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The spectral conductivity, i.e., the electrical conductivity as a function of the Fermi energy, is a cornerstone in
determining the thermoelectric transport properties of electrons. However, the spectral conductivity depends on
sample-specific properties such as carrier concentrations, vacancies, charge impurities, chemical compositions,
and material microstructures, making it difficult to relate the experimental result with the theoretical prediction
directly. Here, we propose a data-driven approach based on machine learning to reconstruct the spectral conduc-
tivity and chemical potential from the thermoelectric transport data. Using this machine learning method, we
first demonstrate that the spectral conductivity and temperature-dependent chemical potentials can be recovered
within a simple toy model. In a second step, we apply our method to experimental data in doped one-dimensional
telluride Ta4SiTe4 [T. Inohara, et al., Appl. Phys. Lett. 110, 183901 (2017)] to reconstruct the spectral con-
ductivity and chemical potential for each sample. Furthermore, the thermal conductivity of electrons and the
maximal figure of merit 𝑍𝑇 are estimated from the reconstructed spectral conductivity, which provides accurate
estimates beyond the Wiedemann-Franz law. Our study clarifies the connection between the thermoelectric
transport properties and the low-energy electronic states of real materials, and establishes a promising route to
incorporate experimental data into traditional theory-driven workflows.

I. INTRODUCTION

Thermoelectric materials promise to be a future renewable
energy source, where thermal energy is directly converted into
electrical energy [1–5]. Despite the vast amount of studies to
find a high-performance thermoelectric material [6], it is still
challenging to optimize the dimensionless figure of merit 𝑍𝑇
owing to its dependence on conflicting material properties [2].
One of the key ideas for suitable thermoelectric materials is
to realize a “phonon-glass electron-crystal" [2], thus requiring
both phonon- and band-engineering.

Theory-driven approaches to accelerate the search for can-
didate thermoelectric materials have attracted much atten-
tion recently [7]. The workflow of such a theory-driven
approach is sketched in Fig. 1, where the electrical con-
ductivity 𝜎(𝑇) and the Seebeck coefficient 𝑆(𝑇) are com-
puted from the spectral conductivity using linear response the-
ory [8–13]. Approximating the spectral conductivity 𝜎(𝐸,𝑇)
by the zero-temperature spectral conductivity 𝜎(𝐸), we can
compute 𝜎(𝐸) and thermoelectric response functions from
the electronic band structure [14, 15]. Hence, such a high-
throughput approach based on first-principles density func-
tional theory provides an efficient way to find new classes
of high-performance thermoelectric materials [16–21]. How-
ever, this approach has a limitation because the thermoelectric
coefficients depend on sample-dependent properties such as
material microstructures, chemical compositions, vacancies,
charge impurities, and carrier concentrations. While several
approaches have been proposed to account for the charge im-
purities, such as the KKR-CPA-LDA method [22–24], it is still
difficult to predict 𝜎(𝑇) and 𝑆(𝑇) accurately.

Alternatively, material informatics provides new data-
driven approaches to reveal complex relations among material
properties [25–27]. The data can be generated by experi-
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FIG. 1. Data-driven approach to reconstruct the spectral conduc-
tivity. In a theory-driven approach, the electric conductivity 𝜎(𝑇)
(blue) and Seebeck coefficient 𝑆(𝑇) (green) are computed as a func-
tion of temperature from the spectral conductivity𝜎(𝐸). The spectral
conductivity 𝜎(𝐸) can be obtained from the electronic band structure
and phenomenological relaxation time. In our data-driven approach,
we solve the inverse problem to deduce 𝜎(𝐸) from the experimental
data of 𝜎(𝑇) and 𝑆(𝑇).

ments, high-throughput simulations, or combinations thereof.
In addition, there are valuable repositories for material science
communities, including Materials Projects [28], Aflow [29],
MDF [30, 31], and QQMD [32, 33]. By applying machine
learning to the data obtained via ab-initio methods, several
studies have successfully demonstrated the screening of mate-
rials for desired properties such as the low thermal conductiv-
ity [34, 35] and narrow-gap band structures [21]. In addition,
the designs of nanostructures optimized for phonon transport
were determined by combining Green function methods and
Bayesian optimization [36]. Machine learning methods can
also be used to accelerate computationally expensive calcula-
tions [37]. However, similar to the theory-driven methods,
these data-driven methods often ignore differences among
samples [27], which makes it challenging to directly relate
experimental results of 𝜎(𝑇) and 𝑆(𝑇) with computational
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predictions. Therefore, a method to incorporate the sample-
dependent properties in theory- and data-driven approaches is
needed.

Here, we propose a data-driven approach based on neural
networks to reconstruct the spectral conductivity 𝜎(𝐸) and
chemical potential 𝜇(𝑇) from experimental data of the electri-
cal conductivity 𝜎(𝑇) and the Seebeck coefficient 𝑆(𝑇). As
shown in Fig. 1, our approach solves the problem inversely
compared to the theory-driven approach. Although a similar
idea was explored before [38], the key advantage in our method
is that we can fully incorporate the sample dependence of the
experimental data in 𝜎(𝐸) and 𝜇(𝑇), giving a deeper insight
into promising thermoelectric materials. Furthermore, 𝜎(𝐸)
reflects both the bulk band structure and electron scattering in
materials. Thus, the reconstruction of 𝜎(𝐸) is intriguing even
beyond thermoelectric materials.

The structure of this paper is as follows. In Sec. II, linear
response theory for thermoelectric transport is briefly intro-
duced. We define our data-driven approach to reconstruct
𝜎(𝐸) and 𝜇(𝑇) from experimental data. This method is ver-
ified using test data generated from a toy model, where the
spectral conductivity and chemical potentials of the toy model
are successfully reproduced. In Sec. III, we apply our method
to the experimentally acquired data of doped one-dimensional
telluride Ta4SiTe4 [39]. Using the reconstructed spectral con-
ductivity and chemical potential, the maximal figure of merit
𝑍𝑇 is estimated for various doping concentrations. In Sec. IV,
we discuss the limitations of our method and provide a sum-
mary of this work.

II. THEORETICAL FRAMEWORK AND MODEL

A. Linear response theory for thermoelectric transport

Within the framework of linear response theory, thermoelec-
tric transport is described as a response to electric fields and
thermal gradients [40–43]. Electric currents and heat currents
are given in terms of the linear response coefficients as [44]

j = 𝐿11E + 𝐿12

(
− ∇𝑇

𝑇

)
, (1)

j𝑄 = 𝐿21E + 𝐿22

(
− ∇𝑇

𝑇

)
, (2)

where j, j𝑄, E, and ∇𝑇 are electric current density, heat
current density, electric field, and temperature gradient. While
the electrical conductivity is given by

𝜎 = 𝐿11, (3)

the Seebeck coefficient is defined as the voltage induced by a
temperature gradient when j = 0 and given by

𝑆 = −Δ𝑉

Δ𝑇
=

𝐿12
𝑇𝐿11

. (4)

Another important thermoelectric transport property is the
thermal conductivity 𝜅, which is defined from the thermal
current densities subjected to the temperature gradient when

j = 0. From these thermoelectric properties, a dimension-
less figure of merit is defined for thermoelectric materials as
𝑍𝑇 = 𝑆2𝜎𝑇/(𝜅el+ 𝜅lat), where 𝜅el and 𝜅lat represent the contri-
bution from electrons and phonons, respectively. In this paper,
we will concentrate on the electronic contribution and neglect
the phononic contribution.

