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The covariant derivative capable of differentiating and parallel transporting tangent vectors and
other geometric objects induced by a parameter-dependent quantum state is introduced. It is proved
to be covariant under gauge and coordinate transformations and compatible with the quantum
geometric tensor. The quantum covariant derivative is used to derive a gauge- and coordinate-
invariant adiabatic perturbation theory, providing an efficient tool for calculations of nonlinear
adiabatic response properties.

I. INTRODUCTION

Quantum geometry, particularly the Riemannian ge-
ometry of a parameter-dependent quantum state, is surg-
ing into mainstream condensed matter physics. In fact,
the discovery of a gauge-invariant Riemannian metric [1],
called the quantum metric, came after decades of effort
[2–7] in nuclear physics aimed at deriving a reduced de-
scription of collective nuclear rotation that accounts for
the dynamics of the constituent nucleons.

There are clear analogies to molecular rotation and
its coupling to vibrations and electrons. Physical effects
of the quantum metric were studied in generic fast-slow
systems modeled on the Born-Oppenheimer approxima-
tion in molecular physics [8–11], where the parameters
are atomic coordinates and the quantum metric produces
an effective scalar potential in the Schrödinger equation
for the nuclei. The quantum metric is thus connected
with effective electric fields [8], while the Berry curva-
ture is associated with effective magnetic fields [12, 13].
The quantum metric and Berry curvature derive from
a single complex-valued tensor, called the quantum ge-
ometric tensor. It is not necessary to rely on the Born-
Oppenheimer approximation to define a quantum geo-
metric tensor: a nonadiabatic quantum geometric ten-
sor has been defined [14] using the exact factorization
method [15–17]. This quantum metric is indispensible in
the nonadiabatic generalization of density functional the-
ory [18, 19], where it is the source of the phonon-induced
kink in photoemission spectroscopy [20, 21]. The effec-
tive scalar potential, which in the Born-Oppenheimer ap-
proximation is divergent at conical intersections [8], has
been regularized in the context of molecular dynamics
[22], and an analogous quantum metric has been studied
in purely electronic systems [23, 24].

Band structure theory is another area where the quan-
tum metric has appeared. Quantities such as Wan-
nier function width [25], field induced position shifts
[26], orbital magnetic susceptibility [27], and angular
momentum-dependent excitonic shifts [28], the superfluid
weight of flat bands [29], and the injection current in
topological semimetals [30] have been shown to depend
on the quantum metric. Quantum geometry can be ex-
tended beyond mean-field theory using the concepts of

natural orbital geometric phase and natural orbital band
structure [31–33]. The quantum geometric tensor has
also been shown to be a useful marker of quantum phase
transitions in spin chains [34–37].

In this article, we introduce the quantum covariant
derivative, a geometric concept that unifies the gauge-
covariant derivative and the coordinate-covariant deriva-
tive and provides a foundation for further developments
in quantum geometry. The purpose of the quantum co-
variant derivative, denoted ∇̂, is to differentiate the geo-
metric objects that arise in quantum mechanics and de-
fine the parallel transport of tangent vectors to quan-
tum state space. We prove that it satisfies a condition
analogous to that satisfied by the covariant derivative
in Riemannian geometry, namely ∇̂ is compatible with
the quantum geometric tensor in the sense that parallel
transport by ∇̂ preserves the Hermitian inner product.

As a first application, we use ∇̂ to derive a novel adi-
abatic perturbation theory that is gauge and coordinate
invariant. This result is of fundamental importance for
the systematic calculation of nonlinear response proper-
ties and extends the geometric and topological formula-
tions of adiabatic linear response, e.g. adiabatic charge
transport [38–45].

II. COVARIANT DIFFERENTIATION

We start by considering a quantum state |ψ〉 = |ψ(x)〉
depending parametrically on parameters {xµ}, µ =
1, . . . , n, that provide local coordinates in a manifold M .
This covers many situations. Cases of special interest oc-
cur when (i) |ψ〉 is a cell-periodic Bloch function |unk〉
and xµ are the components of the wavevector k, (ii) |ψ〉
is an electronic state and xµ are generalized nuclear co-
ordinates, and (iii) |ψ〉 is a many-nucleon state and xµ

are parameters that define the shape of the nucleus.

