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Abstract

The Spectral Form Factor (SFF) measures the fluctuations in the density of states of a Hamiltonian.
We consider a generalization of the SFF called the Loschmidt Spectral Form Factor, tr

[
eiH1T

]
tr
[
e−iH2T

]
,

for H1 − H2 small. If the ensemble average of the SFF is the variance of the density fluctuations for
a single Hamiltonian drawn from the ensemble, the averaged Loschmidt SFF is the covariance for two
Hamiltonians drawn from a correlated ensemble. This object is a time-domain version of the parametric
correlations studied in the quantum chaos and random matrix literatures. We show analytically that the
averaged Loschmidt SFF is proportional to eiλTT for a complex rate λ with a positive imaginary part,
showing in a quantitative way that the long-time details of the spectrum are exponentially more sensitive
to perturbations than the short-time properties. We calculate λ in a number of cases, including random
matrix theory, theories with a single localized defect, and hydrodynamic theories.

1 Introduction

Given an ensemble of “quantum chaotic” Hamiltonians {H}, the averaged Spectral Form Factor (SFF) is
defined as

SFF(T ) = | tr(e−iHT )|2, (1)

where the overline denotes an ensemble average. The SFF is known to exhibit a ramp-like structure at
intermediate times which is characteristic of a random-matrix-like spectrum for H, a defining feature of
quantum chaos [1, 2, 3]. In this paper, we study a generalization of the SFF called the Loschmidt SFF
(LSFF). The LSFF is defined in terms of two Hamiltonians H1 and H2 as

LSFF(T ) = tr(eiH1T ) tr(e−iH2T ), (2)

where again the overline denotes an average. The goal of the paper is to motivate the study of the LSFF
and to study it in a variety of representative contexts.

To explain why the LSFF is natural object to consider, let us begin with another basic feature of chaotic
systems: the exponential decay of auto-correlation functions. Consider a complete set {A} of Hermitian
operators and define the infinite temperature auto-correlation function for each A as

GA(T ) =
1

D
tr
(
eiHTAe−iHTA

)
, (3)

where H is the system Hamiltonian and D is the Hilbert space dimension. In a chaotic system, one typically
expects GA(T ) ∼ e−γAT + · · · , at least at intermediate times.

Rather than considering a single such GA, it is often convenient to consider sum over all A, in which case
we obtain a result proportional to the SFF,∑

A

GA(t) = SFF(T ). (4)
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As mentioned above, the form factor directly probes the correlations between energy levels of the Hamiltonian
in an operator-independent way. Moreover, it can be argued on effective field theory grounds that exponential
decay of correlations indeed implies the characteristic “ramp” phenomenon in the spectral form factor [4].

The correlators GA can be measured in the following way. Consider two copies of the system, S and S̄,
prepared in an infinite-temperature thermofield double state along with a control qubit C initialized in the

state |0〉+|1〉√
2

. Using a conditional application of operator A, followed by an unconditional time-evolution,

followed by another conditional application of A, the state becomes

1√
2

(
|0〉C ⊗ e−iHT |∞〉SS̄ + |1〉C ⊗Ae−iHTA|∞〉SS̄

)
. (5)

By measuring the Pauli operators XC and YC and repeating to collect statistics, one can then estimate
GA(T ) via

〈XC〉+ i〈YC〉 = GA. (6)

From this point of view it is natural to ask what happens if the time-evolution is itself conditional.
Suppose the system evolves according to H1 if the control is in state |0〉 and according to H2 if the control
is in state |1〉. In this case, the experimental procedure now yields

〈XC〉+ i〈YC〉 = LA(T ), (7)

where LA(T ) is the “Loschmidt” auto-correlation function,

LA(T ) =
1

D
tr
(
eiH1TAe−iH2TA

)
. (8)

We refer to this as a Loschmidt auto-correlator since it is correlation function version of the traditional
Loschmidt echo, which is defined by taking an initial state |ψ〉, evolving for time T with Hamiltonian H2,
then evolving for time T with Hamiltonian −H1. The return amplitude is 〈ψ|eiH1T e−iH2T |ψ〉, and when the
state |ψ〉 is the infinite temperature thermofield double state, the return amplitude is LId(T ).

The Loschmidt correlator is thus a natural generalization of the return amplitude in the Loschmidt echo.
Moreover, if we sum the Loschmidt correlator over all choices of A, we get precisely the LSFF,∑

A

LA(T ) = LSFF(T ). (9)

Hence, the LSFF is an object that can probe both spectral correlations and the physics of the Loschmidt
echo in an operator-independent way.

