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Abstract

Performing alchemical transformations, in which one molecular system is nonphys-

ically changed to another system, is a popular approach adopted in performing free

energy calculations associated with various biophysical processes, such as protein-ligand

binding or the transfer of a molecule between environments. While the sampling of

alchemical intermediate states in either parallel (e.g. Hamiltonian replica exchange) or

serial manner (e.g. expanded ensemble) can bridge the high-probability regions in the

configurational space between two end states of interest, alchemical methods can fail

in scenarios where the most important slow degrees of freedom in the configurational

space are in large part orthogonal to the alchemical variable, or if the system gets

trapped in a deep basin extending in both the configurational and alchemical space.

To alleviate these issues, we propose to use alchemical variables as an additional

dimension in metadynamics, augmenting the ability both to sample collective vari-

ables and to enhance sampling in free energy calculations. In this study, we validate
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our implementation of “alchemical metadynamics” in PLUMED with test systems and

alchemical processes with varying complexities and dimensions of collective variable

space, including the interconversion between the torsional metastable states of a toy

system and the methylation of a nucleoside both in the isolated form and in a duplex.

We show that multi-dimensional alchemical metadynamics can address the challenges

mentioned above and further accelerate sampling by introducing configurational collec-

tive variables. The method can trivially be combined with other metadynamics-based

algorithms implemented in PLUMED. The necessary PLUMED code changes have

already been released for general use in PLUMED 2.8.

Introduction

With the fast advent of high-performance computing and parallel computing over the years,

methods such as molecular dynamics (MD) and Monte Carlo (MC) simulations have become

increasingly useful in elucidating the dynamics of transformation processes of condensed

matter systems. They are most useful when the system can sample efficiently from all the

energetically relevant conformations, in which case we can extract valuable thermodynamic

and structural information about the system, such as the solvation free energy of a molecule

or the binding ensemble of a binding complex. However, comprehensive sampling in the

phase space is generally challenging in traditional MD simulations because the system must

rely on very rare fluctuations to cross the free energy barriers that separate metastable states

of interest. In most systems of interest, this low transition probability between metastable

states makes the timescale required for achieving system ergodicity in unbiased sampling

impractically long.

To address this challenge, a wide variety of advanced sampling methods have been de-

veloped in the past decades.1 One particular flavor of advanced sampling methods involves

sampling along a set of predefined coarse-grained descriptors of the system, or collective

variables (CVs). Traditionally, CVs could be any function of the atomic coordinates of the
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system, but the optimal ones should correspond to the slowest degrees of freedom that dis-

tinguish different metastable states. Methods relying on the use of CVs include umbrella

sampling,2 adaptive biasing force,3 metadynamics4 and their variations.5–7

Another category of advanced sampling methods is known as generalized ensemble al-

gorithms, which includes simulated tempering,8 replica exchange,9,10 expanded ensemble,11

λ-dynamics,12 and their variations.13,14 These methods do not require any predefined CVs,

but a series of intermediate or auxiliary states with modified probabilities of the coordinates

of the system. These states are typically defined by varying the temperature or the Hamilto-

nian of the system. The motivation to introduce these states is often physical; for example,

alchemically connecting two end states with a molecule deleted or “mutated” is usually the

most efficient way to calculate many free energy differences.15 For example, the sampling in

the temperature space allows us to determine thermodynamic observables of interest as a

function of temperature, while simulations with alchemical intermediate states are useful for

calculating the free energy difference between the end states of alchemical processes. In free

energy calculations, sampling in alchemical intermediate states obviates the need of defining

CVs, which could be non-trivial in systems where the slowest-relaxing coordinates are not

intuitive, such as the escape of a ligand from a buried binding pocket.16,17

However, these additional states can also remove or lessen the kinetic barriers with states

of interest at the intermediate states, either by the intentional choice of additional states,

or as a useful side effect. As the system jointly samples the coordinate/configurational

space and this additional sampling direction, nonphysical pathways are created allowing the

system to circumvent free energy barriers in the configurational space (scenario A in Figure

1). The increased probability overlap between adjacent intermediate states can often enhance

the diffusion in not only the temperature/Hamiltonian direction, but also the configurational

space. In replica exchange, these states are sampled with the ensembles progressing forwards

in time in parallel, while in serial approaches, a single simulation can move between states

in either discrete (expanded ensemble) or continuous space (λ-dynamics). In order to have
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even sampling between the states, one must add biases or weights to the higher free energy

states so they can be sampled. These weights, which are absent in replica exchange, similarly

modify the underlying free energy surface as the biasing potentials in metadynamics do.

Although sampling in the alchemical variable can create new ensembles where the slowest

physical collective variables are no longer so slow, it cannot necessarily enhance sampling

where the configurational barriers are almost orthogonal to the alchemical direction. For

example, a configurational free energy barrier can be present for all the alchemical states

(scenario B in Figure 1) so that the system could remain stuck even if it is able to drift to

other alchemical states or cross free energy barriers along the alchemical direction. Another

scenario that could possibly trap the system is the presence of large free energy basins in both

the configurational and alchemical directions (scenario C in Figure 1). Importantly, upon

the application of the alchemical bias, even if the free energy landscape in the alchemical

direction can be flat for a range of configurational CV values, a flat sampling distribution in

coordinate space is not guaranteed, i.e. the sampling in the configurational space can remain

limited.

Figure 1: Common scenarios of sampling along the alchemical direction in the phase space.
In scenario A, the free energy barrier present at λ = 0 is absent from larger λ values, so the
system can go around the free energy barrier by pure alchemical sampling. On the other
hand, pure alchemical bias would fail to accelerate configurational sampling in scenarios B
and C. In scenario B, the free energy barrier extending across all λ states prevents the system
from sampling both metastable states at λ being 0. In scenario C, the free energy basin in
both the alchemical and configurational directions can trap the system during the adaptive
build-up of the alchemical weights.
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Currently, the challenges mentioned above can be addressed to varying extents. For

example, the alchemical flying Gaussian method18 or the conveyor belt method combined

with specific biasing19 do not bias the alchemical but only configurational space in alchem-

ical sampling. Although these methods might have difficulties in getting the system out

of free energy basins in scenario C in Figure 1, they might be sufficient to overcome the

extended configurational free energy barrier in scenario B in Figure 1. Methods such as λ

local elevation umbrella sampling (λ-LEUS),20,21 orthogonal space random walk (OSRW),22

double-integration orthogonal space tempering (DI-OST),23 and adaptive landscape flatten-

ing (ALF),24 which all work with continuous alchemical space in their proposals, are able to

apply biasing potentials in both the alchemical or configurational directions. Theoretically,

they can facilitate the escape of the system from the deep free energy basins shown in sce-

nario B in Figure 1, but each of them was implemented in a different context. In addition,

their algorithmic designs and allowed forms of configurational bias tend to be specific rather

than general. For example, OSRW does not generalize well to multiple dimensions because

finding a CV that is simultaneously orthogonal to dH/dλ and λ is generally difficult.