In linear response theory, thermoelectric coefficients are
given by the following Sommerfeld–Bethe relation [8–13]:

𝐿11 =

∫ ∞

−∞
𝑑𝐸

(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)
𝜎(𝐸,𝑇), (5a)

𝐿12 = −1
𝑒

∫ ∞

−∞
𝑑𝐸

(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)
(𝐸 − 𝜇)𝜎(𝐸,𝑇), (5b)

where 𝜎(𝐸,𝑇) is the spectral conductivity, 𝑒 > 0 is the
elementary electric charge, 𝜇 is the chemical potential, and
𝑓 (𝐸,𝑇) = 1/(exp[(𝐸 − 𝜇)/𝑘𝐵𝑇] + 1) is the Fermi-Dirac dis-
tribution function. From Onsager’s reciprocal theorem, we
have 𝐿21 = 𝐿12 [45, 46]. Note that the Sommerfeld–Bethe
relation does not always hold. For example, the electron-
phonon [11, 47] and the electron-electron coupling [12, 13]
can lead to anomalous terms. In this paper, we assume that
the anomalous terms beyond the Sommerfeld–Bethe relation
are negligible. Furthermore, the temperature dependence of
the spectral conductivity is not significant in general as long as
there is no phase transition. Hence, the spectral conductivity
is assumed to be independent of temperatures in the following,
replacing 𝜎(𝐸,𝑇) with 𝜎(𝐸) as in Refs. [14, 15].

From Eqs. (5a) and (5b), in the relaxation time approxima-
tion of Boltzmann’s theory, the thermoelectric properties are
determined by the spectral conductivity 𝜎(𝐸), which is given
by 𝜎(𝐸) = 𝑒2𝜏(𝐸)𝑣2 (𝐸)𝐷 (𝐸) in isotropic systems with the
relaxation time 𝜏(𝐸), group velocity 𝑣(𝐸), and density of
states 𝐷 (𝐸) [14, 15]. Typically, the relaxation time depends
on impurity potentials of each experimental sample, making it
challenging to determine 𝜏(𝐸) from an ab-initio approach [7].

B. Neural network model

Motivated by the limitation of ab-initio methods, we con-
sider a data-driven, inverse approach to deduce the full en-
ergy dependence of 𝜎(𝐸) from experimental data. Assum-
ing that the temperature dependence of the chemical poten-
tial is negligible, it is straightforward to show that there is a
unique solution 𝜎(𝐸) for a given set of 𝐿11 (𝑇) and 𝐿12 (𝑇)
from Eqs. (5a) and (5b). It follows that there is a one-to-one
correspondence between 𝐿11(12) (𝑇) and 𝜎sym(anti) (𝐸), where
𝜎sym(anti) (𝐸) is the (anti)symmetric part of the spectral conduc-
tivity 𝜎(𝐸) = 𝜎sym (𝐸) + 𝜎anti (𝐸). Therefore, we can rewrite
Eqs. (5a) and (5b) as an integration from 𝐸 = 0 to 𝐸 = +∞.
Upon discretization, we obtain

𝐿11 (𝑇𝑖) =
2𝑊𝑐

𝑁

𝑁∑︁
𝑗=1

𝐹 (𝐸 𝑗 , 𝑇𝑖)𝜎sym (𝐸 𝑗 ), (6a)

𝐿12 (𝑇𝑖) =
2𝑊𝑐

𝑁

𝑁∑︁
𝑗=1

𝐺 (𝐸 𝑗 , 𝑇𝑖)𝜎anti (𝐸 𝑗 ), (6b)
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FIG. 2. A neural network can reconstruct the spectral conduc-
tivity. (a) Schematic representation of the fully connected neural
network (NN) with three layers (created using Ref. [54]). The NN
takes a list of temperatures {𝑇1, . . . , 𝑇𝑁 } as an input and returns the
spectral conductivity 𝜎(𝐸 𝑗 ) and the chemical potential 𝜇 (𝑠) (𝑇𝑖) for
each sample. (b) The toy model 𝜎toy (E) (black) decomposed into a
symmetric part (blue), 𝜎sym (E) = 𝜎sym (−E), and an antisymmetric
part (red), 𝜎anti (E) = −𝜎anti (−E) with E = 𝐸/𝑘𝐵𝑇𝑁 . (c) Loss
function ℓ as a function of the number of epochs. (d) The recon-
structed spectral conductivity using the NN (blue) is plotted with
𝜎toy (E) (black dashed). The NN is implemented in PyTorch [55].

where 𝐹 (𝐸 𝑗 , 𝑇𝑖) = −𝜕𝐸 𝑓 (𝐸 𝑗 , 𝑇𝑖) and 𝐺 (𝐸 𝑗 , 𝑇𝑖) = (𝐸 𝑗 −
𝜇)𝜕𝐸 𝑓 (𝐸 𝑗 , 𝑇𝑖)/𝑒. Here, we have truncated the integral at a
high-energy cutoff 𝐸𝑁 = 𝑊𝑐𝑘𝐵𝑇𝑁 with a dimensionless cut-
off 𝑊𝑐 and introduced linearly spaced grids in temperature 𝑇𝑖
and energy 𝐸 𝑗 = 𝑊𝑐𝑘𝐵𝑇𝑗 for 𝑖, 𝑗 = 1, 2, . . . , 𝑁 .

Naively, one could use the inverse of the matrices 𝐹 and 𝐺

in these expressions to obtain 𝜎sym (𝐸 𝑗 ) and 𝜎anti (𝐸 𝑗 ). How-
ever, the matrices 𝐹 and 𝐺 have exponentially small deter-
minants. Since the inverse matrices are proportional to the
inverse of their determinants, any numerical solver for inverse
matrices will fail to compute 𝐹−1 and 𝐺−1 due to the floating-
point overflow (see Appendix A). Exponentially small deter-
minants of 𝐹 and 𝐺 also result in strong amplification of
noises in 𝜎(𝐸 𝑗 ). Thus, the inverse problems of Eqs. (6a)
and (6b) are ill-conditioned, where the exact solution can-
not be obtained in general. Nevertheless, it is still possible
to infer an approximate solution of 𝜎(𝐸 𝑗 ) by applying the
numerical methods developed for another ill-conditioned in-
verse problem: the analytic continuation problem of quantum-
many body systems. They include the maximum entropy
method [48, 49], the stochastic method [50], and sparse mod-
eling approaches [51, 52]. Recently, a projected regression
method based on supervised learning was used to construct
a solution from a large database of input-output pairs, taking
advantage of fast forward calculations [53]. This machine-
learning method performed better than an optimized maximum
entropy implementation.

