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In this work we study the effects of nonadiabatic external driving on the thermodynamics of an
electronic system coupled to two electronic leads and to a phonon mode, with and without damping.
In the limit of slow driving, we establish nonadiabatic corrections to quantum thermodynamic
quantities. In particular, we study the first-order correction to the electronic population, charge-
current, and vibrational excitation using a perturbative expansion, and compare the results to the
numerically exact hierarchical equations of motion (HEOM) approach. Furthermore, the HEOM
analysis spans both the weak and strong system-bath coupling regime and the slow and fast driving
limits. We show that the electronic friction and the nonadiabatic corrections to the charge-current
provide a clear indicator for the Franck-Condon effect and for non-resonant tunneling processes. We
also discuss the validity of the approximate quantum master equation approach and the benefits of
using HEOM to study quantum thermodynamics out of equilibrium.

I. INTRODUCTION

The rapidly growing field of single-molecule/atomic
electronics1–5 has implications for the development of
thermoelectric devices6–8, molecular diodes9,10, optoelec-
tronic molecular switches11–13, molecular sensors14,15,
computing devices and more. It further enables the study
of thermodynamic properties in the quantum regime16,17,
including entropy production, and energy and charge
transport on the atomic scale. Miniaturizing electronic
devices reveals the significance of physical phenomena
that are absent in the thermodynamic limit and bulk
materials such as the Coulomb and the Franck-Condon
blockade, quantum interference, and quantum correla-
tions.

Theoretical models exploring these effects and treat-
ing strong system-lead couplings with stationary Hamil-
tonians have been studied extensively in the litera-
ture using different approaches including numerically
exact methods such as the multilayer multiconfigura-
tion time-dependent Hartree approach18–20, path inte-
gral and quantum Monte Carlo methods21–24, the hier-
archical equations of motion (HEOM)25–29 or approxi-
mate approaches such as the numerical renormalization
group30–35, nonequilibrium Green’s function36–40, scat-
tering theory41–43, and mapping techniques44–49. Yet the
effects of nonadiabatic driving on the transport proper-
ties have received much less attention, mainly because of
the difficulties of solving such complex dynamics. And
this is despite the fact that the ultimate goal of the
field is to control and manipulate microelectronic devices
to perform a certain task. The control itself is typi-
cally achieved by applying external fields to the system
that can be expressed theoretically using time dependent

Hamiltonians50–59 .

One of the main characteristics of nonadiabatic driv-
ing of an open quantum system is electronic43,60–62 and
quantum63–65 friction. These phenomena are directly re-
lated to the dissipation into the environment of the ex-
citations and coherence induced by the external driv-
ing. The environment itself can be composed of sev-
eral leads with different temperatures and/or chemical
potentials that impose nonequilibrium dynamics on the
system, which manifest as energy, charge and entropy
flows in and out of the system. In Ref. 66 we estab-
lished a thermodynamic description capturing the effects
of finite time driving on quantum impurity models out
of equilibrium. We employed a perturbative expansion
around the adiabatic, slow-driving, limit and explored
the corrections to thermodynamic properties such as the
entropy production and energy flows. The analysis was
applied to the driven Anderson impurity model that ex-
hibits Coulomb-blockade signatures in nonadiabatic cor-
rection of thermodynamic quantities.

In this work, we present a comprehensive study explor-
ing the effects of electron-phonons/photons couplings on
the dynamics and thermodynamics of a driven resonant-
level-model. To unravel the phonons’ contribution, we
first study the driven resonant-level-model coupled to two
electric leads in and out of equilibrium. We then add,
layer by layer, the contribution of a single phonon and
finally assume that this phonon is further coupled to a
phononic thermal bath. The analysis is based both on the
perturbation expansion introduced in Ref. 66 combined
with a quantum master equation (QME) approach67, and
on the numerically exact HEOM approach. The lat-
ter allows to expand the study to the strong system-
environment coupling regime and to fast driving – much
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faster than the perturbation theory is valid for. We note
in passing that an approximate QME can be applied in
certain cases to fast driving as well. It requires deriving a
time dependent master equation68 or using perturbative
expansion of the dissipative part of the QME69.
The comparison between the results obtained from the

QME and the HEOM reveals the role of co-tunneling pro-
cesses in electronic friction with and without the presence
of electron-phonon couplings. This comparison also helps
us to understand to what extend the approximate QME
approach is reliable when the open system is externally
driven. We further show that nonadiabatic correction
to thermodynamic quantities provides signatures to non-
resonant processes in the resonant-level-model and to the
Franck-Condone principle when phonons are included in
the model.
The paper is organized as follows. In Section II,

we briefly review quantum thermodynamic properties of
open quantum system in the presence of external driving
fields. In Sec. III, we introduce our model with electron-
phonon couplings and the HEOM approach as well as the
QME technique. In Sec. IV, we analyze the results with
focus on the nonadiabatic limit. Finally, we conclude in
Sec. V.

II. QUANTUM THERMODYNAMIC
PROPERTIES

Here, we briefly review quantum thermodynamics for
a general out of equilibrium case. The total system con-
sists of a dot, left and right baths, and the interactions
between them,

H = Hs +
∑

α=L,R

(Hα +HIα). (1)

Without driving, we assume that the total system reaches
a steady state

ρss = e−β̄(H−Y )/Ω, (2)

where Ω = tr(e−β̄(H−Y )) is the normalization factor with
the reduced inverse temperature β̄ and Y is the particle
(or heat) transport operator.70 To include the driving let
us consider that the Hamiltonian depends on a set of
parameters Ri, which vary slowly as a function of time.
With the steady state density operator, we can define the
thermodynamic properties, such as work rate and current
in the adiabatic limit:66

Ẇ (1) =
∑

i

Ṙitr(∂iHρss), (3)

I(0)α = tr(−i[H,Nα]ρss), (4)

where we denote ∂
∂Ri

≡ ∂i, Ṙi is the driving speed, and
Nα is the number operator for the α = L,R leads. We
have used (n) to denote nth order in driving speed. In case
only the dot Hamiltonian depends on external parameter

and the dot only consists of one level (Hs = ǫdd
†d), we

have

Ẇ (1) = ǫ̇dN
(0), (5)

N (0) = tr(d†dρss). (6)

Here N (0) is the dot population in the adiabatic limit
and ǫ̇d is the driving speed of the dot level energy (see
also Sec. III).
Now we consider the case where we have finite driving

speeds. The equation of motion for the density reads

∂tρ+
∑

i

Ṙi∂iρ = −i[H, ρ]. (7)