In light of the need for a more generalized approach that can address the issues in scenarios

B and C in Figure 1, especially in cases where multi-dimensional biases in the configurational

space are needed, we propose to use alchemical variables as an additional dimension in

metadynamics. Although an alchemical variable is not a collective variable of coordinates

whose values divide the coordinate space into disjoint sets like a center of mass distance or

radius of gyration, it has an associated free energy and dynamics, and thus can fit into the

same formalism. We term this approach alchemical metadynamics and have implemented

it in PLUMED 2.825 (initially, only for GROMACS). Given the well-developed library and

flexible syntax that PLUMED has for defining configurational CVs and various types of

restraints, the implementation of alchemical metadynamics within PLUMED is particularly

useful for smoothly flattening highly-dimensional free energy landscapes in a more general

way compared to methods such as λ-LEUS, OSRW, or DI-OST. To demonstrate the usage of
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such an algorithm and validate its implementation in PLUMED, we employed this method

to estimate the free energy difference of different alchemical processes as elaborated in the

Methods section, from decoupling an argon atom or a molecule composed 4 interaction sites,

to the methylation of a nucleobase for both the isolated form and in a duplex.

Theory

Metadynamics

As one of the most popular CV-based advanced sampling methods, metadynamics4 accel-

erates the sampling by depositing Gaussian biasing potentials to the underlying free energy

surface of the system. The biasing potential is a function of the vector of collective vari-

ables of interest ξ, which can be regarded as a reduced dimensional space calculated from

a configuration x by the mapping Φ(x) = ξ. During the simulation, biasing potentials are

deposited to seek roughly equal sampling across the reduced dimensional space of interest.

Let the CV vector ξ be d-dimensional, i.e. ξ = (ξ1(x), ξ2(x), ..., ξd(x)). The total biasing

potential added after a period of time t can be expressed as

V (ξ, t) = W

t′<t∑

t′=kτ,k∈N
exp

(
−

d∑

i=1

(ξi − ξi(x(kτ)))2

2σ2
i

)
(1)

where W is the height of the Gaussian, k is the number of Gaussian depositions, τ is the

deposition stride and σi is the width of the Gaussian along the i-th dimension. Notably, the

Gaussian height W can be either constant (in standard metadynamics) or time-dependent

(in well-tempered metadynamics26) during the course of the simulation, with the latter more

commonly adopted for a smoother convergence and better concentration on the physically

relevant regions of the configurational space. Specifically, the time-dependent Gaussian

height W (kτ) can be written as:
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W (kτ) = W0 exp

(
−V (~ξ(x(kτ)), kτ)

kB∆T

)
(2)

where W0 is the initial Gaussian height and ∆T is a temperature parameter that incorporates

a user-defined bias factor γ = (T + ∆T )/T for adjusting the decay rate of the bias. In well-

tempered metadynamics, the free energy surface as a function of the multi-dimensional CV

ξ can be estimated by the following relationship:

V (ξ, t→∞) = − ∆T

T + ∆T
F (ξ) = −(1− 1

γ
)F (ξ) (3)

To efficiently obtain a reasonable estimate of the free energy difference of interest, the

dimensions of the chosen set of CVs must be as low as possible while still capturing the slowest

degrees of freedom of the system, as the space to be explored increases exponentially with

the number of CVs, leading to prohibitive time to converge weights. For multi-dimensional

metadynamics, introducing multiple interacting walkers27 to sample the same free energy

surface along different dimensions of the CVs can be a useful strategy for speeding up the

reconstruction and exploration of the free energy surface.

Alchemical metadynamics

In alchemical metadynamics, the alchemical variable λ is introduced in the generalized CV

vector ξ′ = (λ, ξ1(x), ξ2(x), ..., ξd(x)) such that the joint space of λ and ξ is sampled with the

aid of the biasing potential V (ξ′). Unlike the configurationally defined CVs, the alchemical

variable is not a function of atomic coordinates. In the current implementation, we assume

that the alchemical variable takes discrete values, i.e. the state index that can be mapped

to a vector of coupling parameters for decoupling/switching different interactions, such as

van der Waals interactions, electrostatic interactions, or any kind of restraints. Similarly to

expanded ensemble, alchemical metadynamics alternates the sampling along the alchemical

direction and the coordinate directions. The sampling in the discrete alchemical space can
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be done by Monte Carlo sampling just as the alchemical sampling in expanded ensemble,

while the coordinate direction is sampled by molecular dynamics as in any other type of

metadynamics. Currently, our implementation of alchemical metadynamics is available in

the combination of PLUMED 2.8 interfaced with GROMACS 2020, and in any combina-

tion of more recent versions of each. When using alchemical metadynamics, the state index

of the alchemical or coupling parameter λ is passed from GROMACS to PLUMED along

with the system configuration required to compute configurational CVs. PLUMED uses

these alchemical indices and any other CV present to track the visited states of the system

and calculate the metadynamics bias, while GROMACS updates the alchemical state via

MC. When calculating the energy of the current and the candidate λ states, GROMACS

includes the metadynamics bias provided by PLUMED. This approach is compatible with all

MC schemes in alchemical space offered by GROMACS, including the Metropolis-Hastings

algorithm,28 Barker transition method,29 Gibbs sampling,30,31 and Metropolized-Gibbs sam-

pling.32,33

Theoretically, one-dimensional alchemical metadynamics, which does not apply config-

urational but only alchemical bias, is effectively equivalent to expanded ensemble with a

different weight updating procedure for allowing roughly equal sampling across alchemical

states. For example, in an expanded ensemble where the Wang-Landau algorithm34–36 is used

for weight updating, the reduced potential of the system is incremented by a Wang-Landau

incrementor whenever a move across alchemical states is attempted. This is analogous to

the periodic deposition of Gaussian potentials in 1D alchemical metadynamics, especially

when the Gaussian deposition stride is the same as the number of integration steps be-

tween attempted moves in the alchemical space. For converging the free energy surface in

the alchemical space, both algorithms have mechanisms for decreasing the bias along the

course of the simulation. In expanded ensemble, the Wang-Landau incrementor is modified

by a scaling factor whenever the state visitation reaches a certain flatness criterion. In 1D

well-tempered alchemical metadynamics, a bias factor is applied to enforce a continuous
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exponential decay of the Gaussian height, which leads to marginally smoother convergence

compared to expanded ensemble or other similar free energy methods. There are a number

of alternative strategies that can also be pursued.37

In multi-dimensional alchemical metadynamics, introducing additional configurational

CVs can further enhance the sampling of metastable states that might have been missed

by methods that do not apply configurational biases. As the multi-dimensional biasing

potentials can flatten out the free energy landscape in both configurational and alchemical

space, the system would not get stuck in the phase space like scenarios B and C shown in

Figure 1. This approach can be easily generalized to continuous alchemical space, but such

a generalization is not explored in this study because methods such as λ-dynamics are not

currently implemented in GROMACS.