As we discuss below, in addition to these elementary motivations, the LSFF appears in a variety of other
contexts, including as a part of the SFF in systems with spontaneous symmetry breaking. In fact, this
symmetry breaking application is how we first came to consider the LSFF. The LSFF is related to various
quantities such as work statistics [5, 6]. Finally, the LSFF is a time-domain version of the long-studied
phenomenon known as parametric correlations, e.g. [7, 8, 9, 10]. For all these reasons, the LSFF is a natural
extension of the SFF which is worthy of study in its own right.

In the remainder of the introduction, we include two subsections, one that defines the LSFF and its
filtered cousins in more detail and one that discusses our motivations in more detail. The rest of the paper is
organized as follows. Section 2 derives a formula for the Loschmidt SFF, connecting it to the Loschmidt echo.
This section also extends beyond the standard Loschmidt analysis to include more complicated connected
diagrams. Section 3 reformulates these results in a hydrodynamic language, and calculates new results for
the Loschmidt SFF in hydrodynamic systems with spatial extent. Finally Section 4 contains concluding
remarks.

1.1 Random matrices and Form Factors

Here we more thoroughly introduce the SFF and the LSFF. The energy level repulsion that is a hallmark
of quantum chaos is an important prediction of random matrix theory. It is commonly diagnosed by the
averaged Spectral Form Factor (SFF) [1, 11, 12, 13, 14, 15], which is defined as

SFF(T, f) = tr[f(H)eiHT ] tr[f(H)e−iHT ]. (10)
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Figure 1: Full (blue) and connected (orange) SFF for GUE random matrix theory on a log-log plot. The
connected SFF has the ramp-plateau structure emblematic of level repulsion and quantum chaos.

Here we consider a more general definition in which we allow for a filter function f(H). The filter should be
some slowly varying function used to focus in on a particular energy range of interest. Useful choices include
f(H) = 1, f(H) = e−βH and f(H) = exp

(
−(H − E0)2/4σ2

)
.

In chaotic systems, the SFF exhibits a dip-ramp-plateau structure (figure 1), while in integrable systems,
the ramp is not present. It can be shown that in systems with conserved modes, or even slow modes or
nearly conserved quantities, the ramp is significantly enhanced [16, 4, 17, 18].

The ensemble average, denoted by an overline, is important for rendering the averaged SFF a smooth
function of time. For a single Hamiltonian, the non-averaged SFF is an erratic function of time, although
an appropriate time average is typically sufficient to make it smooth. However, we are also interested in
explictly disordered systems with fixed random couplings. In any case, the presence of the average means
that the averaged SFF can be decomposed into the square of an average and a variance. These are often
called the disconnected and connected SFF, respectively.

Mathematically, one can write
SFFconn = ZZ∗ − Z Z∗, (11)

where
Z(T, f) =

∑
n

f(En) exp(−iEnT ) = tr f(H)e−iHT . (12)

Z has a simple interpretation as the Fourier transform of the level density. In random matrix theory, the
connected SFF has a ramp-plateau structure, with a long linear ramp terminating in a plateau (see Figure
1). The plateau is the variance one would get assuming random phases for the complex exponential. The
ramp, where the SFF takes on a smaller value, thus represents a suppression of variation in the Fourier
transform of the density. This suppression is greater at lower frequencies, owing to the long-range nature of
the repulsion.

The exact Random Matrix Theory (RMT) value of the SFF in the ramp region is given by

SFFconn(T, f) =
1

bπ

∫
f2(E)dET. (13)

Here b is a quantity depending on the type of time reversal symmetry in the system. b is one for real
symmetric matrices with Gaussian matrices (which correspond to systems with time reversal symmetry).
This ensemble is called Gaussian Orthogonal Ensemble (GOE) because the ensemble has SO(N) conjugation
symmetry. b = 2 for Gaussian Hermitian matrices (which tend of correspond to systems without time
reversal symmetry), which are often called Gaussian Unitary Ensemble (GUE). And b = 4 for matrices with
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Figure 2: Two disconnected periodic contours in opposite directions. Evaluating the path integral on this
contour calculates an SFF. As shown, there is no interaction between the two contours and the SFF factors,
but this factorization is destroyed by the introduction of a disorder average.

quaternion entries, which do emerge in physics but tend to have more obscure interpretations. These are
called the Gaussian Symplectic Ensemble (GSE). Oftentimes one uses the phrase GXE to refer to the three
ensembles together.

Setting the f factors equal to 1, the SFF is a path integral on a particular time contour, depicted in
Figure 2. This contour has two periodic time legs with periods +T and −T . There is no direct interaction
between them. Introducing disorder leads to an effective interaction between the two legs, allowing them to
be treated with a single interacting theory [13]. This theory has a U(1)× U(1) translational symmetry, one
cycle for each leg of the contour. When treated semiclassically, certain saddle points spontaneously break
this symmetry. The resulting Goldstone manifold has size proportional to T , leading to a linear ramp.