A parameter-dependent state such as |ψ(x)〉 has gauge
freedom, i.e. the state |ψ̃(x)〉 = eif(x)|ψ(x)〉 provides an
equally valid description of the quantum system. The
gauge-covariant derivative

Dµ = ∂µ + iAµ, (1)
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where ∂µ = ∂/∂xµ and Aµ = i〈ψ|∂µψ〉, gives us a way
to differentiate a state |ψ〉 such that Dµ|ψ〉 and |ψ〉 are
gauge covariant, i.e. they transform in the same way un-
der the gauge transformation

|ψ〉 → |ψ̃〉 = eif(x)|ψ〉;
Dµ|ψ〉 → Dµ|ψ̃〉 = eif(x)Dµ|ψ〉. (2)

The gauge-covariant derivative Dµ is one of several
kinds of covariant derivatives. Covariant derivatives dif-
ferentiate geometric objects in an intrinsic way, i.e. in a
way that is independent of the arbitrary choices that are
made in actual computations. The prime example is the
covariant derivative ∇ in Riemannian geometry, which is
independent of the choice of local coordinates. Because
quantum states have gauge freedom, what distinguishes
the quantum covariant derivative ∇̂ from the covariant
derivative∇ is the need to require ∇̂ to be simultaneously
gauge and coordinate covariant.

For a quantum state depending on {xµ}, the kets

|Dµψ〉 =
∣

∣

∣

∣

∂ψ

∂xµ

〉

− |ψ〉
〈

ψ

∣

∣

∣

∣

∂ψ

∂xµ

〉

, µ = 1, . . . , n, (3)

assumed to be linearly independent throughout a region
of interest in M , provide a gauge-covariant basis for a
complex vector space E at each point in M . A general
vector |v〉 = |Dνψ〉vν (we use the summation convention)
in E will be called a tangent ket to distinguish it from a
tangent vector to M . The projection of |Dµψ〉 onto |ψ〉
is zero by virtue of the normalization of |ψ〉, which we
assume, and therefore |ψ〉 plays a role similar to the unit
normal vector to a surface embedded in Euclidean space
in the context of Riemannian geometry.

As a first step in defining the quantum covariant
derivative, we decompose theDµ-derivative of |Dνψ〉 into
normal and tangential components according to

Dµ|Dνψ〉 = |ψ〉〈ψ|DµDνψ〉+ |Dλψ〉Υλµν , (4)

where Υλµν is a rank-3 quantity, which we call the quan-
tum Christoffel symbol of the second kind. Since |ψ〉,
|Dνψ〉, and |DµDνψ〉 all transform gauge covariantly, in
the way displayed in Eq. (2), Υλµν is gauge invariant.

Take C to be a path in M parametrized by t, and let
|v〉 = |v(t)〉 be a tangent ket vector field defined on the
image of C. The derivative

∣

∣

∣

∣

dv

dt

〉

= |Dνψ〉
dvν

dt
+ |DµDνψ〉

dxµ

dt
vν − |Dνψ〉iAµ

dxµ

dt
vν

(5)

at a point along C is generally not an element of the
vector space E at that point. Projecting |dv/dt〉 into E
yields the coordinate-invariant derivative

D|v〉
dt

= |Dλψ〉
(

dvλ

dt
+ ωλµν

dxµ

dt
vν

)

(6)

with the coefficients ωλµν = Υλµν − iAµδ
λ
ν . If a gauge

transformation |ψ〉 → eif(x)|ψ〉 is applied along C, the
coordinate-covariant derivative transforms as

D|v〉
dt

→ D|ṽ〉
dt

= eif
D|v〉
dt

+ i
∂f

∂xµ

dxµ

dt
eif |v〉. (7)

Compensating for the df/dt term, we define the gauge-
and coordinate-covariant derivative

∇̂|v〉
dt

=
D|v〉
dt

+ iAµ
dxµ

dt
|v〉

= |Dλψ〉
(

dvλ

dt
+Υλµν

dxµ

dt
vν

)

. (8)

The quantum covariant derivative of |v〉 with respect to
X, an arbitrary vector tangent to M , is

∇̂X|v〉 = |Dλψ〉
(

∂vλ

∂xµ
+Υλµνv

ν

)

Xµ. (9)

The quantum Christoffel symbol Υλµν specifies the quan-

tum covariant derivative ∇̂ in a coordinate frame for M .
Equation (9) is our main result.

Except for the crucial distinction that Υλµν is generally
complex, Eq. (9) is analogous to the Riemannian covari-
ant derivative∇Xv of a vector field v = eiv

i with respect
to X = eiX

i, i.e.

∇Xv = ei

(

∂vi

∂xj
+ Γijkv

k

)

Xj, (10)

where xi are local coordinates, ei are basis vectors, and
Γijk is the Christoffel symbol, which is computable in
terms of the Riemannian metric gij . The covariant
derivative in Eq. (10) is the unique symmetric covari-
ant derivative that is compatible with the metric gij in
the sense that the inner product g(u,v) = uigijv

j of any
two vectors u and v is preserved when those vectors are
parallel transported [46–48].

We now prove that (i) ∇̂ is a symmetric covariant

derivative, i.e. Υλµν = Υλνµ, and (ii) ∇̂ is compatible with

the quantum geometric tensor. Hence, ∇̂ is the quantum
mechanical generalization of the covariant derivative in
Riemannian geometry.