In this work, we propose an efficient machine learning al-
gorithm to infer 𝜎(𝐸 𝑗 ). Our method constitutes a data-driven
interpolating model and employs a neural network (NN) at its
core (see Appendix B for details). We first emphasize that
our method does not need any prior training on data gener-
ated from theoretical models in contrast to Ref. [53]. The NN
is trained to reproduce a given dataset {𝐿11 (𝑇𝑖), 𝐿22 (𝑇𝑖)} to
infer the spectral conductivity 𝜎(𝐸 𝑗 ) without using the large
database of input-output pairs. This advantage simplifies the
implementation of our method in experimental studies. It also
implies that our method can be used without knowledge about
the microscopic origins of thermoelectric transport and the
low-energy electronic states.

The structure of the employed NNs is sketched in Fig. 2(a).
The NN takes a list of equidistantly spaced temperatures
{𝑇1, . . . , 𝑇𝑁 } with grid spacing𝑇1 as an input, and returns a list
of the spectral conductivity {𝜎(𝐸 𝑗 )} as an output. The output
is then used to compute {𝐿 (𝑠)

11 (𝑇𝑖), 𝐿 (𝑠)
12 (𝑇𝑖)} for 𝑖 = 1, 2, . . . , 𝑁

and 𝑠 = 1, 2, . . . , 𝑁𝑠 . Here, 𝑁 and 𝑁𝑠 denote the total number
of data points for each sample and the total number of samples
with different chemical doping concentrations, respectively.
Importantly, the temperature dependence of chemical poten-
tials 𝜇 (𝑠) (𝑇𝑖) can be introduced for 𝑁𝑠 > 1 as discussed below.

The values of 𝐿 (𝑠)
11 (𝑇𝑖) and 𝐿

(𝑠)
12 (𝑇𝑖) are evaluated by

𝐿
(𝑠)
11,ML (𝜉𝑖) ≈

∫ 𝑊𝑐 𝜉𝑖+𝛼(𝑠)
𝑖

−𝑊𝑐 𝜉𝑖+𝛼(𝑠)
𝑖

𝑑E
𝜎(E) exp[(E − 𝛼

(𝑠)
𝑖

)/𝜉𝑖]
𝜉𝑖 (exp[(E − 𝛼

(𝑠)
𝑖

)/𝜉𝑖] + 1)2
,

(7a)

𝐿
(𝑠)
12,ML (𝜉𝑖) ≈ − 𝑘𝐵𝑇𝑁

𝑒

∫ 𝑊𝑐 𝜉𝑖+𝛼(𝑠)
𝑖

−𝑊𝑐 𝜉𝑖+𝛼(𝑠)
𝑖

𝑑E (E − 𝛼
(𝑠)
𝑖

)

×
𝜎(E) exp[(E − 𝛼

(𝑠)
𝑖

)/𝜉𝑖]
𝜉𝑖 (exp[(E − 𝛼

(𝑠)
𝑖

)/𝜉𝑖] + 1)2
, (7b)

where 𝜉𝑖 = 𝑇𝑖/𝑇𝑁 , 𝛼 (𝑠)
𝑖

= 𝜇 (𝑠) (𝑇𝑖)/𝑘𝐵𝑇𝑁 , and E = 𝐸/𝑘𝐵𝑇𝑁
are dimensionless. The numerical integration is performed
by linearly interpolating 𝜎(E 𝑗 ) using the cutoff 𝑊𝑐 . For
smoothing 𝜎(E 𝑗 ), we define 𝜎(E 𝑗 ) =

∑10
𝑘=1 𝑜 𝑗+𝑘/10 for

𝑗 = −𝑁,−𝑁+1, . . . , 𝑁 (𝑁𝑠 = 1) or 𝑗 = −2𝑁,−2𝑁+1, . . . , 2𝑁
(𝑁𝑠 > 1), with 𝑜 𝑗 representing an output of the NN. Since
the lowest temperature 𝑇1 in the input sets a lower bound
for the resolution of 𝜎(E 𝑗 ), the spacing in energy is fixed as
E 𝑗−E 𝑗−1 = 𝑊𝑐𝜉1 withE 𝑗 = 𝑊𝑐𝜉 𝑗 for all 𝑗 . Thus, the NN com-
putes 𝜎(E) for |E | ≤ 𝑊𝑐 (𝑁𝑠 = 1) or |E | ≤ 2𝑊𝑐 (𝑁𝑠 > 1).
The loss function is defined as the mean-squared error loss
between estimated values and experimental values of 𝐿11 and
𝐿12, given as

ℓ =
∑︁
𝑖,𝑠

𝑎𝑖

[{
𝐿
(𝑠)
11 (𝜉𝑖) − 𝐿

(𝑠)
11,ML (𝜉𝑖)

}2

+
{
𝐿

(𝑠)
12 (𝜉𝑖) − 𝐿

(𝑠)
12,ML (𝜉𝑖)

}2
]
+ 𝑏

(∑︁
𝑗

min
[
𝜎(E 𝑗 ), 0

] )2

,

(8)

where 𝑎𝑖 and 𝑏 are hyperparameters. Here, we introduced
𝐿12 = 𝑒𝐿12/(𝑘𝐵𝑇𝑁 ), such that 𝐿11 and 𝐿12 have the same
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physical unit. The third term with 𝑏 > 0 is added to ensure
the positivity of the spectral conductivity for 𝑁𝑠 > 1. It
is also possible to enforce positive outputs from NNs using,
e.g., the rectified linear activation function. However, we
find empirically that the loss function ℓ cannot be minimized
efficiently when positive outputs are enforced via the design
of the NNs. For 𝑁𝑠 = 1, where a unique solution of Eqs. (7a)
and (7b) for 𝜇 = 0 exists, we found that the additional positivity
constraints harms the optimization. Therefore, we take 𝑏 =

0 in this case. The trained NN approximates the spectral
conductivity on a grid as described above.

