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Over the last decades, impressive progresses have been made in many experimental domains, e.g. microscopic
techniques such as single-particle tracking, leading to plethoric amounts of data. In a large variety of systems,
from natural to socio-economic, the analysis of these experimental data conducted us to conclude about the
omnipresence of power-laws. For example, in living systems, we are used to observing anomalous diffusion,
e.g. in the motion of proteins within the cell. However, estimating the power-law exponents is challenging. Both
technical constraints and experimental limitations affect the statistics of observed data. Here, we investigate in
detail the influence of two essential constraints in the experiment, namely, the temporal-spatial resolution and
the time-window of the experiment. We study how the observed distribution of an observable is modified by
them and analytically derive the expression of the power-law distribution for the observed distribution through
the scope of the experiment. We also apply our results on data from an experimental study of the transport of
mRNA-protein complexes along dendrites.

PACS numbers: 05.40.-a, 02.50.-r

I. INTRODUCTION

Found in critical phenomena [1–4], in systems with a crit-
ical self-organization [5], earthquake magnitudes [6], human
mobility [7], animal foraging or distribution pattern of ani-
mal species [8], and transport in cells [9, 10], the ubiquity
of power-laws in natural, technical and living systems is ev-
ident and has attracted tremendous research activities to un-
derstand their origins. Typical experimental data consist of
either time series of events or trajectories of specific objects.
In the former case, the events are recorded along the timeline
(Fig. 1(a)), e.g. earthquake sequences [11], and the inter-
event time distribution is usually studied. In the later case,
a prototypical example is the single-particle tracking experi-
ment which is routinely used to record the movement of la-
beled macromolecules within their native environment, e.g.
[10, 12–15].

Indeed, over the last decades, a huge array of experimental
techniques and analytical tools, such as single-particle track-
ing technique, has been applied to characterize the micro-
scopic behavior in the living systems. From the measured tra-
jectories, the diffusion coefficient or the actual transport prop-
erties are deduced and microscopic models mimicking the ob-
served behavior are constructed. For example, the motion of
β -actin mRNA-protein complex was shown to follow an ag-
ing Lévy walk [10]. However, the estimation of the power-law
exponent appearing in those experiments is nontrivial, where
experimental constraints play a critical role in its determina-
tion.

The anomalous diffusion of a single particle is convention-
ally classified by a power-law scaling of the mean-squared dis-
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placement:

〈x2(t)〉 ∝ tα (1)

where α 6= 1 is referred to as anomalous exponent. The diffu-
sion process is called subdiffusion for 0<α < 1 and superdif-
fusion for α > 1 [16]. This power-law exponent appears in
various areas such as target finding times [17] or cellular or-
ganization [18]. The generalized diffusion law (1) emerges
due to the breakdown of the central limit theorem (CLT). One
of the physical mechanisms violating the CLT is broad distri-
butions in diffusion events, such as jump lengths or waiting
times between successive jumps [16]. It is known that anoma-
lous diffusion processes in this category are described by the
diffusion models in the class of continuous-time random walk
(CTRW) such as subdiffusive CTRW (Fig. 1(b)), Lévy walk
(LW), and LW with rests (Fig. 1(c)). They can be understood
as a two-state process where the system stays in a state for a
duration drawn from a given distribution; see the rest events in
the subdiffusive CTRW (Fig. 1(b)) and run/rest events in the
LW with rests (Fig. 1(c)). For many single-particle tracking
experiments, it has been reported that these models describe
the microscopic transport dynamics successfully. Examples
include the gamma burst pattern in a primate cerebral cor-
tex [19], the motion of mRNA along the dendrites [10], the
diffusion of microbeads in cytoskelectal filaments [20], the
predator search behavior [21], the human mobility [22], the
migration of swarming bacteria [23], the central pattern of lo-
comotion of the Drosophila [24], and the T-cell motility in the
brain [13].

In the aforementioned dynamic models such as time se-
ries of events or CTRW families, the knowledge on the dis-
tribution or its probability density function (PDF) of random
event times is essential to classify the dynamics of the object.
However, it is highly nontrivial to correctly obtain the corre-
sponding time (or length) distribution in the experiments due
to the limitations and errors of the measurement. For instance,
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in single-particle tracking experiments, the localization errors
that originate from photon-counting noise, pixelation noise,
and background noise [25–28], have been shown to induce
a bias in the determination of the power-law (or anomalous)
exponent [29]. This effect cannot be fully resolved by an im-
proved ensemble average or a longer experiment [30, 31]. The
experimental errors can be viewed to introduce some noise
that hinders the determination of the state in which the system
is. A minimal number of successive measurements is there-
fore required to assign a state to the system. Furthermore, the
duration of the experiments itself affects the apparent distribu-
tion of step size: it is usually treated using an upper truncated
Pareto distribution and has been applied in different contexts,
e.g. in finance [32–34], geology [35], and biology [24]. In this
work, we show how to take into account these two constraints
in order to calculate and recover the intrinsic distributions of
the duration of the states of the system.

