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Mirror modular cloning and fast quantum associative retrieval
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We show that a quantum state can be perfectly cloned up to global mirroring with a unitary transformation

that depends on one single parameter. We then show that this is equivalent to “perfect” cloning for quantum as-

sociative memories which, as a consequence efficiently hold exponentially more information than their classical

counterparts. Finally, we present a quantum associative retrieval algorithm which can correct corrupted inputs

and is exponentially faster than the Grover algorithm.

The no-cloning theorem [1] is a cornerstone of quantum

information theory. On one side it implies that information

cannot be intercepted without detection, which is the basis of

the widely extolled power of quantum cryptography, on the

other side it hampers the reproduction of information stored

in quantum states for multiple use, i.e. the use of quantum

memories.

While, initially quantum computation was hailed mainly for

the speed-up with respect to its classical counterpart (for a re-

view see [2]), it was soon realized that quantum mechanics

also leads to an exponential increase in storage capacity for

associative retrieval of information [3–5] and an exponential

decrease in memory calls for quantum random access mem-

ories (RAM) [6]. The prototype associative memory is the

Hopfield neural network model [7]. Due to the cross-talk phe-

nomenon, the maximum number of memories that can be clas-

sically stored and retrieved is linear in the number n of neu-

rons (for a review see [8]). The quantization of the Hopfield

model mapping neurons to qubits does not improve on this

limit [9]. The exponential gain in capacity is obtained when

the patterns are stored in quantum states [3, 5, 10].

The original idea [3, 5] is to store a number p of binary pat-

terns of n qubits in a quantum superposition and use this state

as the memory. Two different algorithms for retrieval were

proposed, one associative, i.e. content-addressable [3], the

other based on the Grover algorithm [11] using a subset of the

n qubits as the memory address [5]. The latter is essentially

a quantum RAM memory since it cannot correct corrupted

inputs. Various variants of the quantum associative memo-

ries have subsequently been proposed [12–14]. Recently, the

whole field of machine learning is being extended to the quan-

tum domain [15–17].

In an ideal situation one would simply clone the quantum

memory state whenever needed for use and keep a master

copy for later re-use. However, the no-cloning theorem pre-

vents this. In this paper we point out that, for quantum mem-

ories, perfect cloning of a single state is not necessary, it is

sufficient to clone the memory state up to a global NOT op-

eration that transforms it into its mirror image. This mirror

modular cloning can be performed by a (2 × 2) unitary trans-

formation that depends on a single parameter of the state and

represents thus an easy and efficient “perfect” cloning of the

memory state. We then introduce an improved version of the

quantum associative recall and show that this is exponentially

faster than the address-based Grover retrieval. This is partic-

ularly important in view of recent proposals to use quantum

memories for fast associative data triggering in large through-

put high-energy experiments at LHC [18, 19].

Let us start from a quantum memory state |M〉 encoding p

binary patterns |pi〉 = |pi
1
. . . pi

n〉 of n qubits,

|M〉 = 1
√

p

p
∑

i=1

|pi〉 . (1)

An efficient algorithm to load the patterns to form this state

is described in [3], here we will not repeat the procedure but

rather take this state as our starting point. The same algorithm

can be used to construct the mirror modular state

|M〉 = 1
√

p

p
∑

i=1

|pi〉 , (2)

where p
i is the string in which each qubit is reversed compared

to pi. Finally, we measure the scalar product 〈M|M〉 (see for

e.g. [20]) of these two states.

We now add a normalized ancillary register of n qubits pre-

pared in state |Σ〉 and a further ancilla qubit in state |0〉 and we

borrow a technique from probabilistic quantum cloning [21]

to posit a 2 × 2 unitary transformation such that

U (|M〉|Σ〉|0〉)= √γ|M〉|M〉|0〉 +
√

γ|M〉|M〉|1〉 ,
U

(

|M〉|Σ〉|0〉
)

=

√

γ|M〉|M〉|0〉 + √γ|M〉|M〉|1〉 . (3)

This unitary transformation, if it exists, perfectly clones the

memory state up to a mirror modular transformation, out-

putting |M〉 with probability γ or |M〉 with probability γ, the

two results being distinguished by the value of the ancilla

qubit. As we will show below, this mirror modular cloning is

perfectly sufficient for quantum associative retrieval. Before

doing that, however, we must show that U exists.

