graph

Circuit graph
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TIASM
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IR
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Fig. 2. Illustration showing the phases of the compiler. 1. A frontend trans-
forms the source code to the intermediate representation (IR). 2. Optimizations
dependent on the underlying hardware are applied to the IR. This includes
the translation to native gates as well as circuit optimizations based on gate
identities. 3. The assembly instructions are generated by orchestrating the
gates and the ions using a circuit graph.

C. Backend compilation phases

The task of the compiler is to translate a high-level quantum
programming language [7] to our assembly language TIASM.
As for classical compilers this task can be split into a frontend
part, which consists of a lexer, parser and intermediate code
generator and a backend part, which optimizes the intermediate
code and generates the assembly instructions. See Fig. 2 for
an overview of the different compilation phases.

In this work we assume that a frontend generating an inter-
mediate representation (IR) exists and focus on the different
phases of the backend part of the compiler. In the following we
consider IRs based on OpenQASM [8]. The concepts for the
backend compilation part are however also applicable when
using different IRs. The different phases are now described in
detail:

1) Translate to native gates: The native gates that can be
applied on the QVLS-Q1 chip and on most trapped-ion chips
are RX(θ), RY(θ), RXX(θ) [9]. To convert a quantum circuit
consisting of arbitrary quantum gates to the trapped-ion basis
gates we are using the existing transpilation methods provided
by the Python module called pytket [10].

2) Circuit optimizations: After efficiently unrolling an in-
put circuit to our native set of gates, we continue to use the
pytket module for gate-level circuit optimizations. Recent
benchmarks comparing different transpilation methods [11]
showed that pytket gives on average the fastest transpilation
times due to its C++ core, while resulting in the lowest number
of gates at the same time. pytket repeatedly merges single
qubit rotations and uses commutative cancellation until the
number of gates are optimized. On top of that, we extend
its capabilities with methods unique to our ion-trap machine



based on [12]. There, Maslov gives a detailed blueprint on
how to reduce circuit depth if one works in the set of
{RX, RY, RXX} gates. One of the ideas is to use templates,
which are sequences of gates that evaluate to identity [13]. A
useful circuit identity in our case is given by:

RX(θ1) RY(θ2) RX(θ1) R(θ3, θ4 − π) =

where for any θ1, θ2 ∈ R we can compute the corresponding
angles of θ3, θ4 ∈ R, more details in [12]. See a short example
in Appendix A. Note however, that this method does not
yet help with the reduction of two-qubit gates, which are
generally more prone to errors than single qubit gates. While
implementing the template above has no disadvantages, some
of the rest of the strategies from [12] can introduce tradeoffs
between circuit runtime and fidelity errors, which is why we
omit these strategies here.

3) Generate circuit graph: After these circuit optimiza-
tions, we can proceed with the actual code generation. Due
to the sequential nature in which gates need to be executed on
this hardware, it makes sense to group gates based on which
qubits they act on. To preserve the non-trivial dependencies
created by multi-qubit gates, we generate a directed, acyclic
”gate dependency” graph (DAG) from the circuit [14]. A valid
hardware-realization of the circuit, i.e. circuit path, consists of
a traversal of this graph, that visits a node only once all parents
have been visited.

4) Graph serialization: In general there are many possible
circuit paths that satisfy the gate dependencies. By only
following the edges in the DAG we generate a subset of those
circuit paths that leads to fewer exchanges of the ions in the
compute zone.

Following this strategy we generate up to np circuit paths
of length ng , meaning that each path contains at most ng RXX
gates. These paths are then simulated using the strategies from
the next section and the best one is chosen. The gates from
this best path are then deleted from the graph and a next set
of paths is generated until all gates have been executed and
removed from the graph.

See Appendix B for an example showing the different graph
paths that we generate for a given circuit.

5) Ion orchestration: For generating the actual ion move-
ments, we assume that a circuit path, as described in the
previous section, is given. Initially, we assign a qubit id to
a physical ion once that qubit appears in a generated circuit
path for the first time. That way the initial order in which the
ions are placed in the storage register is optimal. The task then
is to move ions on the chip, such that the correct ions end up
in the COMPUTE register in the sequence determined by the
path. To solve this problem, we apply the following heuristics:

• Smallest junction distance (JunctionDistance): When
moving two ions to the compute zone we start with the
ion that is closer to the junction.