The organization of the paper is in the following. In Sec. II,
we define the dynamic processes under consideration with
three distinct dynamic models (Fig. 1) and establish a mathe-
matical framework. In Sec. II A, we construct a theory deal-
ing with the temporal-spatial resolution effect. In Sec. II B,
we investigate the modification of event time PDFs due to the
effect of a finite observation window. Thereafter, in Sec. II C
we combine the two effects, constructing the complete theory
for accessing the event time PDF under the limits of the reso-
lution and finite observation time window. For each case, we
provide a formal expression of the observed PDF of the du-
ration/length of events and give an analytical expression for
the special case of the power-law distribution. For confirming
the pertinence of our theory, we also perform simulations of
the CTRW and LW models and fit the distribution of the du-
ration of events with these analytical expressions. In Sec. III,
we apply our theory to an experimental case: the transport of
mRNA-protein (mRNP) particles along dendrites in neuronal
cells. We extract the power-law exponent of the distribution
of the duration of the immobile state of these macromolecu-
lar complexes and discuss the results therein. Finally, we give
some concluding remarks.

II. THEORY

The underlying process we consider is a two-state process
(state S and state S′): a particle alternates between one state
to the other with a duration drawn from a given PDF ψS(t)
(resp. ψS′(t)) or with a given rate. Representative exam-
ples include time series of events, such as earthquake occur-
rence or arrival of emails (Fig. 1(a)), and on-off processes
like blinking of quantum dots [36]. In the diffusion process,
the continuous-time random walk is a typical example. In
the framework of CTRW, a random walk is described by in-
stantaneous jumps and waiting events in between the succes-
sive jumps (Fig. 1(b)). An additional important example is a
LW with rests (Fig. 1(c)). In this process, the instantaneous
jump in the (subdiffusive) CTRW is replaced by a ballistic
run whose duration time is proportional to the jump length.
The process is thus understood as ballistic diffusion alternat-

FIG. 1. Examples of stochastic processes under consideration. (a)
Events occurring along the timeline, e.g. earthquakes. The quantity
of interest is the PDF of the inter-event time ts. (b) Continuous-
time random walk processes governed by ψwaiting(ts), i.e., the PDF
of waiting times ts between successive jumps. The jumps are instan-
taneous and described by the PDF of jump length ψjump(x). (c) A
Lévy walk with rests [40]. It is a two-state process consisting of an
alternation of a ballistically moving run phase and a ”no-moving”
rest phase. The occurrence times of both phases are independent,
characterized by the corresponding PDFs, ψrun(tr) and ψrest(ts), re-
spectively.

ing with immobile motions. The statistical property of the
PDF of the duration time of each state is a fundamental char-
acteristic of the process.

In practice, the time series data consist of a succession of
positions measured every time interval ∆t. Therefore, the data
set is given by X = {Xi, i = 0 . . .N} where i is the time index
and N is the maximum number of measurement. A conven-
tional method to identify the state is to calculate the instanta-
neous velocity vi,inst =

Xi+1−Xi
∆t . If the instantaneous velocity

is below a given threshold, the particle is in an immobile state
and is in a mobile state otherwise. This strategy is a projec-
tion from the position to the state of the system, and it gener-
ates a time series {Si, i = 1 . . .N− 1} where Si is the state at
time i∆t. In general, there exist other complicated strategies
identifying the system state [37–39], but they all consist of a
projection F from the data set X and result in a time series
of states S = F (X ) = {Si, i = 1 . . .N − r} where r is the
minimum data points needed to determine the state of the sys-
tem. Once S is obtained, the duration time of each state and
their PDFs are immediately extracted from it. Our goal in this
work is to extract the parameters of the original PDF (espe-
cially a power-law PDF) from the data set. We show how the
power-law involved data is severely tempered by two effects:
the temporal-spatial resolution and time window.