Free energy calculations

Theoretically, the free energy estimator for alchemical metadynamics is the same as the

one used in any other metadynamics except that the CV vector is generalized with the

introduction of the alchemical variable. Upon the deposition of the biasing potential V (ξ′)

in alchemical metadynamics, the probability distribution sampled during the simulation is

P̃ (ξ′) ∝ exp(−β(F (ξ′) + V (ξ′))), where β = 1/kBT is the inverse temperature. One of the

possible options to recover the underlying free energy landscape F (ξ′) = −kBT lnP (ξ′), is

to reweight the histogram by assigning an unbiasing weight w(ξ′) to each sample with the

CV ξ′.38 Such an unbiasing weight can be expressed as

w(ξ′) ∝ exp

(
V (ξ′, tf )
kBT

)
(4)

where tf is the simulation length and V (ξ′, tf ) is the total bias accumulated up to tf . The

maximum of V (ξ′, tf ) over ξ′ is usually subtracted before taking the exponential to avoid

overflow, which does not affect the normalized weights. More frequently, V (ξ′, tf ) is replaced
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with V̄ (ξ′, t0), the total bias averaged over the time period from t0 = (1−fa)tf to tf ,
39 where

fa is the fraction over which biases are averaged. Given that tf = t0 +Nτ , V̄ (ξ′, t0) can be

written as

V̄ (ξ′, t0) =
1

N + 1

N∑

i=0

V (ξ′, t0 + iτ) (5)

where N is the number of Gaussians deposited from t0 to tf . Usually, fa is decided such that

the bias potential applied during the period over which V̄ is averaged is roughly stationary

with time. To calculate P (ξ′) and its uncertainty (hence F (ξ′) and its uncertainty), we

first discard the equilibrium phase during which the major free energy basins were being

filled,40 with a truncation fraction of ftr, which we here set to 1 − fa. Then, we divide

the remaining part of the simulation into blocks, for each of which we construct a weighted

histogram of the CVs. Lastly, we calculate the free energy from the probability averaged over

all the blocks, with the error of the free energy determined as the standard deviation of all

bootstrap iterations in block bootstrapping. In practice, the uncertainty of the free energy is

dependent on the number of blocks. We therefore calculated the uncertainty corresponding to

different numbers of blocks ranging 20 up to 2000 and we report the maximum uncertainty.

Alternatively, one could perform a separate simulation using a static bias potential and

compute the weighting factors exclusively from the additional simulation, as it is done for

instance in metadynamics with umbrella-sampling refinement.41 Notice that this option is

more expensive, as it require a separate simulation, but remove any potential systematic

error due to the history-dependent nature of the metadynamics biasing potential.

Methods

We validated our implementation of alchemical metadynamics with free energy calculations

for different test systems/alchemical processes with varying complexities and dimensions

of the CV space. These range from decoupling an argon atom (Case 1) from water, or a

model molecule composed of 4 interaction sites (Case 2, as shown in Figure 2) from water,
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to the methylation of a nucleobase and a duplex residue (Case 3, as shown in Figure 3).

In the following subsections, we describe the simulation methods of different test systems,

along with the details of the corresponding free energy calculations. All simulations were

performed at 298K using GROMACS 2021.4. For metadynamics simulations, either a testing

branch based on PLUMED 2.7 or PLUMED 2.8 was used, with no difference between the

two versions except for the way of specifying relevant parameters. All files relevant to our

simulations and test systems can be found in our project repository .

Case 1: Hydration of an argon atom

As a sanity check for our implementation of alchemical metadynamics, we used 1D well-

tempered alchemical metadynamics to calculate the solvation free energy of an argon atom,

which was then compared with the result obtained from expanded ensemble given the simi-

larity of the two methods. With System 1, the goal is to check if 1D alchemical metadynamics

can accurately reproduce the free energy of a simple system calculated by expanded ensemble.

Preparation of simulation inputs

The argon atom was solvated in a cubic box of length 2.4 nm and was energy-minimized by

the steepest descent algorithm until the maximum force was lower than 100 kJ/mol/nm. The

argon atom was modeled as a Lennard-Jones sphere with ε = 0.996 kJ/mol and σ = 0.341

nm. The system was then equilibrated in the NVT and then NPT ensembles, both for

200 ps. The reference temperature and pressure were maintained at 298 K and 1 bar by

the velocity rescaling method42 and a Berendsen barostat,43 respectively. Lastly, 5 ns of

NPT MD simulation with Parrinello-Rahman barostat44,45 keeping the pressure at 1 bar was

performed, in which the cutoff distance for van der Waals interactions was specified as 0.9 nm.

The PME (particle mesh Ewald) method46 was used with a switching function between 0.89

nm and 0.9 nm for efficient calculations of long-range electrostatic interactions. A spacing

of 0.10 nm was used for the PME grids. The LINCS47 algorithm was employed to constrain
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bonds involving hydrogens, with the highest order in the expansion of the constraint coupling

matrix set as 12 and the number of iterative corrections set as 2. The configuration whose

box volume was the closest to the average volume of the MD trajectory was extracted to

serve as the input configuration for the expanded ensemble and alchemical metadynamics

simulations, which were both performed in an NVT ensemble to avoid any potential issues

with λ dependence of pressure. Although this could lead to a slightly different estimate of

the solvation free energy as compared to the one solved in the NPT ensemble, the objective

is simply to compare two methods with the same alchemical process in the same ensemble.