To do so we use the theorem stating that there exists a uni-

tary transformation U |ψi〉 = |φi〉, i = 1 . . .m, if the two sets of

states |ψi〉 and |φi〉 satisfy 〈ψi|ψ j〉 = 〈φi|φ j〉 for all i, j = 1 . . .m.

The 2× 2 matrix of all scalar products of initial states in (3) is

(

1 〈M|M〉
〈M|M〉 1

)

(4)
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The corresponding matrix of scalar products of unitary trans-

formed states is
(

γ + γ
√

γγ(〈M|M〉 + 〈M|M〉)〈M|M〉
√

γγ(〈M|M〉 + 〈M|M〉)〈M|M〉 γ + γ

)

(5)

This shows that the unitary transformation U exists if the effi-

ciencies γ and γ are chosen to satifsy

γ + γ= 1 ,
√

γγ=
1

〈M|M〉 + 〈M|M〉
. (6)

It can then be realized with a quantum circuit along the lines

detailed in [22].

After separating out the original master copy of the memory

state we add an n qubit register with an input pattern |I〉 =
|i1 . . . in〉 and we add b control qubits prepared in state |O〉 =
|c1 . . . cb〉 = |0, . . .0〉. This is the initial state for the associative

retrieval algorithm,

|ψ0〉 =
√
γ|I〉|M〉|O〉|0〉 +

√

γ|I〉|M〉|O〉|1〉 . (7)

Before describing retrieval in detail let us focus on the ele-

mentary quantum gates (for a review see [2]) used in this al-

gorithm. First of all there are the single-qubit NOT gate, rep-

resented by the first Pauli matrix σ1, and Hadamard gate H,

with the matrix representation

H =
1
√

2

(

1 1

1 −1

)

. (8)

Moreover, we will use the two-qbit XOR (exclusive OR) gate,

which performs a NOT operation on the second qubit if and

only if the first one is in state |1〉. In matrix notation this gate

is represented as XOR = diag (I, σ1), where I denotes a two-

dimensional identity matrix. For all these gates we shall in-

dicate by subscripts the qubits on which they are applied, the

control qubits coming always first.

We start the retrieval algorithm by generating the state

|ψ1〉=
n

∏

k=1

NOTmk
XORikmk

|ψ0〉

=

√

γ

p

p
∑

k=1

|I〉|Dk〉|O〉|0〉 +

√

γ

p

p
∑

k=1

|I〉|Dk〉|O〉|1〉 , (9)

where |Dk〉 = |dk
1
. . . dk

n〉 and |Dk〉 = |dk

1 . . . d
k

n〉 with dk
j
= 1 iff

pk
j
= i j and d

k

j = 1 iff pk
j
, i j. We now consider the unitary

transformation

U =

b
∏

i=1

Hci
eiπHi/2n Hci

, (10)

where “ci” refers to the ith control qubit and

Hi= (dH)m ⊗ (σ3)ci
,

(dH)m=

n
∑

k=1

(

σ3 + 1

2

)

mk

, (11)

with σ3 the third Pauli matrix. For each control qubitHi mea-

sures the number of 0’s in the memory register, now in state

DK or D
k
, with a plus sign if ci is in state |0〉 and a minus sign

if ci is in state |1〉. When the memory register is in state |Dk〉
(first term in (9)) this is the number of qubits which are differ-

ent in the input and memory registers. This quantity is called

the Hamming distance dH

(

i, pk
)

between the stored pattern

pk under consideration and the input i. When the memory

register is in state |Dk〉 (second term in (9)), instead, it repre-

sents the number of qubits which are equal in the input and

the memory registers, which we denote by dH

(

i, pk
)

when the

memory register contains pattern pk.

