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Abstract. We propose one of the very few constructive consequences of
the second law of thermodynamics. More specifically, we present protocols
for secret-key establishment and multiparty computation the security of
which is based fundamentally on Landauer’s principle. The latter states
that the erasure cost of each bit of information is at least kBT ln 2 (where
kB is Boltzmann’s constant and T is the absolute temperature of the
environment). Albeit impractical, our protocols explore the limits of re-
versible computation, and the only assumption about the adversary is her
inability to access a quantity of free energy that is exponential in the one
of the honest participants. Our results generalize to the quantum realm.

Keywords: Reversible computation, quantum information, information-
theoretic security, key establishment, oblivious transfer.

1 Introduction

1.1 Motivation

In the past decades, several attempts were made to achieve cryptographic secu-
rity from physical properties of communication channels: Most prominently, of
course, quantum cryptography [BB84,Eke91]; other systems made use of noise in
communication channels [Wyn75] or bounds on the memory space accessible by
an adversary [Mau92]. These schemes have in common that no limit is assumed
on the opponent’s computational power: They are information-theoretically se-
cure.

Our schemes for achieving confidentiality (key agreement or, more precisely, key
expansion) as well as secure coöperation (multiparty computation, i.e., oblivious
transfer) rely solely on a bound on the accessible free energy1 of an adversary.
More specifically, we propose schemes the security of which follows from Lan-
dauer’s principle, which is a quantification of the second law of thermodynamics:
In a closed system, “entropy” does not decrease (roughly speaking).
1 Free energy is “free” in the sense that it can be used to do work — it is not “entrapped”
in a system.
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Landauer’s principle states that the erasure of information unavoidably costs
free energy, the amount of which is proportional to the length of the string
to be erased. On the “positive” side, the converse of the principle states that
the all-0 string of length N has a free-energy value proportional to N . More
precisely, the erasure cost and work value are both quantified by kBT ln 2 · N ,
where kB is Boltzmann’s constant (in some sense the nexus between the micro-
and macroscopic realms), and T is the absolute temperature of the environmental
heat bath.

Our result can be seen as one episode in a series of results suggesting information-
theoretic security to be, in principle, achievable under the assumption that at
least one in a list of physical theories, such as quantum mechanics or special
relativity, is accurate: We add to this list the second law of thermodynamics —
to which not much glamour has been attached before.

1.2 Contributions

We base the “free-energy-bounded model” of information-theoretic cryptography
upon the observation that the second law of thermodynamics has a cryptograph-
ically useful corollary: “Copying information has a fundamental cost in free en-
ergy.” Bounding the free energy of an adversary forces them into picking parsimo-
niously what to copy, and that can be exploited in a reversible-computing context
to ensure information-theoretic security. Our secret-key establishment protocol
demonstrates how bounds in free energy can lead to cryptographic mechanisms
similar to the ones used in quantum-key distribution and in the bounded-storage
model, while our oblivious-transfer protocol exemplifies the novelty of our model.

This is an overview of our article: In Section 2, we review the subjects of
information-theoretic cryptography and of reversible computing. In Section 3,
we introduce, based on reversible computing, a novel model of computation and
interaction that captures the consumption and the production of free energy
in Turing machines. In Section 4, we establish some prerequisites: we prove a
version of Landauer’s principle in our framework, and construct a game that is
basically equivalent to a thermodynamical “almost-no-cloning theorem,” which
we later use in our security proofs. In Sections 5 and 6, we offer protocols for
secret-key establishment and oblivious transfer, respectively; their information-
theoretical security is based fundamentally on Landauer’s principle. It is assured
against adversaries whose bound in free energy is exponential compared to the
one of the honest players. While the present work focuses on classical informa-
tion, we sketch in Section 7 how all our results generalize in presence of quantum
adversaries.

2 State of the Art

2.1 Information-theoretic cryptography from physical assumptions

In parallel to the development of computationally secure cryptography — and
somewhat in its shadow —, attempts were made to obtain in a provable fashion
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stronger, information-theoretic security, based not on the hardness of obtaining
the (uniquely determined) message in question, but on the sheer lack of infor-
mation. Hereby, the need for somehow “circumventing” Shannon’s pessimistic
theorem of perfect secrecy is met by some sort of physical limitation. The latter
can come in the form of simple noise in a communication channel, a limita-
tion on accessible memory, the uncertainty principle of quantum theory, or the
non-signalling postulate of special relativity.

The first system of the kind, radically improving on the perfectly secret yet
impractical one-time pad, has been Aaron Wyner ’s wiretap channel [Wyn75]:
Here, information-theoretic secret-key establishment becomes possible — under
the assumption, however, that the legitimate parties already start with an ad-
vantage, more specifically, that the adversary only has access to a non-trivially
degraded version of the recipient’s pieces of information. A broadcast scenario
was proposed by Csiszár and Körner [CK78] — where, again, an initial ad-
vantage in terms of information proximity or information quality was required
by the legitimate partners versus the opponent. A breakthrough was marked
by the work of Maurer [Mau93], who showed that the need for such an initial
advantage on the information level can be replaced by interactivity of communi-
cation: Maurer, in addition, conceptually simplified and generalized the model by
separating the noisily correlated data generation from public yet authenticated
communication, the latter being considered to be for free. The model shares its
communication setting with both public-key as well as quantum cryptography.
Maurer and Wolf [MW96] have shown that in the case of independent-channel
access to a binary source, key agreement is in fact possible in principle in all
non-trivial cases, i.e., even when Eve starts with a massive initial advantage in
information quality.

In the same model, it has also been shown that multiparty computation becomes
possible, namely bit commitment and (the universal primitive of) oblivious trans-
fer [CK88,Cré97]. More generally, oblivious transfer has also been achieved from
unfair noisy channels, where the error behaviour is prone to be influenced in one
way or another by the involved, distrusting parties willing to coöperate.

The public-randomizer model by Maurer [Mau92] has generally been recognized
as the birth of the idea of “memory-bounded models,” based on the fact that the
memory an opponent or cheater (depending on the context) can access is lim-
ited. Specifically, Maurer assumes the wire-tapper can obtain a certain fraction
of the physical bits. This was generalized to arbitrary types of information by
Dziembowski and Maurer [DM02]. Analogously, also oblivious transfer has been
shown achievable with a memory-bounded receiver [CCM98,DHRS04]. The main
limitation to the memory-bounded model, for both secret-key establishment and
multiparty computation, is that the memory advantage of the honest partici-
pants over the adversaries is at most quadratic [DM04].

The idea to use quantum physics for cryptographic ends dates back to Wiesner,
who, for instance, proposed to use the uncertainty principle to realize unforge-
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able banknotes. His “conjugate coding” [Wie83] resembles oblivious transfer; the
latter — even bit commitment, actually — we know now to be unachievable
from quantum physics only [May97,LC98]. A breakthrough has been the now
famous “BB84” protocol for key agreement by communication through a channel
allowing for transmitting quantum bits, such as an optic fibre, plus a public yet
authenticated classical channel [BB84].

A combination of the ideas described is the “bounded quantum-storage model”
[DFSS08]: Whereas no quantum memory is needed at all for the honest players,
a successful adversary can be shown to need more than n/2 of the communicated
quantum bits. The framework has been unified and generalized to the “noisy”
model by König, Wehner, and Wullschleger [KWW12].

Very influential has been a proof-of-principle result by Barrett, Hardy, and
Kent [BHK05]: The security in key agreement that stems from witnessing quan-
tum correlations can be established regardless of the validity of quantum the-
ory, only from the postulate of special relativity that there is no superluminal
signalling. The authors combined Ekert ’s [Eke91] idea to obtain secrecy from
proximity to a pure state, guaranteed by close-to-maximal violation of a “Bell
inequality,” with the role this same “nonlocality” plays in the argument that
the outcomes of quantum measurements are, in fact, random and not predeter-
mined: In the end, reasoning results that are totally independent of the complete-
ness of quantum theory. Later, efficient realizations of the paradigm were pre-
sented [HRW,MPA11]. Conceptually, an interesting resulting statement is that
information-theoretic key agreement is possible if either quantum mechanics OR
relativity theory are complete and accurate “descriptions of nature.” Another
point of interest is that trust in the manufacturer is not even required: “device
independence” [VV14].