Expanded ensemble simulation

We divided our expanded ensemble calculations into two separate stages: an equilibration

and a production stage. Both stages of simulations were performed in the NVT ensemble with

6 states for decoupling the van der Waals interactions between the argon atom and the water

molecules. In the equilibration stage, we employed the Wang-Landau algorithm to adaptively

estimate the weight for each alchemical state, with the initial Wang-Landau incrementor set

as 0.5 kBT, which is usually sufficient for relatively simple systems. The histogram that kept

track of the state visitation was updated with the Metropolized-Gibbs Monte Carlo moves

between all alchemical states, which were attempted every 10 integration steps. We adopted

the default value of 0.8 for the cutoff for the flatness ratio R, which means that the histogram

was considered flat only if all intermediate states had an R value and its reciprocal larger

than 0.8; For any state, R is defined as the ratio between the count of the state and the

average count of all states. Whenever the histogram was considered flat, the state counts

were all reset to 0 and the Wang-Landau incrementor was scaled by a factor of 0.8. This

process for updating weights was stopped when the incrementor fell below 0.001 kBT. The

equilibrated weights were then used as the frozen weights in the production simulation for

100 ns. For data analysis, we only considered the time series of the Hamiltonian obtained

from the production stage. After truncating the non-equilibrium regime33 and decorrelating
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the time series, we ran MBAR48 to compute the free energy difference between the coupled

and uncoupled states, which is the solvation free energy of the system. The entire two-

stage expanded ensemble procedure was done with 3 replicates. The final estimation of the

solvation free energy is reported as the mean of the values obtained from the 3 replicates,

with its uncertainty calculated as the error propagated from the bootstrapped uncertainty

of the 3 replicates.

1D alchemical metadynamics

To compare with expanded ensemble, we adopted the same simulation length (100 ns),

starting configuration, state transition scheme (Metropolized-Gibbs sampling), and coupling

parameters of the same 6 states in 1D alchemical metadynamics, which is also done with 3

replicates. We set the initial height of the Gaussian biasing potential as 0.5 kBT, which is

the same as the initial Wang-Landau incrementor despite different weight updating schemes.

While in alchemical metadynamics, the strides for Gaussian depositions and MC moves are

decoupled and do not need to be the same, we set both strides as 10 integration steps to

better compare with expanded ensemble, where the weights are always updated whenever

a move is proposed. To accommodate such a fast pace for applying Gaussian biases, we

set the bias factor as 50 to avoid an excessively fast decay in the Gaussian height, which

could potentially slow down the compensation of the underlying free energy surface. The

width of the Gaussian was set as 0.01 to avoid any overlap between the Gaussians deposited

at different λ values. Note that having such an overlap would not invalidate the method,

but might have made the comparison to expanded ensemble less straightforward. For the

solvation free energy calculation, we set the truncation fraction and the average fraction as

0.25 and 0.75, respectively. 1000 blocks were used in the histogram construction, which led

to a block size of 75 ps and the largest uncertainty among the considered numbers of blocks.

200 bootstrap iterations were used in block bootstrapping. The mean and the propagated

error of the free energy estimates from the 3 replicates were reported as the final results.
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Case 2: Hydration of a 4-site system

To demonstrate the advantages of introducing configurational CVs in alchemical metady-

namics, we designed a fictitious molecule composed of 4 linearly bonded interaction sites

as the second test system (see Figure 2). We placed opposite charges on the first and last

“atoms” (+0.2e and -0.2e) and set the force constant for the only torsional angle as 60

kJ/mol so that the two torsional metastable states of the system were separated by a large

free energy barrier (around 48.5 kBT, see Figure S2A). This large free energy barrier poses

a challenge of sampling both torsional metastable states to alchemical free energy methods

that do not apply any configurational bias, such as expanded ensemble or 1D alchemical

metadynamics. Such a challenge is useful for us to highlight the difference between meth-

ods with or without the application of configurational biases in free energy calculations.

With this system, we performed 1D and 2D well-tempered alchemical metadynamics sim-

ulations starting from either metastable state to calculate the solvation free energy of the

system. Since the cis and trans configurations have both different dipole moments and dif-

ferent effective volumes in solvent, configurational ensembles that are restricted to just one

torsional well or the other will have different solvation free energies. The goal is to show

that 2D alchemical metadynamics simulations starting from different torsional metastable

states lead to statistically consistent estimates of the solvation free energy, which cannot be

accomplished by 1D alchemical metadynamics due to restricted configurational sampling.

Figure 2: The two torsional metastable states of System 2: A molecule composed of 4
interaction sites. The first and last atoms have charges of +0.2e and -0.2e, respectively, with
the other two atoms uncharged.

14



Preparation of simulation inputs

After solvating the system in a dodecahedral box with 1 nm between the solute and box

edges, we processed the system with the same procedure of energy minimization, NVT and

NPT equilibration, and NPT MD simulation like the one used in the argon atom system. A

structure that had a volume closest to the average NPT volume was taken as the input of

a 5 ns NVT 1D metadynamics run that only biased the torsional angle of the system. This

torsional metadynamics applied a Gaussian biasing potential every 500 integration steps,

with a bias factor of 10. The width and initial height of the Gaussians were set as 0.5 rad

and 1 kBT, respectively. With this setup, the system was able to sample both torsional

metastable states frequently in the torsional metadynamics (see Figure S2B), from which we

generated the structures corresponding to the trans isomer (State A) and cis isomer (State

B) for starting subsequent alchemical metadynamics elaborated in later sections. Notably,

the parameters used in the torsional metadynamics do not need to be optimal as long as

they are good enough for the simulation to generate reasonable starting configurations in

the two isomer forms.

Alchemical metadynamics

For each torsional metastable state of the system, we started both 1D and 2D well-tempered

alchemical metadynamics in an NVT ensemble, with 3 replicates for each, where the only

torsional angle of the system was introduced in the 2D simulations as the second CV. The

MC moves between alchemical states were proposed every 10 integration steps using the

Metropolized-Gibbs MC scheme. All simulations were performed for 200 ns and adopted

a Gaussian deposition stride of 500 steps. 20 alchemical intermediate states were used to

decouple the van der Waals interactions and Coulombic interactions. 1D alchemical meta-

dynamics started with a Gaussian height of 1 kBT. A general metadynamics rule of thumb

is that the bias factor should be approximately ∆G/kBT , where ∆G is the height of the

free energy barrier to cross.26 The bias factor was thus set as 60 for the 1D alchemical
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metadynamics. This choice was guided by the fact that typical free-energy differences in

the alchemical space are around 50 kT (see Figure S2A) and, given the expected equilib-

rium distribution of well-tempered metadynamics, this bias factor allows a reasonably flat

histogram of lambda. On the other hand, 2D alchemical metadynamics used a Gaussian

height of 2 kBT, and a bias factor of 120 for flattening the deeper free energy basins in the

2D phase space. The widths of the Gaussian along the alchemical direction (for 1D and 2D

simulations) were set as 0.01, while the Gaussian width in the torsional dimension (for the

2D simulations) was set as 0.5 rad. While the adopted Gaussian width along the torsional

direction is slightly larger than the typically suggested value of 0.35 rads for biasing torsions,

it has also been shown38 that wider Gaussians could fill free energy basins faster. For all

simulations, we specified a truncation fraction of 0.3 and an average fraction of 0.7. For each

simulation, the block size that led to the largest uncertainty was adopted for histogramming

in free energy calculations and 200 bootstrap iterations were used in block bootstrapping.