If only single sample data are available (𝑁𝑠 = 1), the input
is not sufficient to determine the chemical potential. This fol-
lows from the one-to-one correspondence between 𝐿11(12) (𝑇)
and 𝜎sym(anti) (𝐸) as discussed above, implying that the degree
of freedom of output becomes greater than the number of con-
straints from the input if the chemical potential is taken into
account. Thus, we assume the chemical potential to be a con-
stant (𝜇 = 0). In contrast, the temperature dependence of the
chemical potential 𝜇 (𝑠) (𝑇) can be included and inferred for
𝑁𝑠 > 1. Assuming that the spectral conductivity is unchanged
by a small chemical doping and thus the same for all samples,
the chemical potential of each sample is estimated by

𝛼
(𝑠)
𝑖

=
2𝑊𝑐

𝜋
arctan(𝑐 (𝑠)0 + 𝑐

(𝑠)
1 𝜉2

𝑖 ), (9)

where 𝑐
(𝑠)
0 and 𝑐

(𝑠)
1 are determined by the NN with additional

outputs. The coefficient of the linear term in 𝜉𝑖 is set to zero
based on the Sommerfeld expansion. Since the amplitude of
𝛼
(𝑠)
𝑖

is bounded as |𝛼 (𝑠)
𝑖

| < 𝑊𝑐 by the arctan function, both
upper and lower cutoffs for integrals in Eqs. (7a) and (7b) are
taken within |E | < 2𝑊𝑐 for 𝑁𝑠 > 1. This ensures the range of
integrals to be within the bounds of E 𝑗 . This approach is valid
as long as a small amount of chemical doping is carried out,
resulting in a slight change of the chemical potentials.

C. Performance test with toy model

Before applying our machine learning method to the experi-
mental data, we investigate its ability to reconstruct the spectral
conductivity and chemical potentials using a toy model. The
toy model contains two Gaussian peaks with different ampli-
tudes, defined as

𝜎toy (E) = 2 exp[−(E − 2)2] + exp[−(E + 2)2], (10)

and is displayed in Fig. 2(b). Using this toy model, we gen-
erate training datasets with different chemical potentials and
evaluate the validity of our approach. In this section, we fix
𝑊𝑐 = 5 and 𝑎𝑖 = 1. The size of training datasets is chosen to
be 𝑁 = 50.

First, we consider 𝑁𝑠 = 1 with a constant chemical potential
(𝜇 = 0). The spectral conductivity is decomposed into a sym-
metric part 𝜎sym (E) = 𝜎sym (−E) and an antisymmetric part
𝜎anti (E) = −𝜎anti (−E), indicated by blue and red solid lines in
Fig. 2(b), respectively. As discussed in Sec. II B, the symmet-
ric and antisymmetric parts are determined from 𝐿11 (𝜉) and
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FIG. 3. Learning the temperature dependence of chemical po-
tentials in the toy model. (a) Toy model 𝜎toy (E) (black solid)
with chemical potentials 𝛼

(𝑠)
toy,𝑖 for 𝑠 = 1, 2, 3, which are plotted as

dashed cyan, dashed magenta, and dashed lime lines, respectively,
against the dimensionless temperature 𝜉𝑖 = 𝑇𝑖/𝑇𝑁 on the right ver-
tical axis. Each arrow indicates the range of integrals for evaluating
𝐿
(𝑠)
11 and 𝐿

(𝑠)
12 at 𝜉𝑖 = 1. (b) Loss function and (c) reconstructed

spectral conductivity (blue) with 𝜎toy (E) (black dashed) using the
NN. (d) Temperature dependence of chemical potentials 𝛼 (𝑠)

𝑖
(solid)

predicted by the NN compared with 𝛼
(𝑠)
toy,𝑖 (dashed).

𝐿12 (𝜉), respectively. Figure 2(c) shows that the loss function
dropped immediately and converged around 10−8 after 10000
epochs. Here, the initial learning rate 𝜆0 was set at 10−3 and
gradually decreased as discussed in Appendix B. The recon-
structed spectral conductivity shows a very good agreement
with 𝜎toy (E), clearly reproducing smooth Gaussian peaks as
shown in Fig. 2(d). Therefore, the NN can efficiently recon-
struct the spectral conductivity assuming a constant chemical
potential.

Second, we consider the temperature dependence of chem-
ical potentials. Taking 𝑁𝑠 = 3, the chemical potential for each
sample is chosen as 𝛼 (1)

toy,𝑖 = 0.5𝜉2
𝑖

(cyan), 𝛼 (2)
toy,𝑖 = 0.2 − 1.5𝜉2

𝑖

(magenta), and 𝛼
(3)
toy,𝑖 = 0.3+𝜉2

𝑖
(lime) [see Fig. 3(a)]. For each

chemical potential 𝛼 (𝑠)
toy,𝑖 , we compute 𝐿

(𝑠)
11 (𝜉) and 𝐿

(𝑠)
12 (𝜉) us-

ing Eqs. (7a) and (7b) to prepare the training data. Compared
to the previous example with 𝑁𝑠 = 1, the NN has more degrees
of freedom. Hence, we introduce another constraint by adding
a penalty for negative values of 𝜎(E) with 𝑏 = 1/(2𝑁 + 1)
in Eq. (8). As shown in Fig. 3(b), the loss function is satu-
rated at a sufficiently small value ℓ ≈ 2× 10−6 with 𝜆0 = 10−3.
Furthermore, Fig. 3(c) and (d) demonstrate a successful recon-
struction of the spectral conductivity and chemical potentials,
although there are small deviations in the chemical potentials
near 𝜉 ∼ 1. To reconstruct the chemical potentials up to high
temperatures, we need to further minimize the loss function.
One way is to introduce a small correction in chemical poten-
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FIG. 4. Thermoelectric transport data of doped Ta4SiTe4, ex-
tracted from Ref. [39]. (a,b) Temperature dependence of (a) 𝐿11 and
(b) 𝐿12 = 𝑒𝐿12/(𝑘𝐵𝑇𝑁 ), which is computed from the electrical resis-
tivity and Seebeck coefficient of doped Ta4SiTe4 with 𝑇𝑁 = 278.8 K.
In (b), the doping concentration of (Ta1−𝑥Mo𝑥)4Si(Te1−𝑦Sb𝑦)4 for
each data is also shown.

tials, as implemented in the following section.

III. ANALYSIS USING EXPERIMENTAL DATA

For practical applications, we need thermoelectric trans-
port data over a wide range of temperatures. As discussed in
Sec. II B, the lowest temperature of data determines the reso-
lution of spectral conductivity, while the highest temperature
determines the energy range where 𝜎(𝐸) can be obtained. In
addition, a systematic study of various doping concentrations is
desirable to account for the temperature dependence of chem-
ical potentials. Based on these requirements, we have chosen
the thermoelectric transport data of doped one-dimensional
telluride Ta4SiTe4 for this work, where a large value of the
Seebeck coefficient was observed [39].