3

A. Temporal-spatial resolution

Determining the state {Si} requires a minimum number of
data points. If one uses the instantaneous velocity aforemen-
tioned, it only requires two data points. However, in general it
requires more data points because of the noise or of the mea-
surement errors. Those minimum data points are the resolu-
tion r. In other words, with the knowledge of r data points,
we determine the system state. However, in doing so we have
implicitly assumed that the state remains unchanged during
r∆t, which is not generally true. There exists a possibility that
a change of state occurs during the time interval of r∆t. Sup-
pose that we have observed that the state S of the system lasts
for a certain period of time t. There is a probability Pr that dur-
ing the observation time t(> 0) the state has quickly changed
to S′ during a time interval shorter than r∆t at time τ1(< t) and
come back to S. Generalizing this idea, there is a probability
(Pr)

m that during the observation time t the state has briefly
changed m times to S′ for a time period shorter than r∆t. As-
suming that the duration of the state S′ are infinitesimal (as
usually considered in the time series of the event occurrence
and CTRWs in Fig. 1), the apparent PDF of duration time of
the state S can be written in terms of the true PDF ψS(t) and
Pr as in the following:

ψreso,S(t) =
1

N

[
ψS(t)+Pr

∫ t

0
dτ1ψS(τ1)ψS(t− τ1) (2)

+ Pr
2
∫ t

0
dτ1ψS(τ1)

∫ t

τ1

dτ2ψS(τ2− τ1)ψS(t− τ2)+ ...

]
.

In R.H.S, the first term takes into account the probability that
the state S lasts continuously up to time t, the second term that
the state S changes briefly to S′ at time τ1, the third that the
state S changes briefly to S′ two times at τ1 and τ2, etc.

Because Pr is the probability that the state lasts for a period
of time shorter than the resolution r∆t, it depends on which
underlying process is considered. For the CTRW, it is the
probability that a jump is smaller than the spatial resolution
r∆x

Pr =
∫ r∆x

0
dx ψjump(x) (3)

where ψjump(x) is the jump length PDF. For the LW with rests
(Fig. 1(c)), it is the probability that the run is shorter than the
temporal resolution

Pr =
∫ r∆t

0
dτ ψS′(τ) (4)

where ψS′(τ) is the PDF of duration time of run events (S′).
Thus, Pr is related to the cumulative distribution of the S′ state.

Using a Laplace transform f̂ (s) =L [ f (t)] =
∫

∞

0 dt f (t)e−st ,
we rewrite Eq. (2) as

ψ̂reso,S(s) =
1

N

[
ψ̂S(s)+Prψ̂S(s)2 +P2

r ψ̂S(s)3 + ...
]

=
1

N

∞

∑
n=0

Pn
r ψ̂S(s)n+1. (5)

Because ψS(t) is a probability distribution, it ensures ψ̂S(s =
0) = 1 and the normalization factor N is N = 1

1−Pr
. The

above geometric series then leads to

ψ̂reso,S(s) =
(1−Pr)ψ̂S(s)
1−Prψ̂S(s)

. (6)

Analytically, we obtain the formal expression for the appar-
ent PDF such that ψreso,S(t) =L −1[ψ̂reso,S(s)]. Although per-
forming the inverse Laplace transform is generally not fea-
sible, we are able to evaluate it numerically with the Gaver-
Stehfest algorithm [41] that has been proven to converge ex-
ponentially fast if the function is analytic around the point of
evaluation [42]. Then, Eq. (6) can be used to fit the data and
infer the parameters of the true PDF ψS(t).

To investigate the effect of the temporal-spatial resolution,
let us consider a normalized power-law PDF

ψS(t) =
ατα

0
(t + τ0)1+α

(7)

and numerically obtain the event statistics limited by a given
resolution. Before the numerical study, we discuss the asymp-
totic behaviors of ψreso,S(t) at the two limiting conditions
of t → 0 and t → ∞ by the virtue of the Tauberian theo-
rems: (1) The information of ψreso,S(t → 0) is obtained via
lims→∞ ψ̂reso,S(s) =

α(1−Pr)
s , which gives the relation

ψreso,S(0) = (1−Pr)ψS(0). (8)

A simple interpretation is that the shortest durations are likely
to aggregate into longer events but are less likely to be the
results of aggregation themselves. (2) For the large-time limit
and with τ0 = 1, we find that ψ̂reso,S(s→ 0)' 1− αsα

1−Pr
, which

translates to in the time domain

ψreso,S(t)∼
1

(1−Pr)t1+α
. (9)

This result suggests that if it is possible to observe a time se-
ries within a sufficiently long observation time (t → ∞) one
can obtain the power-law exponent of the original PDF by
measuring the long time behavior even under the temporal-
spatial resolution limit with a deceased amplitude by the fac-
tor of 1− Pr. However, estimating α by means of the true
PDF (7) often results in an incorrect value unless a time series
is very long, which is tested below.