• Compute ordering (ComputeOrder): When two ions have
the same junction distance we first move the ion to the

compute zone that will stay there longer as determined
by the next gates in the current circuit path.

• Use SPAM as temporary storage (SpamStorage): When-
ever there is a free location in the SPAM area we use it
to keep upcoming ions in the graph path closer to the
junction.

• Partner sorting (PartnerSorting): From the complete cir-
cuit graph we can conclude which ions will need to be
paired up in the COMPUTE area in the future. We refer to
these qubits as next ”partner qubits”. By using the SPAM
and COMPUTE register we can exploit the information
about the next partner qubits to improve the ordering
of the ions. Whenever ions are moved from one storage
register to another, we try to place these partners closer
to each other.

An example of a graph path being executed using the
JunctionDistance, SpamStorage and PartnerSorting strategy is
shown in Fig. 4 in Appendix C, and Appendix D shows an
example that demonstrates the necessity of the ComputeOrder
heuristic.

This architecture as described above is motivated by our
observation that the tasks of Graph Serialization and Ion
Orchestration are intrinsically linked and cannot be optimized
independently. Using this iterative architecture allows us to
tackle this problem, by considering many small, local opti-
mization problems, each dealing with a subset of the circuit
(i.e. short graph paths), rather than trying to find the globally
optimal serialized circuit. Furthermore, this design allows for
gates to be reordered while at the same time ensuring that the
next gate sequence is known during the ion orchestration step,
which allows for more efficient move operations.

A simple example showing how an OpenQASM file is
compiled using our backend compilation phases is shown in
[5].

III. EVALUATION

A. Circuit optimization

In order to see how the template performs, we looked at
circuits with 5 qubits and a depth of 40, built up from a
random sample of standard Qiskit gates consisting of single
qubit, two-qubit and three-qubit gates [15]. Firstly, pytket
optimizations already reduce the number of gates significantly
(see also [11]). Then by implementing the circuit identity,
we could see another 8-10% reduction, which contributes to
higher overall circuit fidelities.

B. Graph serialization optimizations

The techniques for serializing the circuit graph are analyzed
using a dataset of 500 random circuits on 1-50 qubits, with a
mean RXX-gate count of 52 and a mean RXX-depth of 20. We
compile each circuit and count the total number of movement
operations generated. The results are shown in Fig. 3.

To set these results into context, we try to give an estimate
for the number of movements generated by a very naive
compiler, that randomly picks the next available two-qubit
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Fig. 3. Evaluation of our compiler
by counting the number of move-
ments generated when compiling
500 random circuits as explained
in the main text. Left: Movement
count and compile time for vary-
ing path length ng and all heuris-
tics enabled. Right: Showing the
influence of optimization strate-
gies. ”Random gate”: randomly se-
lect next two-qubit gate, ”Ran-
dom path”: randomly select a cir-
cuit path with ng = 7, ”Simu-
late paths”: simulate all paths with
ng = 7 and select the best one.
Next 4 points: successively adding
the heuristics explained in Sec-
tion II-C5.

gate: The above circuits contain on average 25 qubits. A
reasonable equilibrium distribution of ions on the chip for
a large random circuit would consist of the STORAGE and
TEMPSTORAGE areas each containing half of the ions, i.e.
around 12 ions per storage register. Therefore, the average
ion requires just over 6 movements to be transported to the
COMPUTE area. An execution of a single RXX gate requires
2 ions to be present in the COMPUTE area, i.e. around 12
movements need to be executed per RXX gate.

If we turn off all heuristics, set ng = 1 and randomly choose
a circuit path, our compiler best matches the above criteria.
With these settings we get ≈ 10.4 movements/RXX gate as
seen in Fig. 3 (right, ”Random gate”). We do not expect these
two values to match exactly as the theoretical expectation is
a very crude estimate and we have a limited dataset of finite
circuits, however, the above argument gives a rough baseline
for the empirical value and can explain the order of magnitude
of typical movement counts generated by the compiler.