In order to generate a training dataset, we have extracted
numerical data points from the figures in Ref. [39] using the
method described in [56]. The extracted experimental data
are linearly interpolated to obtain the training dataset with
𝑁 = 41, 𝑇1 = 6.8 K, and 𝑇𝑁 = 278.8 K. Figure 4 shows
𝐿11 and 𝐿12 = 𝑒𝐿12/(𝑘𝐵𝑇𝑁 ) as a function of temperature,
which is computed from the experimental data of the electri-
cal conductivity and Seebeck coefficient according to Eqs. (3)
and (4). Solid lines with different symbols represent various
doping concentrations for (Ta1−𝑥Mo𝑥)4Si(Te1−𝑦Sb𝑦)4 with
corresponding values of 𝑥 and 𝑦 given in Fig. 4(b). Increasing
the value of 𝑥(𝑦) corresponds to an increase of electron(hole)-
doping. Without chemical doping, Ta4SiTe4 behaves as an
insulator with a decrease in the electrical conductivity 𝐿11 at
low temperatures. This behavior is suppressed as it becomes
metallic for larger values of 𝑥.

A. Spectral conductivity with a constant chemical potential
(𝑁𝑠 = 1)

Assuming that the chemical potential is constant over the
considered range of temperatures, we study the spectral con-
ductivity of undoped Ta4SiTe4 with 𝑥 = 𝑦 = 0 (red lines in
Fig. 4). The loss function is minimized with 𝑎𝑖 = 1, 𝑏 = 0,
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FIG. 5. Reconstructed spectral conductivity and chemical poten-
tials of doped Ta4SiTe4. (a) Loss function and (b) reconstructed
𝜎(𝐸) of Ta4SiTe4 using the NN. Here, we assume the chemical po-
tential to be constant over temperature. (c) Loss function and (d)
reconstructed 𝜎(𝐸) (blue) of (Ta1−𝑥Mo𝑥)4Si(Te1−𝑦Sb𝑦)4 using the
NN. In the inset of (d), symbols represent chemical potentials as a
function of temperatures. (e,f) Temperature dependence of (e) 𝐿11
and (f) 𝐿12 shown as solid lines with symbols, which are computed
from 𝜎(𝐸) and 𝜇(𝑇) in (d). The experimental data are shown as
dashed lines. In (f), the doping concentration for each symbol is
indicated for (d-f).

𝑊𝑐 = 5, and 𝜆0 = 5 × 10−3. As shown in Fig. 5(a), the loss
function is saturated below 10−4 after 3000 epochs, resulting
in a good agreement with the experiment. The reconstructed
spectral conductivity in Fig. 5(b) exhibits a larger contribution
from the conduction band than the valence band. In addition,
the small peak inside the band gap at 𝐸 ≈ 0.02 eV might in-
dicate the formation of an impurity band due to vacancies and
impurities. However, it contains unphysical negative contri-
butions of 𝜎(𝐸) at 𝐸 < 0 when 𝜎anti (𝐸) > 𝜎sym (𝐸). These
contributions imply that the experimental data cannot be de-
scribed by a vanishing chemical potential. Thus, we introduce
temperature-dependent chemical potentials.

B. Spectral conductivity with temperature-dependent
chemical potentials (𝑁𝑠 = 7)

Next, the thermoelectric transport data of all doping concen-
trations in Fig. 4 is used for training of the NN with 𝑁𝑠 = 7.
The hyperparameters are chosen as 𝑎𝑖 = 4/(4 + 𝜉𝑖), 𝑏 = 1,
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FIG. 6. Optimization of the spectral conductivity and chemical potential for doped Ta4SiTe4. (a1,a2) Reconstructed 𝜎 (𝑠) (𝐸) (solid
blue with squares) of (Ta1−𝑥Mo𝑥)4Si(Te1−𝑦Sb𝑦)4 with 𝜇 (𝑠) (𝑇) (solid red/lime) plotted on the right vertical axis. The initial condition is
chosen as 𝜎0 (𝐸) (dashed blue) and 𝜇

(𝑠)
0 (𝑇) (dashed red/lime) from Fig. 5(d). The details of the computations are explained in the text.

(b1-e1,b2-e2) Temperature dependence of (b1,b2) 𝐿11, (c1,c2) 𝐿12, (d1,d2) Seebeck coefficient 𝑆 = 𝐿12/(𝑇𝐿11), and (e1,e2) power factor
𝑃 = 𝜎𝑆2, which are computed from 𝜎 (𝑠) (𝐸) and 𝜇 (𝑠) (𝑇) in (a1) and (a2), respectively. In (b1-e1) and (b2-e2), the results of the NN (solid)
are compared to the experimental data (dashed). (a1-e1) are obtained for an insulating sample with 𝑥 = 𝑦 = 0 (red) and (a2-e2) are obtained
for a metallic sample with 𝑥 = 0.05 and 𝑦 = 0 (lime).

𝑊𝑐 = 10, and 𝜆0 = 10−4, where the weight 𝑎𝑖 is increased
at low temperatures to improve the precision of 𝜎(𝐸) near
the Fermi energy of each sample. After 5000 epochs, the
loss function is saturated around 10−1 as shown in Fig. 5(c).
The obtained spectral conductivity and chemical potentials are
shown in Fig. 5(d) as a blue solid line and the corresponding
symbols for each sample, respectively. We find that the Fermi
energies move deep inside the bulk conduction band from the
band edge as the value of 𝑥 is increased, indicating the transi-
tion from insulators to metals. This is qualitatively consistent
with the experimental data. However, a comparison with the
experimental data shows some errors in 𝐿11 and 𝐿12 at higher
temperatures as shown in Fig. 5(e) and (f).

C. Optimized spectral conductivity with the
temperature-dependent chemical potential (𝑁𝑠 = 1)

For further improvement of the NN, we need to account
for a change in the spectral conductivity of doped samples.
While the electronic band structure is expected to remain
almost unchanged with doping (rigid band approximation),
the relaxation time 𝜏(𝐸) is generally modified upon doping.
However, simultaneous learning of the spectral conductivity
and chemical potential leads to the problem of overfitting as
discussed in Sec. II B. In this work, we avoid this problem
by imposing constraints on the chemical potentials, assum-
ing that those obtained in Fig. 5(d) are very close to the op-
timal solution. Denoting the results obtained in Fig. 5(d)

as 𝜎0 (E 𝑗 ) and 𝛼
(𝑠)
0 , we use the NN to estimate the sample-

dependent spectral conductivity 𝛿𝜎 (𝑠) (E 𝑗 ). The spectral con-
ductivity is given as 𝜎 (𝑠) (E 𝑗 ) = 𝜎0 (E 𝑗 ) + 𝛿𝜎 (𝑠) (E 𝑗 ) with
𝛿𝜎 (𝑠) (E 𝑗 ) =

∑10
𝑘=1 𝑜 𝑗+𝑘/10 for smoothing, where 𝑜𝑖 repre-

sents the 𝑖th component of output from the NN. In addition, we
allow a small correction in chemical potential 𝛿𝛼 (𝑠) to improve
the accuracy of the NN, where the chemical potential is defined
as 𝛼

(𝑠)
𝑖

= 𝛼
(𝑠)
0,𝑖 + 𝛿𝛼

(𝑠)
𝑖

with 𝛿𝛼
(𝑠)
𝑖

= 2Δ arctan(𝑜4𝑁+10+𝑖)/𝜋.
The small parameter Δ is gradually increased until we obtain
a good agreement between the NN and experimental data.