For each of the 4 kinds of calculations (1D or 2D simulations starting from either State A or

State B), the final results were calculated as the mean and the propagated error of the free

energy estimates from the 3 replicates.

Case 3: Adenosine in its isolated form and in a duplex

As a final example, we considered the free energy calculations associated to the modifi-

cation of adenosine (A) to N6-methylated adenosine (m6A). m6A is the most widespread

post-transcriptional modification of RNA.49 The methyl group can be either in syn or anti

configuration, distinguished by a torsional angle η (see Figure 3). When m6A is isolated (nu-

cleoside) or in a single-stranded region, the syn state is more stable than the anti state. The

reverse is true when m6A is in a duplex. This results in an effective duplex destabilization.50

The barriers associated with the η angle are relevant to the kinetics of hybridization.51 In a

previous paper,52 we studied this system using standard Hamiltonian replica exchange simu-

lations and reparametrized partial charges so as to fit thermodynamic data.50,53 Specifically,
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we separately simulated the syn- and anti - conformations. We here show how to use alchem-

ical metadynamics to recover the same information in a single simulation, and additionally

obtaining information about the isomerization barrier.

Figure 3: (A) The 4 considered states of the alchemical transformation of A into m6A. Isomers
are characterised by the value of the torsional angle defined by atoms N1-C6-N6-H62 or N1-
C6-N6-C10. The isomers are indistinguishable in the adenine case, so ∆Gsys,A

syn/anti = 0. On

the other hand, in m6A the position of the methyl group defines the states anti and syn.
The former is the most favoured for the paired m6A in a duplex, while the latter is the most
favoured for the isolated nucleoside. (B) The 8 base-pairs duplex considered in this work,
shown in the case of methylated adenosine in anti state.

Preparation of simulation inputs

All the setups have been described extensively in Piomponi et al.,52 and are available on

Zenodo. We here consider the conversion of A to m6A in an isolated nucleoside (system

A1 in Ref.52) and in a RNA duplex (system A2 in Ref.,52 only the duplex system). The

GROMACS input files are identical to those used in our previous work, except that here the λ

ladder is sampled with the Metropolized-Gibbs algorithm with attempted moves spaced with
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100 integration steps. For the simulations reported in this work, we used the parametrization

of m6A charges reported as fit A in Ref.52

Alchemical metadynamics

Similarly to the other two systems, we use metadynamics to flatten the sampling along both

the alchemical λ state and along a physical collective variable. For this system, we tested

a modified setup where we apply two concurrent metadynamics.54 The first metadynamics

process is one-dimensional and acts only along the alchemical variable. Since the free energy

differences along this non-physical variable can be very large, we use a large bias factor

(γ = 100). The second, simultaneous, metadynamics process is two-dimensional and acts

both on the alchemical variable and on ηavg, an averaged torsional angle elaborated in the

next section. Since the barriers along ηavg are smaller, this second metadynamics is performed

with a lower bias factor (γ = 10). The overall bias potential acting on the system can thus

be written as

Vtot(ηavg, λ) = V1(λ) + V2(ηavg, λ) (6)

where V1 and V2 are the Gaussian biases added during the one-dimensional metadynamics

and the two-dimensional metadynamics, respectively. This combined bias potential can

be directly used for reweighting as discussed above. Notably, at variance with the work

by Gil-Ley et al.,54 where a large number of collective variables were concurrently biased,

thus requiring a replica ladder to obtain unbiased populations, by using only two variables

as we do here a direct reweighting is sufficient. Notably, a similar issue appears when

simultaneously biasing the total energy of a solvated system and solute-dependent CVs.

In this case, indeed, two separate metadynamics, possibly with different bias factors, can

be applied fruitfully. This was done for instance in Ref. ,55 though in a sequential and

not self-consistent procedure. The protocol is also related to the one proposed by Chipot

and Lelièvre,56 although it is here applied (a) in metadynamics context and (b) combining

potentials in 1D and 2D with the alchemical CV shared among the two biases.
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Metadynamics simulations were run for 60 ns, with Gaussians of initial height 12 kJ/mol,

for V1, and 1.2 kJ/mol, for V2, deposited every 500 steps. The Gaussian width along the ηavg

variable was chosen to be 0.35 rad. The 2D free energy surface was computed directly from

the bias potentials, while the 1D profile was reconstructed using reweighting. Free energy

differences and their statistical errors were computed by reweighting a second 160 ns-long

simulation where the bias potentials were kept constant. In the case of this calculation, as

has also been observed anecdotally in other cases, using a static bias resulted in slightly

more statistically robust free energy differences. For a comparison between the cases using

dynamic or static bias, please refer to the supporting information, or more specifically, Figure

S1.

Choice of the configurational collective variable

One critical issue in this system is the proper choice of the configurational collective variable.

In the first attempt, we used the torsional angle defined as the torsion identified by atoms

N1-C6-N6-C10 (see Figure 3). This choice was found to be suboptimal. In the production

runs, we used as a biased variable a mean torsion obtained by averaging the three torsions

identified by atoms N1-C6-N6-C10, N1-C6-N6-H61, and N1-C6-N6-H62. The average was

computed as the arctangent of the sine and cosine averages. These three torsions are coupled

by an improper torsion that maintains the group C10, N6, H61, and H62 planar, but this

torsion is not sufficiently stiff to maintain the consistency between the three torsions when

enforcing the barrier crossing. When biasing the average, a diffusive behavior of the biased

CV was obtained (Figure S6B). Specifically, with the torsions N1-C6-N6-C10 (ηC10), N1-C6-

N6-H61 (ηH61), and N1-C6-N6-H62 (ηH62), the average is computed as

ηavg = atan2

(
sin(ηC10) + sin(ηH61 + π) + sin(ηH62)

3
,
cos(ηC10) + cos(ηH61 + π) + cos(ηH62)

3

)

(7)
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Where atan2 is is the two argument arctan function, defined as the angle between the positive

x-axis and the vector (x, y); it is equal to arctan(y/x) when x > 0, but involves corrections

of ±π when x ≤ 0. We also note that ηH61 must be shifted by 180 degrees when taking the

average.

Free energy calculations

For this system, we are interested in calculating of the following three relative free energy

differences: ∆∆Gns
syn/anti, ∆∆Gdup

syn/anti, and ∆∆G
dup/ns
syn+anti, where the first two denote the

difference in the methylation free energy between the transformation processes that lead

to a syn or anti m6A, in the isolated nucleoside (ns) and in the duplex (dup), respectively.