In Figs. 2(d)–(g), we simulated CTRW processes with the
condition of α = 1/2 (Pr = 0.5) and α = 3/2 (Pr = 0.69) for
several observation times. Figs. 2(d) & (e) shows the apparent
PDFs ψreso,S(t) from the simulation (upper triangle) and two
fitted PDFs with our theory Eq. (6) and the bare PDF Eq. (7).
Both fittings correctly estimate α with a six-decade long wait-
ing time PDF (Fig. 2(d)). Note that with a four-decade long
statistics the usual fitting method with Eq. (7) produces a large
error in the estimation of α while our theory based on Eq. (6)
works well in this case.

The resolution effect becomes stronger if the tail of power-
law distributions is shorter. See the case of α = 3/2 presented
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FIG. 2. Top: The schematics of the measurement process for (a) a time series of events, (b) a CTRW process and (c) a LW with rests; If
a change occurs within the time resolution ∆t and/or the spatial resolution ∆x, the event is undetected. Because of this effect, the statistics
of inter-event times or waiting times can be altered substantially. In the panel (a)–(c), we schematically draw the original time sequences of
events (upper) and the recorded time sequences under the resolution limit (bottom). Bottom: Apparent PDFs ψreso,S(t) of the waiting times
of a CTRW process recorded with a time interval ∆t = 0.2 and spatial resolution ∆x = 0.2. The CTRW was simulated with the waiting time
PDF (7) and the jump length distribution ψjump(x)∼ e−x/x0 . The followings are the parameters used in the simulation: (d, e) α = 1/2, τ0 = 1,
x0 = 1.44, and r∆x = 1 (Pr = 0.5). (f, g) α = 3/2, τ0 = 1, x0 = 1.71, and r∆x = 2 (Pr = 0.69). The simulation data were fitted with our theory
Eq. (6) using the numerical inverse Laplace transform (solid lines) and with the original power-law PDF (7) used in the simulation (dashed
lines). The corresponding best fit curve and the fit values are shown in the figure.

in Figs. 2(f)&(g). The fitting with a power-law PDF (7) seem-
ingly explains well the data. But the fitted values severely
deviate from 3/2 even with a sufficiently large data set. On
the contrary, we confirm that the estimated values of α with
our theory Eq. (6) are in good agreement with the input value
regardless of the observation window t of the data.

B. Time window

To measure the duration time of a state S, an event should
occur within the time window [0,T ] of the experiment. Thus,
the time window will strongly affect the measured PDF as no
event longer than the time window itself will be registered;
when a duration time PDF has a characteristic timescale such
as an exponential distribution, a proper choice of the time win-
dow could constitute a solution. However, if tuning a time
window is not possible or if the PDF has no characteristic
timescale as for power-law distributions, the time window ef-
fect has to be taken into account explicitly.

In Fig. 3a, we schematically depict a typical situation to be
considered. Assume that during our observation in [0,T ] an
event occurs at time τ with a probability P(τ). The event will
last for a duration t distributed according to ψS(t) (or ψS′(t)).
If t + τ is larger than the time window T , then it cannot be

registered in the statistics. For a given time τ for an event
to start, the probability of observing the complete event is
Prob(t < T − τ) =

∫ T−τ

0 duψS(u). Therefore, each event reg-
istered in the distribution will be weighted by this probability

ψtime,S(t) =
ψS(t)
N

∫ T−t

0
dτ P(τ)

∫ T−τ

0
du ψS(u)Θ(T − t)

(10)
where the step function Θ(T − t) ensures t < T . Assuming
the process is almost time-translation invariant, the probabil-
ity P(τ) becomes a constant, absorbed into the normalization.
This is typically the case in Lévy walks when the aging time
becomes large enough [43]. Evaluating the integrals for the
power law case Eq. (7) [44], we obtain for t ∈ [0,T ]

ψtime,S(t) =
ψS(t)
N

[
T − t + τ

α
0
(T + τ0)

1−α − (t + τ0)
1−α

α−1

]
=W (t,T )ψS(t) (11)

We note that, contrary to a naive expectation, ψtime,S(t) is
not an exponentially truncated power-law which behaves as
ψtime,S(t) ' exp(−C× t/T )ψS(t). The truncation factor be-
haves as

W (t,T )' 1
N

[(
T +

(T +1)1−α τα
0 − τ0

α−1

)
− α

2τ0
t2
]