The space of quantum states parametrized by xµ

has Riemannian structure but also additional geometric
structure defined by the quantum geometric tensor [1, 8]

hµν =

〈

∂ψ

∂xµ

∣

∣

∣

∣

(

1−
∣

∣ψ
〉〈

ψ
∣

∣

)

∣

∣

∣

∣

∂ψ

∂xν

〉

= 〈Dµψ|Dνψ〉. (11)

The real part of hµν defines the quantum metric gµν .
The imaginary part is minus one-half the Berry curvature
Bµν = ∂µAν − ∂νAµ. The quantum geometric tensor is
a Hermitian metric that assigns, to each point in M , a
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complex inner product,

h(|u〉, |v〉) = uαhαβv
β , (12)

on the complex vector space E spanned by the |Dµψ〉;
an overline denotes complex conjugation. For ∇̂ to be
compatible with hµν means that

dh(|u〉, |v〉)
dt

= h

(

|u〉, ∇̂|v〉
dt

)

+ h

(∇̂|u〉
dt

, |v〉
)

, (13)

where |u〉 and |v〉 are any smooth tangent kets defined
along a path C in M [49].

We first show that ∇̂ is symmetric. It is convenient to
define the quantum Christoffel symbol of the first kind,

Υλµν ≡ 〈Dλψ|DµDνψ〉
= hλρΥ

ρ
µν , (14)

where the second line follows from Eqs. (4) and (11).
Hence, the quantum geometric tensor hλρ lowers the up-
per index of Υρµν just as the Riemannian metric gλρ low-

ers the upper index of Γρµν . The symmetry of Υλµν with
respect to interchange of µ and ν follows immediately
from the corresponding symmetry of Υλµν , which has
already been proven [50].

Unlike the matrix (gλρ), which in Riemannian geome-
try is invertible by assumption, the matrix (hλρ) is not
guaranteed to be invertible. However, in this section we
shall assume that hµν is invertible in a region of interest
in M , so its inverse, hλρ, can be used to raise the first
index of Υρµν , i.e. Υ

λ
µν = hλρΥρµν . In this way, the sym-

bol Υλµν leads to the definition of the quantum covariant
derivative in Eq. (9), as previously pointed out [50].

To prove compatibility, use the product rule on the left
hand side of Eq. (13) and invoke the arbitrariness of the
kets |u〉 and |v〉 to find

∂µhλν = hλρΥ
ρ
µν + hνρΥ

ρ

µλ

= Υλµν +Υνµλ. (15)

Adding and subtracting this identity with different per-
mutations of the indices, we obtain

∂hλν
∂xµ

+
∂hµλ
∂xν

− ∂hνµ
∂xλ

= 2ReΥλµν + i2Im(Υµλν −Υνλµ),

(16)

which yields an identity

ReΥλµν =
1

2

(

∂gλµ
∂xν

+
∂gνλ
∂xµ

− ∂gµν
∂xλ

)

(17)

that is satisfied by the Υλµν defined in Eq. (14). From
the imaginary part of Eq. (15), we obtain the identity

ImΥλµν − ImΥνµλ = −1

2

∂Bλν
∂xµ

, (18)

which is also satisfied by Υλµν [50]. Since the right hand
side of Eq. (17) is the standard formula for the classical
Christoffel symbol of the first kind, Γλµν , we can write
Υλµν = Γλµν + iCλµν , where Cλµν = ImΥλµν is a quan-
tity whose physical significance remains to be explored.
It appears in the equation of motion for gµν in the context
of the coupled dynamics of electrons and nuclei [50].
Unlike the covariant derivative ∇, which is the unique

symmetric covariant derivative compatible with gµν , the

quantum covariant derivative ∇̂ is not the unique sym-
metric connection compatible with hµν . The alternative
symmetric symbol Λλµν = hλρ(Υρµν + iFρµν) defines a
covariant derivative that is compatible with hµν if the
rank-3 quantity Fρµν is fully symmetric. Substituting
Λλµν = hλρΛ

ρ
µν in Eq. (18) shows that Fλµν must be sym-

metric in λν, which together with the assumed symmetry
in µν, implies Fλµν must be a fully symmetric quantity.
Nevertheless, Eq. (14) defines a particular symbol Υλµν
that is compatible with hµν .
Parallel transport is an important application of the

covariant derivative. The quantum mechanical geomet-
ric phase γ =

∮

Aµdx
µ [12, 13, 51–57] arises from parallel

transporting a quantum state [58]. Similarly, the quan-
tum covariant derivative can be used to parallel trans-
port a tangent ket |v〉 via the rule ∇̂|v〉 = 0. The paral-
lel transport equations for a three-state quantum system
are derived in App. A. After parallel transport around a
closed path inM parametrized by s, the final tangent ket
will differ from the initial tangent ket by the path-ordered
exponential

G = P exp

[

−
∫ 1

0

Aµ(s)(dx
µ/ds)ds

]

, (19)

where the matrix elements of Aµ are
(

Aµ

)λ

ν
= Υλµν .