Taking 𝑎𝑖 = 1, 𝑏 = 1, and 𝑊𝑐 = 10, the NN is optimized for
an insulating sample (𝑥 = 𝑦 = 0) with 𝜆0 = 10−3 and a metallic
sample (𝑥 = 0.05, 𝑦 = 0) with 𝜆0 = 10−4. Figure 6(a1) and
(a2) show the results obtained after 5000 epochs, where the
values of Δ are taken as Δ = 0.04𝑊𝑐 and Δ = 0, respectively.
Remarkably, we find that the NN reproduces the temperature
dependence of chemical potentials in insulators without any
prior knowledge [see Fig. 6(a1)], where the chemical potential
is shifted from the band edge to the middle of band gap as the
temperature increases. For the metallic sample with 𝑥 = 0.05
and 𝑦 = 0 [see Fig. 6(a2)], the chemical potential is fitted
well by a quadratic term in temperatures. For both cases, the
difference between 𝜇

(𝑠)
0 and 𝜇 (𝑠) is not significant, as shown

by red (lime) dashed and solid lines for 𝑥 = 𝑦 = 0 (𝑥 =

0.05, 𝑦 = 0), respectively. This implies that the result obtained
in Fig. 5(d) provides a good initial condition and thus prevents
the overfitting problem.

The sample-dependent correction in the spectral conductiv-
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FIG. 7. Prediction of the maximal 𝑍𝑇 factor in doped Ta4SiTe4.
(a1,a2) Electronic thermal conductivity 𝜅el predicted by the NN (solid
with squares). On the right vertical axis, the ratio between the Lorenz
number 𝐿 = 𝜅el/(𝑇𝐿11) and universal constant 𝐿0 = 𝜋2𝑘2

𝐵
/(3𝑒2) is

plotted (solid with circles). (b1,b2) Maximal figure of merit 𝑍𝑇 =

𝑆2𝜎𝑇/𝜅el predicted by the NN (solid with squares) in comparison
with the Wiedemann-Franz law (dashed). The results in (a1-b1) and
(a2-b2) are computed from 𝜎 (𝑠) (𝐸) and 𝜇 (𝑠) (𝑇) in (a1) and (a2) of
Fig. (6), respectively.

ity is more prominent than in chemical potentials. Crucially,
it provides deep insights of the low-energy electronic band
structure. At 𝑥 = 𝑦 = 0 [see Fig. 6(a1)], we find that there
is a large contribution from the conduction band in the spec-
tral conductivity. In addition, a small peak at 𝐸 = −0.2 eV
shows contributions from the valence band. The band gap is
estimated as 0.15 eV, which is consistent with the theoretically
predicted value Δ𝑔 ∼ 0.1 eV [39]. Although the impurity band
is absent in Fig. 6(a1) with 𝜇 = 𝜇(𝑇) in contrast to Fig. 5(b)
with 𝜇 = 0, the Fermi energy is placed at the band edge of the
conduction band at 𝑇 = 0 K, implying a little doping or pres-
ence of a small impurity band in the experimental sample. At
𝑥 = 0.05 and 𝑦 = 0 [see Fig. 6(a2)], the conduction-band con-
tributions are dominant. In addition, we find several peaks of
impurity bands at 𝐸 < 0. The sample-dependent optimization
greatly improves the agreement between the NN and experi-
mental data in 𝐿11, 𝐿12, the Seebeck coefficient 𝑆, and power
factor 𝑃, as shown in Fig. 6(b1-e1) and (b2-e2). Remarkably,
even a complex temperature dependence of 𝑃 was successfully
reproduced in Fig. 6(e1). However, the NN overestimates the
Seebeck coefficient 𝑆 = 𝐿12/(𝑇𝐿11) of the insulating sample
at low temperatures as shown in Fig. 6(d1). This is because the
values of both 𝐿11 and 𝐿12 approach zero as the temperature
decreases [see Fig. 6(b1) and (c1)], rendering the computation
of 𝑆 sensitive to small numerical errors in 𝐿11 and 𝐿12.

We can also predict the maximal 𝑍𝑇 value by computing

the electronic thermal conductivity 𝜅el, which is given by

𝜅el =
1
𝑇

(
𝐿22 −

𝐿2
12

𝐿11

)
, (11)

with

𝐿22 =
1
𝑒2

∫ ∞

−∞
𝑑𝐸

(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)
(𝐸 − 𝜇)2𝜎(𝐸). (12)

Since it is not possible to directly measure 𝜅el in experiments,
it is commonly estimated by the the Wiedemann–Franz (WF)
law. According to the WF law, the thermal conductivity is
related to the electrical conductivity by 𝜅el = 𝐿0𝑇𝐿11, where
𝐿0 = 𝜋2𝑘2

𝐵
/(3𝑒2) is the universal constant. Since it is based

on the Sommerfeld expansion, the WF law usually provides
good estimates for metals at low temperatures. However, it is
known to break down for semiconductors and insulators [57],
which makes it challenging to estimate the phononic thermal
conductivity 𝜅lat. Remarkably, our data-driven approach of-
fers more accurate estimates using the reconstructed spectral
conductivity and chemical potential as shown below.

The breakdown of the WF law is characterized by the ra-
tio between the Lorenz number 𝐿 = 𝜅el/(𝑇𝐿11) and 𝐿0. In
Fig. 7(a1) and (a2), we plot 𝜅el predicted by the NN (red/lime
solid with squares) with 𝐿/𝐿0 on the right vertical axis (blue
solid). As expected for insulators, Fig. 7(a1) shows a large
deviation in 𝐿/𝐿0 from unity at 𝑥 = 𝑦 = 0. Initially, 𝐿/𝐿0 de-
creases with temperatures until it reaches the minimum value
𝐿/𝐿0 ≈ 0.42 at 𝑇 ∼ 150 K. When 𝐿/𝐿0 reaches the mini-
mum, we find that 𝜅el becomes almost flat between 100 K and
170 K, which is caused by the shift of the chemical potential
into the middle of the band gap [see Fig. 6(a1)]. Within this
temperature range, 𝐿11 decreases slightly while 𝐿12 is linear in
𝑇 [see Fig. 6(b1) and (c1)]. The decrease in 𝐿11 enhances the
second term of Eq. (11), cancels out higher order contributions
in 𝑇 and leads to the flatness of 𝜅el. At higher temperatures,
𝐿11 starts to increase with 𝑇 due to the thermal excitation of
electrons from the conduction and valance bands. As a result,
𝜅el and 𝐿/𝐿0 increase dramatically and becomes greater than
unity at 𝑇 ∼ 190 K. For the metallic case at 𝑥 = 0.05 and
𝑦 = 0 [see Fig. 7(a2)], the WF law is in a good agreement with
the NN at low temperatures. As the temperature increases,
𝐿/𝐿0 gradually decreases with 𝐿/𝐿0 ∼ 0.75 at 𝑇 > 150 K.