We further expand the density into a series in the power
of driving speed,

ρ = ρ(0) + ρ(1) + ρ(2) + · · · . (8)

With the steady state ρ(0) = ρss, we can solve for the
first order nonadiabatic correction to the density:

ρ(1) =

∫ ∞

0

e−iHt
∑

j

Ṙj∂jρsse
iHtdt. (9)

Here, we have used the Markovian approximation that
is consistent with the adiabatic limit, i.e. the driving is
much slower than the relaxation of the system.66,71 Using
the first order correction to the state, we can calculate
the nonadiabatic correction to the thermodynamic quan-
tities:

Ẇ (2) =
∑

ij

ṘiṘj

∫ ∞

0

tr(e−iHt∂jρsse
iHt∂iH)dt, (10)

I(1)α = tr(−i[H,Nα]ρ
(1)). (11)

The nonadiabatic correction Ẇ (2) is the dissipative work,
and we can further introduce a frictional tensor γij , such

that Ẇ (2) =
∑

ij ṘiγijṘj .
Note that the analysis above is general. We have ap-

plied such analysis to the non-interacting electronic sys-
tems to obtain analytical results.66,71 For the interacting
systems, analytical results are not available. Below we
will apply the HEOM approach to analyze quantum ther-
modynamic properties when including electron-phonon
interactions.

III. MODEL AND METHODS

For our scenario of vibrationally coupled and exter-
nally driven electron transport through a nanostructure
(see Fig. 1), the Hamiltonian is given by (using units
where ~ = 1)

H =ǫd(t)d
†d+ λ(a† + a)d†d+Ωa†a (12a)

+
∑

kα

νkα(c
†
kαd+ d†ckα) +

∑

kα

ǫkαc
†
kαckα (12b)

+
∑

j

ξj

(

b†j + bj

)

(

a† + a
)

+
∑

j

ωjb
†
jbj . (12c)
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FIG. 1. Sketch of the model consisting of one driven electronic
state interacting with a single vibrational mode coupled to
two electronic leads and one vibrational heat bath.

Here, the system part of the Hamiltonian consists of
an electronic state with an externally controlled energy
ǫd(t), a harmonic mode with frequency Ω and an adi-
abatic coupling of the electronic state to the harmonic
mode with a coupling strength λ. The electronic state
and the harmonic mode are addressed by their creation
(annihilation) operator d†(d) and a†(a). We further as-
sume that we have linear driving for the electronic state
energy ǫd(t) = ǫ0+vt, where v denotes the driving veloc-
ity. On the one hand, the environment includes two (left
and right) macroscopic electron reservoirs, where the k-
th electronic state in the electron reservoir α ∈ {L,R}
with an energy ǫkα is addressed by its creation (annihila-

tion) operator c†kα(ckα) and the corresponding coupling
to the system is specified by νkα. Via the chemical po-
tentials of the electron reservoirs µα, we can apply bias
voltages Φ = µL−µR to the system. On the other hand,
the environment also includes a microscopic heat bath,
where the j-th harmonic mode with a frequency ωj has

the creation (annihilation) operator b†j (bj) and the cou-
pling strengths ξj . The entire environment is considered
to have a constant temperature T .
The influence of the environments onto the system is

further characterized by their respective spectral densi-
ties

Γα(ǫ) =2π
∑

k

|νkα|
2δ(ǫ− ǫkα) = Γα

D2
α

D2
α + (ǫ − µα)2

,

(13a)

Λ(ω) =π
∑

j

|ξj |
2δ(ω − ωj) = Λ

ω

Ω

ω2
c

ω2
c + ω2

. (13b)

Here, Γα denotes the coupling strengths of the elec-

tron reservoirs and Dα the bandwidth of the Lorentzian
shaped spectral density. In the following, we effec-
tively use the wide band approximation by the choice
of D = 30 eV and assume symmetrically coupled reser-
voirs with ΓL = ΓR = Γ

2 . In addition, the spectral den-
sity of the heat bath is Ohmic with a Lorentzian cut-off
with the cut-off frequency ωc and a coupling strength Λ.
Throughout this work, we choose ωc = Ω.
The isolated system can be diagonalized using the so-

called small Polaron transformation72,73, leading to the

renormalized electronic state energy of ǫd(t) = ǫd(t)−
λ2

Ω .
Below, we will apply numerical exact solution from

HEOM to study the thermodynamics for such a Hamil-
tonian.

A. HEOM with electron-phonon couplings as well
as time dependent driving

In the following, we present the most important steps
of the derivation of the numerically exact HEOM ap-
proach for the model under investigation. Thereby, we
closely follow Refs. 26 and 74. More detailed derivations
are presented in Refs. 28 and 75.
The derivation of the HEOM is based on the system-

environment partitioning (see Eq. (12)). The central
quantity of the approach is the reduced density matrix
ρ(t) of the system, where the bath degrees of freedom
are traced out. The influence of the environment on the
system dynamics is taken into account by the Feynman-
Vernon influence functional. For our model Hamiltonian,
all information about system-environment coupling is en-
coded in the two-time correlation functions of the free
environments

C̃(t− τ) =
∑

j

|ξj |
2
〈

b†j(t)bj(τ) + bj(t)b
†
j(τ)

〉

, (14a)

Cs
α(t− τ) =

∑

k

|νkα|
2
〈

cskα(t)c
s̄
kα(τ)

〉

, (14b)

which are determined by the respective spectral densities

C̃(t) =

∫ ∞

0

dω
Λ(ω)

π

[

coth

(

βω

2

)

cos(ωt)− i sin(ωt)

]

,

(15)

Cs
α(t) =

1

2π

∫ ∞

−∞

dǫ esiǫt/~Γα(ǫ)f [s(ǫ− µα)]. (16)

Here, f(ǫ) = (exp (βǫ) + 1)−1 denotes the Fermi distri-
bution and β = 1

T the inverse temperature. Further-

more, the notations c+ = c†, c− = c and s̄ = −s
are employed. To derive a closed set of equations of
motion within the HEOM method, all correlation func-
tions are expressed by sums over exponentials.28 To this
end, the Fermi as well as the Bose distribution are
represented by sum-over-poles schemes employing Padé
decompositions.76–78 Thus, the correlation functions of
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the free baths are given by C̃(t) = Λ
∑pmax

p=0 η̃pe
−γ̃pt re-

spectively Cs
α(t) = Γα

∑qmax

q=0 ηα,qe
−γα,s,qt. Therefore one

obtains the HEOM in the form of

∂

∂t
ρ
(m|n)
g |h =−

(

iLS +

m
∑

l=1

γ̃gl +

n
∑

l=1

γhl

)

