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High-dimensional photonic entanglement is a promising candidate for error-protected quantum
information processing with improved capacity. Encoding high-dimensional qudits in the carrier
frequency of photons combines ease of generation, universal single-photon gates, and compatibility
with fiber transmission for high-capacity quantum communication. Recent landmark experiments
have impressively demonstrated quantum interference of a few frequency modes, yet the certification
of massive-dimensional frequency entanglement has remained an open challenge. This study shows
how to harness the large frequency-entanglement inherent in standard continuous-wave spontaneous
parametric down-conversion processes. It further reports a record certification of discretized fre-
quency entanglement, combined with a novel approach for certification that is both highly efficient
and nonlocally implementable. This technique requires very few measurements and does not require
assumptions on the state. The work opens the possibility for utilizing this encoding in quantum
communications and in quantum information science in general.

I. INTRODUCTION

Entanglement is a unique and powerful quantum fea-
ture with a multitude of applications in quantum in-
formation processing. The nonlocal correlations of the
entangled states may be used in quantum communica-
tions, imaging, metrology, and quantum processors. In
the case of photons, polarization-entangled states have
been traditionally used to demonstrate a multitude of
quantum gates and quantum information protocols [1]
and the principles of rapidly developing quantum net-
works [2, 3]. These qubit states are easy to manipulate
with linear optics and can be distributed in fiber or free-
space links because of their low interaction with the en-
vironment. Nevertheless, larger alphabets in quantum
communication are highly pursued not only to increase
the capacity of the quantum channel. High-dimensional
encoding also provides a stronger tolerance to noise [4],
an essential asset to overcome the transmission limits of
polarization qubits. On the other hand, an increase in
dimensionality can also boost the computational power
of quantum computers [5]. In this context, a recent land-
mark experiment [6] used high-dimensional entanglement
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of propagation paths on a silicon photonic chip to realise
error-protected logical qubits and thus improve the per-
formance of a quantum phase estimation algorithm. Har-
nessing the full state space of photonic degrees of free-
dom (DOF) such as transverse spatial mode, time, and
frequency, will be key to future generations of photonic
quantum information processors.

Although spatial [7–9] and temporal modes [10–12]
have been straightforward to operate in very large di-
mensional spaces, the frequency DOF has remained be-
hind in these advances. The frequency domain at optical
scales is of particular interest because of its paralleliza-
tion capabilities, in particular its compatibility with tele-
com multiplexing or frequency modulation techniques.
Earlier experiments exploiting electro-optic modulation
were able to demonstrate two-dimensional frequency en-
tanglement [13], while the use of pulse shapers and up-
conversion processes allowed the characterization of up
to four-dimensional states [14, 15]. The combination
of both components was used later to coherently con-
trol the quantum states emerging from integrated res-
onators [16]. These important building blocks opened
the possibility to measure in the superposition basis at
optical scales and were used to demonstrate discretized
frequency entanglement with few dimensions (up to 6
[17]). Since then, approaches have been developed to per-
form arbitrary manipulations of single-frequency qubits
[18] and the first steps have been taken towards full con-
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FIG. 1. Schematic of our frequency-entangled photon pair source and the state analysis parts. We generate broadband
frequency entanglement at telecom wavelength via spontaneous parametric down-conversion (SPDC) in a periodically poled
lithium niobate waveguide (ppLN). Afterwards, the photon pairs are coherently manipulated with a pulse shaper and an electro-
optic modulator (EOM) to analyze the correlations in a superposition basis. CW: continuous-wave; DEMUX: demultiplexer.

trol of single qudits, its high-dimensional version [19–21].
While Hong-Ou-Mandel interference has also been used
to verify two-dimensional frequency entanglement [22],
the requirement of local measurements limits the utility
of these methods in quantum networks.

Furthermore, it was recently shown that the HOM
based approach cannot be used to verify higher dimen-
sional entanglement [23] , at least not without imposing
additional assumptions such as energy conservation [24].

Entangled frequency states can also be generated in
combination with entanglement in other DOFs like po-
larization, path [25] or even temporal, whenever the rel-
evant time and frequency properties can be manipulated
independently, because they refer to vastly different time
scales. Such hyperentangled states can also be used to en-
large the dimensionality of the system, to generate clus-
ter states [26] or to perform more advanced quantum
gates [27]. Yet, all these approaches are only able to
manipulate a small frequency mode set of typically ex-
tensive underlying quantum states. Certifying real high-
dimensional entanglement is not trivial, particularly in
the frequency domain, and its immense potential is still
unexploited.