Kent also demonstrated that bit commitment can be information-theoretically
secure thanks to special relativity alone [Ken99]. On the other hand, oblivi-
ous transfer cannot be information-theoretically secure even when combining
(without further assumptions) the laws of quantum mechanics and special rela-
tivity [Col07].

Now — the free-energy-bounded model: We add to this list the novel
free-energy-bounded model. Unlike the assumptions in memory-bounded models,
thermodynamics does not in principle prohibit free-energy-bounded players from
computing on memories of exponential size (in some security parameter), but
it does prohibit those players from erasing a significant portion of such mem-
ories. If the players only have access to memories in initial states of maximal
entropy, as is assumed in equilibrium in thermodynamics, the erasing restriction
becomes a copying restriction (because one cannot copy without a blank memory
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to write the copy onto) and opens the way to a novel foundation of physics-based
information-theoretic security that is different from the bounded-storage model.2

2.2 Reversible computing

The cost of computation. Security in cryptography relies on a cost dis-
crepancy between honest and malicious actors. While fundamental thermody-
namical limits to the cost of computation have been well-studied (for exam-
ple, see [FDOR15] for a quantum-informational analysis and [BW19] for an
algorithmic-information-theoretical analysis), they have never before3 been con-
sidered as a means for cryptography — we address that.

The second law of thermodynamics. The modern view of the second law
of thermodynamics is due to Ludwig Boltzmann, who defined the entropy of
a macrostate — roughly speaking, the natural logarithm of the number of mi-
crostates in the macrostate in question — and stated that the entropy of a closed
system does not decrease with time. The second law has constantly been subject
to discourse, confusion, and dispute; its most serious challenge was “Maxwell’s
demon” who apparently violates the law by adaptive acts, i.e., by a sorting
procedure. Charles Bennett [Ben87] explained that Maxwell’s paradox actually
disappears when the demon’s internal state (its “brain”) is taken into consid-
eration. More specifically, the erasure of the stored information requires free
energy that is then dissipated as heat to the environment. This is Landauer’s
principle [Lan61]; it did not only help to resolve the confusion around Maxwell’s
demon, but turned out to be an important manifestation of the second law with
respect to information processing in its own right: Erasure of information —
or, more generally, any logically irreversible computing step, has a thermody-
namic cost. Logical irreversibility (information is lost) implies thermodynamic
irreversibility (free energy is “burnt” to heat up the environment).

Landauer’s principle.

Erasing n random bits requires to transform at least n · kBT ln 2 J/K of
free energy into heat, which is dissipated into the environment.

2 In particular, the free-energy-bounded model offers fresh mechanisms, coming from
reversible computing, to build information-theoretic protocols (e.g., our oblivious-
transfer protocol). Another important difference is that in our protocols, the advan-
tage of honesty in free-energy consumption is exponential in the security parameter,
while in the bounded-storage model (which is not based on reversible computing but
arguably more practical), it is polynomial.

3 Let us mention the (questionable) conjecture in [HS03] that the heat-flow equation
of thermodynamics is a computational one-way function.
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Energy-neutral (thermodynamically reversible) computation. Landauer’s
principle serves as a strong motivation to ask for the possibility whether com-
puting can always be (made) reversible, i.e., forced to not “forget” along the
way any information about the past (previous computation). More specifically,
can every Turing-computable function also be computed by a reversible Turing
machine (the latter was introduced in [Lec63]; see Chapter 5 of [Mor17] for a
more modern account)? In the early 1970s, Charles Bennett answered this ques-
tion to the affirmative; the running time is also at most doubled, essentially —
a very encouraging result [Ben73]: The imperative reversibility of microphysics
can, at least in principle, be carried over to macrocomputing. Bennett’s idea was
that the reversible Turing machine would allocate part of its tape to maintain
a history of its computation. While the latter needs to be gotten rid of in order
to have the whole be “sustainable,” that cannot be done by “crude” erasure of
that history — all won would be lost again. It can, however, be done by un-
computing : After copying the output, the reversible Turing machine reverts step
by step the original computation, undoing its history tape in a “controlled” and
reversible way until the output is computed back to the input. An idea similar
to Bennett’s elegant trick also works for circuits: Any irreversible circuit can
be transformed into a reversible one, computing the same function, and having
essentially only double depth.

All in all, this means that logical reversibility — which Landauer tells us to
be a necessary condition for thermodynamic reversibility — can be achieved;
remains the question whether it is also a sufficient condition for energy-neutral
computation. The answer is yes, as exemplified by Fredkin and Toffoli [FT82]
and their Gedankenexperiment of a “ballistic computer” which carries out its
computations through elastic collisions between balls and balls, and balls and
walls.

In the end, we get an optimistic picture for the future of computing: Any com-
putable function can be computed also without the transformation of free energy
into heating of the environment. (Clearly, a “loan” of free energy is necessary
to start the computation, but no law of physics prevents its complete retrieval,
alongside the result of the computation, when the latter concludes.)

Reversible computing.

Any logically reversible computation can be done at zero free-energy cost
by a reversible Turing machine.

Reversible computing is at the core of our model.4

4 Reversible computing is of paramount importance in the context of Moore’s and
Koomey’s laws about the future of computation, because their continuation is threat-
ened by physical walls and the most important one comes from thermodynamics (and
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The energy value of redundancy. The converse of Landauer’s principle
states that all physical representations of the all-0 string have work value. More
generally, all redundant (i.e., compressible in a lossless fashion) strings have work
value, which is essentially their length minus their best compression [Ben82]. A
bound in free energy is therefore a bound on the redundancy of information; a
principle we use in this work to construct cryptographic protocols.

Fig. 1. Given the existence of thermodynamical heath baths, there is a fundamental
equivalence between free energy and redundancy (i.e., the absence of randomness).

The converse of Landauer’s principle.

It is possible to extract an amount n · kBT ln 2 of free energy from an
environment by randomizing n blank bits.

In the light of Landauer’s principle and of its converse, the all-0 string can
be used as a proxy for free-energy (see Fig. 1). This allows us to abstract the
thermodynamics completely from the model we present in Section 3, which is
then formulated purely in terms of (logically reversible) Turing machines.

3 Turing Machines with Polynomial Free-Energy
Constraints

In the following, we have this classical5 setting in mind: Alice, Bob, and Eve have
their own secure labs, where they can store and manipulate exponentially long (in
some security parameter ν) bit strings. Those strings start in uniformly random6

states; we can think of them as the information about the specific microstate
that describes the position and momentum of an exponential number of particles
floating in their labs. We assume that technology is advanced enough to consider
these exponentially long bit strings as static (even if the system starts in a
random state, it does not get re-randomized at every time step), either because

not quantum mechanics). Reversible computing can in principle solve the problem
completely by enabling computation without dissipation of heat.

5 The classical setting is used for all sections but Section 7, which approaches the
quantum generalization.

6 This randomness is motivated by the equipartition assumption of classical thermo-
dynamics.
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their evolution is tractable (it evolves according to the logically reversible laws of
physics) or because the players can act on them quickly enough that it does not
matter. The physical restriction on the honest and malicious players concerns
their available free energy: For some security parameter ν, malicious players are
bounded exponentially (more precisely, by 2ν), while honest players need only
an asymptotically O(ν) amount. These bounds are constraining because any
computation that is not logically reversible has a free-energy cost; a malicious
agent cannot for example erase a 2 · 2ν-long segment of random information —
by Landauer’s principle, doing so would cost a quantity of free energy exceeding
their free-energy bound. We formalize this computation model in Section 3.1.

Communicationwise, the players are allowed to broadcast O(ν)-length bit strings
in the traditional sense using a public authenticated channel, or to transfer
O(2ν)-long bit strings through a private-but-insecure7 SWAP channel, This
channel, which swaps two bit strings at no energy cost, can also be substituted
by an insecure physical channel. Both views are informationally equivalent, and
are defined in Section 3.2.

In particular, our model differs from the bounded-storage model — both the
players and the adversary have more power.

3.1 Computation model

The fundamental laws of physics are logically reversible. We hence base our
formal notion of player (or adversary) on reversible Turing machines.