The analog of the Riemann curvature tensor for the
connection ∇̂ is

Rκ
νλµ = ∂λΥ

κ
µν − ∂µΥ

κ
λν +ΥκλαΥ

α
µν −ΥκµαΥ

α
λν . (20)

The covariant curvature tensor (field strength) Rκνλµ =
hκρRρ

νλµ can be shown to be anti-Hermitian in the first
pair of indices and anti-symmetric in the last pair. This
highlights a key difference with respect to the Riemann
curvature tensor Rijkl, which is real-valued and anti-
symmetric in both the first and last pairs of indices.

III. ADIABATIC PERTURBATION THEORY

We seek an approximate solution to the Schrödinger
equation

i~∂t|ψ〉 = H(x)|ψ〉 (21)

of a quantum system with a time-dependent Hamiltonian
of the form H = H(x), where x = x(t) is a path in
parameter space that starts at x0 at t = 0 and ends at
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x1 at t = T . The larger T is the more slowly the system
is driven. The lowest order approximation is

|ψ(0)(t)〉 = e−i~
−1

∫

t

0
En(t

′)dt′ei
∫

t

0
Aµẋ

µdt′
∣

∣n
(

x(t)
)〉

, (22)

where |n(x)〉 is the nth eigenstate of H(x) with energy
En(x), assumed to be nondegenerate, Aµ = i〈n|∂µn〉,
and ẋµ = dxµ/dt.

To develop a systematic perturbation theory in the
limit T → ∞, we identify a dimensionless small parame-
ter as follows. Introducing a scaled time variable s = t/T
and a dimensionless Hamiltonian h(x) = H(x)/∆, where
∆ is a characteristic energy scale of H(x), and defining
the dimensionless parameter

ǫ =
~

∆T
, (23)

the Schrödinger equation becomes

iǫ∂s|ψ〉 = h(x)|ψ〉. (24)

Since ǫ appears in this equation in exactly the same way
that ~ appears in Eq. (21), we return to Eq. (21) and de-
velop a perturbation series for the solution in powers of
~. This perturbative solution is equivalent to the corre-
sponding perturbation series for the solution of Eq. (24)
in powers of ǫ. We shall say that an approximate solution
|ψ(p)〉 is a pth order solution if it satisfies

lim
~→0

1

~p

∣

∣

∣

∣|ψ(p)(t)〉 − |ψ(t)〉
∣

∣

∣

∣ = 0 (25)

for all times in the interval [0, T ]. According to this cri-
terion, |ψ(0)〉 is a 0th order solution.

As an initial step toward the general pth order solution,
we look for a first-order solution of the form

|ψ(1)′〉 = ei~
−1φeiγ

(

|n〉+ ~|n′
1〉
)

, (26)

where φ = −
∫ t
En(t

′)dt′ and γ =
∫ t
Aµẋ

µdt′. Substitut-
ing |ψ(1)′〉 into the Schrödinger equation and collecting
equal powers of ~ yields, at first order,

(En −H)|n′
1〉 = −i|Dνn〉ẋν . (27)

Since |Dνn〉 has no |n〉 component, i.e. 〈n|Dνn〉 = 0,
the resolvent (En − H)−1 acts regularly on the gauge-
covariant derivative of |n〉, and we have

|n′
1〉 = −i(En −H)−1|T 〉+ (β1 + iα1)|n〉, (28)

where |T 〉 = |Dνn〉ẋν is the tangent ket to the path
x = x(t). The condition that |ψ(1)〉 be normalized to
first order in ~ implies β1 = 0. The coefficient α1 is
determined by projecting the second-order terms in the

Schrödinger equation onto |n〉, giving

0 = i〈n|Dνn
′
1〉ẋν

= i∂t〈n|n′
1〉 − i〈Dνn|n′

1〉ẋν , (29)

which implies

α̇1 = Im〈T |n′
1〉

= −〈T |(En −H)−1|T 〉. (30)

Every term in Eq. (28) is gauge covariant and coordinate
invariant. Writing the first term as

−i
∑

m 6=n

〈m|∂νH |n〉ẋν
(En − Em)2

|m〉 (31)

shows that it contains the nonadiabatic coupling.