In this Letter, we show that it is not always necessary
to design quantum sources with a discretized frequency
space, such as those built in cavities, and therefore
continuous spectra can also provide access to massive-
dimensional and well-controlled Hilbert space. We show
quantum interference with up to 7 modes and > 98%
visibility and demonstrate complete state control in a 7-
mode state space. Subsequently, based on previous work
to characterize time-bin qudits [28, 29], we certify genuine
high-dimensional frequency entanglement without prior
assumptions regarding, e.g., the purity of the quantum
state. We can further alleviate the harsh requirements on
the number of measurements necessary to characterize
the relevant correlations, which grows with dimension-
ality, by taking into account energy-conservation. This

step is not necessary for our certification method, but
it allows us exploit a novel bucket detection approach
that requires very few measurement settings, in a similar
fashion to the compressed measurements used to charac-
terize spatial correlations [30, 31]. Finally, by recovering
the information from high-quality quantum interference
of two-dimensional (2D) subspaces, we are able to certify
a minimum of 33 entangled frequency modes, the high-
est dimensionality of entanglement reported in time and
frequency degrees of freedom.

II. RESULTS AND DISCUSSION

A. Frequency comb generation

In our work, we analyze the frequency content of two-
photon states generated in standard χ(2) non-linear crys-
tals: periodically poled lithium niobate (ppLN) waveg-
uides (see Experimental Section). They provide con-
tinuous and broadband spontaneous parametric down-
converted photons (SPDC) with high efficiency and 60
nm of bandwidth. The SPDC process is temperature
tuned to a degeneracy wavelength of 1548 nm to cover
the entire C band with high uniformity (see inset in Fig.
1).

At this point, the frequency space of the generated pho-
ton pairs would typically be discretized, e.g., with etalon
cavities to carve the spectrum [32, 33]. This approach is
useful for the isolation of frequency modes and for per-
forming sideband modulation. However, a considerable
contribution of the photon spectrum is directly rejected,
reducing the total throughput. For this reason, we avoid
this step and employ the maximum bandwidth per fre-
quency mode.

Due to the energy conservation of the SPDC process,
the emitted photon pairs are strongly anticorrelated in
frequency, and the state can be described as:
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|j⟩s|j⟩i =
∫

Π(Ω− j∆ω,Ω+ j∆ω)|ω0 +Ω⟩s|ω0 −Ω⟩i dΩ

(1)
where |j⟩s,i is the label of the jth frequency mode cor-
responding to the signal and the idler photon. ω0 is the
degeneracy frequency of the SPDC process, ∆ω is the
FSR between modes and Π is the spectral shape of each
mode. We discretize the system in bins of 25 GHz band-
width and the same FSR over the whole C-band, yielding
the state:

|ψd⟩ =
d∑

j=1

αj |j⟩s|j⟩i (2)

The term αj refers to the phase and amplitude of the
mode and is determined by the spectral characteristics
of the source. For a very broad and uniform spectrum as
here, αj ≈ 1. Although after propagation, each photon
pair corresponding to mode j accumulate different phases
due to material dispersion.

In a quantum key distribution (QKD) scenario, the
frequency-entangled photon pairs emerging from a single
optical fiber can be distributed into different paths, e.g.,
via wavelength- or polarization demultiplexing. In our
experiment, we use only one device simultaneously for
both photons, but in principle, manipulation would be
just as easily possible at two separate locations. To
reveal the entanglement content, we use a commercial
pulse shaper to control the phase and amplitude of
each of the frequency modes [16], and electro-optic
modulation to achieve mode superpositions [13] (see
Experimental Section).