ρ
(m|n)
g |h

−
∑

hx

Ahx
ρ
(m|n+1)

g |h+
x

−

n
∑

l=1

(−1)lChl
ρ
(m|n−1)

g |h−

l

+
∑

gx

Bgxρ
(m+1|n)

g
+
x |h

+
m
∑

l=1

Dglρ
(m−1|n)

g
−

l
|h

, (17)

with the multi-indices g = (p) and h = (α, s, q),
the notation for the multi-index vectors v = v1···vp,
v+
x = v1···vpvx, and v−

l = v1···vl−1vl+1···vp, and LSO =
[HS, O]. The superoperators Ah, Ch, Bg and Dg read

Ahρ
(m|n)
g |h =Γαh

(

dshρ
(m|n)
g |h + (−1)(n)ρ

(m|n)
g |h dsh

)

, (18a)

Bgρ
(m|n)
g |h =Λ

[

(

a† + a
)

, ρ
(m|n)
g|h

]

, (18b)

Chρ
(m|n)
g |h =(−1)nηhd

s̄hρ
(m|n)
g |h − η∗h̄ρ

(m|n)
g |h ds̄h , (18c)

Dgρ
(m|n)
g |h = η̃g

(

a† + a
)

ρ
(m|n)
g |h − η̃∗gρ

(m|n)
g |h

(

a† + a
)

.

(18d)

Due to system-environment interaction, these superoper-
ators couple the different levels of the hierachy.
Here, ρ(0) ≡ ρ represents the reduced density matrix

and ρ
(m|n)
g |h (n+m > 0) denote auxiliary density matrices,

which describe environment-related observables such as,
e.g., the charge-current

Iα = −e

〈

dNα

dt

〉

= eΓα

∑

hα

shTr
{

ds̄hα ρ
(0|1)
|hα

}

. (19)

The importance of the auxiliary density operators to
the system dynamics is estimated by assigning them the
importance values,29,74

I
(

ρ
(m|n)
g |h

)

=

∣

∣

∣

∣

∣

∣

∣

n
∏

l=1

Γ
∑

a∈{1..l}

Re [γha
]

ηhl

Re [γhl
]

∣

∣

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

∣

∣

m
∏

l=1

Λ
∑

a∈{1..l}

Re [γga ]

ηgl
Re [γgl ]

∣

∣

∣

∣

∣

∣

∣

. (20)

In the calculations presented in this paper, the results are
quantitatively converged for truncation of the hierarchy
at level m = 2 and n = 2, neglecting auxiliary density
operators having an importance value smaller 10−9.

B. Nonadiabatic corrections from HEOM
calculations

In order to calculate nonadiabatic corrections to phys-
ical properties of the system, such as the populations and

the currents, using HEOM calculations, and to compare
it to linear response based on QME calculations we per-
former two types of calculations. First, we prepare the
system in a stationary state, where the electronic state
energy is much lower than both chemical potentials of
the leads. Starting from this stationary state, we in-
crease the energy with a constant velocity and track the
time-evolution of the system ρ(t). Thereby, we ensure
that the time-evolution in the energy range of interest
is independent of the initial electronic state energy. Sec-
ond, we calculate the system steady states ρss(ǫd) for the
electronic state energies in our range of interest.
Using these two calculations we quantify the nonadi-

abatic correction of a system observable 〈O〉 from the
HEOM calculations by

δ 〈O〉 =
〈O〉 (t)− 〈O〉ss

v
. (21)

Here, 〈O〉 (t) = Tr {Oρ(t)} is the expectation value of the
driven system, and the steady state expectation value
〈O〉ss = Tr {Oρss(ǫd(t))} is evaluated at the instanta-
neous energy ǫd(t) of the driven system. Thereby, the
nonadiabatic correction δ 〈O〉 from the HEOM calcula-
tions includes corrections of first and higher order in the
driving velocity.
In this study we will focus on the electronic friction

represented by the nonadiabatic correction of the elec-
tronic population

〈

d†d
〉

γ = δ
〈

d†d
〉

=

〈

d†d
〉

(t)−
〈

d†d
〉

ss

v
(22)

as well as the nonadiabatic correction to the current

δI =
I(t)− Iss

v
, (23)

and the corrections to the vibrational excitation δ
〈

a†a
〉

that can be calculated in a similar manner.

C. Quantum master equation analysis

In the limit of weak system-leads couplings, a reduced
description of the system can be achieved by solving the
quantum master equation:

∂tρs = −ǫ̇d∂ǫdρs − i[Hs, ρs]−Dρs. (24)

Here, D = DL +DR is a super-operator representing the
(left and right) system-lead couplings and is responsible
for dissipation and decoherence processes. In the weak
coupling limit, D can be expressed in Lindblad form79.
Below, we denote L(·) = i[Hs, ·] + D(·). Similar to the
analysis in Sec. II, we can expand the system density ma-
trix into the power of the driving speed. When matching
the order from both sides of the above equation, we ob-
tain

∂tρ
(0)
s = −Lρ(0)s , (25)

∂tρ
(1)
s = −ǫ̇d∂ǫdρ

(0)
s − Lρ(1)s , (26)
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where ρ
(0)
s is the steady state solution of the system den-

sity in the adiabatic limit, which can be obtained by solv-

ing for the non trivial solution of Lρ
(0)
s = 0. With ρ

(0)
s

at hand, we can proceed to solve for the nonadiabatic
corrections,

ρ(1)s = ǫ̇d

∫ t

0

e−Lt′∂ǫdρ
(0)
s dt′. (27)

In the limit where the driving is slower than the timescale
for the system response, we can invoke the Markovian
approximation for the first order correction to the density
matrix:

ρ(1)s = ǫ̇d

∫ ∞

0

e−Lt∂ǫdρ
(0)
s dt = −ǫ̇dL

−1∂ǫdρ
(0)
s . (28)

In the above equation, since ∂ǫdρ
(0)
s is traceless, L−1 can

be acted on ∂ǫdρ
(0)
s properly. In the weak coupling limit,

the population and electron current can be express using
the system density operator alone,

N = Tr(d†dρs), (29)

Iα = tr(d†dDαρs). (30)

Again, Dα is a super-operator representing the couplings
between the α = {L,R} lead and the system. Replacing

ρs by ρ
(0)
s will give us the nonadiabatic correction to these

quantities. The friction γ is related to the nonadiabatic
correction to the population via

N (1) = ǫ̇dTr(d
†dL−1∂xρ

(0)
s ) = ǫ̇dγ, (31)

and, similarly, the first order correction to the current is
given by

I(1)α = tr(d†dDαρ
(1)
s ). (32)

Below, we compare our weak coupling analytical results
with the numerical results from the HEOM calculations
and focus on the friction, the vibrational excitation, and
the charge current.