Definition 1 (TTM). A thermodynamical Turing machine (TTM) is a log-
ically reversible, deterministic, universal, prefix-free Turing machine with the
following semi-infinite tapes:

1. An input-only instruction tape.

2. An initially blank computation tape that must be returned blank when
the machine halts.

3. An initially random memory tape.

4. An initially blank free-energy tape.

The free-energy tape of a TTM imitates a “reservoir” of free energy:

Definition 2 (consumption). The free-energy input win is quantified8, when
the machine halts, by the distance, on the initially blank free-energy tape,
between the extremity and the last cell with a 1 (after this cell, the tape contains
only 0s).

7 By “insecure,” we mean here that it is vulnerable to Eve-in-the-middle attacks.
8 More precisely, it is bounded from below.

8



For example, if a machine always manages to return the free-energy tape as
blank as it was — it uses no free energy and computes both logically and ther-
modynamically reversibly; if a machine writes, and leaves, some information on
the first n cells of the initially blank free-energy tape, we say it consumes an
amount win = n of free-energy. (In this work we have set kBT ln 2 := 1.)

Our security proofs will rely on a concept we name proof-of-work.

Definition 3 (production). We say a TTM produces a proof-of-work of
value wout if it halts with a number wout of 0s at the beginning of its (initially
random) memory tape.

We consider agents (TTMs) with bounds, in the security parameter ν, on the
free-energy input.

Definition 4 (BFE). An f(ν)-BFE agent — an agent who is bounded in free
energy by the function f(ν), where ν is a security parameter — is modelled by
a TTM that can only consume a quantity f(ν) of free energy.

In other words, every time a f(ν)-BFE agent reaches a halting state, the non-
blank portion of its free-energy tape ends at a distance at most f(ν) from the
extremity, by definition.

In our protocols, the honest players are asymptotically O(ν)-BFE, while the ad-
versary is assumed exactly 2ν-BFE. An important limitation of f(ν)-BFE agents
is given by the following theorem, to which the security of our protocols will be
reduced.

Theorem 1. For all k > 0, an f(ν)-BFE player cannot produce an f(ν) + k
proof-of-work, except with probability 2−k.

The theorem is a consequence of the logical-reversibility characteristic imposed
by the second law of thermodynamics. The proof is done in Section 4.2, based
on Definitions 1 and 4 (i.e., with no further references to thermodynamics).

3.2 Communication and reversible transfer

Our cryptographic model can be formalized further by integrating BFE parties
into a multi-round interactive protocol that uses reversible computing, however,
let us focus on how Alice and Bob can exchange information. There are of two
distinct resources:

– Standard communication for messages of length O(ν).

– Reversible transfer for longer messages, up to length O(2ν).
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Standard communication. We consider that Alice and Bob have access to
a public authenticated communication channel in the traditional sense: Alice
broadcasts a message (making, therefore, inevitably many copies of its informa-
tion content) and Bob receives it. Because Alice and Bob are O(ν)-BFE, this
information-duplicating channel can only be used for messages of length O(ν).

Reversible transfer. To send states of length more than O(ν), Alice and Bob
have to resort to reversible computing. Reversible transfer differs from standard
communication in the sense that, in order to implement the process at no free
energy cost, the sender must forget the information content of the message they
send. (They could, of course, preëmptively make a partial copy of that informa-
tion, but copying is not free and is thus limited by the free energy assumption.)
There are two different physical ways to picture such reversible transfer.

The first way is to implement, over a given distance, a reversible SWAP: In
essence, this operation simply swaps two bit strings of equal length in a logically
and thermodynamically reversible way — Alice gets Bob’s string and Bob gets
Alice’s string. Since we are only interested in the string that Alice (the sender)
sends, Bob (the receiver) can input junk in exchange. The SWAP allows O(ν)-
BFE players to transfer between themselves O(2ν) bits of information (without
copying them).

The second way to implement reversible communication is to simply consider
that Alice is sending the whole physical system encoding her string (e.g., she
puts a canister of gas with entropy 2ν on a frictionless cart and pushes it toward
Bob). For the cart as for the SWAP channel, since the information is never
copied, it can be transferred from Alice to Bob at no thermodynamical cost.
This is not dissimilar to how it is in practice cheaper to send hard drives directly
by mail rather than to send their content through a cable.

These two pictures (the SWAP channel and the physical channel) are from an
information point of view equivalent — we adopt the SWAP channel for this
work.

4 Technical Preliminaries

We introduce some notation and introduce some of the techniques used later in
the security proof of our main protocols.

4.1 Smooth min-entropy

Most of our formal propositions rely on the variational distance.

Definition 5. The variational distance between two random variables X and
Y is defined as

δ(X,Y ) :=
1

2

∑
i∈X∪Y

|p(X = i)− p(Y = i)| . (1)
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It is operationally very useful because it characterizes the impossibility to dis-
tinguish between X and Y — using any physical experiment whatsoever. More
precisely, given either X or Y with probability 1/2, the optimal probability to
correctly guess which one it is is (1 + δ(X,Y ))/2.

Definition 6. The conditional min-entropy H∞(X|Y ) is defined as

H∞(X|Y ) := − log
∑
y

P (Y = y)max
x

P (X = x|Y = y) . (2)

It is the optimal probability of correctly guessing X given side information Y .

Smoothing entropies [RW04,RW05] is done to ignore events that are typically
unlikely. We will typically use smoothing with a parameter ε = negl(ν). We
denote by negl(ν) the functions that are negligible in ν, meaning asymptotically
bounded from above by the inverse of every function that is polynomial in ν.

Definition 7. The smooth conditional min-entropy Hε
∞(X|Y ) is defined as

Hε
∞(X|Y ) := max

ω∈Ω s.t. P (ω)≥1−ε
min
y

min
x

(− logP (X = x|Y = y, ω)) , (3)

where Ω is the set of all events.

Smooth conditional min-entropy is used mainly for privacy amplification.

4.2 Proof of Theorem 1

We define and prove formally a version of Landauer’s principle (Theorem 1),
which is the claim in Section 3 that BFE players modelled as thermodynamical
Turing machines cannot produce more free energy than they consume, except
with exponentially vanishing probability. The theorem follows from the logical
reversibility of a TTM— the existence of a thermodynamically free logically irre-
versible physical process would be a violation of the second law of thermodynam-
ics. We introduce some algorithmic-information-theory notation along the way;
a more exhaustive introduction is the excellent book by Li and Vitányi [LV+08].

Theorem 1 (technical). Given infinite tapes {x, y}, a f(ν)-BFE TTM Up(x, y)
cannot produce a f(ν) + k proof-of-work, except with probability 2−k.

{p, x, y} are, respectively, the representation of the instruction, memory, and
(blank) free-energy tapes, at the beginning of the computation.

We start with the simpler case of assuming that all of these tapes are finite (but
arbitrarily long), and then generalize our analysis to the infinite case.
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The finite case. Let Up(x, y) be a thermodynamical Turing machine as de-
scribed in Definition 1: universal, prefix-free, deterministic and logically re-
versible. The program p is taken from the read-only instruction tape (which
can be taken long but finite); the (initially random) memory tape starts in
x ∈R {0, 1}len(x), with len(x) taken arbitrary but finite; the free-energy tape
starts with blank content y = 0len(y), where len(y) is also finite.

The logical-reversibility condition means Up(x, y) = Up(x
′, y′) if and only if

(x, y) = (x′, y′).

We use a counting argument. We consider the set S of all couples (x, y) of lengths
fixed. There are #S = 2len(x) of them and they are all equally probable. We then
consider the subset

S(win, wout) :=

{
x, y s.t. Up(x, y) = x̃, ỹ with

{
x̃ = 0wout || ∗
ỹ = ∗ || 0len(y)−win

}
, (4)

where ∗ is an arbitrary padding string of appropriate length, and || denotes a
concatenation. Intuitively, win bounds the free-energy input and is the minimum
number of bits that get randomized on the initially blank free-energy tape
y; wout bounds the free-energy output and is the maximum number of erased
bits on the initially random memory tape x. (Those erased bits constitute the
proof-of-work.)

Lemma 1.
#S(win, wout) ≤ 2len(x)−wout+win . (5)

Proof. Because of logical reversibility, the input-couples (x, y) ∈ S are at most9

as numerous as the output-couples (x̃, ỹ) s.t.

{
x̃ = 0wout || ∗
ỹ = ∗ || 0len(y)−win

. We count

the maximum number of such output-couples by summing the lengths of all “∗
positions”; there are at most 2(len(x)−wout)+win of them.