B. The superposition basis

For either quantum state characterization via full state
tomography (FST), evaluation of Bell-type tests, or im-
plementation of QKD protocols, measurements in su-
perposition bases are fundamental to uncover quantum
correlations and statistics of the state. The eigenvec-
tors of these bases may be the superposition of some
or all elements of the computational basis, here the fre-
quency basis, with certain phases for each mode. Here,
we show that with standard levels of RF signal ampli-
fication (Pmax = 26 dBm), it is possible to perform a
full superposition of up to 7 modes with a low contribu-
tion of accidental coincidence detection events. To prove
this, we performed high-dimensional Bell-type tests, also
known as CGLMP [34], based on the CHSH inequality
for two-photon qubits [35]. Instead of measuring quan-
tum correlations only for fixed phase settings, we per-
formed a phase scan for all contributing modes [36]. The

FIG. 2. Bell-type tests in the frequency domain for dimen-
sions d = 2, 3, 5, 7. We chose the modes centered on |6⟩ for
the signal and the idler photons.

measurement projector we use for each photon is:

|Ψproj⟩ =
1√
d

d∑
j=1

(
eijθs,i |j⟩s,i

)
(3)

where θs,i is the phase applied to the signal or the idler
photon, and we use θs = θi. The phase of interference
depends on the sum of the signal and idler phases. By
scanning their phase, we obtain the quantum interfer-
ences shown in Fig. 2 for dimensions d = 2, 3, 5, 7. The
visibilities are 96.7%, 97.7%, 98.1% and 98.2%, respec-
tively, without fitting or subtraction of accidental coin-
cidences and much above the thresholds 70.7%, 77.5%,
84.6% and 88.3% to rule out hidden variable theories
[36]. To perform these measurements, we have selected
states centered on the 6th mode. Electro-optic modula-
tion shifted photons from the neighboring modes into the
6th mode, and demultiplexing filters (DEMUX) postse-
lected the superposition state. Our constrained RF signal
only allowed a limited efficiency of the frequency modu-
lation of photons; thus, added mode loss by the pulse
shaper provided an equal contribution. Even dimension-
ality can also be evaluated by using the same parameters
as here.
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C. Higher dimensionality certification

While these CGLMP tests provide a (partially) device-
independent certification of entanglement and demon-
strate the reliability of our devices, they do not easily
test for actual entanglement dimensionality, i.e. the di-
mension of entanglement needed to reproduce the corre-
lations. Generically, to demonstrate even higher levels of
entanglement, one would need to project distant spectral
modes into superposition states, which may be limited or
physically impossible to perform. In our large frequency
space and current setup, this would imply unreachable
RF power levels for electro-optic modulation. Although
similar practical limitations are to be expected for any
type of encoding, there exist other modulation methods
that can provide frequency shifts of several nanometers
[37, 38]. On the other hand, common entanglement cer-
tification techniques, such as FST, are expensive pro-
cedures that require measurements in at least (d + 1)2

bases for bipartite systems, an equivalent of d2(d + 1)2

single-outcome measurement settings. The obvious con-
sequence is that the number of total measurements in-
creases rapidly with dimension. Adapting the techniques
developed for the time-bin domain, we show that it is
sufficient to characterize the quantum coherence of a few
2D subspaces to certify a high dimensionality of entan-
glement in the frequency domain.

The certification process is structured into two main
blocks: the measurement of some elements of the den-
sity matrix ρ and the posterior lower bound of the re-
maining unknowns. Measurements on the computational
basis, that is, the frequency basis, can be performed
with standard filters and are, in fact, directly related to
the diagonal elements of the density matrix ⟨j, k|ρ|j, k⟩.
Only this characterization step would usually require
d2 = 10404 filter settings, which can take arbitrary long
times. Here, we propose making good use of the fre-
quency parallelization and bucket detection of all uncor-
related frequencies with a single and broadband filter set-
ting

∑
k ̸=j⟨j, k|ρ|j, k⟩ (i.e. 101 modes × 25 GHz), while

still measuring the correlated set |j, j⟩ with narrowband
filter settings (25 GHz). This method reduces the high
number of measurements required to only 2d. The results
of the maximum frequency correlation are shown in Fig.
3a. The background noise measured for uncorrelated fre-
quencies originates from accidental coincidence detection
events due to the high number of single counts and im-
perfect filters. The detected coincidence to accidental
ratio (CAR) averaged throughout the space amounts to
1.4× 103.

