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Abstract

The existing deep learning models suffer from out-of-distribution (o.o.d.)
performance drop in computer vision tasks. In comparison, humans have a
remarkable ability to interpret images, even if the scenes in the images are
rare, thanks to the systematicity of acquired knowledge. This work focuses
on 1) the acquisition of systematic knowledge about 2D transformations,
and 2) architectural components that can leverage the learned knowledge
in image classification tasks. With a new training methodology based
on synthetic datasets that are constructed under a causal framework, the
deep neural networks acquire knowledge from semantically different do-
mains (e.g. even from noise), and exhibit certain level of systematicity
in parameter estimation experiments. Based on this, a novel architecture
is devised consisting of a classifier, an estimator and an identifier
(abbreviated as “CED”). By emulating the “hypothesis-verification” pro-
cess in human visual perception, CED improves the classification accuracy
significantly on test sets under covariate shift.

1 Introduction

Machine learning algorithms based on deep neural networks (DNNs) have made
dramatic progress in the field of computer vision in the last decade. Most of
these algorithms strongly rely on the assumption of i.i.d., i.e., the training data
and test data are independent and identically distributed. In practice, how-
ever, the i.i.d. assumption can be easily violated due to covariate shift in test
datasets [1, 4, 15, 17], which causes significant performance drop of the models
learned from the training set. This is investigated as the o.o.d. generalization
problem, which has become one of the main challenges that the deep learning
community encounters nowadays. One of the common stopgaps for this prob-
lem is to continuously expand the size of datasets, in order to strengthen the
learned invariance of the target objects, by getting rid of other mechanisms or
factors of variation. For example, ImageNet [10], which is a typical dataset
for training classification and detection algorithms, contains more than 14 mil-
lion images. Even so, popular classification models trained with ImageNet have
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(a) (b) (c)

Figure 1: What is in image (a)? There are at least two ways to interpret it,
i.e., (b) three black circles partly covered by a white triangle, or (c) three black
circles with a notch on each of them. (The former one may have a stronger
tendency in perception, according to the Gestalt principles [19].)

experienced 40 − 45% performance drop when tested on ObjectNet, a bias-
controlled dataset [4] that produces thousands of images with 600 combinations
of parameters, by intervening only on three mechanisms in the photo gener-
ation process. This implies that if we try to construct a big enough dataset
to approximate the distribution of real-world data, by considering all possible
combinations of parameters of mechanisms, the number of required data points
would be nearly infinite.

Human beings, in comparison, have powerful o.o.d. generalization abilities
that enable us to recognize objects based on efficient learning. Extensive studies
have shown that learned knowledge can be flexibly reused by infants in novel
scenarios [39, 5, 22, 34]. This is analogous to algebraic operations [28] where
symbolic variables are manipulated in computational processes. This can be a
crucial explanation for the generalization ability. To illustrate this, if we look
at Fig. 1(a) [24], at least two interpretations can be made (Fig. 1(b) and 1(c)),
based on the same observation. This simple example illustrates a typical process
of image perception, in which causal inference (in the anti-causal direction) is
made by utilizing the mechanisms of either occlusion or notching on variables
of circles and/or triangles. Specifically, the process consists of a hypothesis (of
the content of three circles and a triangle) and the verification (whether a figure
like this can be generated by covering the triangle over the circles). If another
hypothesis (e.g. of just three circles) and a corresponding verification (by mak-
ing a notch in each of them) can be made, the figure still makes sense to us.
This “hypothesis-verification” process in human visual perception is discussed
in detail in [27]. It can be noticed that mechanisms in the image generation pro-
cess (e.g. occlusion or notching) are crucial in human visual perception. How an
image is perceived relies on our knowledge of various mechanisms, rather than
knowledge of images that are previously seen (which is the way that existing
machines operate). It can also be noticed that our knowledge about occlusion
or notching is universal and independent of the domain of variables. This gen-
eralization is also referred to as systematicity [12]. Based on the above analysis,
it can be inferred that it is the systematicity of acquired knowledge that enables
human beings to take mechanisms into consideration in visual perception, and
thus achieve excellent o.o.d. generalization ability.

While children have plenty of time to gain systematic knowledge and phys-
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ical mechanisms through observations and experiments [38, 35, 9], which build
foundations for object perception and future knowledge acquisition [33, 37, 22],
existing machine learning models rarely have opportunities to do so. One of the
main reasons is that current datasets for visual learning inevitably introduce
confounding mechanisms, which makes it difficult for models to learn unbiased
representations and acquire systematic knowledge. Additionally, most of the
studies focus on learning the invariance of objects of interest, and neglect the
fact that other mechanisms also provide necessary information for perception,
as shown in the previous example.