We continue to second order and look for an approxi-
mate solution of the form

|ψ(2)′〉 = ei~
−1φeiγ

(

|n〉+ ~|n′
1〉+ ~

2|n′
2〉
)

. (32)

Substitution into the Schrödinger equation and isolation
of the second-order terms yields

|n′
2〉 = −(En −H)−2∇̂T|T 〉

− (En −H)−1∂t(En −H)−1|T 〉
+ (β2 + iα2)|n〉, (33)

where

∇̂T|T 〉 = |Dνn〉ẍν + |Dλn〉Υλµν ẋµẋν (34)

is the quantum covariant derivative of |T 〉 with respect
to the tangent vector T. The first term on the right hand
side of Eq. (33) is proportional to the purely intrinsic geo-

metric quantity ∇̂T|T 〉, which is fully determined by the
local geometry induced by |n(x)〉 at every point along
the path x = x(t). The (En − H)−2 factor decreases
the contribution of states with energy far from En. The
second term in Eq. (33) is a type of higher-order nonadia-
batic coupling, depending quadratically on the velocities
instead of linearly. The coefficient β2 in the third term
ensures that |ψ(2)〉 is normalized. From the third-order
terms in the Schrödinger equation, we find that α2 and
β2 must satisfy

β̇2 + iα̇2 = −〈n|Dνn
′
2〉ẋν

= 〈T |n′
2〉 (35)

in order for |ψ(2)′〉 to be a second-order solution according
to Eq. (25). Using Eq. (33), we have

β̇2 + iα̇2 = −〈T |(En −H)−2∇̂T|T 〉
− 〈T |(En −H)−1∂t(En −H)−1|T 〉. (36)

Instead of integrating
∫

β̇2dt, it is simpler to obtain β2 di-
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rectly from the normalization condition for |ψ(2)′〉, which
implies

β2 = −1

2
〈T |(En −H)−2|T 〉. (37)

Before proceeding further, it is crucial to realize that
since iα1 and β2+ iα2 are coefficients of |n〉, they can be
absorbed into the overall exponential factor. Indeed, the
alternative second-order solution

|ψ(2)〉 = ei~
−1φeiγei~α1e~

2(β2+iα2)
(

|n〉+ ~|n1〉+ ~
2|n2〉

)

(38)

with

|n1〉 = −i(En −H)−1|T 〉
|n2〉 = −(En −H)−2∇̂T|T 〉

− (En −H)−1∂t(En −H)−1|T 〉 (39)

is equivalent to |ψ(2)′〉 through second order in ~.

We are now in a position to write the general pth-order
solution

|ψ(p)〉 = ei~
−1φeiγe~(β1+iα1) · · · · · · e~p(βp+iαp)

·
(

|n〉+ ~|n1〉+ · · ·+ ~
p|np〉

)

. (40)

The rationale behind Eq. (40) is to express the wave
function as a product of three factors: (i) the factor
(|n〉 + ~|n1〉 + · · · + ~

p|np〉), which is a function of the
instantaneous position along the path x = x(t), (ii) an

integrable exponential factor ei~
−1φe~β1 · · · e~pβp and (iii)

a nonintegrable phase factor eiγei~α1 · · · ei~pαp , which
is a path-dependent quantity. The form of solution in
Eq. (40) is convenient when evaluating the expectation

value 〈ψ(p)|Â|ψ(p)〉 of an observable Â because the nonin-
tegrable phase factors cancel out: no time integrals need
to be evaluated.

By substituting |ψ(p)〉 into the Schrödinger equation,
we can derive a recurrence relation that determines |np〉
in terms of the |nk〉 with k < p. From the O(~p) terms,
we find

(En −H)|np〉 = −i|Dνnp−1〉ẋν − i(β̇p−1 + iα̇p−1)|n〉

−
p−2
∑

k=1

i(β̇k + iα̇k)|np−1−k〉. (41)

Since Eq. (35) generalizes to

β̇k + iα̇k = −〈n|Dνnk〉ẋν
= 〈T |nk〉, (42)

the second term on the right hand side of Eq. (41) re-
moves the |n〉 component from the first term, i.e. these

two terms together equal

−i
(

1− |n〉〈n|
)

|Dνnp−1〉ẋν . (43)

Further, since the |n〉 component of |nk〉 has been ab-
sorbed into the overall exponential factor at every order
k, we have 〈n|nk〉 = 0 for 1 ≤ k ≤ p. Therefore, the re-
solvent acts regularly on the right hand side of Eq. (41),
and we obtain the recurrence relation

|np〉 = −i(En −H)−1∇̂T|np−1〉

− i

p−2
∑

k=1

(β̇k + iα̇k)(En −H)−1|np−1−k〉. (44)

Equation (44) is expressed in a manifestly geometric form

owing to the use of the quantum covariant derivative ∇̂T.
It is convenient to record here the third-order correction

|n3〉 = i(En −H)−3∇̂T∇̂T|T 〉
+ i(En −H)−1∂t(En −H)−2∇̂T|T 〉
+ i(En −H)−2∂t(En −H)−1∇̂T|T 〉
+ i(En −H)−1∂t