We define the (connected) Loschmidt SFF (LSFF) as

LSFFconn = tr[f(H1)eiH1T ] tr[f(H2)e−iH2T ]− tr[f(H1)eiH1T ] tr[f(H2)e−iH2T ]. (14)

If the connected SFF is a variance, the Loschmidt SFF is a correlation. We focus on the case where we
draw two Hamiltonians H1, H2 from a joint distribution which makes them similar. For instance, they might
satisfy H1 = H + εδH,H2 = H − εδH, for some small ε and H, δH drawn from a normalized GUE ensemble.
Alternatively, H1 and H2 might be random-field Heisenberg models or SYK clusters [19, 20, 21, 22] with
strongly correlated but not identical disorder. We will focus mainly on the case where T > 0, noting that
LSFF(−T ) = LSFF(T )∗.

As discussed above, the name comes from an analogy with the Loschmidt echo [23, 24, 25, 26]. The
echo can be written as | 〈ψ| eiH1T e−iH2T |ψ〉 |2, and it can be interpreted as a diagnostic of the fidelity of
time reversal. If one starts with a state |ψ〉, evolves under Hamiltonian H1 for time T , then evolves under
−H2 ≈ −H1 for time T , the Loschmidt echo diagnoses how close one comes to the original state.

1.2 Motivations for the Loschmidt Spectral Form Factor

There are several motivations to think about the LSFF. The most important is to answer the question of “How
different is different enough” when it comes to fine-grained spectral statistics. This is an important question
when considering ensembles of the form H = H0 + δH, where H0 is some fixed large Hamiltonian and δH
is some smaller disordered perturbation. Can we think of the spectral statistics of such Hs as independent?
As we shall see, the answer for large times T is yes. In physics, this ensemble has an interpretation as an
ordered system with some small amount of disorder.

In mathematics, the concept of the Dyson Process [27, 28, 29] or Matrix Brownian motion refers to
starting with an initial matrix H1 and adding in a GUE matrix δH with variance proportional to some
small t. This can be interpreted as Brownian motion in the N × N dimensional space of matrices lasting
for some fictitious time t with no bearing on any physical time. As the matrix evolves under this process,
the eigenvalues diffuse while repelling each other. Our results show that the Fourier mode of the eigenvalue
density with wavenumber T decays like exp(−#t|T |). This contrasts with pure eigenvalue diffusion which
which would result in a decay like exp

(
−#tT 2

)
.

The Loschmidt SFF relates to a phenomenon called parametric correlations, e.g. [7, 8, 9, 10]. Mathemati-
cians and physicists have studied the spectral correlation functions of similar matrices since the 90s. The
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Figure 3: A Schwinger-Keldysh contour evolves forwards in time by T , then backwards by T , then by iβ
in imaginary time. It is often used to calculate dynamical correlations in a thermal background. When
identical sources are present on the forward and backwards legs, the partition function on this contour is
equal to the traditional thermal partition function. But when the sources differ, the partition function on
this contour is decreased by an amount related to the Loschmidt echo.

study of parametric correlations was typically done in the energy domain as opposed to the time domain,
and was focused on systems well-described by random matrices. Our work extends it to the time domain
and provides physical justification for similar results by relating them to the Loschmidt echo and to the SFF
hydrodynamics [4, 30].

The Loschmidt SFF also emerges naturally when one is calculating full SFFs of specific systems. For
systems whose Hamiltonian can be written in block diagonal form as

H =

(
H0 − δH 0

0 H0 + δH

)
, (15)

the SFF naturally decomposes in the sum of the SFF of H0 − δH,H0 + δH, and twice the Loschmidt SFF
between the two blocks.

Such Hamiltonians arise naturally, for instance, in the case of spontaneous symmetry breaking (SSB),
where different charge sectors have very similar Hamiltonians acting on collections of ’cat states’. Indeed in
[30] we performed this calculation and obtained results consistent with the more general results here.

2 A Simple Formula for the Loschmidt Spectral Form Factor

Recall that we are interested in the quantity

LSFF(T, f) = tr[f(H1)eiH1T ] tr[f(H2)e−iH2T ], (16)

in the case where H1 and H2 are two highly correlated but not identical Hamiltonians drawn from some
joint distribution. We define H1 = H + εδH and H2 = H − εδH, where ε controls the closeness of H1 and
H2.