This work does not only focus on learning the invariance of objects of inter-
est, we also pay attention to other mechanisms. Therefore, empirical studies are
conducted to learn knowledge about mechanisms of 2D transformations (such as
rotation, scaling and translation) using DNNs, in order to answer the following
questions:

1. Whether the knowledge of these mechanisms learned by machines can
exhibit some level of systematicity? If so,

2. whether the knowledge can be leveraged to facilitate image classification
tasks like humans?

In order to answer the first question, it should be made clear what we mean
by the knowledge of a mechanism. As human beings, for example, if we have
learned the knowledge of 2D rotation, it means that for any image, (with a
proper tool), (a) we can rotate the image at will, and (b) we are able to deter-
mine whether (and even how many degrees) the image has been rotated. Ob-
viously, the knowledge we know about 2D rotation generalizes systematically
and is independent of the domain of images. For transformations studied in
this work, the affine transformation functions are in accord with the description
in (a), and are used in the architecture as a tool to make precise operations1.
Therefore, our main purpose is the learning of the latter aspect (b). To achieve
this, synthetic datasets are designed under a causal framework as the train-
ing datasets. Specifically, the datasets are composed of pairs of images, which
are before and after the transformations, respectively. It has been found that
with this training methodology, the transformation parameters can be estimated
more accurately and stably even on o.o.d. data that are semantically different.

For the second research question, inspired by [27], the hypothesis-verification
process in human perception is simulated in the task of hand-written digit clas-
sification, where modules of an estimator and an identifier trained offline
separately, are used either as auxiliaries of the basic classifier or as an in-
dependent architecture (Fig. 2). It is shown in the result that, by leveraging
the learned knowledge of mechanisms, the estimator and the identifier as
auxiliaries can improve the classification accuracy significantly with extra ex-
plainability. When the two modules operate independently of the classifier,

1It does not imply that transformation operations cannot be learned from data. Generative
models which is beyond the scope of this study, have been studied in various tasks [29, 41].
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CLASSIFIER ESTIMATOR IDENTIFIER

Training: 
predicting angle

rotate

Training: 
predicting probability

identity

rotate

analyzing reconstruction matching
hypothesis

hypothesis 1: ‘6’ rotate -58˚ probability 1%
hypothesis 2: ‘9’ prediction: ‘9’

hypothesis N: ‘5’

rotate 35˚ probability 63%

rotate -75˚ probability 12%

“Might it be similar to one of 
these rotated hypotheses?”

similar?

“What if it is generated by 
rotating one of these hypotheses?”

rotate?

verification

Figure 2: The CED architecture. Potential classes are hypothesized by the
classifier C, and verification on these classes is made by the estimator E
and the identifier D through the pipeline of (1) analyzing possible transfor-
mations, (2) reconstructing from candidates and (3) matching them with the
sample.

without accessing any data of hand-written digits during training and through
a pipeline of analyzing, reconstruction and matching, the architecture exceeds
the performance of the basic classifier.

To our best knowledge, this is the first work that utilize the systematic
knowledge about other mechanisms in classifying images. As a result, in ad-
dition to answer questions like “Is there a ‘5’ in the image? ”, the proposed
architecture is also able to answer “Why do you think it is a ‘5’? ”, based on
the knowledge it has been mastered, just like humans. The main contributions
are as follows:

• We demonstrate a learning methodology, with which the DNNs can learn
the knowledge of specific mechanisms robustly using synthetic datasets
constructed under the causal framework (and thus the first research ques-
tion is answered).

• We design a novel architecture that simulates human visual perception in
image classification, with additional explainability, based on the knowl-
edge that has been mastered (and answers the second question).

2 Related Work

In this section, techniques and research topics in computer vision related to this
work, are briefly reviewed.

Data Augmentation and Domain Randomization. To tackle the po-
tential drop in o.o.d performance, effective and commonly used techniques in-
clude data augmentation [14, 36] and domain randomization [40, 18, 32, 2].
These two techniques share similar principles. The former technique is usually
referred specifically to 2D transformations; the latter is adopted when manipula-
tions are made on parameters in 3D environments. In a causal perspective, they
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both make treatment randomization to get rid of confounders and to improve
the learning of invariance. Based on this principle, this work also produces syn-
thetic datasets through treatment randomization, but with a different purpose,
that is, instead of randomizing out the mechanisms, we aim to take them into
consideration in classification tasks.