(12)
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FIG. 3. (a) The scheme of a typical experiment: ta represents the
beginning of the experiment where the measurements start. T is the
duration of the experiment. An event occurs at a random time τ

followed by another event at time τ + t. The inter-event time t is
drawn from a given distribution ψS(t). (b) The waiting time PDF of
a CTRW process recorded within a finite observation time window
T . The data from simulations (symbols) is compared with the fit
by our theory (solid line) Eq. (11) of ψtime,S(t) with τ0 = 1 and by
an exponentially truncated power-law Eq. (14) (dashed line). The
CTRW was simulated with the waiting time PDF (7) with α = 0.4
and τ0 = 1. The observation time window was T = 60.

when t is small. This means that ψtime,S(t) ∝ ψS(t) up to a
prefactor. When t→ T , the truncation factor is approximated
to

W (t,T )' 1
N

[
1− τα

0
(T + τ0)α

]
(T − t). (13)

That is, the truncation by the finite observation time T is not
an exponential cut-off but a linear decay with T − t.

We test our theory with simulations of a CTRW process.
The waiting time PDF was obtained from simulated CTRWs
with α = 0.4 and the observation time T = 60. In Fig. 3(b), we
infer the value of α from the observed data using our theoret-
ical expression Eq. (11) and using an exponentially truncated
power-law

ψETPL(t) =
tα
r

Γ

(
−α, tmin+1

tr

)
−Γ

(
−α, T+1

tr

) e−(t+1)/tr

(t +1)1+α
.

(14)
Here, ψETPL(t) is normalized for t ∈ [tmin;T ]. While ap-
parently both fits explain well the simulation data, the ex-
tracted value of α is very different. We confirm that our the-
ory Eq. (11) correctly recovers the original exponent. How-
ever, the empirical approach with the exponentially truncated
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Pr

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

α

0%

1%

2%

3%

4%

5%

FIG. 4. Maximum of the relative error of the approximation Eq. (16)
with respect to the numerical inverse Laplace transform of Eq. (6)
for t ∈ [1,100].

power-law produces an unrealistic estimation for α , which
was α =−0.13 and a cutoff time tr = 15.

C. The combined effects of the resolution and time window

Based on our theoretical studies in Sec. II A and II B, here
we seek to find the expression of the apparent PDF ψobs,S(t)
limited by the resolution and time window simultaneously.
Combining the two main results Eq. (6) and Eq. (10), we find
that ψobs,S(t) satisfies the following formal expression

ψobs,S(t) =
ψreso,S(t)

N

∫ T−t

0
dτ P(τ)

∫ T−τ

0
du ψreso,S(u) (15)

where ψreso,S(t) is the inverse Laplace transform of the func-
tion given in Eq. (6). Unfortunately, it is almost infeasible
to obtain the analytic expression of ψreso,S(t) for a power-law
PDF. Therefore, we have to proceed with an analytical approx-
imation of ψreso,S(t) to evaluate Eq. (15) or conduct numerical
evaluations of Eq. (15) to get ψobs,S(t).

Let us first proceed in the former method. For the two ex-
treme limits (t → 0 and t → ∞), we can separately find the
analytic expression of ψreso,S(t) for a power-law PDF (7) with
τ0 = 1. By empirically matching the two limiting results, we
end up with the following approximation of ψreso,S(t):

ψ reso,S(t)' ψS(t)
1−Pr

+
α(1−Pr)− ψS(0)

(1−Pr)
(t+1)2+αPr (16)

+∑
[1/α]
n=2

αnΓ(−α)nPn−1
r

(1−Pr)nΓ(−nα)

(
1

(t+1)1+nα − 1
(t+1)2+αPr

)
+ 2PrαΓ(−α)

(1−Pr)2(1−α)Γ(−α−1)

(
1

(t+1)2+α − 1
(t+1)2+αPr

)
.

Considering that the approximation is valid if the relative
error

|ψreso,S(t)−ψ reso,S(t))|
ψreso,S(t)