Let us begin by elaborating on the similarities between this object and the traditional Loschmidt echo
amplitude [24, 25, 26], 〈ψ| eiH1T e−iH2T |ψ〉. If we average the echo amplitude over |ψ〉 weighted by factors of
f(H1) and f(H2), then we obtain tr

[
f(H1)eiH1T e−iH2T f(H2)

]
. This is a single-trace version of LSFF(T, f)

which can be evaluated with a Schwinger-Keldysh path integral [31, 32, 33, 34, 35].
The standard S-K path integral is defined on the contour depicted in Figure 3. The contour consists of a

thermal circle to prepare a canonical ensemble, and then forwards and backward time evolution. Insertions
can be placed along either or both of the real time legs of the contour. We first review this construction.

Let’s assume at some distant time in the past the system is prepared in a microcanonical ensemble
at energy E under the Hamiltonian H. This can be a single state, a sampling of states from a narrow
energy window, or even a thermal state. We denote the choice generically by state |ψ〉 We assume that the
Hamiltonian H is chaotic and obeys the eigenstate thermalization hypothesis (ETH)[36, 37, 38, 39]. As such,
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it doesn’t matter very much what choice we make. Our density matrix evolves under just H until time 0
where sources ±εδH are turned on along the two real-time legs of the contour.

This can be evaluated to leading order in perturbation theory in ε in terms of a cumulant expansion [25].
We want the echo amplitude,

P exp

(
i

∫ T

0

εδH(t)− i
∫ 0

T

εδH(t)

)
, (17)

where P denotes path ordering on the Schwinger-Keldysh contour, and the overline represents both a disorder
average and a quantum expectation value of the operator in the interaction picture of H. Since equation
17 is the expected value of an exponential, it can be expressed as a cumulant expansion using the general

identity P exp
(
ε
∫
O(t)dt

)
= exp

(∑
i ε
iκi/i!

)
, where κi is the ith path-ordered cumulant of

∫
O(t)dt.

The first cumulant in our expansion is just the mean,

i

∫ T

0

εδH(t)− i
∫ 0

T

εδH(t) = 2iεδHT. (18)

The second cumulant is the variance of
(
i
∫ T

0
εδH(t)− i

∫ 0

T
εδH(t)

)
. Expressed in terms of

G(t) = δH(t)δH(0)− δH2
, (19)

where again the overline includes the quantum average, the second cumulant is

4ε2|T |
∫ ∞
−∞

G(t)dt (20)

Plugging in the first two terms of the cumulant expansion gives

〈ψ| eiH1T e−iH2T |ψ〉 = exp(iλT )

λ = 2εδH + 4iε2
∫ ∞

0

G(t)dt+O(ε3).
(21)

As we can see, the final answer for 〈ψ| eiH1T e−iH2T |ψ〉 is exponential in the sum of the cumulants. This
is true for exactly the same reason that the parition function is exponential in the sum of the connected
diagrams.

Now we modify the construction to access the LSFF along the same lines as in [4, 13]. The filter
functions can allow us to restrict the energy range and the averaging yields a non-erratic function of time
and justifies coupling the two legs of the contour. The cumulant expansion on the SFF contour instead of
Schwinger Keldysh gives the same cumulants, because finite-time correlations aren’t sensitive to the change
in boundary conditions. Plugging them into the cumulant expansion gives the novel result

LSFF(T, f) = |T |
∫
dE

f2(E)eiλT

bπ

λ = 2εδH + 4iε2
∫ ∞

0

G(t)dt+O(ε3).

(22)

As a comment, it will be helpful to write Im(λ) in another form. The two-point function 4ε2
∫∞
−∞G(t)dt

can also be written

4ε2
∫ ∞

0

G(t)dt = 4πε2σ2ρ(E)

σ2 = |δH root-mean-square matrix element between states with energy ∼ E|2.
(23)

To give a simple example, suppose |ψ〉 is an infinite temperature state and δH is traceless. Then the Imλ
term vanishes and the cumulant expansion predicts exponential decay of the echo amplitude.
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Figure 4: Loschmidt SFF divided by the SFF, numerical results (blue) vs prediction (orange). The first
graph is for a sample of 1320 pairs of 1500 by 1500 GUE matrices with correlated entries at r = .998. The
second graph is for a sample of 10830 pairs of 300 by 300 GUE matrices correlated with r = .98.

Figure 5: Loschmidt SFF divided by the SFF, numerical results (blue) vs prediction (orange). These results
are for two instances of the SYK model [40, 41, 42] with Hamiltonian H =

∑
ijkl Jijklψiψjψkψl. The two

instances have J ’s correlated with r = .999.