Parameter Estimation. As introduced previously, the task for learning
mechanisms of 2D transformations is to estimate the transformation parame-
ters. This task is extensively studied in various computer vision topics, such
as 2D spatial invariance learning [16], text detection [46, 45, 44, 43], and 3D
pose estimations [26, 6], among many others. However, in most of the existing
studies, parameter estimation can only be performed restricted to object cate-
gories that appear in the training sets. An important reason is that single-image
parameter estimation is an ill-defined problem, in the sense that parameters in
transformations are actually procedural variables, whose values are determined
by both of the pre- and post-transformation states. Therefore, models trained
with methodologies based on single images, can hardly generalize to unseen cat-
egories. In this work, the parameter estimation ability that we are interested
in, should exhibit a certain degree of systematicity similar to human beings.
Another series of works [48, 42] and the study in [25] conduct representation
learning based on pairs of images that are related through mechanisms, by using
a single encoder for multiple mechanisms. However we try to isolate knowledge
about single mechanisms and reuse them in downstream tasks.

Program Induction. The knowledge learning in this work is essentially a
program induction problem. Active deep learning topics in this area include pro-
gram synthesis [3, 11], image generation [21, 47], etc. Program induction aims
for more effective generation of programs, whereas this work focuses more on the
interpretation of images that are beneficial for downstream tasks. Therefore, the
domain-specific languages in this work are fundamentally different, being more
semantically relevant to the downstream tasks.

3 Methodology

The aim of this work is to answer the two questions raised in the Introduction
by investigating systematicity of the knowledge about the mechanisms and its
application in hand-written digit classification. During classification, the test set
has a potential covariate shift caused by a target mechanism that is known but
cannot be overcome through data augmentation techniques (which is a common
situation in real-world tasks). We simulate this setting by applying random
2D transformations on the MNIST [23] test set, with no data augmentation
operations of any kind performed during training.

Inspired by the perception process in Fig. 1, we propose that if machines
learn the knowledge of a target mechanism, they could perform better in clas-
sification under covariate shift that is caused by the mechanism. Hence, an
architecture is devised consisting of three DNN modules: a classifier C, an
estimator E and an identifier D, and thus abbreviated as “CED”. Causal
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Figure 3: The causal graph of image transformation. Xt: Image at time step t
(before transformation). Xt+1: Image at time step t+1 (after transformation).
Θ: Parameter(s) of the transformation in study, as the variable is randomly
sampled, this ‘treatment randomization’ operation removes all arrows pointing
to Θ. U : Other unobservable variables that cause the generation of Xt.

datasets are constructed (in Section 3.1) for the modules E and D to learn the
knowledge of mechanisms (in Section 3.2). CED makes predictions in classifica-
tion by raising hypotheses with C and verifying them with E and D. The roles
of these three modules are described in detail in Section 3.3.

3.1 Causal Datasets

To help DNNs learn the knowledge of a mechanism, the principle based on
which a causal dataset is constructed, is explained below. Denote by xt and
xt+1, respectively, the images before and after transformations f (parameterized
with θ), i.e.,

xt+1 = f(xt; θ). (1)

As explained in the Introduction, the goal of knowledge learning is to estimate
the value of θ. Let Xt, Xt+1 and Θ be the variables from which xt, xt+1

and θ are instantiated, respectively. According to the causal graph in Fig. 3,
if the estimation is made based only on the image after transformation, i.e.,
E(Θ|Xt+1), given that Xt+1 is a collider, conditioning on it will inevitably cause
the information flow from U to Θ, which will hinder us from learning robust
knowledge of f (via Θ). Therefore, in order to remove confounding caused by
U , thus making the prediction of Θ more stable and generalize better in test
domains, we have to condition on both Xt and Xt+1, i.e., the Markov blanket
of Θ. 2

Concretely, in knowledge learning we aim to compute EPtest
(Θ|Xt, Xt+1)

given only access to Ptrain(xt,xt+1, θ), with the assumptions of:

Ptrain(θ|xt,xt+1) = Ptest(θ|xt,xt+1), and

supptrain(xt,xt+1) = supptest(xt,xt+1),

where Ptrain and Ptest are distributions of data in training and test domains,
respectively, and Ptrain(xt,xt+1, θ) ̸= Ptest(xt,xt+1, θ).

In this work, synthetic datasets for knowledge learning are constructed ac-
cording to the above causal framework. Each data point is composed of a pair

2This is also intuitively true, because it is pointless to ask how a picture has been trans-
formed when no reference is provided.
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of images that are before and after transformations and the label θ. Since the
labels are automatically generated and no manual annotation is needed, this
can be viewed as a self-supervised learning problem.

To acquire knowledge of mechanisms that is useful in classification with
CED, one of the target mechanisms is the 2D transformation fT that includes
rotation, scaling and translation, and data points are generated through xt+1 =
fT (xt; θT ) with affine transformation functions as fT . Another one is an identity
function fI(xt; θI) defined as:

xt+1 =

{
fT (xt; θ̂T ) if θI = 1;

fT (x
′
t; θ̂T ) if θI = 0,

(2)

where x′
t is a random sample other than xt, and θ̂T is the output of the module

E in CED (which will be explained in detail in Sections 3.2 and 3.3).