< 5%, we estimate that the domain of
validity is such that Pr +α ' 0.65. In Fig. 4, we plotted the
maximum of the relative error of the approximation Eq. (16)
in the domain t ∈ [1,100] with respect to the numerical in-
verse Laplace transform of Eq. (6). The heatmap is plotted
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FIG. 5. The observed waiting time PDF of rest events in the model
of a Lévy walk with rests [Fig. 1(a)] under the limitation of the
resolution and time window. The Lévy walk process is gener-
ated with an exponentially truncated power-law PDF of run times
ψrun(t) ∝

e−t/tr

(t+1)1+η and a power-law PDF of rest times ψrest(t) given
by Eq. (7). See the schematic of this process in Fig. 1(a). The sim-
ulation parameters are: (a) η = 0.1, tr = 20, α = 0.4, and r∆t = 1.
(b) η = 0.4, tr = 20, α = 0.24, and r∆t = 0.6. In both panels, the
symbols represents the simulations results. The solid line shows the
fit using our exact theory Eq. (17) while the dotted line is the fit us-
ing the approximated PDF, ψobs,S(t), from Eq. (B4). The dashed
line represents the fit using ψtime,S(t) [Eq. (11)] that incorporates the
effect of time window in the absence of the resolution limitation.

such that the color displayed is yellow when the relative er-
ror is > 5%. Therefore, all the remaining area corresponds to
the case that the approximation is considered valid. We note
that the approximation Eq. (16) consists of a sum of power-
law terms; therefore replacing each power-law by their cor-
responding expression Eq. (11), we obtain the final approx-
imated expression for the combined effects ψobs,app given in
the Appendix Eq. (B4).

Alternatively, we can obtain ψobs,S(t) by numerically eval-
uating the formal expression Eq. (15). For this, we rewrite the
integral expression in Eq. (15) as

ψobs,S(t) =
L −1[ψ̂reso,S](t)

N
(17)

×
(

L −1
[

ψ̂reso,S

s2

]
(T )−L −1

[
ψ̂reso,S

s2

]
(t)
)
.

We then use the Gaver-Stehfest algorithm [41] to numerically
evaluate the inverse Laplace transform in the above expres-
sion.

We test our theory with an example of Lévy walk with rests
schematically explained in Fig. 1(a), which will be our dy-
namic model in the next section for the application of the de-
veloped theories to an experimental system. The simulated
process and its event time PDFs can be understood as those of
a CTRW process with the Pr defined in Eq. (3). In Fig. 5, we
simulate a Lévy walk with rests where the run (ballistic phase)
event is generated with random sojourn times governed by a
truncated power-law and the rest event with random waiting
times governed by a power-law PDF. For further information,
see the Appendix A for the simulation detail. Here, we extract
the (power-law) rest time PDFs from the simulated trajectories
in the presence of the resolution and time window limits.

Shown in Fig. 5 are the observed rest time PDFs of the
Lévy walk process for two distinct parameter cases. To in-
fer the power-law exponent α we fit the simulation data with
the following three theoretical expressions (S = ”rest”): (i) the
expected PDF ψobs,S(t) based on the exact theory Eq. (17),
(ii) the approximated PDF ψobs,S(t) via Eq. (B4), and (iii)
ψtime,S(t) based on Eq. (11), which is the theoretical PDF that
only takes into account the effect of time window. The results
show that although the data seems to be fitted well with the
three expressions the fitting values greatly differ. It is demon-
strated that the exact expression (i) estimates the underlying
exponent successfully for the two data set [(a) & (b)] even
though the observation time window is not sufficiently long.
Using the approximated PDF ψobs,S(t), we can infer α in good
agreement with the value in the simulation when the resolu-
tion is small (Fig. (5b)). However, the estimation becomes bad
as the resolution is larger (Fig. (5a)). Finally, we confirm that
without incorporating the resolution effect the PDF ψtime,S(t)
fails the correct estimation of the power-law exponent.

III. AN EXPERIMENTAL APPLICATION: THE
TRANSPORT OF MRNP PARTICLES IN NEURONAL

CELLS

As an experimental application of our theory, we deter-
mined the statistics of the dynamics of β -actin mRNP com-
plexes transported along the dendrites of neurons by motor
proteins [Fig. 6(a)]. Previously, we have shown that the mo-
tion of β -actin mRNP complexes consists of an alternation
of rests and runs. See the kymograph of mRNP particles in
Fig. 6(b). We performed experiments following a similar pro-
tocol used in [10] except for the use of bicuculline for neu-
ronal stimulation. Briefly, we cultured hippocampal neurons
from the MCPxMBS mice [45], in which every single endoge-
nous β -actin mRNAs are labeled with multiple green fluores-
cent proteins. At 14–16 days in vitro, we stimulated the neu-
rons by treating them with 50 µM bicuculline for 20 min. At
40–60 min after the onset of the stimulation, we imaged the
movement of individual β -actin mRNP particles in proximal
dendrites (0–50 µm from the cell body) at 200 ms interval
over a one-minute time course. Being fluorescently labeled,
the individual mRNPs appear as bright spots in Fig. 6(a).
Kymographs of the time-lapse images were generated, from
which the position of fluorescently labeled mRNPs were de-
tected and registered, see Fig. 6(b).