[

(En −H)−1∂t(En −H)−1
]

|T 〉
+ α̇1(En −H)−1|n1〉 (45)

and the third-order normalization coefficient

β3 = −Re〈n1|n2〉
= −Im〈T |(En −H)−3∇̂T|T 〉
− Im〈T |(En −H)−2∂t(En −H)−1|T 〉, (46)

which have not been derived previously. The expectation
value of the Hamiltonian, to third order, is

E(3)
n = En +

1

2
M2µν ẋ

µẋν + En3, (47)

where

M2µν = 2~2Re〈Dµn|(H − En)
−1|Dνn〉 (48)

is an induced inertia (mass) tensor, which has appeared
previously [3, 59–62]. The third-order perturbation is

En3 = −2~3Im〈T |(En −H)−2∇̂T|T 〉
− 2~3Im〈T |(En −H)−1∂t(En −H)−1|T 〉. (49)

If the quantum system described by |ψ(x)〉 is coupled to a
“heavy” classical system responsible for the slow motion
of x, the third-order corrections generate non-Lagrangian
corrections to the effective classical equation of motion.

IV. CONCLUSIONS

We have introduced a gauge- and coordinate-invariant
adiabatic perturbation theory. Since all nonintegrable
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phases appear in a single overall prefactor, this theory is
very convenient for evaluating observables to high order
because it is not necessary to evaluate any time inte-
grals. Just as first-order adiabatic perturbation theory
was used to derive topological formulations of the quan-
tum Hall conductance [39] and adiabatic charge pumping
[41, 42] and a Berry phase formula for the macroscopic
polarization [44], the higher-order adiabatic perturbation
theory developed here can be used to derive convenient
formulas for nonlinear response properties.

In summary, the quantum covariant derivative ∇̂ en-
codes a geometric structure beyond that described by
the quantum geometric tensor. The quantum covariant
derivative is precisely the geometric structure needed to
parallel transport wave function tangent vectors, and it is
indispensable in the derivation of adiabatic perturbation
theory.

Appendix A: Parallel transport in a three-state

system

Consider the generic state of a three-state system
parametrized up to an overall phase as

|ψ〉 =







sin θ sinβe−iγeiα

sin θ cosβe−iγe−iα

cos θ






, (A1)

where the angular variables α, β, γ, θ depend parametri-
cally on a two-dimensional configuration spaceM , i.e. the
coordinates (x1, x2) are local coordinates for the manifold
M . This state can be obtained by acting with a sequence
of unitary rotations on a reference state as follows

|ψ〉 = eiλ3αeiλ2βeiλ3γeiλ7θ





0
0
1



 , (A2)

where λi are the Gell-Mann matrices and α, β, γ, θ are
four out of a set of eight generalized Euler angles that
parametrize the SU(3) Lie group [63, 64].

From the gauge connection one-form

A = i〈ψ|dψ〉
= sin2 θdγ + sin2 θ cos 2βdα, (A3)

we read off the following canonically conjugate coordi-
nates:

q1 = γ p1 = sin2 θ

q2 = α p2 = sin2 θ cos 2β. (A4)

We will use the notation ξµ for the tuple of variables
{q1, q2, p1, p2}. In terms of these coordinates, the state

is

|ψ〉 =









√

p1−p2
2 e−iq1eiq2

√

p1+p2
2 e−iq1e−iq2√

1− p1









. (A5)

The canonical coordinates define a gauge-covariant coor-
dinate frame {|Dmψ〉} with

|Dmψ〉 = |∂mψ〉 − |ψ〉〈ψ|∂mψ〉. (A6)

We find

|D1ψ〉 =





−i(1−p1)
√

(p1−p2)/2e−i(q1−q2)

−i(1−p1)
√

(p1+p2)/2e
−i(q1+q2)

ip1
√
1−p1





|D2ψ〉 =





i(1+p2)
√

(p1−p2)/2e−i(q1−q2)

−i(1−p2)
√

(p1+p2)/2e
−i(q1+q2)

ip2
√
1−p1





|D3ψ〉 =





(1/4)
√

2/(p1−p2)e−i(q1−q2)

(1/4)
√

2/(p1+p2)e
−i(q1+q2)

−(1/2)
√

1/(1−p1)





|D4ψ〉 =





−(1/4)
√

2/(p1−p2)e−i(q1−q2)

(1/4)
√

2/(p1+p2)e
−i(q1+q2)

0



 . (A7)

The quantum metric gmn = Re〈Dmψ|Dnψ〉 in canonical
coordinates is

(gmn)=

















p1(1−p1) p2(1−p1) 0 0

p2(1−p1) p1−p22 0 0

0 0
p1−p22

4(1−p1)(p2
1
−p2

2
)

− p2
4(p2

1
−p2

2
)