3.2 Knowledge Learning

Based on the above causal datasets, the estimator E and the identifier
D are trained to learn knowledge of 2D transformations fT and the identity
function fI , respectively. Specifically, we employ E that takes as the input
paired images xE

t and xE
t+1 generated from fT to predict the parameters θ̂T . The

role of D, on the other hand, is to learn from fI and to predict the probability
that two images are of the same identity. In practice, the inputs of D are
xD
t = xE

t+1 = fT (x
E
t ; θT ), and xD

t+1 = fI(x
E
t ; θI).

The mechanism of fT are independent of fI , and thus E is optimized first,
by minimizing the mean squared error (LMSE). D is then trained based on
datasets generated with fI and E, and optimized by minimizing the binary
cross entropy loss (LBCE). Therefore, the objectives of knowledge learning in
this study can be represented as:

argmin
E

LMSE(E(xE
t , fT (x

E
t ; θT )), θT ) (3)

argmin
D

LBCE(D(fT (x
E
t ; θT ), fI(x

E
t ; θI)), θI) (4)

Models To obtain a more robust DNN in knowledge learning for modules E
and D, three Convolutional Neural Networks (CNNs) are investigated, as illus-
trated in Fig. 4. The first model in study takes concatenated images as input
(shown in Fig. 4(a)). It is called FactorNet for brevity in this work. The follow-
ing two models are relevant to this work, and thus are used as baselines. The
Siamese Networks [7] (shown in Fig. 4(b)) are extensively studied on datasets
with intrinsic relations in metric learning and representation learning. Vanilla
CNN (shown in Fig. 4(c)) that takes single-images as input to make predictions,
is another common method for numerical regression tasks.
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FCCNN(a)

(b)

(c)

concat.

share
weight FC

FC

CNN

CNN

CNN

concat.

Figure 4: The models in knowledge learning. (a) FactorNet: xt and xt+1 are
concatenated in channel dimension before being fed into CNN; (b) Siamese
Network: xt and xt+1 are fed into CNN, whose outputs are then concatenated
and sent to fully-connected (FC) layers; (c) Vanilla CNN: Only the transformed
images xt+1 are fed into CNN.

3.3 Architecture CED for Classification

We now describe in detail each module in the proposed architecture CED for
classification and their roles in simulating the “hypothesis-verification” process.

Classifier C. The images in the MNIST test set are transformed before
testing, denoted by Xtest

t , while those in the training set are original ones with-
out any transformation, denoted by Xtrain

0 . Given a test sample xtest
t ∈ Xtest

t ,
module C produces a probability distribution across all classes, which is ex-
ploited as confidence scores. If the highest confidence score is lower than a
preset threshold, instead of making a prediction of label, C will output a hy-
pothesis H(xtest

t ) = {yi}ki=1, containing a list of class labels with top k(k > 1)
confidence scores.

Estimator E. Module E randomly samples N(N ⩾ 1) candidates from
Xtrain

0 for each class in H(xtest
t ). Concretely, if the set of all candidates for

xtest
t is denoted by Xc ⊂ Xtrain

0 , we have Xc = {X(yi)
c }ki=1, and each X

(yi)
c =

{x(yi)
j }Nj=1. With the assumption that xtest

t may be transformed from what
looks similar to some of the candidates in Xc, E then analyzes the relationship
between xtest

t and each candidate w.r.t. 2D transformation using knowledge
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learned previously, by computing θ̂i,jT = E(x
(yi)
j ,xtest

t ).
Identifier D. Since E is a deterministic function and will produce an out-

put, regardless of whether two images are really related, the role of D is to
examine which candidate is more closely related to the xtest

t . To achieve this,
firstly, D performs reconstructions on each candidate by exploiting the instruc-

tions from E and obtains x
(yi)
j,t = fT (x

(yi)
j ; θ̂i,jT ). Then, x

(yi)
j,t is tested on how

likely it matches to xtest
t , by leveraging the knowledge learned about the identity

function fI . The label of the candidate with highest likelihood will be output

as the final prediction ŷ = argmaxyi
D(xtest

t ,x
(yi)
j,t ).

In the above process, potential classes are hypothesized by C, and verifica-
tion on these classes is made by modules E and D through the pipeline of (a)
analyzing possible transformations, (b) reconstructing from candidates and (c)
matching them with the sample.