Outside of the diagonal of ρ we find two types of el-
ements: those close to zero due to energy conservation,
as observed from the computational basis measurements
and upper limited by the accidentals in our system, and
those non-zero elements ⟨j, j|ρ|k, k⟩ that indicate the co-
herence of the entangled state. We now measure some
of the coherence elements to which we have access with
our measurement system. They can be estimated with

(a)

(b)

(c)

FIG. 3. (a) Intensity probabilities and (b) visibilities of the
two-photon interferences for the 2D subspaces of modes |j, j+
1⟩, |j, j + 2⟩ and |j, j + 6⟩. (c) Comparison of measured data
with the expected lower bound with our method. Note that,
from all possible values of elements that produce a positive
density matrix ρ, we take the worst scenario.

the mode amplitude from the computational basis and
the strength of neighboring interference. That is, we
only need to measure the quantum interference between
any two modes of the whole system. We measure the
interferences for the first, second and sixth neighboring
modes corresponding to the terms ⟨j, j|ρ|j + i, j + i⟩ for
i = 1, 2, 6. The dispersion shifts the interference patterns
proportional to the frequency distance with respect to
the center wavelength [33]. Knowledge of the exact dis-
persion values would allow us to directly measure the
maxima and minima of the interference patterns. For
an unknown exact value as in our case, we perform a
dispersion calibration, a full phase scan of the interfer-
ence for different frequency modes. Finally, to collect
statistics, we record 60 samples of the maxima and min-
ima of the expected interference for each subspace and
calculate the visibility. The total number of filter set-
tings (not considering the dispersion calibration) are now
2(d−1)+2(d−2)+2(d−6) = 6(d−3) and the results of
all recorded visibilities are presented in Fig. 3b. The av-
erage visibility for the 102 modes with 1st, 2nd, and 6th
neighbors are, respectively, 96.85(7)%, 97.94(5)% and
96.8(1)%.

The fact that these high-contrast interference is pre-
served over the whole investigated space indicates that
the quantum state at hand is very close to a maximally
entangled state. However, in potentially adversarial sce-
narios, such as QKD, we do not want to make any as-
sumption on the distributed state. Thus, we proceed
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with a rigorous analysis to demonstrate entanglement.
Indeed, these strong coherences allow us to finally certify
a large amount of entanglement without further measure-
ments. Similarly to the methods proposed for entangle-
ment certification in the time domain [28, 29], we lower
bound the remaining unknown elements ⟨j, j|ρ|j+i, j+i⟩
(see Fig. 4a) by using the fact that the density matrix
must be positive semidefinite to represent a valid quan-
tum state. Thus, every element, submatrix, and there-
fore subdeterminant of ρ must be positive or equal to
zero at the very least. The magnitude of unknown den-
sity matrix elements can thus be lower-bounded itera-
tively by solving 3×3 subdeterminants, composed of mea-
sured or estimated parameters and one unknown, and we
keep the largest bound extracted from all combinations
of submatrices. The resulting submatrix ⟨j, j|ρ|k, k⟩ is
shown in Fig. 4b. Notice that this method causes a
rather fast loss of information, many of the elements are
still lower-bounded to zero, yet it is sufficient to cer-
tify high-dimensional entanglement. To visualize this
loss, we display in Fig. 3c the measured quantities for
⟨j, j|ρ|j + 2, j + 2⟩ and the calculated bound if we would
not use those measurements.

We can now compare the lower-bounded density ma-
trix with a target state |Φ⟩ by computing the fidelity

F (ρ,Φ) = Tr

(√√
Φρ

√
Φ

)2

. There exists an upper

bound for the fidelity of any state of Schmidt rank k ≤ d
[39, 40]. Fidelities with the maximally entangled state
above the threshold Bk(Φ) = k/d indicate a dimension-
ality of at least k + 1. We thus choose a maximally en-
tangled state as the target state |Φ⟩ = 1/

√
d
∑d

j=1 |j, j⟩,
iteratively calculate the fidelity for d = 2 to d = 102 and
compare it with the threshold values for varying Schmidt
rank. The final certification is plotted in Fig. 4c, where
we also show the dependence on the amount of measure-
ment data. Certainly, collecting the coherence informa-
tion from more distant modes helps to improve the certi-
fication. By using all the measured data, we find at least
33 entangled modes in a space of 101 to 102. To estimate
the error of the certification, we perform Monte Carlo
simulations with our data error. On average, the sta-
tistical method yields an even better certification, with
34.8 +- 0.7 entangled modes in a space of 102. It is worth
emphasizing that with only these very few measurement
settings, 2d on the computational basis and ∼ 6d on 2D
subspaces, we are able to certify 11 dimensions in a space
of 11 modes. Higher visibility would directly increase the
amount of certified entanglement per number of modes,
and further measurements that could fill more elements
of the density matrix would also improve the certifica-
tion.