They can be calculated by taking the difference between the free energy differences of interest,

namely,

∆∆Gns
syn/anti = ∆Gns

anti −∆Gns
syn (8)

∆∆Gdup
syn/anti = ∆Gdup

anti −∆Gdup
syn (9)

The same set of free energy differences can be used to calculate ∆∆G
dup/ns
syn+anti, the relative

methylation free energy between the nucleoside and the duplex systems considering both syn

and anti conformations:

∆∆G
dup/ns
syn+anti = ∆Gdup

syn+anti −∆Gns
syn+anti (10)

with

∆Gns
syn+anti = − 1

β
ln(exp(−∆Gns

syn) + exp(−∆Gns
anti)) (11)

∆Gdup
syn+anti = − 1

β
ln(exp(−∆Gdup

syn) + exp(−∆Gdup
anti)) (12)

In Equations 8, 9, 11 and 12, ∆Gns
syn, ∆Gns

anti, ∆Gduplex
syn , and ∆Gduplex

anti are the free energy

differences of converting an adenosine into a syn m6A or anti m6A in either the isolated form
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or the duplex, each of which can be calculated from a separate alchemical simulation at fixed

rotameric state. For example, in the work by Piomponi et al.,52 four Hamiltonian replica

exchange simulations were performed to estimate the three relative free energy differences

of interest (∆∆Gns
syn/anti, ∆∆Gdup

syn/anti, and ∆∆G
dup/ns
syn+anti).

However, using alchemical metadynamics, we can sample both rotamers in a single simu-

lation methylating the adenosine. Thus, ∆Gsys
syn, ∆Gsys

anti, with sys being either ns or dup, can be

directly obtained from a single alchemical metadynamics simulation. Given the access to all

metastable states in the alchemical and configurational space, we can calculate free energy

differences with more flexibility by considering ratios of partition functions corresponding to

different states. For example, with alchemical metadynamics, we can calculate ∆∆Gns
syn/anti

and ∆∆Gdup
syn/anti as follows, instead of using Equations 8 and 9:

∆∆Gns
syn/anti = ∆Gns, m6A

syn/anti = − 1

β
ln

(∑
i∈anti e

βV ns
tot(ηi,λ=1)

∑
i∈syn e

βV ns
tot(ηi,λ=1)

)
(13)

∆∆Gdup
syn/anti = ∆Gdup, m6A

syn/anti = − 1

β
ln

(∑
i∈anti e

βV dup
tot (ηi,λ=1)

∑
i∈syn e

βV dup
tot (ηi,λ=1)

)
(14)

∆Gns, m6A
syn/anti and ∆Gdup, m6A

syn/anti , which are the free energy differences between the two rotamers

in the nucleoside and in the duplex, respectively, are not available in Hamiltonian replica

exchange but in alchemical metadynamics. Similarly, ∆Gns
syn+anti and ∆Gns

syn+anti can be

calculated as follows:

∆Gns
syn+anti = − 1

β
ln

(∑
i∈syn+anti e

βV ns
tot(ηi,λ=1)

∑
i∈syn+anti e

βV ns
tot(ηi,λ=0)

)
(15)

∆Gdup
syn+anti = − 1

β
ln

(∑
i∈syn+anti e

βV dup
tot (ηi,λ=1)

∑
i∈syn+anti e

βV dup
tot (ηi,λ=0)

)
(16)

so that ∆∆G
dup/ns
syn+anti can be calculated using Equation 10. In Case 3, the goal is to compare

the three free energy differences obtained from alchemical metadynamics with the values
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recovered from Hamiltonian replica exchange reported in the work by Piomponi et al.52

Results and discussion

Case 1: An argon atom

With the weights fixed at the values equilibrated by the Wang-Landau algorithm, the solva-

tion free energy of the argon atom estimated by expanded ensemble with MBAR was −3.275

kBT, with an uncertainty as small as 0.016 kBT owing to sufficiently even state visitation

(see Figure S3A). This estimation is statistically consistent with the one obtained from the

1D alchemical metadynamics, which was −3.284 ± 0.010 kBT. Notably, the essential dif-

ference in the weight updating approaches between the two methods makes it infeasible to

directly compare the performance of the methods. In expanded ensemble, the incrementor

decreases in a step-wise manner and the same value is applied to all intermediate states. On

the other hand, the Gaussian height in well-tempered metadynamics continuously decays

with the amount of biases that have been deposited in the state being sampled, which means

that the potential energies of different states are elevated with different amounts depending

on how frequently the states have been visited. If we had adopted a stricter, rather than

a typical criterion for histogram flatness, our state visitation of expanded ensemble would

have been more even. This would also result in a lower uncertainty. With the chosen pa-

rameters in our case, though, the expanded ensemble still reached a low uncertainty. More

importantly, the data collected from the two simulations is sufficient to indicate that 1D

alchemical metadynamics free energy calculations yield results that are equivalent within

statistical significance to the expanded ensemble results.

Case 2: A molecule composed of 4 interaction sites

The purpose of the second system is to demonstrate the difference in the configurational

sampling between alchemical metadynamics with or without the introduction of configura-
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tional bias. As a consequence, in 1D alchemical metadynamics starting from either torsional

metastable states, the accumulation of one-dimensional alchemical biases allowed the sys-

tem to freely sample all the intermediate states (see Figure S4). However, such biases did

not facilitate the compensation of the free energy wells along the torsional direction. With

the lack of direct biases in the torsional direction, the interconversion of the two isomers

became the slowest degree of freedom that trapped the system. Accordingly, it can be seen

in Figure 4A that 1D alchemical metadynamics failed to sample both metastable states re-

gardless of which torsional state the simulation was initialized in. This insufficient sampling

of the torsional space caused the dependence of the estimated solvation free energy on the

starting torsional metastable state. Specifically, the solvation free energies estimated by 1D

alchemical metadynamics starting from State A and State B were 0.649 ± 0.030 kBT and

-0.381 ± 0.029 kBT (see Figure 5), respectively. As either simulation failed to account for

the potential energy contribution of the other metastable state, the free energy estimates

were statistically inconsistent with each other.

Figure 4: The sampled torsional angle in (A) 1D alchemical metadynamics and (B) 2D
alchemical metadynamics as a function of time. As can be seen in the figure, the sampling
in the torsional space is restricted in 1D alchemical metadynamics, but essentially complete
in its 2D analog.