ED. It can also be noticed that the pre-trained modules E and D do not
have to access MNIST during training, and do not rely on C too much either.
Based on the fact that the training and test set of MNIST share the same class
label space, we also explore a second architecture that only employs E and D
(abbreviated as “ED”). The only difference from CED is that ED directly takes
all classes as hypothesis (k = 10).

4 Experiments

In this section, experiments are conducted to answer the two questions raised
in the Introduction.

4.1 Is the Learned Knowledge Systematic?

In order to study the robustness of estimation on θT and θI of fT and fI ,
synthetic datasets are constructed according to Section 3.1. Three DNN models
are trained and tested based on the methodology illustrated in Section 3.2. We
now describe specifically how the experiments are conducted.

4.1.1 Learning of 2D Image Transformation mechanisms

Datasets. In the experiments, the original images in MNIST, EMNIST [8] and
CIFAR-10 [20] are used as x0. To eliminate potential overfitting, we obtain the
input image pairs xt = fT (x0; θ

0
T ) and xt+1 = fT (xt; θT ), where θ0T and θT are

randomly sampled in a uniform distribution (see Table 1).
In this work, we conduct learning on four types of fT , including the individ-

ual learning of rotation, scaling and translation, and the joint learning of all the
above three. For individual learning, only one of the three transformations is ap-
plied on xt at a time, while all three transformations are applied simultaneously
for joint learning.

To further increase the difficulty of the task, a synthetic dataset composed
of black/white noises (of a Bernoulli distribution) is randomly generated and

9



Table 1: The parameters of 2D transformations. The values of each parameter
are uniformly sampled within their ranges.

Parameter Range

Rotation angle [−90◦, 90◦]
Translation (horizontal) [−5, 5] pixels
Translation (vertical) [−5, 5] pixels
Scale factor [0.7, 1.3]

Table 2: The training and test data used for knowledge learning.

Experiment Dataset

Exp MNIST Train training set in MNIST
Test ‘letter’ division of test

set in EMNIST

Exp CIFAR Train 9 classes of training set
in CIFAR-10

Test the other class of
training set in CIFAR-10

Exp NOISE Train black/white noise
Test test set in MNIST

used as xt. To better test robustness, all test data are sampled from datasets
that are semantically different from the training sets. The detailed schemes are
listed in Table 2.

Models. The CNN backbone in [48] is used in all three models in Fig. 4.
All input pairs of xt and xt+1 are concatenated along the channel dimension
before being fed in to the FactorNets; the input size is Nbatch × 2 × 28 × 28 in
Exp MNIST and Exp NOISE, and Nbatch × 6× 32× 32 in Exp CIFAR, where
Nbatch is the batch size.

The performance of FactorNets for 2D transformations learning is reported
in Fig. 5 and Fig. 9 in Appendix A. For the learning of individual mechanisms,
it can be observed that most of the absolute percentage errors (APE) (e.g. the
third quartile in the distributions) can be controlled to below 20% in most of the
experiments, and even 10% in Exp CIFAR. The accurate parameter estimation
suggests effective learning of 2D transformation knowledge. Furthermore, there
are only minor differences between the distributions of APE when we compare
the training and test sets. This can be attributed to the strong o.o.d. system-
aticity of knowledge learned with FactorNets, given that the data in the training
and test sets are completely different in semantics. More results on the perfor-
mance of FactorNets for 2D transformation learning are shown in Appendix A.
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MNIST CIFAR NOISE
Experiment

0

20

40

60

80

100

A
bs

ol
ut

e 
P

er
ce

nt
ag

e 
E

rr
or Dataset

training
test

Figure 5: Performance of FactorNets for individual rotation learning. (left)
Predictions of rotation angle vs. the ground truth (normalized to [−1, 1]) in test
set. (right) Distributions of absolute percentage errors (in %) of all data points
in the dataset.

4.1.2 Learning of the Identity Function

To evaluate the o.o.d. performance of the θI estimation, we train FactorNet in
Exp NOISE using samples generated with the method in Section 3.1, and θI is
randomly sampled in {0, 1} in order to produce a balanced dataset. The Fac-
torNet for rotation learning trained in Exp NOISE is used as E. The resulting
F1 scores are 0.9987 and 0.9757 for training and test set, respectively, which in-
dicates superior o.o.d. performance of FactorNet for identification tasks as the
module D in CED.

4.1.3 Key Elements in Knowledge Learning

In this section, several ablation studies are conducted to examine elements cru-
cial for a robust knowledge learning.