IV. RESULTS

In the following, we discuss the response of electronic-
vibrationally coupled systems under a linear drive of the
electronic system energy. In Sec. IVA and IVB, we focus
on the system with and without electronic-vibrational
interaction at equilibrium i.e. we do not apply any bias
voltage. We continue to investigate the system response
to the linear drive for situations in which a bias voltage
is applied to the system in Sec. IVC and IVD. Next, in
Sec. IVE, we study the effect of environmental damping
of the vibrational mode on the system response. Finally,
we discuss the response of the system for fast driving in
which the linear response treatment is no longer valid,
Sec. IVF.

0

0.5

1

0

0.1

0.2

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

〈

d
†
d
〉

QME v= Γ
2

125
v=Γ

2

25
v=Γ

2

5

δ
〈

d
†
d
〉

Γ
2

ǫd(t) [eV]

FIG. 2. Electronic population
〈

d†d
〉

and the correspond-
ing friction for a non-interacting system without bias voltage
and for different driving velocities v as a function of the time-
dependent energy ǫd(t) = ǫ0 + vt. When the electronic state
energy passes by the chemical potentials of the electron reser-
voirs, i.e. ǫd(t) = 0, we find a drop in the electronic population
and a peak in the corresponding friction. Further parameters
are kBT = Γ = 0.025 eV.

A. Zero bias-voltage (equilibrium):
resonant-level-model

We begin our investigation with the simple resonant-
level-model. In this case, no bias-voltage is applied to
the system and no electronic-vibrational couplings are
considered, i.e. Φ = 0 = λ

Ω . As there is no current
or electronically induced vibrational excitation, we focus
on the electronic population and driving induced friction
shown in Fig. 2. Note that for the model studied here,
the population is related to the work rate by a factor of
ǫ̇d (here ǫ̇d = v):

Ẇ =
∑

i

Ṙitr(∂iHρ) = ǫ̇dtr(d
†dρ) = ǫ̇d〈d

†d〉. (33)

Consequently, the nonadiabatic work rate correction is
related to the electronic friction by the following

Ẇ (2) = ǫ̇2dγ = ǫ̇2dδ〈d
†d〉, (34)

see also Eq. (22). In the following we focus on the elec-
tronic population, but keep in mind its simple relation
with the work rate and its nonadiabatic correction.
When the electronic state energy is significantly below

the chemical potentials, the electronic population is 1. As
the energy approaches and passes the value of the chemi-
cal potentials of the leads, the population drops down to
0. Accordingly, we observe a peak in the electronic fric-
tion centered at the position of the chemical potentials,
i.e. ǫd(t) = µL = µR = 0.
The drop of the population and the friction peak

are broadened by the temperature T and by the
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environment-system coupling Γ. The coupling induced
broadening is caused by co-tunneling processes, which are
included in the HEOM results but disregarded in the an-
alytical weak coupling result. Since the friction obtained
from QME or HEOM do barely show any differences even
though Γ

kBT =1, we conclude that the co-tunneling pro-
cesses are not of great importance for the friction in the
resonant-level-model case. This is in contrast to what
seems to happen in the presence of phonon coupling as
discussed below.
The chosen finite driving velocities in the HEOM cal-

culations lead to a slightly visible delay in the electronic
population drop. For faster driving velocities, the delay
becomes more pronounced and leads to a shift of the fric-
tion peak position in the direction of the driving. This
friction peak shift is a nonadiabatic effect of higher order
in the driving velocity.

0

0.5

1
a)

0

1

2.25

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

〈

d
†
d
〉
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2

125
v=Γ

2

25
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2

5

〈

a
†
a
〉

ǫd(t) [eV]

0

0.9

1.8
b)

0

1.8

3.6

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

δ
〈

d
†
d
〉

Γ
2

QME v= Γ
2

125
v=Γ

2

25
v=Γ

2

5

δ
〈

a
†
a
〉

Γ
2

ǫd(t) [eV]

FIG. 3. a) The system response (Electronic population
〈

d†d
〉

and vibrational excitation
〈

a†a
〉

) and b) the corre-
sponding nonadiabatic correction induced by drives with dif-
ferent velocities v as a function of the time-dependent energy
ǫd(t) = ǫ0 + vt. The parameters are Φ = 0V, Ω = 0.2 eV,
λ
Ω

= 1.5, kBT = 0.025 eV, Γ = 0.025 eV, and Λ = 0.

B. Zero bias voltage (equilibrium): Influence of
electron-phonon coupling

Next, we consider a system with strong electronic-
vibrational interaction without applying a bias voltage,
i.e. Φ = 0 and λ

Ω = 1.5. In Fig. 3 we depict the system re-
sponse to linear driving of the electronic state energy and
the corresponding nonadiabatic corrections for different
driving velocities. Here, we also plot the vibrational ex-
citation, which is simply linked to the vibrational energy:

Ev = ~Ω〈a†a〉. (35)

Therefore, the nonadiabatic contribution to the vibra-
tional energy due to driving of ǫd is directly related to
the nonadiabatic correction to the vibrational excitation:

E(1)
v = ǫ̇d~Ωδ〈a

†a〉. (36)

In the electronic population we observe the transi-
tion from the occupied state to the unoccupied state as
the polaron shifted ground state energy of the system,

ǫd(t) = ǫ0−
λ2

Ω +vt, passes the chemical potentials. Apart
from the clear visibility of the delay with faster driving
velocity, the drop has a very similar form as in the non-
interacting case (compare with Fig. 2).
Due to the electronic-vibrational coupling, the change

in the electronic population affects the vibrational equi-
librium position and the vibrational excitation. As shown
in Fig. 3, the vibrational excitation drops in the same

way as the electronic population from
〈

a†a
〉

= λ2

Ω2 to
〈

a†a
〉

= 0, which can be explained with in the small po-

laron picture.80–84 For the electronically unoccupied sys-
tem the vibrational mode is not affected by the electronic-
vibrational coupling. Hence, the unoccupied system has
a vibrational equilibrium position