As observed in the kymograph, the stochastic diffusion dy-
namics of single mRNP particles are described by the Lévy
walk with rests introduced in Fig. 1(c). The motion of mRNPs
is an alternating dynamics of the run and rest phases. Here,
the run is a ballistic movement with random sojourn times
while the rest is the stop state with waiting times governed
by a PDF distinct from the run’s. After the identification of
the trajectories {Xi, i = 0 . . .N} from the kymographs, we pro-
ceeded to the determination of their states. For this, we cal-
culated the velocity Xi+1−Xi

∆t where ∆t = 0.2 s was the time
interval of imaging. After averaging and filtering this velocity
profile, we determined the dynamic state of the mRNP par-



7

10−3

10−2

10−1

101

(c)

ψ
ob

s,
S
(t
)

t

Exp. data
Eq.(17) α ' 0.22
Eq.(14) α ' −0.2
Eq.(7) α ' 1.80

FIG. 6. (a) Live-cell image of a hippocampal neuron showing flu-
orescently labeled β -actin mRNPs. Images were taken every time
interval ∆t = 200 ms. (b) A typical kymograph for an ensemble of
mRNP particles spotted along an observed dendrite as in (a). The
single mRNP motion is composed of run and rest phases, which
are marked in blue and red colors, respectively. (c) Distribution of
the duration of rest events ψrest(t). Symbols: Experimental PDF.
Solid line: the best fit using our theory Eq. (17) with α ≈ 0.22.
Dashed line: the best fit using an ETPL Eq. (14) with α ≈ 0.2
and tb ≈ 23.1 s. The resolution has been estimated to be such that
Pr ' 0.45. Dashed-dotted line: the best fit using a simple power-law
Eq. (7) with α ≈ 1.80 and τ0 ≈ 12.27. The power-law function was
normalized to unity on the range of the plot.

ticle by applying the following criterion: if the velocity was
< vthreshold = 0.3 µm/s then the particle was considered in a
rest state, if not it was considered in a run.

We now focus on the PDF ψrest of the waiting time
of the rest event. For the run event, it was shown that
the sojourn time PDF was not of a power-law [10], which
was explained well by an exponentially truncated power-
law ψrun(t) ∼ e−t/tr

(t+1)1+η with η = 0.52 and tr = 12.5 s. Us-
ing this information, we calculated the probability Pr that a
run is too short to be detected. Estimating that the reso-
lution is about nmin = 5 data points or about 1 s, it gives
Pr =

∫ nmin∆t
0 ψrun(t) dt = 1− Γ(−η ,(nmin∆t+1)/tr)

Γ(−η ,1/tr)
' 0.45.

In Fig. 6 we plot the rest time PDF from our experiment.
We infer the power-law exponent α of the PDF from the data
with ψobs,S(t) that takes into account the combined effects
of the resolution and time window [Eq. (17)]. For compar-
ison, we also measure the best fit values of α with power-
law PDFs, Eq. (14) (exponentially truncated power-law) and
Eq. (7) (power-law). We find that the fit with the single power-

law results in α ≈ 1.8, while the fit with the exponentially
truncated power-law (ETPL) gives α ≈ −0.2 and the trunca-
tion characteristic time tb = 23.1. Although the experimental
data are explained well, at least visually, by both fit curves, the
two reference methods give inconsistent values for α . More-
over, neither of them turns out to be physically correct in that
the β -actin mRNPs motion follows an aged Lévy walk from
our previous study [10]. Namely, the Lévy walk with rest
events governed by the above ETPL or by a power-law PDF
with α(≈ 1.8) of > 1 cannot age due to the finite first mo-
ment of the rest times. Therefore, the fitted exponents α us-
ing the two reference power-law PDFs have to be rejected for
dynamical reasons. Contrary to these empirical approaches,
we obtain α ≈ 0.22 from our theory based on ψobs,S(t). The
estimated value not only explains well the data over the en-
tire time window (red curve in Fig. 6) but also falls within
0 < α < 1 to be compatible with the reported aging trans-
port dynamics of the β -actin mRNP particle. We note that
α ≈ 0.22 is smaller than the value α ≈ 0.32 obtained in the
case of non-stimulated neurons experiment [10].