0 0 − p2
4(p2

1
−p2

2
)

p1
4(p2

1
−p2

2
)

















(A8)

and the Berry curvature Bmn = −2Im〈Dmψ|Dnψ〉 is

(Bmn) =







0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0






. (A9)

It is instructive to compare Eq. (A8) with the result for
a two-level system in the state (cos(θ/2), sin(θ/2)eiϕ)T :

(gmn) =

(

p(1− p) 0
0 1

4p(1−p)

)

, (A10)

in the (q, p) basis, where q = ϕ, p = sin2(θ/2), and θ, ϕ
are the usual Bloch sphere angles. Poles and zeros of
the elements of g occur for the values p = 1 and p = 0;
these are singular points of the coordinate chart where
either the first or second element of the state vanishes.
We also observe poles and zeros of the elements of g in
Eq. (A8) corresponding to the vanishing of elements of
the three-level state in Eq. (A5). It is readily verified that
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after choosing p1 = 1, which sets the third element of |ψ〉
to zero, and transforming to the variables q = 2q2 and
p = (1 + p2)/2, the relevant block of the three-level g in
Eq. (A8) simplifies to Eq. (A10). In terms of our choice of
canonical coordinates, hmn = gmn− i

2Bmn only depends
on the pm variables and not the qm variables, which is
useful for calculations. The Berry curvature two-form
B = Bmndξ

m∧dξn is related to the canonical symplectic
two-form ω = dpm ∧ dqm according to ω = − 1

2B.

Now we turn to the evaluation of geometric quanti-
ties associated with the manifold M . For tensors, this is
conveniently done by pulling back the tensor in canoni-
cal q, p coordinates to the tensor in terms of the (x1, x2)
coordinates on the configuration manifold M [18]. The
quantum metric in (x1, x2) coordinates is

gµν = p1(1− p1)q1µq1ν + p2(1 − p1)(q1µq2ν + q2µq1ν)

+ (p1 − p22)q2µq2ν +
p1 − p22

4(1− p1)(p21 − p22)
p1µp1ν

− p2
4(p21 − p22)

(p1µp2ν + p2µp1ν) +
p1

4(p21 − p22)
p2µp2ν

and the Berry curvature is

Bµν = p1µq1ν − p1νq1µ + p2µq2ν − p2νq2µ

= {p1, q1}+ {p2, q2}, (A11)

where e.g. q1µ = ∂µq1 and {q1, p1} is the Poisson bracket
with respect to xµ variables. We will need the inverse of
(hµν), which is

(hµν) =
1

det(hµν)

(

h22 −h12
−h21 h11

)

(A12)

with the determinant

det(hµν) = 1

16(1−p1)(p2
1
−p2

2
)

{

8p11p22(1−p1)(p1q12+p2q22)[p2(1−p1)q11+(p1−p22)q21]

+8p12p21(1−p1)(p1q11+p2q21)[p2(1−p1)q12+(p1−p22)q22]

−8p11p21(1−p1)(p1q12+p2q22)[p2(1−p1)q12+(p1−p22)q22]

−8p12p22(1−p1)(p1q11+p2q21)[p2(1−p1)q11+(p1−p22)q21]

−8p21p22(1−p1)2(p1q11+p2q21)(p1q12+p2q22)

−8p11p12[p2(1−p1)q11+(p1−p22)q21][p2(1−p1)q12+(p1−p22)q22 ]

+4p211[p2(1−p1)q12+(p1−p22)q22]2

+4p212[p2(1−p1)q11+(p1−p22)q21]2

+4p221(1−p1)2(p1q12+p2q22)2

+4p222(1−p1)2(p1q11+p2q21)2

+p211p
2
22+p

2
12p

2
21−2p11p12p21p22

}

+(1−p1)(p21−p22)(q11q22−q12q21)2.

Now we evaluate Υλµν = Γλµν + iCλµν . The Christof-
fel symbol of the first kind of Riemannian geometry is

readily evaluated with the knowledge of gµν to give

Γλµν = 1−2p1
2 q1λ(q1µp1ν+p1µq1ν)− p2

2 q1λ(q2µp1ν+p1µq2ν)

+
1−p1

2 q1λ(q2µp2ν+p2µq2ν)− p2
2 q2λ(q1µp1ν+p1µq1ν)

+
1−p1

2 q2λ(q1µp2ν+p2µq1ν)+
1
2 q2λ(q2µp1ν+p1µq2ν)