〈

a† + a
〉

= 0, which
allows for a vanishing vibrational excitation. On the
other hand, for the electronically occupied system, the
electron forms a polaron together with vibrational ex-
citation which leads to a displaced equilibrium position
〈

a† + a
〉

= 2λ
Ω , where the minimal vibrational excita-

tion is
〈

a†a
〉

= λ2

Ω2 . Since the electronic state energy
enforces the transition from electronically occupied to
electronically unoccupied system, the vibrational exci-
tation exhibits an according transition. At faster driving
velocities, the delay in the dynamics of the vibrational
excitation is similar to that in the electronic population.
In contrast to the non-interacting case of Fig. 2, in

Fig. 3, the comparison of the electronic populations and
the vibrational excitations for different driving velocities

shows an obvious delay already for v = Γ2

5 . This reflects
that the population dynamics is actually slower than in-
dicated by Γ. The effective weakening of the electronic
system-environment coupling has been discussed in de-
tail by Eidelstein et al.

85 and is approximately described

by Γeff ≈ Γe−
λ2

Ω2 ≈ 0.1Γ for our parameters.
Concentrating on the HEOM results in Fig 3, the

nonadiabatic corrections for the electronic population
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and vibrational excitation exhibit a similar behaviour.
They are both peaked around the chemical potential and
shifted in the driving direction with increasing driving
velocity. We also note that the peak of the nonadia-
batic correction is reduced at higher driving velocity (see
the doted vs. the dashed and solid lines), however, this
artifact is a result of the definition in Eq. (21) of the
nonadiabatic correction which is divided by the driving
velocity. This definition is inspired by a perturbation
theory assuming a slow driving velocity and, as such, it
fails to describe the nonadiabatic corrections induced by
fast driving velocities.
Comparing the height of the peaks in Fig. 3 and Fig. 2

we observe a factor of ∼10 increase in the latter. This
enhancement of the nonadiabatic correction is induced
by the effective reduction of the coupling strength of the
system to the electronic environment. As a result, the
time-scale for changes in the electronic population is pro-
longed.
In contrast to the resonant-level-model of Sec. IVA,

we observe a significant difference in the nonadiabatic
corrections obtained by the QME and HEOM approach.
The QME peaks are higher than the HEOM peaks. Since
such deviations are not visible in the non-interacting case
and the QME approach does not capture co-tunneling
processes, we conclude that the co-tunneling processes
weaken the reduction of the effective electronic environ-
mental coupling strengths.

C. Non-vanishing bias voltage (nonequilibrium):
Resonant-level-model

In this section we investigate the electric friction and
the nonadiabatic correction to the charge-current in the
resonant-level-model where no electronic-vibrational cou-
pling is present, however, the system is held out-of-
equilibrium by applying a bias voltage symmetrically ,
i.e. Φ = 2µL = −2µR. These quantities are plotted in
Fig. 4. Since the two leads have different chemical po-
tentials, the driven energy of the system is crossing their
values one after the other, and as a result, the electronic
population drops in two steps and the current is maxi-
mal between these two values, µR . ǫd(t) . µL. In this
regime there are two competing processes of populating
and depopulating the system by the two leads.
For the nonadiabatic correction of the electronic popu-

lation, we find two positive peaks centered at the chemi-
cal potentials of the leads. In this case, we observe a good
agreement between the results obtained by the HEOM
and QME. Yet, for the charge-current correction this is
not the case, and we will explain the origin of this differ-
ence in more detail later.
The nonadiabatic correction to the charge-current in

the HEOM approach is also peaked at the chemical po-
tentials of the leads. However, the two main peaks have
opposite signs. Having a closer look at the peak struc-
ture, we notice that both main peaks are accompanied by
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FIG. 4. a) The non-vanishing bias voltage system response
(Electronic population

〈

d†d
〉

and symmetrized charge-current

I = IL−IR
2

) and b) the corresponding nonadiabatic correction
induced by drives with different velocities as a function of the
time-dependent energy ǫd(t) = ǫ0 + vt. The parameters are
Φ = 0.8V and kBT = Γ = 0.025 eV.

smaller peaks in opposite directions. This peak structure
looks similar to contributions to the differential conduc-
tance at the resonance due to co-tunneling.86 However,
we find that these secondary peaks are also present in
first tier truncated HEOM calculations, which include
only sequential tunneling processes. Furthermore, they
are still occurring for a weak system-environment cou-
pling of Γ

kBT = 1
25 (see appendix A). Therefore, our fo-

cus for explaining these smaller peaks is on sequential
tunneling processes . Without driving, the system obeys
a time-translational and -reversal symmetry. Due to the
time-translational symmetry, only resonant processes are
determining the stationary state. By the linear energy
shift both symmetries are broken and non-resonant pro-
cesses are taking part in the dynamics.

Non-resonant processes are especially important near
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FIG. 5. Nonadiabatic corrections to different charge-currents
for the non-vanashing bias voltage system. The parameters
are Φ = 0.8V and kBT = Γ = 0.025 eV.

the (de-)activation of resonant processes. In the fol-
lowing, we concentrate on the first chemical potential
crossover (first peak of δI from the left in Fig. 5) that rep-
resents an increase in the current. Before resonant pro-
cesses become active, non-resonant processes contribute
and increase the current. Thereby, these processes lead to
the increase of the nonadiabatic correction before the res-
onant processes are dominating and we observe the main
minimum. After the resonant processes are activated,
we again observe a current increase beyond the station-
ary value that is caused by the coherent superposition
of non-resonant processes. For a more extreme situation
of a sudden voltage change, these processes are known
to induce the so-called ”current ringing”.87,88 The QME
approach does not show any nonadiabatic corrections to
the charge-current. This suggest that our QME is not
only excluding higher-order tunneling processes, but also
ignores the contribution of non-resonant processes.

Since the symmetrized charge-current might not be ac-
cessible for experimentalists, we present the nonadiabatic
correction to the current out of the individual leads IL/R

as well as for the symmetrized charge-current in Fig. 5.
We find that our QME approach predicts for both the left
and right lead identical nonadiabatic corrections, result-
ing in a vanishing correction to the symmetrized charge-
current I = IL−IR

2 . Furthermore, the nonadiabatic cor-
rection to the current of the left/right lead is proportional
to the derivative of the stationary electronic population
with respect to ǫd. This is in agreement with the the-
oretical considerations by Splettstoesser et al.

89 for an
electron-electron interacting system.