The probability of drawing at random such a couple (x, y) is therefore

P (x, y ∈ S(win, wout)) ≤ #S(win, wout)/#S = 2win−wout . (6)

Proposition 1. Given finite len(x) and len(y), a f(ν)-BFE TTM Up(x, y)
(therefore with free-energy input win = f(ν)) is limited in its production of free
energy wout by

∀k > 0, P (wout > win + k) ≤ 2−k . (7)

9 “At most” because not all programs halt and some output-couples might not be in
the image of Up.
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The infinite case. We now reduce the infinite case to the finite case that we
just analyzed.

We take again a TTM. Let us consider x ∈R {0, 1}∞, where each bit is perfectly
random. Let us also set y = 0∞. Since p is fixed, it is enough to again consider
it finite. The prefix-free condition implies that the behaviour of Up(x, y) is well
defined even on infinite tapes because its programs10 are self-delimited.

Definition 8. Let

ΩUp :=
∑

effective(x) s.t. Up(x,y) halts

2−len(effective(x)) (8)

be the halting probability of Up (i.e, Chaitin’s constant [Cha75]), where the sum
is over all self-delimited programs effective(x) ∈ {0, 1}∗ 11.

We also define its partial sum.

Definition 9.

ΩUp(n) :=
∑

effective(x) s.t. Up(x,y) halts and len(effective(x))≤n

2−len(effective(x)). (9)

Note first that since ΩUp(n) is a monotonically increasing function that converges
to ΩUp , it holds that

∀ε > 0,∃N ′ s.t. ΩUp −ΩUp(N ′) < ε . (10)

Definition 10. Let BBUp(n) be the time-busy-beaver function, which returns
the maximum running time that a halting program effective(x) of length ≤ n
can take before halting.

Observe that it implies that, for all halting programs of length ≤ n, the infinite
part of each tape that comes after the (BBUp(n))th bit is never read or modified
by the TTM (moving there is by definition too long).

Proposition 2. A TTM with infinite tapes (x, y) behaves with arbitrarily high
probability exactly as if these infinite tapes were (extremely long but) finite:
∀ε > 0, ∃N such that

P
(
Up(x, y) =

(
Up(x[≤N ], y[≤N ]) || (x[>N ], y[>N ])

))
≥ 1− ε , (11)

where the subset notation is used to split x = x[≤N ] ||x[>N ] and y = y[≤N ] || y[>N ].

10 “Program” is taken here in the general sense and includes arguments p and x.
11 We assume p to be fixed; by “program” we mean the random input x.
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Proof. Taking Eq. 10 with N := BBUp(N
′), with the consideration about busy

beaver above (any machine that halts affects only a finite amount of tape).

Finally, Theorem 1 is obtained by combining Proposition 1 and Proposition 2,
with ε→ 0:

∀k > 0, P (wout > f(ν) + k) ≤ 2−k , (12)

where wout is the value of the proof-of-work.

4.3 The exhaustive and sampled memory games

We detail here in a game format a reduction that we later use in our security
proofs. Our memory games involve an adversary against a verifier. The adversary
sends, using a reversible channel SWAP, an exponentially long string to the
verifier, but is also asked to try to keep a copy of it; the verifier then interrogates
the adversary about either all of that string (in the exhaustive variant), or about
a random linear-size subset of it (in the sampled variant); we show that the
adversary has limited advantage in guessing as compared to a trivial strategy,
unless they made an accurate copy of the whole string of exponential length —
a process that requires, in light of Landauer’s principle, an exponential amount
of either luck or free energy. We formalize this intuition, starting with the non-
sampled version of the game.

Definition 11. The exhaustive
(
k·2ν
k·2ν
)
memory game is defined as follows for

security parameters ν and k:

1. The adversary isolates (by taking it from the environment of their lab for
example) a system X ∈ X = {0, 1}k·2ν . All the rest of their available infor-
mation is modelled as E.

2. The adversary (modelled as a TTM) makes some computation on the systems
X,E.

3. Through a noiseless reversible channel (e.g., SWAP), the adversary sends
X to the verifier.

4. The verifier provides the adversary a blank tape of length k · 2ν , and asks
the adversary to correctly print on it all of X.

Proposition 3. For any 2ν-BFE adversary, the advantage at the exhaustive(
k·2ν
k·2ν
)
memory game, compared to a trivial coin-flip strategy, is bounded by

H∞(X|E) ≥ (k − 1)2ν . (13)

Proof. We reduce a violation of Theorem 1 (i.e., Landauer’s principle) to a large
advantage at the exhaustive

(
k·2ν
k·2ν
)
memory game. During the game, instead of

sending X to the verifier, the adversary deviates and XORs onto X their best
guess for X given side information E. If the adversary guesses correctly, it turns
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X into an all-0 string. This proof-of-work of length k · 2ν violates Theorem 1
if it is created with probability higher than 2−(k−1)2

ν

; therefore, it does not.

The constraint also holds if the adversary is quizzed only on a random subset of
positions.

Definition 12. The sampled
(
k·2ν
t

)
memory game is defined as follows for free-

energy bound 2ν , security parameter k, and sample size t:

1. The adversary isolates (by taking it from the environment of their lab for
example) a system X ∈ X = {0, 1}k·2ν . All the rest of their available infor-
mation is modelled as E.

2. The adversary (modelled as a TTM) makes some computation on the systems
X,E.

3. Through a noiseless reversible channel (e.g., SWAP), the adversary sends
X to the verifier.

4. The verifier chooses at random t sample positions ⊂ X and sends a descrip-
tion of these positions to the adversary, who must correctly guess X[sample].

Theorem 2. For any 2ν-BFE adversary, the advantage at the sampled
(
k·2ν
t

)
memory game, compared to a trivial coin-flip strategy, is bounded, for all δ > 0,
by

Hnegl(t)
∞ (X[sample]|E) ≥ t · (k − 1)

k
− t · δ . (14)

Proof. Lemma 6.2 in [Vad04] states that, under random sampling, the min-
entropy per bit is with high probability approximately conserved. In our case,
this implies that, for all δ > 0,

H2−Ω(tδ2 log2 δ)+2−Ω(k2νδ)

∞ (X[sample]|E) ≥ t

k · 2ν
H∞(X|E)− t · δ , (15)

given which Theorem 2 follows from Proposition 3.

4.4 Universal hashing

Universal hashing is useful for both privacy amplification and authentication.

Definition 13 (2-universal hashing [CW79,WC81]). Let H be a set of
hash functions from {0, 1}n → {0, 1}m. H is 2-universal if, given any distinct
elements x1, x2 ∈ {0, 1}n and any (not necessarily distinct) elements y1, y2 ∈
{0, 1}m, then

#{h ∈ H|y1=h(x1) ∧ y2=h(x2)} = #H/22m . (16)
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Lemma 2 (Leftover hash lemma [BBR88,ILL89,HILL93,BBCM95]).
Let h : S ⊗ X → {0, 1}m be a 2-universal hash function. If H∞(X) ≥ m + 2ε,
then

δ
(
(h(S,X), S), U ⊗ S

)
≤ 2−ε . (17)

S is a short uniformly random seed and X is the variable whose randomness
is to be amplified. U is the uniform distribution of appropriate dimension. The
symbol ⊗ is used to represent the joint probability of independent distributions.

5 Secret-Key Establishment

Secret-key establishment (SKE) is a fundamental primitive for two-way secure
communication because it allows for a perfectly secure one-time-pad encryption
between Alice and Bob about which Eve knows nothing (otherwise the protocol
aborts).

5.1 Definitions (SKE)

Definition 14. A secret-key-establishment scheme is sound if, at the end the
protocol, Alice and Bob possess the same key with overwhelming probability in
the security parameter η:

P (KA 6= KB) ≤ negl(η) . (18)

Definition 15. A secret-key-establishment scheme is information-theoretically
secure (i.e., almost perfectly secret) if the key KB is uniformly random even
given all of the adversary’s side information E, except with probability at most
negligible in the security parameter ν:

δ
(
(KB , E), U ⊗ E

)
≤ negl(ν) . (19)

In what follows, the variables (A,B) ∈ (A,B) are strings from registers of length
roughly O(ν log ν), while (X,Y ) ∈ (X ,Y) denote strings from registers of length
O(2ν).