The two Hadamard gates sandwiching the Hamming dis-

tance operator in (10) turn every control qubit into the combi-

nation

cos
π

2n
dH

(

i, pk
)

|0〉 + isin
π

2n
dH

(

i, pk
)

|1〉 , (12)

in the term corresponding to distance pattern |Dk〉, with an

analogous expression in terms of dH for distance patterns |Dk〉.
After restoring the memory register to its original state with

the inverse transformation to (9), we obtain the state

|ψ2〉=
√

γ

p

p
∑

k=1

b
∑

l=0

cosb−l
(

π

2n
dH

(

i, pk
)

)

×

(i sin)l
(

π

2n
dH

(

i, pk
)

)

∑

{Jl}
|I〉|pk〉|Jl〉|0〉

+

√

γ

p

p
∑

k=1

b
∑

l=0

cosb−l
(

π

2n
dH

(

i, pk
)

)

×

(i sin)l
(

π

2n
dH

(

i, pk
)

)

∑

{Jl}
|I〉|pk〉|Jl〉|1〉 , (13)

where
{

Jl
}

denotes the set of all binary numbers of b bits with

exactly l bits 1 and (b− l) bits 0. At this point we measure the

original ancilla qubit: if |0〉 is obtained we use amplitude am-

plification [23] to rotate the remaining state onto the “good”

subspace with all control qubits in state |01 . . . 0b〉, if |1〉 is

obtained we use the same technique to rotate the remaining

state onto the “good” subspace with all control qubits in state

|11 . . . 1b〉. After these rotations we can finally measure the

memory register. We either obtain the closest (in Hamming

distance) pattern pk (if |0〉 was measured) or the most distant

pattern p
k (if |1〉was measured) with a probability distribution

P
(

i, pk
)

=
1

p
cos2b

(

π

2n
dH

(

i, pk
)

)

. (14)

The probability distribution is the same since, for mirror pat-

terns, dH = n − dH and sin ((π/2)(1 − dH/n)) = cos (πdH/2n).

This shows that, as anticipated, it does not matter if one ob-

tains the closest or the most distant pattern: if the original

ancilla qubit is measured in state |1〉 one needs only to mirror-

invert the measured pattern. This is why memory collapse and
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the difficulty of cloning do not pose any problem for quantum

associative memories, differently to what is sometimes dis-

cussed in the literature [12–15]. Mirror modular cloning is a

simple and efficient technique that depends on only one pa-

rameter of the state.

Finally, the complexity of the retrieval algorithm is mainly

influenced by the amplitude amplification step. The number

of applications C of the basic amplitude amplification rota-

tion is given by the square root of the inverse probability of

measuring the “good” subspace, i.e.

C =

√

p
∑p

k=1
cos2b

(

π
2n

dH

(

i, pk
)

) . (15)

This is not a known quantity since it depends on the input un-

der consideration. So, either we need C repetitions of the algo-

rithm, we use amplitude estimation [23] or we record an esti-

mate of C together with the initial memory storage by comput-

ing it for some typical inputs, after which we can repeat am-

plitude amplification a few times varying the number of oracle

calls around this initial estimate. Compared to the complexity√
N to retrieve one pattern with the address-oriented Grover

algorithm [5], where N is the total number of computational

basis states, N = 2n, the present complexity not only does not

depend on N, but it does not even depend on the pattern num-

ber p since it is determined only by the accuracy parameter

b and the distribution of patterns in the memory. For an ap-

proximately uniform pattern distribution it can be estimated

as follows. Let us substitute each cosine in the sum by its

average, determined using

2

π

∫ π/2

0

cos2b(x) dx =
1

22b

(

2b

b

)

, (16)

and let us approximate the factorials by the Stirling formula

b! ≈
√

2πb(b/e)b for large b. With this we obtain

C ≈ (πb)1/4 , (17)

which shows that the present quantum associative retrieval of-

fers an exponential speed-up with respect to the Grover-based

one, contrary to what asserted in [18]. Of course there is a

trade-off between complexity and accuracy: the higher b the

more the retrieval probability (14) is peaked on the correct

pattern but the higher the computational complexity.