By contrast, the 2D Gaussian biasing potentials in both 2D alchemical metadynamics
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simulations flattened out the free energy surface both along the alchemical and torsional

directions simultaneously, so in both cases, the system was able to sample the alchemical

and torsional space exhaustively (see Figure S5 and Figure 4B). This comprehensive and

even sampling along all the slow degrees of freedom led to statistically consistent solvation

free energy estimations from State A (0.708 ± 0.031 kBT) and State B (0.694 ± 0.031

kBT), as shown in Figure 5. In addition, the 2D free energy surface of the system can be

accurately recovered from either of the two cases. Figure 6A shows the an averaged 2D free

energy surfaces obtained from one of the 3 replicates, which was calculated by averaging

the 2D free energy surfaces obtained from the 2D alchemical metadynamics starting from

the two torsional metastable states. Figure 6B shows the contour plot corresponding to the

averaged 2D free energy surface in 6A. From the 2D free energy surface, it is clear that

the alchemical variable is orthogonal to the torsional angle of the system, which explains

the ineffectiveness of the one-dimensional alchemical bias in torsional sampling. Notably,

this is exactly Scenario B in Figure 1 that can fail alchemical free energy methods that do

not apply configurational biases. Therefore, the success in System 2 verified the usage of

2D alchemical metadynamics in overcoming the extensive free energy barrier present in a

certain configurational CV direction.
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Figure 5: The solvation free energies estimated by 1D and 2D alchemical metadynamics
starting from either states. 1D alchemical metadynamics simulations starting from different
torsional metastable states led to statistically different estimations of the solvation free en-
ergy, while the values estimated by the 2D simulations are statistically consistent with each
other.

Figure 6: (A) The average of the 2D free energy surfaces obtained from the two 2D alchemical
metadynamics simulations starting from State A and State B. (B) The average of the contour
plots obtained from the 2D alchemical metadynamics simulations starting from State A and
State B.
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Case 3: Adenosine methylation in its isolated form and in a duplex

The free energy profile along the λ state index is computed using reweighting and reported

in Figure 7A. The large difference observed is non-physical and depends on the relative

definitions of the A and m6A force field parameters. The 2D surface as a function of the λ

state index and the averaged torsional angle ηavg is computed using the usual relationship

between bias and free energy,26 and then subtracting the Boltzmann-averaged free energy

along the λ state index, and is reported in Figure 7B. We notice that the residual dependence

of the free energy on λ depends on the fact that barriers on ηavg change when λ is changed.

The profiles along ηavg were computed using the relationship between the bias and the free

energy and are also shown Figure 7C. Notably, this approach allows free energy profiles

along the biased variable to be obtained simultaneously with alchemical differences. These

profiles show that the syn conformation (central basin) is favored in the m6A nucleoside,

whereas the anti conformation (lateral basins) is favored in the duplex. The final ∆∆G’s,

which represent the amount by which the methylation disfavors the duplex, are consistent

with those reported in Ref.52 within the respective statistical errors (Figure 7D).

Importantly, as it is common in all methods based on biasing collective variables, the

choice of the collective variable is critical. In the simulations reported above, a diffusive be-

havior was observed in the collective variable after the main basins were filled. We report in

Figure S6A preliminary results obtained with a suboptimal variable where a diffusive behav-

ior along η was not obtained. Importantly, even though the exploration of λ is guaranteed by

the one-dimensional metadynamics, the inclusion of λ in the two-dimensional metadynamics

allows to effectively reconstruct free energies along ηavg that are depending on λ.

In the third case reported in this paper, the alchemical simulation of conversion from A

to m6A is an interesting physical example because it shows that alchemical metadynamics

gives simultaneous access to free energy barriers for both the two end systems. Whereas this

result could have been obtained performing two separate metadynamics simulations, being

able to use a single simulation has substantial advantages. First, it makes sure that other
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possibly slow degrees of freedom are sampled consistently in the two end states, making

differential results more reliable. For instance, if the isomerization barrier was affected by

binding with another molecule present in the simulation box, the dynamics of λ would have

ensured binding to be equally represented in the A and m6A states. Second, in cases where

the conformational transitions are better described by the physical CV in one of the states

with respect to the other state, thus resulting in more transitions in one of the end states

when compared to the other, having a single simulation would enable the ensemble of the

slower state to benefit from the enhanced ergodicity in the faster state. These benefits could

also be obtained by combining metadynamics with Hamiltonian replica exchange along the

alchemical variable, however at the price of higher computational cost and less flexibility in

the setup.

The combination of one-dimensional and two-dimensional bias potentials allows simul-

taneously (a) flattening of the large artificial free-energy difference along the alchemical

variable and (b) compensating of the torsional barriers effectively, considering the fact that

the precise profiles depend on the alchemical variable. The two potentials can be constructed

using different bias factor coefficients so as to optimize their capability to explore the two

profiles. This idea might be also exploited in different contexts, whenever one wants to si-

multaneously facilitate transitions over a large free energy barrier (e.g., a chemical reaction)

and, at the same time, smooth residual barriers on softer degrees of freedom.
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Figure 7: (A) The free energy profile along the state index for the RNA duplex and for the
isolated nucleoside. (B) Residual free energy surface along the state index and the averaged
torsional angle for the RNA duplex (C) The free energy computed as a function of ηavg at fixed
λ = 1, both for the RNA duplex (red) and for the m6A nucleoside (blue) (D) Comparison of
∆∆G obtained with alchemical metadynamics (AM) and with Hamiltonian replica exchange
(HREX) from Piomponi et al., 2022,52 with their respective statistical errors.

Conclusion

In this study, we proposed alchemical metadynamics, which expanded the configurationally

defined sampling space allowed in traditional metadynamics with an additional alchemical

sampling direction. Alchemical metadynamics is most useful when the CV space is multi-

dimensional, including both alchemical and configurational sampling. With the configura-

tional bias, it encourages the system to escape from configurational metastable subspace that
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could have easily trapped the system. It retains the advantages of traditional alchemical free

energy methods, but also enables higher flexibility in sampling rough free energy surfaces.

With different test systems and alchemical processes, we showed that 1D alchemical

metadynamics had at least comparable performance as expanded ensemble simulations, and

was able to accurately calculate the solvation free energy of an argon atom. We also showed

that 2D alchemical metadynamics could eliminate the dependence of free energy calculations

on the starting metastable state due to restricted configurational sampling with system 2.

With system 3, we demonstrated that 2D alchemical metadynamics eliminated the need to

perform multiple Hamiltonian replica exchange simulations to estimate the relative methy-

lation free energy of the adenosine systems and simultaneously reconstructed the free energy

profile along the biased torsional angle. More importantly, the success in both Cases 2

and 3 manifests the usage of alchemical metadynamics in overcoming challenges that can

frustrate traditional alchemical free energy methods that do not bias configurational CVs.

We conclude that alchemical metadynamics is promising in enhancing sampling in challeng-

ing systems, such as highly flexible protein-peptide binding complexes, or protein-nucleic

acid binding complexes. The method can be trivially combined with more sophisticated

algorithms, such as path collective variable57 tICA,58 SGOOP,59 RAVE,60 or other similar

machine learning methods.61–66
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(56) Chipot, C.; Lelièvre, T. Enhanced sampling of multidimensional free-energy landscapes

using adaptive biasing forces. SIAM J. Appl. Math. 2011, 71, 1673–1695.