One useful analogy to have in mind is that the exponent λ in our cumulant expansion is a type of
free energy density. The Loschmidt SFF is a path integral evaluated with a nontraditional action on a
nontraditional doubled spacetime of size proportional to T . It can be interpreted as a partition function
(with imaginary temperature) of a system with Hamiltonian H1⊗ I − I ⊗H2. In this point of view, the sum
of the connected diagrams is like a free energy density. To get the partition function, we multiply λ by T
and exponentiate, just as we extract partition functions by doing the same to the free energy density.

What then can we say about the more complicated connected diagrams? Whether higher cumulants can
contribute meaningfully or not depends on the details of the situation in question. For instance, consider
the case of a large lattice of volume V with some small number of disordered defects which add some local
operator O(x) to the Hamiltonian. Realistically, the number of defects is proportional to V . The cumulants
of any given O(x) over time are independent of V , and the joint cumulants are roughly zero. So we’d expect
every term in the expansion to be of order V , which means the Loshmidt SFF vanishes in the thermodynamic
limit. To prevent this, we can either have fewer defects, or smaller defects. In the first case, we would still
see every term in the expansion contributing at the same order, whereas in the second case the leading terms
would dominate. Figure 4 illustrates the validity of equation (22) for pure random matrix theory, where
only the leading terms in the cumulant expansion contribute. Figure 5 shows the same for the SYK model,
a fermion model with all-to-all interactions [19, 20, 21, 22]. A useful sanity check is to consider δH = i[H,O]
for some Hermitian operator O. Because this operator is a time derivative, we can see that λ vanishes.
This is what we expect since to leading order adding [H,O] to H doesn’t change the spectrum, only the
eigenfunctions.
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2.1 Higher Cumulants

A useful toy model which is analytically tractable and where higher-order cumulants of δH affect the
Loschmidt SFF is obtained from an N × N GUE matrix H and a projection matrix Pk =

∑k
i=1 |i〉 〈i|

onto a random basis (not the energy basis) with k � N nonzero eigenvalues. The perturbed Hamiltonians
are H1 = H0 + εPk and H2 = H0 − εPk. Explicitly, H is a Hermitian matrix with elements chosen indepen-
dently (except for H0ij = H∗0ji) such that each element is drawn from a complex distribution with complex

variance σ2. For convenience, in this section we will make the assumption that T > 0. The T < 0 case can
be obtained from LSFF(−T ) = LSFF(T )∗.

We will need the n-point functions of δH = εPk with a background at energy E. This can be evaluated

by inserting Pk =
∑k
i=1 |i〉 〈i|, and using 〈i1| e−iHT |i2〉 ≈ δi1,i2

J1(2
√
NσT )√

NσT
, where we make use of the fact

that the states |i〉 are random with respect to the energy basis. As such, we have

G(t1, t2...tn) = εn 〈E|Pk(t1)Pk(t2)...Pk(tn) |E〉 = k
εn

N
eiEt1n

J1(2
√
Nσt12)√

Nσt12

J1(2
√
Nσt23)√

Nσt23

. . .
J1(2
√
Nσtn−1n)√

Nσtn−1n

,

(24)
where tij = ti − tj . To leading order in N , these correlation functions are exactly equal to the cumulants.

Integrating over all time-ordered configurations of ts we get a total contribution of∫
dntG(t1, t2...tn) = 2nk

εn

Nn
(πρ(E))n−1T. (25)

The factor of 2n comes from the number of time-ordered ways to assign the insertions to the two contours.
Once that is done, the tij integrals can be done separately. Summing these contributions gives

λ = 2k
ε

N

1

(1− πiρ(E)ε/N)2
, (26)

which can be shown to agree with equation (22) up to the first two orders in ε. The accuracy of equation
(26) is borne out in Figure 6.

2.2 The Loschmidt Spectral Correlation Function in Energy Space

For GUE systems, the connected spectral form factor is given by

SFFconn(T, f) =

∫
dEf2(E)g(T, ρ(E))

g(T, ρ) =

{
|T |
2π |T | ≤ 2πρ

ρ |T | > 2πρ
.

(27)

We can take the Fourier transform of this to get the two-point function in position space:

〈ρ(E)ρ(E + ∆E)〉conn = − sin2(ρ(E)∆E/π)

(∆E)2
+ ρ(E)δ(∆E). (28)

Taking the same Fourier transform of equation (22), we obtain the two-point function of the densities of two
different Hamiltonians:

〈ρ1(E)ρ2(E + ∆E)〉conn = − (∆E + Re λ)2 − Im λ2

2((∆E + Re λ)2 + Im λ2)2
. (29)

For large ∆E, equations (28) and (29) agree, but the short-range behavior is entirely different, confirming
that small changes to the Hamiltonian have a drastic effect at low energies (long times) but a negligible
effect at high energies (short times).
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Figure 6: The numerical results (blue) line up almost perfectly with the higher-cumulant predictions of
equation (26) (orange), far outperforming the two-cumulant prediction (green).
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Figure 7: The idea behind the Doubled Periodic Time (DPT) formalism. Just as how microscopic fields
on a Schwinger-Keldysh contour are integrated out to give an effective field theory of hydrodynamics, the
microscopic degrees of freedom on an SFF contour are integrated out to give that same action, up to different
boundary conditionals and exponentially small (in T ) corrections.