(a)

(b)

(c)

1

1

1

1

…

1

…

FIG. 4. (a) Simplified representation of the density matrix,
considering only the elements ⟨j, j|ρ|k, k⟩. While some visi-
bilities Vj can be measured, the remaining unknowns in red
are lower-bounded with our method. (b) Lower bound of the
density submatrix ⟨j, j|ρ|k, k⟩ and (c) minimum certified di-
mensionality of our system, according to the measured data.
Notice that for low space dimension up to d = 11, we can cer-
tify the maximum dimensionality with very few measurement
settings.

III. CONCLUSION

The time-frequency domain straightforwardly provides
entanglement of very high dimensionality simply owing
to energy conservation in spontaneous parametric nonlin-
ear processes. However, the characterization of this en-
tanglement is a key challenge. To date, high-dimensional
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frequency entanglement has never been completely cer-
tified beyond a few dimensions. In our work, we have
shown methods on how to characterize these quantum
states that unquestionably possess a huge dimensional-
ity. Similarly as in the time domain, the limits on the di-
mensionality for continuously pumped processes depend
on the resolution of our devices, here the spectral filters.

In this work, we have shown full superpositions up
to d = 7 and great interference visibilities over the full
scanned spectrum. The used subspaces are easily ex-
ploitable with few fiber-integrated optical components
and can be implemented nonlocally in quantum com-
munication tasks. Due to physical measurement con-
strains, limited amount of information is accessible from
these large states. Nevertheless, we have finally certi-
fied the full 11-dimensional entanglement in a subspace
of 11 modes with only ∼ 8d measurement settings, and
at least 33-dimensional entanglement in our frequency
space of 102 frequency modes.

These results hold great promise for further enhancing
the information capacity of quantum information pro-
cessing. Entanglement in the frequency domain can also
be used in combination with entanglement in time, path
and polarization DOFs, leading to huge state spaces. The
main building blocks and techniques can be readily com-
bined with established spatial and temporal mode ap-
proaches and thus provide the near-term prospect of more
efficient hybrid time-space photonic information proces-
sors.

We hope that these results on the quantification of
quantum coherence in a massive-dimensional frequency
space will motivate the community to use the frequency
DOF beyond wavelength multiplexing schemes. More-
over, the further development of photonic technology,
in particular low-loss electro-optic modulation and wave-
shaping technologies, could render frequency encoding a
viable contender for near-term photonic quantum infor-
mation processing with massive bandwidth.

IV. EXPERIMENTAL SECTION

To generate the frequency-entangled state, a commer-
cial second harmonic generation (SHG) module was used,
a 40 mm type-0 ppLN waveguide (Covesion). To pump
the nonlinear process, a standard continuous-wave tele-
com laser was upconverted with a second SHG module
to better align the SPDC wavelength to ITU channels.
To process the frequency entanglement, a telecom pulse

shaper (Waveshaper 16000A) was used to select specific
frequency subspaces for the signal and the idler photons
and to tune their relative phases. This device limits the
operational frequency range of the source to 40 nm of the
telecom C-band only. This space was then divided into
102 frequency modes for the signal and the idler photon,
with a standard free spectral range (FSR) of 25 GHz
and the same bandwidth. This leads to a state space
of 102 × 102 dimensions. Note that subspace selection
was an actual frequency discretization procedure, and it
could be employed as a resource for flexible bandwidth
allocation in reconfigurable QKD networks. The photon
frequencies were then modulated with an electro-optic
modulator, driven by a radio-frequency sine with the
same frequency as the FSR. This sideband modulation
technique allowed us to distribute photons into neighbor-
ing modes according to Bessel function amplitudes [41].
Choosing a low FSR and bandwidth allowed slower mod-
ulation signals than in earlier work, where FSR values
of 200 GHz [16] down to 50 GHz [42] were used. Lower
FSR would be better suited to increase dimensionality,
but would eventually be limited by the resolution of the
available optical filters and the number of photons per
fraction of spectral bandwidth. Lastly, due to photon
scattering into distant spectral modes, postselection was
necessary to measure the right superposition states. To
reduce the noise that imperfect filters may introduce, a
tunable and narrow DEMUX of 22 GHz bandwidth cen-
tered at the corresponding signal and idler frequencies
was used prior to coincidence measurement. The colorful
illustrations at the bottom of Figure 1 depict the side-
band modulation and photon scattering.
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