In contrast, the HEOM approach reveals that the
nonadiabatic correction peak in the current from a sin-

gle electron reservoir is broader when its own chemical
potential crosses the energy level of the system. This
asymmetry in the peak heights and width in the nonadi-
abatic correction to the currents of the individual leads
with respect to ǫd further supports the contribution of
non-resonant processes to the nonadiabatic correction.
In appendix A we present more details of the side peaks.

D. Non-vanishing bias voltage (nonequilibrium):
Influence of electron-phonon coupling

Next, we add to the model of the previous section
the electron-phonon coupling term. The results are il-
lustrated in Fig. 6 and 7. We begin by focusing on the
stationary state results with respect to the instantaneous
Hamiltonian, the black continuous lines in Fig. 6, that re-
covers the well understood Franck-Condon step structure
with increasing the electronic state energy.80,81,83,84,90

The electronic population decreases step wise from the
completely occupied to the fully depleted electronic state
for an energy range µR . ǫd(t) . µL. While in this case
the steps are only slightly visible, when considering the
charge-current, the steps occur more distinct near the
harmonic oscillator frequency shifted chemical potentials
ǫd(t) = µR/L ±nΩ. At these energies (dis-)charging pro-
cesses with an exchange of n vibrational quanta between
the electronic reservoir (R) L and the system become
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FIG. 6. System response to linear drives in comparison to the
stationary limit. Shown are the electronic population

〈

d†d
〉

,

the vibrational excitation
〈

a†a
〉

, and the charge-current I for
different driving velocities v as a function of the electronic
state energy ǫd(t) = ǫ0 + vt. By the dashed grey lines, we
indicate the energetic position of the right chemical potential
with an exchange of n vibrational quanta µR + nΩ. The dot-
ted grey lines indicate the the left chemical potential with an
exchange of m vibrational quanta µL −mΩ. Further param-
eters are Φ = 0.9V, Ω = 0.2 eV, λ

Ω
= 1, kBT = Γ = 0.025 eV,

and Λ = 0.
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energetically (allowed) forbidden.
Since the vibrational excitation is less frequently dis-

cussed in the literature, we discuss the onset and termi-
nation of different processes based on this observable in
more detail here. Similar to the zero bias voltage case,
the lowest vibrational excitation in the electronically oc-

cupied state is
〈

a†a
〉

= λ2

Ω2 .
At energy values ǫd(t) = µR + nΩ, discharging by

the right lead with an additional excitation of the vi-
brational mode by n quanta occurs, and thereby trans-
port through the system becomes possible. Moreover,
charging processes accompanied with an excitation of
m vibrational quanta become successively forbidden at
ǫd(t) = µL −mΩ.
For the chosen electronic-vibrational coupling λ

Ω = 1,
off-diagonal elements of the Franck-Condon matrix con-
nected to processes with a large energy transfer into the
vibrational mode are suppressed81,83,84. Hence, the ac-
cording steps are barely visible. For high energies of the
electronic state, no charging process is energetically al-
lowed and therefore the transport and the vibrational ex-
citation vanish. Overall, the alternating activation and
deactivation of the different transport processes leads to
the structured vibrational excitation as a function of the
electronic state energy.
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FIG. 7. Nonadiabatic correction to the electronic population
δ
〈

d†d
〉

, the charge-current δI , and the vibrational excitation

δ
〈

a†a
〉

for different driving velocities v as a function of the
electronic state energy ǫd(t) = ǫ0 + vt. By the dashed grey
lines, we indicate the energetic position of the right chemical
potential with an exchange of n vibrational quanta µR + nΩ.
The dotted grey lines indicate the the left chemical potential
with an exchange of m vibrational quanta µL −mΩ. Further
parameters are Φ = 0.9V, Ω = 0.2 eV, λ

Ω
= 1, kBT = Γ =

0.025 eV, and Λ = 0.

In Fig. 7, we depict the nonadiabatic correction cor-

responding to the system response for different driving
velocities. According to the step positions in the system
response, we observe peaks in the nonadiabatic correction
to the different physical quantities. In general, the nona-
diabatic correction peaks illustrate the de-/activation of
the transport processes described earlier. Here, we note
that the nonadiabatic correction of the electronic popula-
tion and the vibrational excitation are both explained by
the delay in the underlying observables. In contrast, the
nonadiabatic charge-current correction reflects a delayed
dynamics for the peaks at ǫd(t) ≈ µR/L, but is ahead of
the stationary limit at ǫd(t) ∈ {µR + nΩ, µL −mΩ} with
n,m ∈ {1, 2, 3}. Since a reduced vibrational excitation
can enhance the charge-current8291, the delayed increase
of the current-induced vibrational excitation causes the
dynamic charge-current increase ahead of the stationary
limit increase. This is an example for the dynamical in-
terplay of the charge-current and the present state of the
vibrational mode.
Similar to the equilibrium case studied above, we ob-

serve a deviation between the peak heights obtained
by HEOM and QME which is caused by co-tunneling
processes in the weakening of the effective system-
environment coupling.92

Moreover, focusing on the peaks involving one or non
vibrational quantum, we find clear deviations from the
energetic position expected by the bare Polaron shift,
i.e. ǫd(t) ∈ {µR+nΩ, µL−mΩ} with n,m ∈ {0, 1}. This
renormalization effect is known for purely electronic in-
teracting open quantum systems.93–95 Here, we observe
the system-environment coupling induced renormaliza-
tion of an electronic-vibrational interacting open quan-
tum system. We emphasize that we obtain this renor-
malization with in the numerically exact HEOM as well
as the perturbative QME.
Next, we consider the higher-order nonadiabatic effects

by comparing the nonadiabatic corrections based on dif-
ferent driving velocity as shown in Fig. 7. We find that
the higher order nonadiabatic effects become apparent

at a driving velocity of v = Γ2

25 and are most pronounced
at the energies with the largest peaks in the nonadia-
batic correction. For the fastest shown driving velocity of

v = Γ2

5 , the higher order nonadiabatic effects in the cur-
rent and the vibrational excitation are more pronounced
at the smaller peaks than in the electronic population.
We recall that the effective coupling strengths between

the system and the environment, which sets the time-
scale for the electronic population dynamics, is weakened
by the electronic-vibrational interaction.85 For our pa-
rameters, the effective decay rate is Γeff = e−1Γ. Which

means that the driving velocity of v = Γ2

5 ≈ 1.48Γ2
eff

is already comparable to the time-scale of the electronic
population dynamics. From this perspective, a delay in
the population dynamics is expected especially at ener-
gies ǫd(t) with significant changes in the electronic pop-
ulation. However, the driving velocity is sufficiently slow
that the population dynamics do not exhibit a significant
delay for energies in the range µL−4Ω < ǫd(t) < µR+4Ω,
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where the change in the electronic population with the
electronic energy is smaller.