2.3 How Different Is Different Enough?

One of the central questions we hope to answer is how different two samples need to be in order to have
effectively independent spectral statistics. We now have the power to answer this question. If we have
two samples with a single defect on a single site different between them, this will lead to a non-extensive
decay of the Loschmidt SFF. A decay of the Loschmidt SFF independent of system size contrasts with many
SFF-related quantities that grow with system size, such as the Heisenberg time which grows exponentially
with system size and the Thouless time which grows (for systems with a local conserved energy) at least
quadratically in system size[4, 17, 43].

If the number of defects grows with system size at all, then we find that the Loschmidt SFF decays
even more quickly. This means it would be extremely difficult to observe the Loschmidt SFF directly in
any large system, unless it was prepared extremely carefully. It also means that when measuring an SFF
experimentally, even tiny changes (such as changing a small but extensive fraction of the couplings) to the
system guarantee that the samples are effectively independent.

3 The Loschmidt SFF for Hydrodynamic Systems

So far we primarily considered GXE Hamiltonians which serve as a toy model for chaotic quantum systems
without any conserved quantities. It is also interesting to consider models with slow modes due to the
presence of conserved or almost conserved quantities. In this context, one powerful technique for calculating
SFFs is a formulation of hydrodynamics known as the Doubled Periodic Time (DPT) formulation [4]. This
technology is itself built around a hydrodynamic theory known as the Closed Time Path (CTP) formalism
[44, 45, 46]. The CTP formalism is a theory of hydrodynamic slow modes on the Schwinger-Keldysh contour,
and the DPT formalism transfers these results onto the SFF contour. In this section, we review the DPT
formalism and then extend it to the Loschmidt SFF.

3.1 Quick Review of CTP Formalism

Hydrodynamics can be viewed as the program of creating effective field theories (EFTs) for systems based
on the principle that long-time and long-range physics is driven primarily by conservation laws and other
protected slow modes. One particular formulation is the CTP formalism explained concisely in [46]. For more
details see [44, 45]. Additional information about fluctuating hydrodyamics can be found in [47, 48, 49, 50].
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The CTP formalism is the theory of the following partition function:

Z[Aµ1 (t, x), Aµ2 (t, x)] = tr
(
e−βHPei

∫
dtddxAµ1 j1µPe−i

∫
dtddxAµ2 j2µ

)
, (30)

where P is a path ordering on the Schwinger-Keldish contour. Here the j operators are local conserved
currents. j1 and j2 act on the forward and backward contours, respectively.

For A1 = A2 = 0, Z is just the thermal partition function at inverse temperature β. Differentiating
Z with respect to the As generates insertions of the conserved current density jµ along either leg of the
Schwinger-Keldysh contour. Thus Z is a generator of all possible contour ordered correlation functions of
current operators.

One always has a representation of Z as a path integral,

Z[Aµ1 , A
µ
2 ] =

∫ ∏
n

Dφn1Dφn2 exp

(
i

∫
dtdxWmicro[A1µ, A2µ, φ

n
1 , φ

n
2 ]

)
, (31)

for some collection of microscopic local fields, the φas. The fundamental insight of hydrodynamics is that at
long times and distances, any φas that decay rapidly can be integrated out. What’s left over is one effective
φ per contour to enforce the conservation law ∂µjiµ = 0. Our partition function can thus be written

Z[Aµ1 , A
µ
2 ] =

∫
Dφ1Dφ2 exp

(
i

∫
dtdxW [B1µ, B2µ]

)
,

Biµ(t, x) = ∂µφi(t, x) +Aiµ(t, x),

(32)

which is essentially a definition of the hydrodynamic field φ and the effective action W .
Insertions of the currents are obtained by differentiating Z with respect to the background gauge fields

Aiµ. A single such functional derivative gives a single insertion of the current, and so one presentation of
current conservation is the identity ∂µ

δZ
δAiµ

= 0. A demonstration that this enforces the conservation law is

given in appendix A.
Crucially, the functional W is not arbitrary. The key assumption of hydrodynamics is that W is the

spacetime integral of a local action. Moreover, when expressed in terms of

Ba = B1 −B2,

Br =
B1 +B2

2
,

(33)

there are several constraints which follow from unitarity:

• W terms all have at least one power of Ba, that is W = 0 when Ba = 0.