5.2 Protocol (SKE)

Theorem 3. The following secret-key-establishment protocol is information-
theoretically sound and secure against any eavesdropper whose free energy is
bounded by 2ν . Alice and Bob need a quantity of free energy that is asymptoti-
cally O(ν).

Soundness is analyzed in Section 5.3, and security in Section 5.4.
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Secret-key-establishment protocol:

1. Alice starts a with X ∈ X = {0, 1}k·2ν in a uniformly random
state (extracted from the equidistributed environment of her lab).
She draws uniformly at random a subset ⊂ {1, . . . , k · 2ν} of s + t
positions rawkey and copies (rawkey , X[rawkey])→ A to her memory.

2. Alice sends X → Y to Bob using a reversible channel (e.g., a SWAP
channel); it is possibly intercepted by Eve.

3. Bob announces the receipt to Alice on an authenticated public chan-
nel. In case of no receipt, they abort.

4. Alice publishes the subset positions rawkey on the (noiseless) authen-
ticated public channel so that Bob can select Y[rawkey] → B. Alice and
Bob draw a test sub-subset of t bits that they sacrifice to estimate
the error rate perror between A and B.

5. If the estimated perror is too large, they abort. Otherwise, Alice and
Bob apply information reconciliation (detailed in Section 5.3) on the
remaining s bits A[test] and B[test].

6. Alice and Bob apply privacy amplification (detailed in Section 5.4)
and obtain a shared secret key of length ≈ ((k− 1)/k−hb(perror)) · s.

a The main parameters are
- ν, from the 2ν bound in free energy of Eve;
- k, which determines the tolerated error rate between Alice and Bob;
- t, the number of test bits to estimate the above error rate;
- s, the length of the raw key (before processing).

hb(p) := −p log2 p− (1− p) log2(1− p) is the binary entropy.

Note that for any fixed perror (as long as it is not trivially 1/2), Alice and Bob
can choose a security parameter k for which the protocol will be secure for that
value of perror. That is unlike, for example, the BB84 quantum-key-distribution
protocol, which only tolerates error rates less than 1/4 (any more and Eve can
intercept the whole quantum state).

The intuition. Because she is 2ν-bounded in free energy, Eve cannot copy to her
memory the whole k · 2ν-long string Y that she sends to Bob, on which Bob will
later base the raw key. Alice circumvents this limitation by already knowing the
raw-key positions at the moment she sends X (X becomes, after Eve’s potential
tampering, Y ) and thus need not store more than an asymptotically O (ν)-long
segment of the k · 2ν-long string. As in quantum key distribution, Eve can force
the protocol to abort.

5.3 Soundness analysis (SKE)

Parameter estimation. We first estimate (using upper bounds) between Al-
ice and Bob the global error rate perror and the non-tested rawkey error rate
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ptesterror. The former quantity is important for the privacy amplification analyzed
in Section 5.4, while the second is needed to analyze information reconciliation.

Proposition 4. Alice and Bob can accurately estimate the error rate perror by
sampling on the t test positions the error rate ptesterror:

P
(
perror ≤ ptesterror + ε

)
≥ 1− e−2ε

2t . (20)

Proof. ptesterror is computed from the Hamming weight ω(A[test] ⊕B[test]) = t(1−
ptesterror). Chernoff’s inequality bounds perror.

Proposition 5. Alice and Bob can accurately estimate ptesterror from ptesterror:

P

(
ptesterror ≤ ptesterror +

s · ε
s+ t

)
≥ 1− e−2ε

2t . (21)

Proof. We insert perror = (s · ptesterror + t · ptesterror)/(s + t) in Eq. 20 and isolate
ptesterror.

Information reconciliation (error correction). Once they have a good es-
timate of ptesterror, Alice and Bob achieve information reconciliation by applying
error correction on that unused subset test of s bits.

Note that it is important that the established key be based on Bob’s string, rather
than on Alice’s, because the reasoning (see the security analysis in Section 5.4)
using the sampled memory game only directly bounds from above the mutual
information between Bob and Eve, not the one between Alice and Eve.

Proposition 6. For any non-trivial constant ptesterror 6= 1/2, Alice and Bob can
transform the samples A[test], B[test] into the (non-necessarily secret) keys K ′A,K

′
B

for which
P (K ′A = K ′B) ≥ 1− negl(η) . (22)

They can do so with w ≈ hb(p
test
error) · s (the exact value is given below) bits of

authenticated public communication.

We present one standard construction to correct an arbitrary error rate on the s
bits of rawkey that were not used during the parameter-estimation phase.

Asymptotically optimal protocol for information reconciliation [BS93]:

Let w := ds · hb(ptesterror + δ′) + ηe;

1. Bob picks at random a hash function h : {0, 1}s → {0, 1}w from a 2-universal
family H and computes h(B

[test]
).
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2. Bob communicates h and h(B
[test]

) to Alice, using the authenticated public
channel.

3. Alice computes Ã
[test]

:= argmin
x∈{0,1}len(s)

(
ω(x,A

[test]
)|h(x)=h(B

[test]
)
)
.

Here, ω(·, ·) is the Hamming distance; δ′ determines efficiency and η is the secu-
rity parameter.

Proof. We first count, in the uniform distribution, the smooth number of strings
with length s that contains approximately ptesterror: Let M := {x ∈ {0, 1}s | ptesterror−
δ′ ≤ ptesterror(x) ≤ ptesterror+δ

′}; from the asymptotic equipartition property, we have
∀δ′ > 0,

P
(
#M ≤ 2s·hb(p

test
error+δ

′)
)
≥ 1− 2−Θ(η) . (23)

Because H is 2-universal, the probability of obtaining a correct hash from a non-
correct candidate in M is bounded by 2−w. By the union bound, the protocol is
therefore sound except with probability at most 2−w ·#M , which is negl(η).

While the above ideal information reconciliation protocol is optimal, it offers no
(known) efficient way (in the computational complexity sense) for Alice to decode
Bob’s codeword. While we are in this work only concerned with thermodynamic
(rather than computational) efficiency, we refer to [BS93], or to the theory of
Shannon-optimal efficient algebraic codes, such as convoluted codes, for asymp-
totically ideal information-reconciliation protocols that are also computationally
efficient.

5.4 Security analysis (SKE)

If the protocol does not abort, Eve has negligible information about the key KB

at the end. This security resides on the fact that even if Eve intercepts X (which
was sent from Alice to Bob) and replaces it with Y , she cannot keep roughly
more than a fraction 1/k of the information about Y . Thus, since the key is
based on Y , Eve has limited knowledge about it.

Formally, this can be analyzed with the sampled
(
k·2ν
s

)
memory game in Sec-

tion 4.3. Theorem 2 thereat guarantees a good starting point — Eve (who is
2ν-BFE) must have limited information about Bob’s raw key of length s:

∀δ > 0, Hnegl(ν)+negl(s)
∞ (Y[test]|E, rawkey , test) = s · k − 1

k
− s · δ . (24)

The next step is to go from low information to essentially no information.
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Privacy amplification. Privacy amplification turns a long string about which
the adversary has potentially some knowledge into a shorter one about which
the adversary has essentially none.

In secret-key establishment, Eve’s partial information can come from eavesdrop-
ping (and as shown, this quantity is roughly a fraction 1/k) or from the public
information leaked by the information reconciliation protocol, which is easily
characterized.

Privacy amplification can be realized in an information-theoretically secure man-
ner with 2-universal hashing (see Section 4.4).

Proposition 7. After privacy amplification, KB is approximately of length ≈
((k − 1)/k − hb(perror)) · s, and Eve has essentially no knowledge about it.

Proof. Let w quantify the number of bits about B
[test]

exchanged publicly during
the information-reconciliation (IR) protocol. We note that H∞(KB |EpreIR) ≤
H∞(KB |EpostIR)− w, hence

∀δ > 0, Hnegl(ν)+negl(s)
∞ (KB |EpostIR) = s · k − 1

k
− s · δ − w . (25)

Therefore, taking m := s · k−1k − s · δ − w − ε guarantees after hashing (ε is the
security parameter for the Leftover hash lemma; see Section 4.4) information-
theoretic security on those remaining m bits.