Including electronic-vibrational coupling, we no longer
observe side peaks in the nonadiabatic correction to the
charge-current. These side peaks are explained as con-
tributions from coherent superposition of non-resonant
processes. Therefore, the absence of the peaks means
that the electronic-vibrational coupling induces a strong
decoherence, which has already been reported in a differ-
ent context.29

E. Effect of vibrational relaxation

In the previous sections, we disregarded the effect of a
damping of the vibrational mode by the environment. In
this section, we include this mechanism and investigate
its effect on the nonadiabatic corrections in Fig. 8 for
different values of the damping related coupling strengths
Λ and a relatively strong electronic-vibrational coupling
λ
Ω = 1.

For Λ . Γ
102 , we barely observe an effect of the damp-

ing on the stationary states (see Fig. 8a) ) as well as
the nonadiabatic correction (see Fig. 8b) ). Hence,
the damping influence is weak in comparison to the
current-induced vibrational excitation. Its impact be-
comes clearly visible for the strongest damping strengths
Λ = Γ

10 . As expected in the limit Ω ≪ kBT , the damping
generally reduces the vibrational excitation. This effect
is emerging particularly strong for energetic situations
with a strong current-induced vibrational excitation. Ac-
cordingly, we also observe a significant reduction of the
nonadiabatic correction to the vibrational excitation.

As already reported in Refs. 74 and 82, we notice an
increase in the charge-current along with the decrease
in the vibrational excitation. Furthermore, we observe
a similar reduction of the nonadiabatic correction of the
charge-current and of the vibrational excitation with in-
creasing damping strengths, which again illustrates the
dependence of the charge-current on the present state of
the vibrational mode.

Since the highest peaks in the nonadiabatic correction
of all observables, especially in the electronic population,
are shifted towards µR and µl, respectively, we conclude
that the damping reduces the interaction induced renor-
malization .

Similar to the significant effect of faster driving ve-
locities to the highest nonadiabatic correction peaks (see
Fig. 7), we find a clear reduction in the nonadiabatic cor-
rection in the highest nonadiabatic correction peaks of
the electronic population. Here, the damping attenuates
the reduction in coupling between the electronic system
and the environment caused by the electronic-vibrational
interaction. Consequently, this allows the population to
adapt more quickly to the energetic situation and ex-
plains the decrease in the nonadiabatic correction.
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, and b) the corresponding nonadiabatic correction, as a
function of the time-dependent energy ǫd(t) = ǫ0 + vt and for
different phonon-bath coupling strength Λ. Further parame-
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.
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F. Fast driving

In this section we present results for fast driving ve-
locities. As mentioned before, the nonadiabatic correc-
tion defined in Eq. (21) is no longer meaningful out-
side the linear response regime of slow driving. Hence
in Fig. 9, we focus on the parameterized time-traces in
comparison to their stationary state values for two differ-
ent electronic-vibrational coupling strengths. We begin
our discussion with weak electronic-vibrational coupling
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FIG. 9. The system response (Electronic population
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〉

,

charge-current I , and vibrational excitation
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) as a func-
tion of the time-dependent energy ǫd(t) = ǫ0+vt for fast driv-
ing velocities and two different electronic-vibrational coupling
a) λ

Ω
= 0.1 and b) λ

Ω
= 1.5. Further parameters are Φ = 1.2V,

Ω = 0.2 eV, kBT = 0.025 eV, Γ = 0.005 eV, and Λ = 0.025 eV.

λ
Ω = 0.1. For the driving speed v = Γ2, a significant
delay is only visible in the time-trace of the vibrational
excitation in comparison to its stationary state values.
With increasing driving velocity, the delay increases vis-
ibly not only in the vibration excitation but also in the
electronic population. In contrast, the delay occurring
in the current is smaller. But additionally, the coherent
superposition of the non-resonant processes leads to the
so-called current ringing, which is known from instanta-
neous switches of the bias voltage.87

Even though the electronic population decreases more
uniform with increasing energy for a strong electronic-
vibrational interaction λ

Ω = 1.5, the weakened effective
system-environment coupling leads to a more obvious de-
lay for v = Γ2. At faster driving velocities, the delay
in the electronic population and vibrational excitation
increases in a manner qualitatively similar to the weak
electronic-vibrational interaction. In the current, we also
observe an enhanced delay and an increase beyond the
maximal steady state value. The latter is a clear finger-
print of non-resonant processes that coherently overlap
despite the vibrationally induced decoherence, especially
at fast driving velocities.

V. CONCLUSIONS

We have analyzed nonadiabatic corrections to thermo-
dynamic properties for a non-equilibrium system under
external modification. More specifically, we have inves-
tigated a system with and without electronic-vibrational
interactions under a linear drive of the electronic state
energy, utilizing the numerically exact HEOM as well as
a perturbative quantum master equation approach.
Without electronic-vibrational coupling, we found

peaks in the friction and the nonadiabatic contribution to
the charge-current when the system energy ǫd crosses the
chemical potentials of the electronic reservoirs. In accor-
dance with the more complex onset and termination of
transport processes induced by the electronic-vibrational
interaction and understood in the Franck-Condon pic-
ture, we observed more complex responses in the nona-
diabatic correction of the different quantities. Further-
more, the results for different driving velocities, as well as
different environmental vibrational damping, illustrated
the dynamical interplay of the electrons and the vibra-
tional mode.
Surprisingly, the QME fails to reproduce the nona-

diabatic current correction without electron-phonon
coupling, while it qualitatively recovers the nonadia-
batic current correction in the adiabatic limit with
electron-phonon coupling. Moreover, the comparison of
QME- and HEOM-based calculations reveals the con-
tribution of co-tunneling processes to the electronic-
vibrational, interaction-induced weakening of the system-
environment coupling.
For transport scenarios with negligible electronic-

vibrational coupling, our numerically exact approach re-
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veals a significant effect of coherent non-resonant pro-
cesses contributing to the nonadiabatic correction to the
charge-current. In contrast, we observe decoherence of
the non-resonant processes in the adiabatic limit for sys-
tems with electronic-vibrational interaction. Only for
very fast driving velocities we do recover fingerprints
of coherent non-resonant processes, including electronic-
vibrational interaction related to the so-called ”current
ringing”87.
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Appendix A: Details on the contribution of
non-resonant processes to the nonadiabatic