Finally, the maximal 𝑍𝑇 factor is estimated from 𝑍𝑇 =

𝑆2𝜎𝑇/𝜅el = 𝑆2/𝐿. We should note that the lattice contribution
𝜅lat is neglected here (see Sec. II A). Thus, the actual value of
𝑍𝑇 can be much smaller depending on 𝜅lat. For the insulating
case with 𝑥 = 𝑦 = 0 [see Fig. 7(b1)], the NN predicts a large
value of 𝑍𝑇 factor with 𝑍𝑇 > 10. Furthermore, it exhibits
a sharp peak at 𝑇 ≈ 150 K, which arises from the flattening
of 𝜅el. Since 𝐿/𝐿0 is smaller than unity at this temperature,
the prediction by the WF law is smaller than the NN and does
not exhibit a peak. Above 170 K, the 𝑍𝑇 factor drops sharply
due to a rapid increase in 𝜅el. At 𝑥 = 0.05 and 𝑦 = 0 [see
Fig. 7(b2)], the 𝑍𝑇 factor is approximately the same for the
NN and WF law as expected for metals, showing a linear
increase with temperatures.

We also investigate the changes in the spectral conductivity
and chemical potential of Ta4SiTe4 as the chemical doping is
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FIG. 8. Chemical doping dependence of spectral conductivity and
chemical potential in Ta4SiTe4. (a) Spectral conductivity 𝜎𝑠 (𝐸)
and (b) chemical potential 𝜇𝑠 (𝑇) is plotted for various doping con-
centrations of (Ta1−𝑥Mo𝑥)4Si(Te1−𝑦Sb𝑦)4. The doping concentra-
tions are given as (𝑥, 𝑦) = {(0, 0.05), (0, 0), (0.001, 0), (0.002, 0),
(0.01, 0), (0.02, 0), (0.05, 0)} from the front in (a) and from the left
in (b), where Δ/𝑊𝑐 = {0.055, 0.04, 0.05, 0.04, 0.005, 0, 0} and
𝜆0 × 103 = {1, 1, 0.3, 0.3, 0.1, 0.1, 0.1}.

carried out, which are shown in Fig. 8(a) and (b). For the hole-
doped case or without any doping (𝑥 = 0, 𝑦 = 0.05 or 0.0),
we find peaks for both conduction and valence bands that are
separated by a band gap Δ𝑔 ≈ 0.15 eV. Interestingly, the spec-
tral conductivity is almost unchanged by hole-doping, while
the chemical potential is shifted towards the valence band [see
Fig. 8(b)]. In contrast, we find that the spectral conductivity
is strongly modified upon electron-doping. Within the small
doping regime (e.g., 𝑥 = 0.001, 0.002), the spectral conduc-
tivity becomes greater with a larger band width. In electron-
doped samples, the contribution from the valance band is much
smaller than the conduction band, hence we find no peaks in
the valence band. A further increase in 𝑥 leads to a decrease
of 𝜎(𝐸), which can be understood from the broadening of the
spectral conductivity due to the impurity scattering. Electron-
doping also results in the shift of the Fermi energy with a small
change of 𝑥. This is expected from a small carrier number of
undoped Ta4SiTe4. Once the Fermi energy is shifted towards
the conduction band at 𝑥 = 0.001, the change in chemical po-
tential becomes small with increasing 𝑥 except for the largest
doping concentration at 𝑥 = 0.05.

IV. DISCUSSION AND CONCLUSION

Let us comment on the limitations of our approach. First, the
training of NNs requires thermoelectric transport data over a
wide range of temperatures without a phase transition. Second,
with the NN, it is difficult to reproduce the low-temperature
divergence of electronic conductivity in extremely clean met-
als. This is because the linear interpolation used for Eqs. (7a)
and (7b) results in large errors when 𝜎(𝐸) exhibits a sharp
peak near the Fermi energy. This limitation can be overcome
if the low-energy structure of 𝜎(𝐸) is known from theory. In
this case, the NN can be used to estimate a small correction in
𝜎(𝐸) from the low-energy model in addition to the chemical
potential 𝜇(𝑇).
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FIG. 9. Exponentially small determinants of 𝐹 and 𝐺 matrices
result in large numerical errors. (a) The absolute value of determi-
nants for 𝐹 (red with squares) and 𝐺 matrices (blue with circles) are
plotted against the matrix size 𝑁 . (b) The normalized loss function ℓ

is plotted against 𝑁 using the toy model 𝜎toy (E) [see Eq. (10)]. The
cutoff is taken as 𝑊𝑐 = 5 in both (a) and (b).

To relate the spectral conductivity to the response co-
efficients, we employed the Sommerfeld-Bethe relation in
Eqs. (5a) and (5b). However, this relation does not hold in
some cases. For example, an electron-phonon interaction
gives rise to the phonon-drag mechanism, which cannot be
explained by the Sommerfeld-Bethe relation [11, 47]. For
strongly correlated systems, the Sommerfeld-Bethe relation
was shown to hold with a short-range interaction such as
the Hubbard model [12], but not with a finite-range inter-
action [13]. It is also possible to obtain anomalous terms
beyond the Sommerfeld-Bethe relation by coupling electrons
with other excitations such as excitons and (para)magnons [58–
61]. Nevertheless, the Sommerfeld-Bethe relation holds for a
wide range of materials. In particular, it will be interesting to
apply our method to strongly correlated systems with short-
range interactions, whose electronic band structure is difficult
to obtain using first principles calculations [62].

In summary, we have proposed a data-driven approach to
solve the inverse problem in thermoelectric phenomena using
a NN. Based on the simple relationship between the thermo-
electric coefficients and the spectral conductivity, our method
enables the reconstruction of the spectral conductivity and
chemical potential without prior knowledge about microscopic
properties of target materials. Applying our method to doped
one-dimensional telluride Ta4SiTe4 [39], we have obtained
the spectral conductivity and chemical potential at various
doping concentrations. The reconstructed spectral conductiv-
ity was used to evaluate the electronic thermal conductivity
𝜅el and the maximal figure of merit 𝑍𝑇 . Crucially, our ap-
proach can provide accurate estimates of 𝜅el and 𝑍𝑇 beyond
the Wiedemann-Franz law, which is not valid in insulators and
at high temperatures. Furthermore, the reconstruction of the
complete energy dependence of the spectral conductivity, in-
cluding the phenomenological relaxation time 𝜏(𝐸), opens a
path to analyzing complex materials whose electronic states
remain elusive. Therefore, this study provides deep insights
into the connection between thermoelectric properties and the
low-energy electronic states, and establishes a promising route
to incorporate experimental data into traditional theory-driven
workflows.