Firstly, as analyzed based on the causal graph in Fig. 3, if there exists causal
relationship from U to Xt, it is necessary to condition on both Xt and Xt+1 in
order to predict Θ robustly. As shown in Fig. 6, the o.o.d. performance gap of
vanilla CNN is noticeable in all learning cases, compared with FactorNet and
Siamese networks that take both Xt and Xt+1 as inputs. Vanilla CNN performs
relatively better in translation learning, because the position of Xt (the original
images in this case) is always in the center and independent of U . However, while
being able to estimate rotation angles accurately in the training set, vanilla CNN
completely fails in the test set, because the estimation of angles relies highly
on the pattern of images, which is determined by U . This also offers insight
into numerical regression tasks in contemporary computer vision studies, such
as object pose estimation; given only the images after transformation during
training, a good o.o.d. performance cannot be expected.

Secondly, for CNN backbones, computations based on concatenated images
are necessary to make more accurate estimations. Fig. 6 shows that Siamese
networks underperform FactorNets in all mechanisms. Much information about
transformations is lost through convolutional operations and the max pooling
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Figure 6: The performance of individual transformation learning across different
models.

layers, while more information can be preserved from the beginning in Factor-
Nets.

Additionally, we speculate that the inductive bias of CNNs fundamentally
affects the effectiveness of knowledge learning. This is based on the observation
of the learning curves of the three mechanisms (in Fig. 12 in Appendix A). Fast
learning on translation and scaling and a slow one on rotation can be noticed for
all models, which indicates that CNN models have greater difficulty learning the
mechanism of rotation. Considering CNN properties of translation-equivariant,
positional information can be encoded and operated with CNN at higher effi-
ciency. An extensive investigation into other inductive bias is necessary for a
more solid claim to be made in the future.

4.2 Can Knowledge be Leveraged?

In the previous section, it can be seen that effective learning can be achieved with
FactorNets. The models are capable of making accurate estimations on parame-
ters θ, and this capability can be generalized to semantically different datasets.
This indicates a certain level of systematicity. Hence, with these models as
building blocks, we construct the CED architecture according to Section 3.3.
Comparison of classification performance amongst different architectures are
conducted first (in Section 4.2.1), followed by discussion of the simulation of
human-like visual perception (in Section 4.2.2).

4.2.1 Classification Performance

In the experiment, classification is performed with the setting of covariate shift
caused by rotation, and the performance is compared amongst a basic classifier,
CED and ED. To construct CED and ED, FactorNets trained in Exp NOISE
for the (individual) rotation learning and the identity function learning are
exploited as the module E and D, respectively. The basic classifier C is trained
with original images Xtrain

0 in MNIST without any data augmentations. The
length of hypothesis H(xtest

t ) is k = 5, 10 for CED and k = 10 for ED. The
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Figure 7: The performance of classification. CED 5 and CED 10 denote CED
with hypothesis k = 5 and k = 10, respectively.

number of candidates for the E is N = 200 for each class. The confidence
threshold of C is set to 0.9999.

The classification accuracy obtained on the MNIST test set, with or without
rotations, is shown in Fig. 7. The first observation is that, in the case of rotated
test set, the basic classifier has experienced nearly a 40% performance drop.
However, the accuracy of CED has increased to 77% when k = 5 (CED 5) and
further to 82% when k = 10 (CED 10). In CED, E and D are introduced
for further interpretation when C is not very confident, and they provide extra
explanations about why the sample is classified as such and how it is rotated,
by leveraging the knowledge about rotation with E. Additionally, this process
does not affect the performance too much for the test set without rotation.

ED outperforms the basic classifier by classifying with an accuracy of more
than 75%. It is worth noting that the performance is achieved without any
knowledge of the handwritten digits (since both E andD are trained in Exp NOISE),
but only through the processes of analyzing, reconstructing and matching. Fur-
thermore, only 4% (200 × 10/50000) of the training data are accessed during
inference. This is behaviorally similar to human beings, who are capable of clas-
sifying characters that they do not know at all, so long as necessary references
are provided.

To investigate further the role of E with its knowledge about rotation, an
ablation study was conducted on CD by removing E from the CED. Obviously,
the CD architecture loses the ability to interpret transformation and the perfor-
mance on rotated test set has dropped to below 60% (Fig. 7). On one hand, this
indicates the importance of rotation knowledge to D, which requires the instruc-
tions for reconstruction; On the other hand, since the rotated samples look very
different from the candidates, indirectly it also demonstrates the effectiveness
of D.

The number of candidates. As shown in Fig. 8, classification accuracy
is greatly affected by the number of candidates. Given that D is trained on
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Figure 8: The classification accuracy of CED with different numbers of candi-
dates. Performance already surpasses the basic classifier (the green dash line)
when N ⩾ 10.

noise, the module is really sensitive to nuance differences. Therefore, in order
to find a candidate that is very similar to a sample, a very large candidate pool
is required.