In conclusion, the quantum associative memory originally

proposed in [3], with the improvements proposed here, is not

limited by the no-cloning theorem, can correct corrupted in-

puts on top of completing partial ones and offers an exponen-

tial speed-up with respect to the Grover-based alternative.

[1] W. Wootters and W. Zurek, A single quantum cannot be cloned,

Nature 299, 802-803 (1982).

[2] M. A. Nielsen and I. L. Chuang, Quantum computation and

quantum information, Cambridge University Press, Cambridge

(200).

[3] C. A. Trugenberger, Probabilistic quantum memories, Phys.

Rev. Lett 89 067901 (2001)

[4] C. A. Trugenberger, Quantum pattern recognition, Quantum Inf.

Process. 1 471 (2002).

[5] D. Ventura and T. Martinez, Quantum associative memory

Found. Phys. Lett. 12 547 (1999).

[6] V. Giovannetti, S. Lloyd and L. Maccone, Quantum random

access memory, Phys. Rev. Lett. 100 160501 (2008).

[7] J. J. Hopfield, Neural networks and physical systems with emer-

gent collective computational abilities, Proceeding of the na-

tional academy of science USA 79 2554 (1982).

[8] B. Müller and J. Reinhardt, Neural networks, Springer-Verlag,

Berlin (1990).

[9] M. C. Diamantini and C. A. Trugenberger, Quantum pattern

retrieval by qubit networks with Hebb interactions, Phys. Rev.

Lett. 97 130503 (2006).

[10] P. Rebentrost, T. R. Bromley, C. Weedbrook and S. Lloyd,

Quantum Hopfield neural network, Phys. Rev. A98 042308

(2018).

[11] L. Grover, Quantum mechanics helps in searching for a needle

in a haystack, Phys. Rev. Lett. 79 325 (1997).

[12] M. Schuld, I. Sinayskiy and F. Petruccione, Quantum comput-

ing for pattern classification, Pacific Rim International Confer-

ence on Artificial Intelligence Springer-Verlag, 208-220 (2014).

[13] R. S. Sousa, P. G. M. dos Santos, T. M. L. Veras, W. R. de

Oliveira and A. J. da Silva, Parametric probabilistic quantum

memory, Neurocomputing 416 360-369 (2020).

[14] M. Khan, J. P. L. Faye, U. C. Mendes and A. Miransky, EP-

PQM: efficient parametric probabilistic quantum memory with

fewer qubits and gates, IEEE Transactions on Quantum Engi-

neering (2022).

[15] V. Dunjko and H. J. Briegel, Machine learning and artificial in-

telligence in the quantum domain: a review of recent progress,

Reports on Progress in Physics 81 074001 (2018).

[16] J. Biamonte, P. Wittek, N. Pancotti. P. Rebentrost and N. Wiebe,

Quantum machine learning, Nature 549 195-202 (2017).

[17] V. Havlicek, A. D. Corcoles, K. Temme, A. W. Harrow and A.

Kandala, Supervised learning with quantum-enhanced feature

spaces, Nature 567 209-212 (2019).

[18] I. Shapoval and P. Calafiura, Quantum associative memory in

HEP track pattern recognition, EPJ Web of Conferences 214

01012 (2019).

[19] H. M. Gray, Quantum pattern recognition algorithms for

charged particle tracking, Phil. Trans. R. Soc. A 380 20210103

(2021).

[20] J. Stolze and A. I. Zenchuk, Computing scalar products via

a two-terminal quantum transmission line, Phys. Lett. A 383

125978 (2019).

[21] L.-M. Duan and G.-C. Guo, Probabilistic cloning and identifi-

cation of linearly independent quantum states, Phys. Rev. Lett.

80 4999 (1998).

[22] C.-W. Zhang, Z.-Y. Wang, C.-F. Li, G.-C. Guo, Realizing prob-

abilistic identification and cloning of quantum states via univer-

sal quantum logic gates, Phys. Rev. A61 062310 (2000).

[23] G. Brassard, P. Hoyer, M. Mosca and A. Tapp, Amplitude am-

plification and estimation, Contemporary Mathematics 305 53-

74 (2002).