• Terms odd (even) in Ba make a real (imaginary) contribution to the action.

• All imaginary contributions to the action are positive imaginary.

• A KMS constraint imposing fluctuation-dissipation relations.

• Unless the symmetry is spontaneously broken, all factors of Br have at least one time derivative.

• Any correlator in which the last variable has a time will evaluate to 0 (known as the last time theorem
or LTT).

When calculating SFFs, one typically sets the external sources A to zero, so the action can be written purely
in terms of the derivatives of the φs.

The φs have a physical interpretation depending on the precise symmetry in question. In the case of time
translation / energy conservation, the φs are the physical time corresponding to a given fluid time (and are
often denoted σ). In the case of a U(1) internal symmetry / charge conservation, they are local fluid phases.
One simple quadratic action for an energy-conserving system consistent with the above conditions is

L = σa
(
Dκβ−1∇2∂tσr − κβ−1∂2

t σr
)

+ iβ−2κ(∇σa)2. (34)

Here D represents the diffusion coefficient, κ is the thermal conductivity (energy flux per temperature
gradient) and β is the equilibrium temperature.

The reader should imagine that this action is corrected by cubic and higher orders terms in the σs and
by higher derivative corrections even at the quadratic level.
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3.2 Moving on to DPT and the SFF

As argued in [4], the SFF enhancement for a diffusive system can be calculated by evaluating the path
integral

SFF =

∫
Dσ1Dσ2f(E1)f(E2)eiW (σ1,σ2), (35)

where σ1,2 represent reparameterization modes on the two legs of the contour. It is often useful to define
σa = σ1 − σ2 and ρ = ∂S

∂(∂tσa) . Here ρ is the average energy density between the two contours, and can be

written ρ = κβ−1∂tφr. In this notation,

L = −σa
(
∂tρ−D∇2ρ

)
+ iβ−2κ(∇σa)2, (36)

and the effective action is W =
∫
dtL. Importantly, the boundary conditions are no longer those of the

Schwinger-Keldysh contout but those of the SFF contour.
Since the action is entirely Gaussian, we can evaluate the path integral exactly. We first break into

Fourier modes in the spatial directions. The remaining integral is∏
k

∫
DεkDσakf(E1)f(E2) exp

(
−i
∫
dtσak∂tρk +Dk2σakρk − β−2κk2σ2

ak

)
(37)

For k 6= 0, breaking the path integral into time modes gives an infinite product which works out to 1
1−e−Dk2T

.

For k = 0, we just integrate over the full manifold of possible zero-frequency σas and ρs to get T
2π

∫
f2(E)dE.

Including other modes gives

SFF =

[∏
k

1

1− e−Dk2T

]
T

2π

∫
f2(E)dE. (38)

3.3 Coupling In Sources

In this subsection, we will focus specifically on sources that couple to conserved currents, but the next
paragraph applies to any operator. Because of the relative minus sign between the two contours, Ar couples
to ja and vice versa. A configuration where Aa = 0, Ar = A corresponds to unitary evolution with
background potential A. With CTP boundary conditions, the partition function for Aa = 0, Ar = A is
exactly Z(β), irregardless of Ar. So when Aa = 0, any number of derivatives with respect to Ar (insertions
of ja) results in a correlator of zero.

With periodic boundary conditions, this is no longer entirely true. The trace can take on different values,
and changing details of the unitary evolution results in a change in the SFF, albeit one which decays as T
grows and the effects of the periodic boundary conditions grow more mild. The intuitive explanation for this
is that the SFF at times less than the Thouless time depends on non-universal properties of the Hamiltonian,
and coupling in Ar is effectively a change to the Hamiltonian. Thus it can affect the SFF before the Thouless
time.

Aa is a different story. Turning on a nonzero Aa term corresponds to having a different Hamiltonian on
the forward vs backwards path. This changes the partition function even in the CTP case. In the periodic-
time setting, this transforms our SFF into a Loschmidt SFF, a pair of periodic contours with slightly different
Hamiltonians along the two legs.

3.4 A Perturbative Look at the Loschmidt SFF in Hydro

In this subsection we will restrict our attention to systems with no conserved quantities besides the energy
H, and thus only one conserved current jµ.