In addition, the generation of digits can also be viewed as a mechanism.
Unlike 2D transformations, the parameterization of digit generation is much
more complicated [21]. While the integration of an estimation module for digit
generation (as a new E) into the existing CED would presumably reduce the
required number of candidates significantly, this will, at the same time, introduce
new challenges in compositionality, which involves the collaboration between
multiple Es.

4.2.2 Simulation of Human-like Visual Perception

In this work, we propose CED as a preliminary simulation of the “hypothesis-
verification” process [27] in human visual perception. Although the simulation
is not a reverse engineering of the human brain, based on psychological studies
about cognition and behaviors, both human and CED share similarities in how
information is processed.

As human beings, we have powerful ability to model an object with func-
tionally easier mechanisms according to Gestalt principles [19]. This does not
happen only in visual perception, but also in other aspects of behaviors [13, 30],
where people try to rationalize their behaviors with convincing (but sometimes
incorrect) reasons. The role of E and D in CED is actually to provide explain-
ability, with which machines can “make sense”, to some extent, of what they
see. This explainability also provides possibilities for humans to improve the
architectures, in ways that they can comprehend.

Furthermore, the simulation and imagination in the brain have been studied
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in various works, and are proposed as the key elements in the understanding of
physical scenes and counterfactual reasoning [5, 31]. Based on the model of the
world in the mind, humans can make predictions about the future (in causal
direction) and infer the causes of things that have happened (in anti-causal
direction). In the architecture of CED, simulations of 2D-transformations in
anti-causal and causal directions are enabled with module E and the affine
transformation function, respectively, which equip the machine with an imagi-
nation space.

5 Conclusion and Future Work

To conclude, in this study, stable knowledge learning has been shown to be
possible if models have been trained on (concatenated) data pairs that are in-
trinsically related through the mechanism. Based on this learning methodology,
FactorNets with their acquired knowledge play significant roles in image clas-
sifications and further interpretations under covariate shift. The performance
boost of the proposed CED architecture also suggests the effectiveness of the
simulation to human-like visual perception. We hope the simulation, along
with its basis, i.e., the learning methodology, can provide inspirations for future
studies in computer vision w.r.t. human-like general AI.

Based on the findings in this work, we identify some limitations and questions
that are appealing for further investigations.

Compositionality: In this work, covariate shift is introduced in test set by
intervening on only one mechanism (i.e. rotation). In the setting where multiple
mechanisms are considered, it will be ideal if multiple Es could leverage the
knowledge learned separately and cooperate with each other. However, some
preliminary results show that Es will not generalize well, if the training is based
on only the interventions of target mechanism and keeping the others fixed. This
is in line with [26], where the generalization improves only if more combinations
of two mechanisms (category and pose) are exposed during training. Therefore,
essential architectural elements that would facilitate the communications and
interactions between modules (especially Es) are intriguing for us to explore in
the future.

3D Virtual World: If we think of the real-world photos as the result of
the interactions of mechanisms, such as foreground and background objects,
lighting conditions, camera attributes, etc., then tasks based on real photos
could also be tackled in the same manner as in this work. With the rapid
development of computer graphics, photo-realistic synthetic datasets with 1)
controlled interventions on target mechanisms and 2) automatic pixel-accurate
annotations can be efficiently created with 3D rendering engines. As described
in Section 3.1, if the mechanism is stable across both virtual and real worlds,
the knowledge learned on synthetic images could presumably be usable on real
photos. More importantly, the real-time rendering capability of modern game
engines (e.g. Unreal Engine) offers potential realization of an imagination space
for machines (analogous to the affine transformation functions in the work).
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A Additional Results

Individual learning. Additional results of performance of FactorNets for
individual 2D transformation learning is shown in Fig. 9. Similar to the result
in Fig. 5, several observations for individual learning are listed as follows.

• Majority of absolute percentage errors can be controlled to below 20% for
individual learning, which indicates the effectiveness of 2D transformation
learning.

• There are only minor differences in the distributions of absolute percentage
error between the training and test sets for individual learning across all
experiments, which suggests strong o.o.d. generalization.
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Figure 9: Performance of FactorNets for individual 2D transformation learning.
(left) Rotation. (center) Scaling. (right) Translation.

Joint learning. For joint learning of 2D transformation, obvious performance
drop in both the training and test set can be observed in Fig. 10, compared with
the individual learning, even if the number of parameters of FactorNets is four
times that of models for individual learning. Similar results are reported in
study [26], where more accurate estimations of variables are made by separately
trained models, because of the improved “selectivity and invariance at the indi-
vidual neuronal level”.