Next, we point out the fact that merely introducing the
circuit path already gives a large reduction in the number of
moves. This can be seen by comparing the datapoint ”Random
gate” with ”Random path” (Fig. 3 (right)) where a random path
of length ng = 7 is selected. This vast improvement can be
explained by the better reuse of ions located in the COMPUTE
area that purely arises from walking along the graph edges
instead of picking random gates from the front of the graph.
If one then simulates all graph paths and picks the best one,
as for data point ”Simulate paths” in Fig. 3, one achieves a
further reduction.

The length of the generated paths ng , also has a large
influence on the generated number of movements, as evident
from Fig. 3 (left). However, increasing ng has the expected
consequence of an exponentially increasing compile time, so
for practical applications, ng should be limited to a fixed, small
value. This highlights the tuning capability of the compiler,
allowing it to be adjusted to the required task: for real-time
quantum computations the circuit needs to be compiled as
fast as possible. However, when a circuit can be compiled
beforehand, the quality of the assembly instructions might be
of more importance than the compile time.

C. Ion orchestration optimizations

The heuristics given above for ion orchestration are also
analyzed in Fig. 3 (right). These heuristics allow us to go
from 5.34 movements/RXX gate, to 4.81 movements/RXX gate
for ng = 7, which is significant reduction for circuits with
thousands to tens to thousands of RXX gates.

Overall we are thus able to reduce the 10.4 moves/RXX of
the naive compiler (Fig. 3 (right, ”Random gate”)) all the way
down to less than 4.7 moves/RXX (Fig. 3 (left, ng = 10)),
which is a reduction by more than 50 %.

IV. RELATED WORK

An extensive study of compilers for different QCCD designs
was performed in [16]. This work, however, assumes the
ability to swap neighbouring ions within the same trap as
well as gate applications in all traps. In [14], optimization
techniques based on heuristics were presented for a QCCD
with multiple traps arranged in a 1D array. Both works focus
on QCCD architectures that are distinctly different from the
relevant QVLS-Q1 chip.

The optimization techniques in [14] also first included the
usage of a gate dependency graph to optimize the execution
order of gates. Building upon this idea we are generating in
this work multiple paths through the gate dependency graph
to simultaneously optimize the gate execution order and the
ion movements.

V. CONCLUSION

In this paper we presented backend compilation phases for
trapped-ion QCCD architectures and provided strategies for
simultaneously optimizing gate orderings and ion movements
during the generation of assembly instructions.

As for classical compilers the backend was split into a phase
optimizing the IR and a phase generating the assembly instruc-
tions. For the circuit optimization phase we demonstrated that
pytket transpilation methods can be extended to reduce the
amount of gates by up to 10%.

The assembly instructions are collected by simulating the
ion movements corresponding to paths through the circuit
graph. To obtain a useful tradeoff between compilation time



and quality of assembly instructions, we split the tasks of
serializing the circuit graph and orchestrating the ions into
multiple local optimization problems that we solved using
simple heuristics. This novel strategy is applicable to trapped-
ion QCCD architectures in general. The heuristics, however,
are dependent on the specific hardware.

To demonstrate all aspects of the backend compiler phases
we developed a trapped-ion assembly language (TIASM) for
the QVLS-Q1 chip and implemented our backend compiler
phases and specific heuristics for this hardware. That way
we were able to reduce the amount of move operations by
more than 50 % compared to randomly executing gates when
using our best heuristics for orchestrating the ions. This result
highlights how our backend compiler phases together with
well suited heuristics for a specific hardware can contribute to
reducing the error that accumulates when applying a quantum
circuit on a trapped-ion QCCD architecture.

VI. OUTLOOK

During the graph serialization step we generate circuit paths
by starting from the qubits that are accessible with respect
to the gate dependency graph. Depending on the current
placement of the ions on the chip there might be some obvious
paths that are not worth simulating. In future works we will
investigate the effect of heuristics during the generation of
graph paths in order to reduce the number of paths generated,
and reducing the exponential complexity of generating the
graph paths.