To sum up, in this work, we have developed a general
framework to properly infer the distribution of event times
when the data is subjected to experimental constraints:
time-spatial resolution and time window. We have derived
the observed distribution for both constraints taken separately
Eqs. (6) & (11) and combined them to obtain the main result
of the paper Eq. (17). We have applied this theory to a
practical example and showed how to use our expressions
to obtain the correct exponent of a power-law PDF. It is
noteworthy to mention that while we have presented the
experimental constraints affecting temporal observables, e.g.
the distribution of the duration of the events, it is immediately
applicable for spatial variables. Also, even though we have
focused on power-law distributions throughout this paper, the
formal expressions Eqs. (6), (10), and (17) are applicable for
any distributions.
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Appendix A: Simulation Details

In Fig. 5, we have simulated the process of a Lévy walk
with rests such that the rest time PDF is ψrest(t)= α

(t+1)1+α and

the run time PDF is ψrun(t)∼ e−t/tr

(t+1)1+η . It consists of an alter-
nation of run and rest whose respective random durations are
drawn from the corresponding PDFs. At time t = 0, all trajec-
tories start with a run. The runs are set to be ballistic motions
at a constant velocity v = 1. The random times governed by
the two PDFs are generated using the inverse transform sam-
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FIG. S1. Example of sampled trajectories. During the sampling, if a
duration tS,S′ drawn from the corresponding distributions is smaller
than r∆t, the change of event will not appear in the recorded trajec-
tory. a) the trajectory created before taking care of time window or
resolution. b) the observed or the recorded trajectory.

pling method [46]. We simulated N = 105 trajectories consist-
ing of points spaced by ∆t = 0.2 within the observation time
window [τa, τa +T ] where τa = 100 and T = 60.

Once a trajectory is simulated, it is recorded with a given
resolution parameter r in the following way. Let us assume
that a Lévy walk with rests is simulated with a variation of
event times as schematically illustrated in Fig. S1(a). For ev-
ery event in S and S ′ states, if tevent > r∆t, this state is rec-
ognized to occur and the event is recorded with a duration of
tevent. However, if tevent < r∆t (e.g., in S state), this event fails
to be detected. Then, the event (in S state) is recorded as a
part of the previous event (in S ′ state) and, accordingly, the
latter state has an increased duration time by tevent. We repeat
the same protocol for the next events, obtaining the recorded
trajectory as in Fig. S1(b).

Appendix B: Derivation of Eq. (16)

The expression of Eq. (16) is obtained phenomenologically
by matching the initial behavior and the asymptotic behavior
of Eq. (6). The series expansion of Eq. (6) gives the large-time
behavior

ψasympt(t)' 1
1−Pr

(
ψS(t)+∑

[1/α]
n=2

αnΓ(−α)nPn−1
r

(1−Pr)nΓ(−nα)
1

(t+1)1+nα

+ 2PrαΓ(−α)
(1−Pr)2(1−α)Γ(−α−1)

1
(t+1)2+α

)
. (B1)

The asymptotic limit of Eq. (6) gives the t→ 0 limit

ψ init(t) = α(1−Pr). (B2)

We construct the final expression by requiring that it satisfies
both limits and by imposing that it only contains power-law
terms

ψ reso,S(t) = ψasympt(t)−
ψasympt(0)
(t +1)2+αPr

+
ψ init(t)

(t +1)2+αPr
, (B3)

which gives Eq. (16).
To obtain the expression for the combined effects ψobs,S(t),

we replace every simple power-law that appears in Eq. (6) by
the expression for the time window effect Eq. (10)

ψobs,S(t)' ψS(t)
1−Pr

[
T − t + (T+1)1−α−(t+1)1−α

α−1

]
+

α(1−Pr)− ψS(0)
(1−Pr)

(t+1)2+αPr

[
T − t + (T+1)−αPr−(t+1)−αPr

αPr

]
(B4)

+∑
[1/α]
n=2

αnΓ(−α)nPn−1
r

(1−Pr)nΓ(−nα)
1

(t+1)1+nα

[
T − t + (T+1)1−nα−(t+1)1−nα

nα−1

]
−∑

[1/α]
n=2

αnΓ(−α)nPn−1
r

(1−Pr)nΓ(−nα)
1

(t+1)2+αPr

[
T − t + (T+1)−αPr−(t+1)−αPr

αPr

]
+ 2PrαΓ(−α)

(1−Pr)2(1−α)Γ(−α−1)
1

(t+1)2+α

[
T − t + (T+1)−α−(t+1)−α

α

]
− 2PrαΓ(−α)

(1−Pr)2(1−α)Γ(−α−1)
1

(t+1)2+αPr

[
T − t + (T+1)−αPr−(t+1)−αPr

αPr

]
.
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