FactorNets trained in Exp NOISE. Although FactorNet exhibits strong
o.o.d. generalization, the performance decreases to some extent when the differ-
ence between the training and test sets becomes considerably big. For instance,
a larger performance gap between the training and test set in Exp NOISE can
be noticed, compared with the other two experiments in Fig. 9 and 10. The
most apparent characteristic in this experiment is the pattern difference be-
tween noises and hand-written digits, which implies the potential difference in
exploitation of patterns during learning.
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Figure 10: Performance of FactorNets for joint 2D transformation learning.
(left) Rotation. (center) Scaling. (right) Translation.

To prove this, an ablation study was conducted by altering the ratio of black
to white pixels of the training data in Exp NOISE. As shown in Fig. 11, the best-
performing model for rotation learning is trained on 7 : 3 black/white noises.
However, if the pixel values in MNIST are swapped ( i.e. black digits on white
background), the best performance can be achieved around 4 : 6. Different
ratios will provide different patterns that can be exploited in learning. The best
ratio for individual learning of translation and rotation is around 7 : 3, while for
scaling it is around 3 : 7, which can also explain the poor o.o.d. generalization
performance of joint learning in Exp NOISE, since it is impossible for the model
to learn the three transformations equally well with only one ratio.

3 : 7 4 : 6 5 : 5 6 : 4 7 : 3 8 : 2 9 : 1
Black:White Ratio

0

20

40

60

80

100

A
bs

ol
ut

e 
P

er
ce

nt
ag

e 
E

rr
or

MNIST
MNIST_b

Figure 11: Performance of FactorNets in rotation learning with controlled
black/white pixel ratios in EXP NOISE. Pixel values are swapped in MNIST b.
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Learning curves in 2D transformation learning. The learning curves in
2D transformation learning are shown in Fig. 12. For all three models, fast
learning on translation and scaling and a slow one on rotation can be observed.
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Figure 12: The learning curves in transformation learning across different mod-
els. Fast learning on translation and scaling and a slow one on rotation can be
observed for all models.

Restoration. An interesting property of FactorNet and Siamese networks can
be found further in translation learning. Given an image xt with a small square
in the center, an image xt+1 identical to xt and the target value of translation
θ, we can obtain a (coarse) translated version of xt by optimizing xt+1 with
gradient decent according to:

xt+1 ← xt+1 − α∇xt+1
LMSE(E(xt,xt+1), θ), (5)

where α is the learning rate. As shown in Fig. 13, this operation can be viewed
as an approximation of the translation function fT . Although this reversed
generation of images is by no means accurate and only limited to very simple
patterns, the phenomenon cannot be repeated in cases of rotation and scaling.

B Model Architecture Details

We follow the implementation in [48] to construct the three models (in Fig 4)
for knowledge learning experiments. The architectures for individual mechanism
learning are shown in Table 3. The models for joint learning are only different
in channel sizes, which are all doubled in Exp MNIST and Exp NOISE, and
50% larger in Exp CIFAR.
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Figure 13: Images obtained with the Translation FactorNet through gradient
decent. The image in the center is the original one xt. According to the values
of θ (four of them are marked on the corners), xt+1 are generated through
gradient decent. In each of xt+1, an obvious offset of the light area from the
original position (the blue dot) to the target position can be observed.

Table 3: Architecture of models for knowledge learning.

Models in Exp MNIST and Exp NOISE Models in Exp CIFAR

5×5 Conv 96, BatchNorm, ReLU 5×5 Conv 192, BatchNorm, ReLU
1×1 Conv 64, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 64, BatchNorm, ReLU
3×3 MaxPooling stride 2 3×3 MaxPooling stride 2
3×3 Conv 32, BatchNorm, ReLU 3×3 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
3×3 MaxPooling stride 2 3×3 MaxPooling stride 2
3×3 Conv 32, BatchNorm, ReLU 3×3 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
3×3 MaxPooling stride 2 3×3 MaxPooling stride 2
2×2 Conv 32, BatchNorm, ReLU 2×2 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
1×1 Conv 32, BatchNorm, ReLU 1×1 Conv 128, BatchNorm, ReLU
3×3 MaxPooling stride 2 3×3 MaxPooling stride 2
FC FC
FC (Siamese Networks only) FC (Siamese Networks only)

23


	Introduction
	Related Work
	Methodology
	Causal Datasets
	Knowledge Learning
	Architecture CED for Classification

	Experiments
	Is the Learned Knowledge Systematic?
	Learning of 2D Image Transformation mechanisms
	Learning of the Identity Function
	Key Elements in Knowledge Learning

	Can Knowledge be Leveraged?
	Classification Performance
	Simulation of Human-like Visual Perception


	Conclusion and Future Work
	Additional Results
	Model Architecture Details