Note that for any fixed perror, the parameters s and k can be selected as to make
m a positive quantity when the protocol does not abort (as a result of too many
errors). Also note that the parameters ν and s must not be too small.
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6 1-out-of-2 Oblivious Transfer

Oblivious transfer (OT) is a cryptographic primitive that is universal for two-
party computation [Rab81,Kil88]. It comes in many flavours, but they are all
equivalent [Cré87]. We concern ourselves with 1-out-of-2 OT (or 1–2 OT). Infor-
mally: Alice sends two envelopes to Bob; Bob can open one to read the message
in it, but he cannot open both; Alice cannot know which message Bob read.

6.1 Definitions (OT)

Definition 16. A 1–2 OT protocol is perfectly sound if, when Alice and Bob
are honest, the message B(i) received by Bob is with certainty the message mi

sent by Alice, for his choice of i ∈ {0, 1}:

P (B(i) = mi) = 1 . (26)

Definition 17. A 1–2 OT protocol is information-theoretically secure-for-Alice
if Bob cannot learn something non-negligible about both of Alice’s messages
simultaneously: For any 2ν-BFE Bob,

∃j s.t. δ
(
(mj , EB), (U ⊗ EB)

)
≤ negl(η) . (27)

EB denotes all of (a potentially malicious) Bob’s side information. And similarly
for EA in regards to Alice.

Definition 18. A 1–2 OT protocol is information-theoretically secure-for-Bob
if Alice cannot learn anything non-negligible about Bob’s choice i: For any 2ν-
BFE Alice,

δ
(
(i, EA), U ⊗ EA

)
≤ negl(η) . (28)

An OT protocol is information-theoretically secure when it is information-
theoretically secure for both Alice and Bob.

6.2 Protocol (OT)

Theorem 4. The following 1–2 OT protocol is perfectly sound and information-
theoretically secure against 2ν-BFE adversaries. The free-energy requirement of
the honest players is asymptotically O(ν).

The perfect soundness is straightforward. Security is analyzed in Section 6.3.

21



1–2 oblivious-transfer protocol:

(The variable η is a security parameter.)
1. Alice chooses messages m0 and m1 of length n.
2. Alice starts with the exponentially long bit strings X(0), X(1) ∈ X =
{0, 1}4·2ν in uniformly random states. She picks a random subset
⊂ {1, . . . , 4 ·2ν} of n+η positions raw and stores (raw , X(0)

[raw ], X
(1)
[raw ])

in her memory.
3. Alice sends (X(0), X(1)) to Bob using the reversible channel SWAP.
4. Bob chooses i ∈ {0, 1} and computes reversibly (X(0), X(1)) →

(X(i), X(0⊕1)), where we define X(0⊕1) := X(0) ⊕ X(1). Then, Bob
keeps X(i) and sends back X(0⊕1) reversibly to Alice using SWAP.

5. Alice receives X̃(0⊕1) and checks whether X̃(0⊕1)
[raw ] =X

(0⊕1)
[raw ] . If they

differ, Alice aborts.
6. Alice chooses at random a 2-universal hash function h : {0, 1}n+η →
{0, 1}n and communicates h, raw ,m0 ⊕ h(X(0)

[raw ]),m1 ⊕ h(X(1)
[raw ]) to

Bob.
7. Bob computes the hash h(X(i)

[raw ]) and recovers mi.

The intuition. In addition to the previously exploited impossibility to copy
exponential quantities of information without using corresponding quantities
of free energy or violating Landauer’s principle, the oblivious-transfer protocol
makes use of another key feature of reversible computing : As long as Bob is in
possession of X(0⊕1) := X(0) ⊕X(1), the maximally random variables X(0) and
X(1) have conditionally exactly the same information content; but once X(0⊕1)

is returned to Alice, X(0) and X(1) revert to being uncorrelated. In other words,
although sending X(0⊕1) back to Alice forces Bob to forget information about
the couple X(0), X(1) (enabling 1-out-of-2 transfer), it does not uniquely specify
which information he forgot (Alice remains oblivious).

6.3 Security analysis (OT)

Security for Bob. From Alice’s point of view, Bob’s behaviour (i.e., sending
X(0⊕1) back to Alice) is identical whether he chooses message i=0 or message
i=1; the scheme is therefore perfectly secure for Bob.

Security for Alice. We prove that a malicious Bob cannot learn anything non-
negligible about a second message as soon as he learns something non-negligible
about a first message.

Proof. We pose without a loss of generality that ω is the event corresponding to
“Bob learns something non-negligible about m0.” Because he is 2ν-bounded in
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free energy, a malicious Bob’s success at the sampled
(
4·2ν
n+η

)
memory game (on

state X̃(0⊕1) and sample raw) is bounded by Theorem 2:

∀δ > 0, Hnegl(ν)+negl(η)
∞ (X̃

(0⊕1)
[raw ] |EB , ω) ≥ (n+ η)/2− (n+ η) · δ . (29)

By subadditivity, we have

Hnegl(ν)+negl(η)
∞ (X̃

(0⊕1)
[raw ] |EB , ω) (30)

≤ Hnegl(ν)+negl(η)
∞ (X

(0)
[raw ], X

(1)
[raw ]|EB , ω) (31)

≤ Hnegl(ν)+negl(η)
∞ (X

(0)
[raw ]|EB , ω) +Hnegl(ν)+negl(η)

∞ (X
(1)
[raw ]|EB , ω) . (32)

We apply the Leftover hash lemma (Lemma 2) with ε := η/12− 3n/8. The two
privacy-amplification steps succeed (except by the union bound with probability
negl(ν) + negl(η)) if, respectively,

Hnegl(ν)+negl(η)
∞ (X

(0)
[raw ]|EB , ω) ≥ n/4 + η/6 , (33)

Hnegl(ν)+negl(η)
∞ (X

(1)
[raw ]|EB , ω) ≥ n/4 + η/6 . (34)

We assume by contradiction that they are both unsuccessful with non-negligible
probability. It implies

Hnegl(ν)+negl(η)
∞ (X̃

(0⊕1)
[raw ] |EB , ω) < n/2 + η/3 , (35)

which contradicts Eq. 29 for small δ ≤ η/(6(n+ η)).

7 From classical adversaries to quantum adversaries

Up to here, the notion of information that has been used — in the protocols for
secret-key establishment and oblivious transfer, as well as in their analyses —
is purely classical. But as scrutinised by thorough experiments (notably, the ex-
tensive serie of Bell experiments [FC72,ADR82,HBD+15,GVW+15,SMSC+15]),
nature is quantum-physical. The aim of this section is to bring our work one
step closer to the quantum realm. Namely, we investigate whether our (classi-
cal12) protocols are secure against quantum adversaries. We find that our SKE
protocol (Section 5.2) is secure against a quantum Eve as it is. On the other
hand, to retain security against a malicious quantum Alice, our OT protocol
(Section 6.2) has to be slightly updated — the patched protocol presented be-
low in Section 7.4 is quantum-safe but remains classical for honest players. Our
work’s conclusion, therefore, fully extends to the quantum world of Maxwell
demons (given arbitrarily large but random environments): It is — on paper
— information-theoretically cryptographically friendly.
12 All classical operations can be viewed as quantum operations restricted to diagonal

density matrices.
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7.1 The setting made quantum

Our model described in Section 3 is based on Alice, Bob, and Eve being classical
computers with thermodynamical restrictions (we call them Thermodynamical
Turing Machines) interacting through classical channels (a standard authenti-
cated channel and a SWAP channel).

In a quantum setting, Alice, Bob, and Eve are upgraded to universal quantum
computers [Deu85] and their communication channels can carry states in quan-
tum superposition. A quantum computer cannot compute more than a classical
computer could (given exponential computational time, a classical computer can
simulate a quantum computer). Quantum computing cannot either be used to
evade Landauer’s principle [FDOR15]. As such, once all elements are properly
defined, a quantum version of our Theorem 1 holds.

Proposition 8 (Thm. 1 in the quantum realm (sketch)). For all k > 0, a
player modelled by a quantum computer with a bound f(ν) in free energy cannot
erase more than f(ν)+k initially completely mixed qubits, except with probability
2−k.

The ability to send and receive quantum states does enable new possibilities for
both honest and malicious agents — we investigate next how this affects the
security of our previous SKE and OT protocols.

7.2 The quantum exhaustive and sampled memory games

We extend the proof method developed in Section 4.3 to the quantum world.

First, the bound on the success of an adversary at the exhaustive
(
k·2ν
k·2ν
)
memory

game (Proposition 3) is unaffected by the transition from classical to quantum
information.