−p2q2λ(q2µp2ν+p2µq2ν)− 1−2p1
2 p1λq1µq1ν

+
p2
2 p1λ(q1µq2ν+q2µq1ν)− 1

2p1λq2µq2ν

+

(

1
8(1−p1)2

− p21+p22
8(p21−p22)2

)

p1λp1µp1ν

+
p1p2

4(p21−p22)2
p1λ(p1µp2ν+p2µp1ν)−

p21+p22
8(p21−p22)2

p1λp2µp2ν

− 1−p1
2 p2λ(q1µq2ν+q2µq1ν)+p2p2λq2µq2ν

+
p1p2

4(p2
1
−p2

2
)2
p2λp1µp1ν−

p21+p22
8(p2

1
−p2

2
)2
p2λ(p1µp2ν+p2µp1ν)

+
p1p2

4(p21−p22)2
p2λp2µp2ν+

p1−p22
4(1−p1)(p21−p22)

p1λp1µν

− p2
4(p2

1
−p2

2
)
(p1λp2µν+p2λp1µν )+

p1
4(p2

1
−p2

2
)
p2λp2µν

+p1(1−p1)q1λq1µν+p2(1−p1)(q1λq2µν+q2λq1µν )

+(p1−p22)q2λq2µν ,

where e.g. p1µν = ∂ν∂µp1. The symmetry of Γλµν with
respect to interchange of the second and third indices is
transparent.

To evaluate Cλµν , we use the identity [50]

Cλµν = Im〈∂λψ|∂µ∂νψ〉+Aλgµν +Aµgλν +Aνgλµ

+AλAµAν , (A13)
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and find

Cλµν = q1λq1µ[p1(1−p1)(1−2p1)q1ν+p2(1−p1)(1−2p1)q2ν ]

+q1λq2µ [p2(1−p1)(1−2p1)q1ν+(1−p1)(p1−2p22)q2ν ]

+q1λp1µ

[

p1(1−2p1+p22)

4(1−p1)(p21−p22)
p1ν− p2(1−p1)

4(p21−p22)
p2ν

]

+q1λp2µ

[

−p2(1−p1)

4(p21−p22)
p1ν+

p1(1−p1)

4(p21−p22)
p2ν

]

+q2λq1µ [p2(1−p1)(1−2p1)q1ν+(1−p1)(p1−2p22)q2ν ]

+q2λq2µ [(1−p1)(p1−2p22)q1ν+p2(1−3p1+2p22)q2ν ]

+q2λp1µ

[

− p2(1−p22)

4(1−p1)(p2
1
−p2

2
)
p1ν+

p1+p22
4(p2

1
−p2

2
)
p2ν

]

+q2λp2µ

[

p1+p22
4(p21−p22)

p1ν− p2(1+p1)

4(p21−p22)
p2ν

]

+p1λq1µ

[

p1(1−2p1+p22)

4(1−p1)(p21−p22)
p1ν− p2(1−p1)

4(p21−p22)
p2ν

]

+p1λq2µ

[

− p2(1−p22)

4(1−p1)(p2
1
−p2

2
)
p1ν+

p1+p22
4(p2

1
−p2

2
)
p2ν

]

+p1λp1µ

[

p1(1−2p1+p22)

4(1−p1)(p21−p22)
q1ν−

p2(1−p22)

4(1−p1)(p21−p22)
q2ν

]

+p1λp2µ

[

− p2(1−p1)

4(p21−p22)
q1ν+

p1+p22
4(p21−p22)

q2ν

]

+p2λq1µ

[

−p2(1−p1)

4(p2
1
−p2

2
)
p1ν+

p1(1−p1)

4(p2
1
−p2

2
)
p2ν

]

+p2λq2µ

[

p1+p22
4(p21−p22)

p1ν− p2(1+p1)

4(p21−p22)
p2ν

]

+p2λp1µ

[

− p2(1−p1)

4(p21−p22)
q1ν+

p1+p22
4(p21−p22)

q2ν

]

+p2λp2µ

[

p1(1−p1)

4(p2
1
−p2

2
)
q1ν− p2(1+p1)

4(p2
1
−p2

2
)
q2ν

]

+ 1
2 (p1λq1µν−q1λp1µν+p2λq2µν−q2λp2µν). (A14)

We have computed the quantum Christoffel symbol of
the second kind using the formula

Υλµν = hλκΥκµν , (A15)

the Riemann curvature tensor

Rκ
νλµ = ∂λΥ

κ
µν − ∂µΥ

κ
λν +ΥκλρΥ

ρ
µν −ΥκµρΥ

ρ
λν , (A16)

and the fully covariant Riemann curvature tensor

Rκνλµ = hκρRρ
νλµ. (A17)

The formulas are too lengthy to record here, but we have
verified that Rκνλµ is anti-Hermitian in its first pair of
indices (κν) and anti-symmetric in its second pair of in-
dices (λµ). The symbol Υλµν , determined by Eqs. (A12)
and (A15), completely specifies the parallel transport law
for a tangent ket |u〉 = uλ|Dλn〉 along a path x = x(s):

duλ

ds
+
dxµ

ds
Υλµνu

ν = 0. (A18)
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