On top of that, we are planning to improve the rating of the
graph paths after their simulation. In this work multiple graph
paths are simulated and the graph path that resulted in the least
amount of movements is chosen. Instead one could investigate
different cost functions that not only take into account the
amount of movements, but also other criteria like the expected
number of future movements based on the placements of the
ions after a graph path was applied.

The QVLS-Q1 chip architecture that was used to demon-
strate our backend compiler phases can be seen as a fundamen-
tal building block of a larger trapped-ion quantum computer.
To cope with multiple connected junctions we will extend the
compiler in the future to also optimize the ion movements
and gate executions in larger architectures. Here the additional
challenge will be to decide which gates should be applied
sequentially in one building block and which gates could be
applied in parallel using the COMPUTE zones of all building
blocks.
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Fig. 4. An example of the graph path (RXX(2, 3), RXX(5, 8), RXX(4, 5)) being applied, starting from a possible mid-circuit configuration just after the first
RXX gate of the path has been applied. The arrows indicate the movement operation that needs to be applied to obtain the next diagram. Additionally, ions
3 and 9 are next partners due to an upcoming RXX(3, 9) gate in the circuit graph. Between steps 1) and 2) the SpamStorage heuristic from Section II-C5 is
made use of, because ion 4 will be needed for an upcoming gate in the graph path. This prevents the ion to be moved unnecessarily far from the junction.
Between steps 3) and 5), the PartnerSorting heuristic is made use of, as ions 3 and 9 are next partners and they can be placed next to each other, simply by
delaying the removal of ion 3 from the COMPUTE area. Note: between 6) and 7), as well as between 7) and 8) two movement operations are applied.

APPENDIX

A. Circuit optimization example

Let us also show an example for the circuit template that we
introduced above. The main advantage of it is that it allows
us to replace a particular sequence of the single qubit gates
RX(θ1), RY(θ2), RX(θ1), with just one gate R(θ3, θ4). For
instance, if we find the following sequence of gates in a circuit:

RX(θ1) RY(θ2)
RXX(α)

RX(θ1)

then to be able to use the identity, we need to move the
last RX gate in between the RY and the RXX gates. This is
possible since RX and RXX gates commute with each other.
Consequently, the circuit can be reduced to:

R(θ3, θ4)
RXX(α)

Note, that any general R gate can be directly implemented
with the ion-trap quantum hardware at hand, thus the number
of gates has been truly reduced. An example where we cannot
find the right sequence of gates via commutation is when there
is an additional RY gate in the circuit after the RXX gate. In
this case, the RX gate cannot commute through the RY gate,
preventing us from using the identity.

B. Graph path generation example

In the following circuit all gates are two-qubit gates (F acts
on qubits 2 and 4).

q0
C

q1
A E

q2
D

Fq3

q4
B

q5

For ng = 3 we generate the following 4 paths through the
circuit by following the nodes of the dependency graph:

1) A, C, D 2) A, D, C
3) B, A, C 4) B, A, D

Notice that there are four more paths that satisfy the gate
dependencies (e.g. A, B, C). However, we only consider paths
that follow the nodes of the dependency graph. Executing gate
B after gate A would lead to a complete exchange of the ions
in the compute zone, and therefore probably to more move
operations.

Following the same strategy we can generate 4 paths for
ng = 6:

1) A, C, D, E, B, F 2) A, D, C, E, B, F
3) B, A, C, D, E, F 4) B, A, D, C, E, F

C. Example ion movements

Fig. 4 shows an example of a graph path being applied by
moving the ions on the chip, such that they end up in the
COMPUTE area in the correct sequence. For moving the ions,
some heuristics from Section II-C5 are applied in order to
reduce the number of movements.

D. ComputeOrder heuristic example

The following circuit is one of the simplest examples, that
highlights a possible optimization regarding ion orchestration.

q0
RXX RXX

q1
RXX

q2

Assuming ions q0 and q1 are not in the COMPUTE register
and are equally close to the junction (as would for example
happen at the beginning of a circuit when no qubits id’s have
yet been assigned to the ions), a decision has to be made
regarding the order in which ions q0 and q1 are put into the
COMPUTE register. Here it is more efficient, to start with ion
1, as it can remain in COMPUTE for longer, and does not have
to be moved again for the execution of the two subsequent
RXX gates.
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