Proposition 9 (Prop. 3 with quantum side-information). For any quan-
tum adversary with a bound 2ν in free energy, the advantage at the exhaustive(
k·2ν
k·2ν
)
memory game, compared to a trivial coin-flip strategy, is bounded by

H∞(X|E) ≥ (k − 1)2ν . (36)

Proof. X is here still classical, but E represents side information that is possibly
quantum. Since the operational meaning of conditional min-entropy is the same
whether the side information is quantum or not [KRS09], the argument presented
in Section 4.3 is unchanged.

The next step is to sample from X (Theorem 2).

Proposition 10 (Thm. 2 with quantum side-information). For any quan-
tum adversary with a bound 2ν in free energy, the advantage at the sampled

(
k·2ν
t

)
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memory game, compared to a trivial coin-flip strategy, is bounded, for all δ > 0,
by

Hnegl(t)
∞ (X[sample]|E) ≥ t · (k − 1)

k
− t · δ . (37)

Proof. The result by Vadhan [Vad04] that we used in the classical case has
been generalized in presence of quantum side information by König and Renner
in [KR11]. Apart from the exact parameter values hidden behind negl(t), our
proof is, hence, unchanged by the addition of quantum side information.

7.3 The classical SKE protocol is already quantum-resistant

The information-theoretical security of the SKE protocol from Section 5 depends
uniquely on the one of privacy amplification and on Theorem 2.

Since in presence of quantum side information, universal-2 hashing (Lemma 2)
remains a universally composably secure way of achieving privacy amplifica-
tion [RK05,TSSR11], and that, as we just argued, so is the case of Theorem 2,
the SKE scheme presented in Section 5.2 is secure against quantum adversaries.

Fundamentally different from standard quantum key distribution, the result is
nevertheless an information-theoretically secure key distribution scheme for a
quantum world in which entropy is exponentially cheaper than free energy.

7.4 A quantum-resistance patch for the OT protocol

Given that the above SKE protocol is quantum-resistant, and that the same
argument applies to the security-for-Alice part of our oblivious-transfer protocol,
it would be natural for our previously detailed scheme to be also quantum-
resistant. But it is not: The security-for-Bob, which is trivial in the classical case
(because x+y = y+x, see Fig. 2), can be broken by a malicious quantum Alice.
The reason is that if Alice acts maliciously and sends the superposed quantum
states X(0) = H |x〉 and Y (0) = |y〉 to Bob (for some random x and y), she can
discriminate between the state sent back by Bob when he does H |x〉 CNOT−→ |y〉
(to keep X(0)) compared to when he does |y〉 CNOT−→ H |x〉 (to keep Y (0)). This
attack is illustrated in Fig. 3.

But there is a simple patch for this attack, or, in fact, for all quantum attacks
by a malicious Alice. Alice’s extra power comes from the fact she can send states
in superposition, but Bob can in return preëmptively “classicize” the possibly
quantum states X(0) and X(1) by CNOT-ing each bit to a different bit of the
totally mixed environments π0 and π1. Given control of a large enough environ-
ment (of dimension 2len(X

(0))+len(X(1))), Bob can do so at no free energy cost.
The resulting state, when traced over that environment, is then undistinguish-
able from a (possibly noisy) state sent by a malicious-but-classical Alice. Even
if misbehaviour from Alice’s part might affect the protocol’s correctness (which
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Fig. 2. If Bob receives a classical state, the top state, x+y, that he will return to Alice
during the OT protocol will be the same no matter whether he chooses to decrypt the
first (left) or second message (right).

Fig. 3. A malicious Alice can send to Bob one of the quantum states in the Hadamard
basis. In that case, the upper state sent back to Alice by an honest Bob will be |+〉
or |−〉 if he wants to keep the first message, but half of one of the four Bell states
{|βxy〉}xy if he wants to keep the second message. Since Alice can distinguish between
those two cases, the OT scheme is not secure for Bob. Below, we explain how Bob can
prevent this quantum attack.

is allowed for a malicious Alice), it leaves the perfect security intact: a quantum
Alice can still not gain any information about Bob’s choice.

Quantum-safe 1–2 oblivious-transfer protocol

Steps 1–3 and 5–7 are the same as in the previous classical protocol.
Step 4 is changed to
4’. Bob chooses i ∈ {0, 1} and computes reversibly

(X(0), X(1), π0, π1)→ (X(i), X(0⊕1), π0 ⊕X(1), π1 ⊕X(2)) ,

where π0 and π1 are completely mixed states of appropriate size taken
from Bob’s environment, and where we define X(0⊕1) := X(0)⊕X(1).
Then, Bob keeps everything but X(0⊕1), which he sends back (ther-
modynamically reversibly) to Alice using SWAP.

The above step reduces the security for Bob in the quantum case to the one of
the classical case. The updated protocol does not require the honest players to
make any quantum operations per se.
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8 Concluding remarks

We propose a free-energy-bounded model of cryptography, in which we have
derived information-theoretically secure protocols for secret-key establishment
and oblivious transfer.

Even if the rationale behind its security is totally different: Our secret-key-
establishment protocol is similar to standard quantum key distribution. Our
oblivious-transfer protocol, on the other hand, is novel in itself: The mechanism
that allows Alice to check that Bob honestly forgets information is proper to
reversible computing.

Our schemes are not practical at this point: Current technology is still far from
computing with memories that are large enough for Landauer’s principle to
become the main obstacle (it is worth noting that Boltzmann’s constant, which
we have in this work conveniently set to kB := 1/T, is in fact ≈ 1.38·10−23JK−1);
and whereas no laws of physics forbid it, implementing reversible computation
on such states is for now science fiction. Our result is rather to be seen as
part of the quest of distinguishing what physical phenomena allow for realizing
cryptographic functionalities in principle, and which do not. In this spirit, our
protocols add another element to the longer and longer list of physical laws
from which cryptographic security can directly be derived: We can now claim
that information-theoretic key agreement is theoretically possible as soon as
one of the fundamental limits conjectured by either quantum theory or special
relativity or the second law of thermodynamics is correct. Concerning the novel
appearance of a thermodynamic law in this list, we remark first that according
to Albert Einstein, thermodynamics is the only physical theory that will survive
future development in Physics. Second, the second law is rather pessimistic in
nature, and to see it being linked to a constructive application is refreshing.
We are, in fact, not aware of many uses, besides our protocols, of the law. In
summary, we can say, somewhat ironically: One small step for cryptography —
one giant leap for the second law.

Acknowledgement We thank Charles Alexandre Bédard and Cecilia Boschini
for helpful comments about earlier version of this work. We also thank Renato
Renner and two anonymous referees for some interesting remarks regarding the
physicality of the model. This research was supported by the Swiss National
Science Foundation (SNF).

References
ADR82. Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of

Bell’s inequalities using time-varying analyzers. Physical Review Letters,
49(25):1804, 1982.

BB84. Charles H Bennett and Gilles Brassard. Quantum cryptography: Public
key distribution and coin tossing. In Proc. IEEE Int. Conf. Computers,
Systems, and Signal Processing, Bangalore, India, 1984, pages 175–179,
1984.

27



BBCM95. Charles H Bennett, Gilles Brassard, Claude Crépeau, and Ueli M Mau-
rer. Generalized privacy amplification. IEEE Transactions on Information
Theory, 41(6):1915–1923, 1995.

BBR88. Charles H Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy ampli-
fication by public discussion. SIAM Journal on Computing, 17(2):210–229,
1988.

Ben73. Charles H Bennett. Logical reversibility of computation. IBM journal of
Research and Development, 17(6):525–532, 1973.

Ben82. Charles H Bennett. The thermodynamics of computation: a review. Inter-
national Journal of Theoretical Physics, 21(12):905–940, 1982.

Ben87. Charles H Bennett. Demons, engines and the second law. Scientific Amer-
ican, 257(5):108–117, 1987.

BHK05. Jonathan Barrett, Lucien Hardy, and Adrian Kent. No signaling and quan-
tum key distribution. Physical Review Letters, 95(1):010503, 2005.

BS93. Gilles Brassard and Louis Salvail. Secret-key reconciliation by public dis-
cussion. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 410–423. Springer, 1993.

BW19. Ämin Baumeler and Stefan Wolf. Free energy of a general computation.
Physical Review E, 100(5):052115, 2019.