correction

In this appendix, we show more results supporting our
discussion on the contribution of non-resonant transport
processes to the nonadiabatic correction.
In Fig. 10, we show explicitly a comparison of HEOM

results with a truncation in first and second tier. In
first tier calculations only sequential tunneling processes
are included and higher order processes like co-tunneling
processes are excluded. We emphasize that second tier
calculations are exact for non-interacting systems.28 For
the chosen weak coupling Γ = 0.04kBT , we do not ob-
serve a visible difference on the natural scale of the plot.
Thereby, we validated our statement on the visibility
of the side peaks in the nonadiabatic correction to the
charge-current within first tier HEOM calculations.
Next, we demonstrate the dependence of the side

peaks in the symmetrized charge-current on the system-
environment coupling strength Γ and the environmental
temperature T in Fig. 11 resp. 12. Our results demon-
strate, that the nonadiabatic correction to the currents
of the individual electron reservoirs becomes more similar
with decreasing Γ and increasing temperature. Moreover,
the nonadiabatic correction to the symmetrized charge-
current vanishes roughly linearly with decreasing Γ and
quadratically with increasing T . Furthermore, the tem-
perature leads to a rouhgly linear broadening of the peak.
Overall we emphasize, that the visibility of the non-
resonant processes remains. The slowest driving speed
corresponds to 0.7596 eV

ns .
At last, we show the effect of the decoherence on the

side-peaks for different electronic-vibrational interaction
strengths λ in Fig. 13. Even for the weakest shown
electronic-vibrational interaction λ

Ω = 0.2, we can not
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FIG. 11. The nonadiabatic correction to different charge-
currents as a function of the energy ǫd(t) for different system-
environment coupling strengths Γ. The parameters are Φ =
0.8V and kBT = 0.025 eV.

find a clear fingerprint of the coherent superposition of
non-resonant processes in the nonadiabatic correction to
the charge-current. Since the internal dynamics of the
system becomes slower with decreasing λ, the HEOM
calculations become numerically expensive.
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FIG. 12. The nonadiabatic correction to different charge-
currents as a function of the energy ǫd(t) for different envi-
ronmental temperatures T . The parameters are Φ = 0.8V
and Γ = 0.01 eV.
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The λ-dependent energy shift Cλ ensures that the first peak
in the derivative of the stationary charge-current with respect
to the energy is located at ǫλ(t) = 0. The parameters are
Φ = 0.9V, Ω = 0.2 eV, kBT = Γ = 0.025 eV, and Λ = 0.



15

∗ jakob.baetge@physik.uni-freiburg.de
† amikam.levy@biu.ac.il
‡ douwenjie@westlake.edu.cn
§ michael.thoss@physik.uni-freiburg.de
1 L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner,
F. Westerlund, S. Lara-Avila, and K. Moth-Poulsen,
Chem. Soc. Rev. 43, 7378 (2014).

2 R. M. Metzger, Chem. Rev. 115, 5056 (2015).
3 M. Thoss and F. Evers, J. Chem. Phys. 148, 030901 (2018).
4 P. Gehring, J. M. Thijssen, and H. S. van der Zant, Nat.
Rev. Phys. 1, 381 (2019).

5 N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M. A.
Ratner, A. Nitzan, J. F. Stoddart, and X. Guo, Nat. Rev.
Phys. 1, 211 (2019).

6 P. Reddy, S.-Y. Jang, R. A. Segalman, and A. Majumdar,
Science 315, 1568 (2007).

7 D. Nozaki, S. M. Avdoshenko, H. Sevincli, and G. Cunib-
erti, J. Appl. Phys. 116, 074308 (2014).

8 G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys.
Rep. 694, 1 (2017).

9 M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. von
Hänisch, F. Weigend, F. Evers, H. B. Weber, and
M. Mayor, Proc. Natl. Acad. Sci. U. S. A. 102, 8815 (2005).

10 B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z.-F. Liu, J. C.
Taylor, J. B. Neaton, L. M. Campos, and L. Venkatara-
man, Nat. nanotechnol. 10, 522 (2015).

11 S. J. van der Molen and P. Liljeroth, J. Phys. Chem..
12 J. L. Zhang, J. Q. Zhong, J. D. Lin, W. P. Hu, K. Wu,

G. Q. Xu, A. T. Wee, and W. Chen, Chem. Soc. Rev. 44,
2998 (2015).

13 C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang,
S. Wang, H. Chen, D. Wang, B. Feng, et al., Science 352,
1443 (2016).

14 J. Wang, F. Shen, Z. Wang, G. He, J. Qin, N. Cheng,
M. Yao, L. Li, and X. Guo, Angew. Chem. Int. Ed. 53,
5038 (2014).

15 Y. Zhao, B. Ashcroft, P. Zhang, H. Liu, S. Sen, W. Song,
J. Im, B. Gyarfas, S. Manna, S. Biswas, et al., Nat. nan-
otechnol. 9, 466 (2014).

16 R. Kosloff, Entropy 15, 2100 (2013).
17 F. Binder, L. A. Correa, C. Gogolin, J. Anders, and

G. Adesso, Fundamental Theories of Physics 195, 1 (2018).
18 H. Wang and M. Thoss, J. Chem. Phys. 131, 024114

(2009).
19 H. Wang and M. Thoss, J. Phys. Chem. A 117, 7431

(2013).
20 H. Wang and M. Thoss, Chem. Phys. 509, 13 (2018).
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88 R. Härtle, G. Cohen, D. R. Reichman, and A. J. Millis,

Phys. Rev. B 92, 085430 (2015).
89 J. Splettstoesser, M. Governale, J. König, and R. Fazio,

Phys. Rev. B 74, 085305 (2006).
90 M. Galperin, M. A. Ratner, and A. Nitzan, Nano Lett.

5, 125 (2005).
91 This effect is also visible in Fig. 8.
92 See discussion in Sec. IVA.
93 B. Wunsch, M. Braun, J. König, and D. Pfannkuche,

Phys. Rev. B 72, 205319 (2005).
94 S. Andergassen, V. Meden, H. Schoeller, J. Splettstoesser,

and M. R. Wegewijs, Nanotechnol. 21, 272001 (2010),
1005.1187.

95 S. Wenderoth, J. Bätge, and R. Härtle,
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