Assuming the perturbing εδH has an overlap εδ(x−x0) with the local energy density j0(x), we can model
the Loschmidt SFF as

LSFF(T, f) = ZDPT[Aµr = 0, Aµa = 2εδ(x− x0)δµ0] (39)

12



To leading order in ε, the ‘free energy’ λ is just a −2iεj0r(x0) insertion, which is a typical diagonal matrix
element in the energy shell, so we have

LSFF(T, f) =
T

2π

∫
dEf2(E) exp

(
2iεj0r(x0)T +O(ε2)

)
. (40)

To second order in ε, the object in the exponent is

Reλ = 2εj0r(x0)

Imλ = 4ε2
∫ T

0

dtGrr;DPT (x0, x0, t)
(41)

This last integrand is the correlation function of the energy density. Because the DPT correlation functions
wrap around the periodic time, this is the same as the ‘unwound’ CTP integral∫ T

0

dtGrr;DPT (x0, x0, t) =

∫ ∞
−∞

dtGrr;CTP (x0, x0, t). (42)

At times below the Thouless time and assuming spatial translation symmetry, Grr;CTP (x0, x0, t) can be
modeled as

Grr;CTP (x0 − x0, t) =
κ

β2D

1√
2πD|T |

d
. (43)

For d ≥ 2, this has a UV divergence, which can be cured by imposing a UV cutoff on the extent of our
operator δH. The IR divergence of d ≤ 2 is more interesting. It is also cured by a cutoff: the system has
some finite size, and the IR behavior of Grr depends on that system’s size and shape, as well as the precise
location of x0 and how strong the slowest modes are there.

3.5 Exact Evaluation for d = 1

As an illustration of how integral (42) can depend on x0, we can evaluate it exactly when we have a diffusive
system in 1d with length L.

We first express Grr;CTP (x0, x0, t) as an infinite sum:

Grr;CTP (x0, x0, t) =
∑
i

fi(x0)2β−2κe−Dk
2
i |t|, (44)

where the fis are eigenvalues of ∇2 with eigenvalues −k2
i . Performing the integral gives us the sum∫ ∞

−∞
dtGrr;CTP (x0, x0, t) =

∑
i

fi(x0)2 2κ

β2Dk2
i

. (45)

This is just a multiple of −(∇2)−1(x0, x0). We define

C(x1, x2) =

{
1
L (L− x2)x1 x1 ≤ x2

1
Lx2(L− x1) x1 ≥ x2

. (46)

Then
∇2

1C(x1, x2) = −δ(x1, x2). (47)

So the sum in equation (45) is
2κ

β2D
C(x0, x0) =

2κx0(L− x0)

β2DL
. (48)

13



4 Conclusion and Discussion

In this paper, we defined and studied the Loschmidt SFF. Just as the Loschmidt echo measures the similarity
between eiH1T and eiH2T in terms of their actions on a state, the Loschmidt SFF measures their similarity in
terms of spectral statistics. We found that the Loschmidt SFF decays exponentially as a function of T , with
the same exponential rate as the echo. We studied this quantity in several situations, including an RMT
model where the exponent required just a two point function, and a model requiring higher cumulants. In
both cases, our analytical prediction matched up with numerical results. We also obtained analytic results
about the Loschmidt SFF in theory where the slow dynamics is governed by a hydrodynamic theory of
diffusion.

One natural extension of our work would be to study the Loschmidt SFF for integrable systems. In
particular, does it always have the same long-time behavior as the Loschmidt echo?

Another important direction is to look for the Loschmidt analogue of the other connection between
random matrix theory and quantum chaos: the eigenstate thermalization hypothesis. If an operator O
is written in the energy eigenbases of Hamiltonians H1 and H2, is there any relation between the matrix
elements in the two bases?

This work was supported by the Joint Quantum Institute (M.W.) and by the Air Force Office of Scientific
Research under award number FA9550-19-1-0360 (B.S.).

Note: Just before we posted this work, we learned of an independent study of the LSFF in a holographic
context that appeared a few days before [51].

A More details on CTP

In this appendix we review details of the partition function

Z[Aµ1 , A
µ
2 ] =

∫
Dφ1Dφ2 exp

(
i

∫
dtdxW [B1µ, B2µ]

)
,

Biµ(t, x) = ∂µφi(t, x) +Aiµ(t, x).

(49)

One important property is the conservation of charge, that is the property ∂µ
∂Z
∂Aµi

= 0. We can derive this

fact as follows. Since Z only depends on Aiµ via the combined field Biµ, the derivative of Z with respect to
A reduces to a functional derivative of the action,

δZ

δAiµ
=

∫
Dφ1Dφ2

δ

δ(∂µφi)
exp

(
i

∫
dtdxW

)
. (50)

Acting with ∂µ and suppressing integration variables, we get∫
∂µ

iδW

δ(∂µφi)
ei

∫
W . (51)

Because W does not depend explicitly on φi (only on its derivatives), this is the function integral of a
functional total derivative and hence vanishes.
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