CCM98. Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer
with a memory-bounded receiver. In Proceedings 39th Annual Symposium
on Foundations of Computer Science (Cat. No. 98CB36280), pages 493–
502. IEEE, 1998.

Cha75. Gregory J Chaitin. A theory of program size formally identical to infor-
mation theory. Journal of the ACM (JACM), 22(3):329–340, 1975.

CK78. Imre Csiszár and Janos Körner. Broadcast channels with confidential mes-
sages. IEEE Transactions on Information Theory, 24(3):339–348, 1978.

CK88. Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weak-
ened security assumptions. In FOCS, volume 88, pages 42–52, 1988.

Col07. Roger Colbeck. Impossibility of secure two-party classical computation.
Physical Review A, 76(6):062308, 2007.

Cré87. Claude Crépeau. Equivalence between two flavours of oblivious transfers.
In Conference on the Theory and Application of Cryptographic Techniques,
pages 350–354. Springer, 1987.

Cré97. Claude Crépeau. Efficient cryptographic protocols based on noisy chan-
nels. In International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 306–317. Springer, 1997.

CW79. J Lawrence Carter and Mark N Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, 18(2):143–154, 1979.

Deu85. David Deutsch. Quantum theory, the church–turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences, 400(1818):97–117, 1985.

DFSS08. Ivan B Damgård, Serge Fehr, Louis Salvail, and Christian Schaffner. Cryp-
tography in the bounded-quantum-storage model. SIAM Journal on Com-
puting, 37(6):1865–1890, 2008.

DHRS04. Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-
round oblivious transfer in the bounded storage model. In Theory of Cryp-
tography Conference, pages 446–472. Springer, 2004.

DM02. Stefan Dziembowski and Ueli Maurer. Tight security proofs for the
bounded-storage model. In Proceedings of the thiry-fourth annual ACM
Symposium on Theory of Computing, pages 341–350, 2002.

28



DM04. Stefan Dziembowski and Ueli Maurer. On generating the initial key in the
bounded-storage model. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 126–137. Springer, 2004.

Eke91. Artur K Ekert. Quantum cryptography based on Bell’s theorem. Physical
Review Letters, 67(6):661, 1991.

FC72. Stuart J Freedman and John F Clauser. Experimental test of local hidden-
variable theories. Physical Review Letters, 28(14):938, 1972.

FDOR15. Philippe Faist, Frédéric Dupuis, Jonathan Oppenheim, and Renato Renner.
The minimal work cost of information processing. Nature communications,
6(1):1–8, 2015.

FT82. Edward Fredkin and Tommaso Toffoli. Conservative logic. International
Journal of theoretical physics, 21(3):219–253, 1982.

GVW+15. Marissa Giustina, Marijn AM Versteegh, Sören Wengerowsky, Johannes
Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Jo-
hannes Kofler, Jan-Åke Larsson, Carlos Abellán, et al. Significant-loophole-
free test of Bell’s theorem with entangled photons. Physical Review Letters,
115(25):250401, 2015.

HBD+15. Bas Hensen, Hannes Bernien, Anaïs E Dréau, Andreas Reiserer, Norbert
Kalb, Machiel S Blok, Just Ruitenberg, Raymond FL Vermeulen, Ray-
mond N Schouten, Carlos Abellán, et al. Loophole-free Bell inequal-
ity violation using electron spins separated by 1.3 kilometres. Nature,
526(7575):682–686, 2015.

HILL93. Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby.
Construction of a pseudo-random generator from any one-way function. In
SIAM Journal on Computing, 1993.

HRW. Esther Hänggi, Renato Renner, and Stefan Wolf. Efficient device-
independent quantum key distribution. EUROCRYPT 2010, pages 216–
234.

HS03. Norbert Hungerbühler and Michael Struwe. A one-way function from ther-
modynamics and applications to cryptography. Elemente der Mathematik,
58(2):49–64, 2003.

ILL89. Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random
generation from one-way functions. In Proceedings of the twenty-first an-
nual ACM Symposium on Theory of Computing, pages 12–24, 1989.

Ken99. Adrian Kent. Unconditionally secure bit commitment. Physical Review
Letters, 83(7):1447, 1999.

Kil88. Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings
of the twentieth annual ACM Symposium on Theory of Computing, pages
20–31, 1988.

KR11. Robert König and Renato Renner. Sampling of min-entropy relative
to quantum knowledge. IEEE Transactions on Information Theory,
57(7):4760–4787, 2011.

KRS09. Robert König, Renato Renner, and Christian Schaffner. The operational
meaning of min-and max-entropy. IEEE Transactions on Information the-
ory, 55(9):4337–4347, 2009.

KWW12. Robert König, Stephanie Wehner, and Jürg Wullschleger. Unconditional
security from noisy quantum storage. IEEE Transactions on Information
Theory, 58(3):1962–1984, 2012.

Lan61. Rolf Landauer. Irreversibility and heat generation in the computing pro-
cess. IBM Journal of Research and Development, 5(3):183–191, 1961.

29



LC98. Hoi-Kwong Lo and Hoi Fung Chau. Why quantum bit commitment and
ideal quantum coin tossing are impossible. Physica D: Nonlinear Phenom-
ena, 120(1-2):177–187, 1998.

Lec63. Yves Lecerf. Machines de Turing réversibles. Comptes Rendus hebdo-
madaires des séances de l’Académie des Sciences, 257:2597–2600, 1963.

LV+08. Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity
and its applications, volume 3. Springer, 2008.

Mau92. Ueli M Maurer. Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. Journal of Cryptology, 5(1):53–66, 1992.

Mau93. Ueli M Maurer. Secret key agreement by public discussion from common
information. IEEE Transactions on Information Theory, 39(3):733–742,
1993.

May97. Dominic Mayers. Unconditionally secure quantum bit commitment is im-
possible. Physical Review Letters, 78(17):3414, 1997.

Mor17. Kenichi Morita. Theory of reversible computing. Springer, 2017.
MPA11. Lluís Masanes, Stefano Pironio, and Antonio Acín. Secure device-

independent quantum key distribution with causally independent measure-
ment devices. Nature communications, 2(1):1–7, 2011.

MW96. Ueli Maurer and Stefan Wolf. Towards characterizing when information-
theoretic secret key agreement is possible. In International Conference on
the Theory and Application of Cryptology and Information Security, pages
196–209. Springer, 1996.

Rab81. Michael O Rabin. How to exchange secrets by oblivious transfer. Technical
Memo TR-81, 1981.

RK05. Renato Renner and Robert König. Universally composable privacy amplifi-
cation against quantum adversaries. In Theory of Cryptography Conference,
pages 407–425. Springer, 2005.

RW04. Renato Renner and Stefan Wolf. Smooth Rényi entropy and applications.
In International Symposium on Information Theory, 2004. ISIT 2004. Pro-
ceedings., page 233. IEEE, 2004.

RW05. Renato Renner and Stefan Wolf. Simple and tight bounds for information
reconciliation and privacy amplification. In International conference on
the theory and application of cryptology and information security, pages
199–216. Springer, 2005.

SMSC+15. Lynden K Shalm, Evan Meyer-Scott, Bradley G Christensen, Peter Bier-
horst, Michael A Wayne, Martin J Stevens, Thomas Gerrits, Scott Glancy,
Deny R Hamel, Michael S Allman, et al. Strong loophole-free test of local
realism. Physical Review Letters, 115(25):250402, 2015.

TSSR11. Marco Tomamichel, Christian Schaffner, Adam Smith, and Renato Renner.
Leftover hashing against quantum side information. IEEE Transactions on
Information Theory, 57(8):5524–5535, 2011.

Vad04. Salil P Vadhan. Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. Journal of Cryptology, 17(1):43–77,
2004.

VV14. Umesh Vazirani and Thomas Vidick. Fully device-independent quantum
key distribution. Physical Review Letters, 113:140501, Sep 2014.

WC81. Mark N Wegman and J Lawrence Carter. New hash functions and their
use in authentication and set equality. Journal of Computer and System
Sciences, 22(3):265–279, 1981.

Wie83. Stephen Wiesner. Conjugate coding. ACM Sigact News, 15(1):78–88, 1983.

30



Wyn75. Aaron D Wyner. The wire-tap channel. Bell System Technical Journal,
54(8):1355–1387, 1975.

31


	Key Agreement and Oblivious Transfer from Free-Energy Limitations