A python code of our method is provided at Ref. [63].
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Appendix A: Exponentially small determinants of 𝐹 and 𝐺

matrices

Let us define 𝐹 and 𝐺 as the following 𝑁 × 𝑁 matrices:

𝐹 (E 𝑗 , 𝜉𝑖) =
exp[E 𝑗/𝜉𝑖]

𝜉𝑖 (exp[E 𝑗/𝜉𝑖] + 1)2 , (A1)

𝐺 (E 𝑗 , 𝜉𝑖) = −
E 𝑗 exp[E 𝑗/𝜉𝑖]

𝜉𝑖 (exp[E 𝑗/𝜉𝑖] + 1)2 , (A2)

where dimensionless variables are defined as 𝜉𝑖 = 𝑇𝑖/𝑇𝑁
and E 𝑗 = 𝑊𝑐𝜉 𝑗 for 𝑖, 𝑗 = 1, 2, . . . , 𝑁 with an integer 𝑁

and a cutoff 𝑊𝑐 . From Eqs. (6a) and (6b), the symmet-
ric and antisymmetric parts of the spectral conductivity are
given by 𝜎sym (E 𝑗 ) = (2𝑊𝑐/𝑁)−1 ∑𝑁

𝑗=1 𝐹 (E 𝑗 , 𝜉𝑖)−1𝐿11 (𝜉𝑖)
and 𝜎anti (E 𝑗 ) = (2𝑊𝑐/𝑁)−1 ∑𝑁

𝑗=1 𝐹 (E 𝑗 , 𝜉𝑖)−1𝐿12 (𝜉𝑖), respec-
tively. However, the determinants of 𝐹 and 𝐺 are exponen-
tially small with the matrix size 𝑁 , as shown in Fig. 9(a).
Here, the energy cutoff is fixed as 𝑊𝑐 = 5. The exponentially
small determinants of 𝐹 and 𝐺 result from the sharply peaked
Fermi-Dirac distribution function. Since inverse matrices are
proportional to the inverse of their determinants, floating-point
overflow occurs. As a result, it is not possible to compute
𝐹−1 and 𝐺−1 using a numerical solver for inverse matrices.
Figure 9(b) shows that the normalized loss function ℓ = ℓ/𝑁
increases exponentially with the matrix size 𝑁 , which is evalu-
ated with 𝑎𝑖 = 1 and 𝑏 = 0 in Eq. (8). Test datasets for 𝐿11 (𝜉𝑖)
and 𝐿12 (𝜉𝑖) are generated from the toy model 𝜎toy (E) [see
Eq. (10)]. Although there is no floating-point overflow for a
small number of 𝑁 , the discretization error converting the inte-
grals in Eqs. (5a)-(5b) to the matrix products in Eqs. (6a)-(6b)
becomes significant as 𝑁 becomes smaller. This is the reason
why ℓ exceeds 101 even for small values of 𝑁 .

Appendix B: Details of the data-driven interpolating model

Our data-driven method consists of three steps. First, we
need raw experimental data of the electric conductivity 𝜎(𝑇)
and Seebeck coefficient 𝑆(𝑇) at multiple chemical doping con-
centrations. For the results presented in Sec. III, we used
the method available in Ref. [56] to extract numerical data
points from the figures in Ref. [39]. The data is interpolated
to prepare the linearly spaced temperature grids with corre-
sponding values of 𝜎 and 𝑆, which is then used to compute
𝐿11 = 𝜎 and 𝐿12 = 𝑇𝑆𝜎 as shown in Fig. 4. Second (pre-
sented in Sec. III B), the NN is employed to infer the functional
form of the spectral conductivity 𝜎(𝐸) and chemical poten-
tials 𝜇 (𝑠) (𝑇) for 𝑠 = 1, 2, . . . , 𝑁𝑠 . At this step, the spectral
conductivity is assumed to be unchanged by chemical doping.
Third (presented in Sec. III C), the spectral conductivity is op-
timized to reproduce 𝐿11 (𝑇) and 𝐿12 (𝑇) for a given doping
concentration using 𝜇 (𝑠) (𝑇). When the fitting is not satisfac-
tory, we introduce a small correction 𝛿𝜇 (𝑠) (𝑇) in the chemical
potential. In the following, we provide details of the NN ar-
chitecture and the training procedure.

1. Neural network architecture

We use a fully connected NN with three layers. The first
layer acts as an input layer, taking the vector {𝜉𝑖} with 𝑖 =

1, 2, . . . , 𝑁 . Except for the output layer, we apply rectified
linear units as activation functions, defined as max(0, 𝑧). No
activation function is used in the output layer because it turns
out to slow down or stop the learning process. Instead, we add
a term to penalize the negativity of 𝜎(E 𝑗 ) in the loss function
as defined in Eq. (8) of Sec. II B.

2. Training procedure

The NNs are implemented in PyTorch [55]. For the
training of the NN, the spectral conductivity is defined as
𝜎(E 𝑗 ) =

∑10
𝑘=1 𝑜 𝑗+𝑘/10 for 𝑗 = −𝑁,−𝑁 + 1, . . . , 𝑁 (𝑁𝑠 = 1)

or 𝑗 = −2𝑁,−2𝑁 + 1, . . . , 2𝑁 (𝑁𝑠 > 1), with 𝑜 𝑗 denoting the
output of the third layer. For 𝑁𝑠 > 1, 𝜇(𝜉𝑖) is also obtained
from Eq. (9). Using 𝜎(E 𝑗 ) and 𝜇(𝜉𝑖), we compute 𝐿11, 𝐿12,
and the mean-squared error loss function, which is defined as
the difference from the experimental values of 𝐿11 and 𝐿12 in
Eq. (8). The loss function is minimized as the weights and bi-
ases are optimized by the stochastic gradient-based optimizer
Adam [64]. Gradients are calculated by backpropagation [65].
We train the NN with the full batch size, performing a con-
ditional update of the learning rate: When the loss function
increases at the 𝑖th epoch (ℓ𝑖 > ℓ𝑖−1), the learning rate at the
(𝑖 + 1)th epoch is updated as 𝜆𝑖+1 = max(𝜆𝑖 · 0.8, 𝜆min), where
𝜆min = min(𝜆0/5, ℓ𝑖). This procedure prevents oscillations in
ℓ and leads to smooth optimization of 𝜎(E 𝑗 ) and 𝜇(𝜉𝑖).
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