35



(57) Branduardi, D.; Gervasio, F. L.; Parrinello, M. From A to B in free energy space. J.

Chem. Phys. 2007, 126, 054103.

(58) M. Sultan, M.; Pande, V. S. tICA-metadynamics: accelerating metadynamics by using

kinetically selected collective variables. J. Chem. Theory Comput. 2017, 13, 2440–2447.

(59) Tiwary, P.; Berne, B. Spectral gap optimization of order parameters for sampling com-

plex molecular systems. Proc. Natl. Acad. Sci. 2016, 113, 2839–2844.

(60) Ribeiro, J. M. L.; Bravo, P.; Wang, Y.; Tiwary, P. Reweighted autoencoded variational

Bayes for enhanced sampling (RAVE). Nat. Commun. 2018, 149, 072301.

(61) Rohrdanz, M. A.; Zheng, W.; Maggioni, M.; Clementi, C. Determination of reaction

coordinates via locally scaled diffusion map. J. Chem. Phys. 2011, 134, 03B624.

(62) Sultan, M. M.; Pande, V. S. Automated design of collective variables using supervised

machine learning. J. Chem. Phys. 2018, 149, 094106.

(63) McCarty, J.; Parrinello, M. A variational conformational dynamics approach to the

selection of collective variables in metadynamics. J. Chem. Phys. 2017, 147, 204109.

(64) Chen, W.; Ferguson, A. L. Molecular enhanced sampling with autoencoders: On-the-

fly collective variable discovery and accelerated free energy landscape exploration. J.

Comput. Chem. 2018, 39, 2079–2102.

(65) Wang, Y.; Ribeiro, J. M. L.; Tiwary, P. Past–future information bottleneck for sampling

molecular reaction coordinate simultaneously with thermodynamics and kinetics. Nat.

Commun. 2019, 10, 1–8.
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Comparison of methylation free energy calculations with

dynamic and static biases

As a supplementary information, we show the free energy calculations with dynamic bias

for the nucleotide and duplex systems. These calculations are done in comparison with the

free energy differences computed with static bias presented in the main text. Specifically,

simulations at dynamic bias were elongated up to 160 ns. For analysis, the first 60 ns were

discarded, and the bias averaged over the remaining 100 ns was used to compute weights.

Different numbers of blocks ranging 2 to 1000 were used to construct histograms in block

boostrapping (200 iterations) and the largest uncertainty is reported.

The figure below shows that with dynamic bias, the free energy estimates are more precise

(lower statistical errors). This is mostly likely attributable to the fact that the sampling in
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the CV space is more diffusive in these systems with dynamically updated weights. However,

free energy estimates computed with dynamic bias are less accurate, i.e. the results differ

more in alchemical metadynamics than in the case of Hamiltonian replica exchange (HREX).

This is probably caused by the dynamic bias adding some small amount of history-dependent

blurring.

To further demonstrate the lower accuracy of the dynamic bias computation, the free

energy difference (∆Gdup, A
syn/anti) between the two conformations of adenosine shown in Figure

3A in the main text is calculated. In the work by Piomponi et al.,1 this value was assumed

to be 0 because of the symmetry of the hydrogen atoms H61 and H62. Also, HREX used

in the previous work does not have the access to the free energy landscape along the biased

torsion, so the relative error is not given for the HREX case. In alchemical metadynamics,

∆Gdup, A
anti/syn was calculated as follows:

∆Gdup, A
syn/anti = − 1

β
ln

(∑
i∈anti e

βV dup
tot (ηi,λ=0)

∑
i∈syn e

βV dup
tot (ηi,λ=0)

)
(1)

For most systems, the general understanding is that using plain metadynamics instead

of doing the two-step procedure is better.2 It is likely the result is system dependent and

related to the fact that even without a dynamic bias we can see many of transitions, thus a

reasonable statistical error. In this way, we are clearly in the regime where fewer transitions

at equilibrium are a safer estimate.
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Figure S1: Comparison of free energy differences computed in Ref.1 with Hamiltonian replica
exchange (HREX) and ∆∆G computed with alchemical metadynamics (AM) in this work,
for two cases: (1) static bias (as discussed in the main text) and (2) dynamic bias.
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Supplementary Figures

Figure S2: (A) The free energy profile as a function of the torsional angle. We refer the
structures have a torsional angle of ±180◦ and 0◦ as State A (trans isomer) and State B
(cis isomer). The torsional free energy barrier starting from either state is around 48.56 kT,
which might not be exact since the analysis was done on a very short (5 ns) simulation solely
for generating configurations at both states. (B) The histogram of the sampled torsional
angle in the torsional metadynamics. As can be seen, the system was able to sample both
states frequently during the short simulation.

Figure S3: The histograms of the state visitation in (A) expanded ensemble and (B) 1D
alchemical metadynamics of System 1. Both simulations were able to sample all the inter-
mediate states frequently.
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Figure S4: The histograms of the state visitation in the 1D alchemical metadynamics starting
from (A) State A and (B) State B. Both simulations were able to freely sample the alchemical
space.

Figure S5: The histograms of the state visitation in the 2D alchemical metadynamics starting
from (A) State A and (B) State B. Similar to the two 1D simulations of System 2, both 2D
simulations were able to freely sample the alchemical space.
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Figure S6: (A) Value of the torsional angle N1-C6-N6-C10 as a function of time when the
same torsional is used as CV, in a simulation performed at dynamic bias potential. In the
160 ns of simulations, the system only switches once from syn to anti state after about 8 ns
and then back to syn after about 60 ns (B) Value of the torsional angle N1-C6-N6-C10 as
a function of time when an averaged torsion between N1-C6-N6-C10, N1-C6-N6-H62, and
N1-C6-N6-H61 (+π) is used as biasing collective variable. In this case, the system becomes
diffusive on N1-C6-N6-C10 after a few ns (C) N1-C6-N6-C10 vs N1-C6-N6-H62 when N1-
C6-N6-C10 is used as CV (D) N1-C6-N6-C10 vs N1-C6-N6-H62 when the averaged torsion
is used as CV. The three torsions mentioned here are coupled by an improper torsion that
maintains the group C10, N6, H61, and H62 planar. The results shown here demonstrate that
the improper torsion is not sufficiently stiff to maintain the consistency between the three
torsions when enforcing the barrier crossing. As a consequence, the single N1-C6-N6-C10
torsion is not an optimal CV to allow a proper sampling of the torsional space.
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