Probing finite-temperature observables in quantum simulators of spin systems
with short-time dynamics
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Preparing finite temperature states in quantum simulators of spin systems, such as trapped ions or Rydberg
atoms in optical tweezers, is challenging due to their almost perfect isolation from the environment. Here, we
show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equal-
ity and equivalent to the one in Lu, Bafiuls and Cirac, PRX Quantum 2, 020321 (2021). It consists of classical
importance sampling of initial states and a measurement of the Loschmidt echo with a quantum simulator. We
use the method as a quantum-inspired classical algorithm and simulate the protocol with matrix product states to
analyze the requirements on a quantum simulator. This way, we show that a finite temperature phase transition
in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators. We pro-
pose a concrete measurement protocol for the Loschmidt echo and discuss the influence of measurement noise,
dephasing, as well as state preparation and measurement errors. We argue that the algorithm is robust against
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those imperfections under realistic conditions.

The excellent tunability of quantum simulators has enabled
new insights into entire classes of many-body models. Re-
cently, tremendous progress has been achieved in simulat-
ing unconventional nonequilibrium dynamics of quantum spin
models with a large number of controlled degrees of freedom
on different experimental platforms, including ultracold atoms
in optical lattices [1-5], Rydberg atoms [6-8], and trapped
ions [9-11]. A key question motivated from condensed mat-
ter physics is to study finite temperature states of quantum
spin models, which can host phases with symmetry breaking
or even topological order, thermal phase transitions, and quan-
tum criticality [12]. Preparing states at finite and in particular
low temperatures, required to study these phenomena, is how-
ever a formidable challenge for quantum simulators because
of their almost perfect isolation from the environment.

Here, we discuss a concrete approach how to measure fi-
nite temperature observables in quantum simulation experi-
ments based on an algorithm recently derived by Lu, Banuls
and Cirac [13]. We motivate this algorithm from a different
vantage point based on the Jaryznski equality [14], which pro-
vides a link between the nonequilibrium dynamics of a quan-
tum system and its thermal properties. The key result of this
algorithm is to obtain thermal observables from quantum sim-
ulators without preparing a thermal state directly, but to use
a short real-time evolution instead. While this algorithm can
be immediately applied to current quantum technology, even
for large systems, other algorithms proposed for preparing fi-
nite temperature states, including sampling methods [15-19],
imaginary time evolution [20, 21], variational methods [22],
kernel based methods [23] and direct state preparation using
fluctuation theorems [24] are challenging to implement on de-
vices without fault-tolerance due to significant resource over-
heads. Contrarily, the algorithm from Ref. [13] can be im-
plemented on current devices due to its low requirement on
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FIG. 1. Setup and phase diagram. a) Trapped ions in internal states
|0), 1) interact with powerlaw couplings with exponent a. Ions in
the shelving state |s) do not interact. b) Thermal observables are ob-
tained from Monte Carlo importance sampling of product states; see
Ref. [13]. The probability of proposed states is classically evaluated
from the Loschmidt echos G, (t) measured on the quantum simulator
(blue shading), in which the shelving state |s) is used for obtaining
the phase of G,(¢) with Ramsey experiments. The Loschmidt echo
only needs to be measured to short-times J¢ = O(1) [13]. ¢) The one-
dimensional long-range transverse field Ising model exhibits a finite
temperature phase transition from a ferromagnet to a paramagnet for
a < 2 (and transverse field g < g.; here g = J). At a = 2, the transi-
tion is in the Berenzinskii-Kosterlitz-Thouless universality class. In
this work, we focus on @ = 1.5 (grey dashed line).

evolution time and its error resilience.

We apply this algorithm to the detection of the thermal
phase transition in the one-dimensional long-range transverse
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field Ising model (LTFIM)
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where g is the strength of the transverse field, J/|i — j|*“ > 0
is the ferromagnetic coupling with long-range exponent «,
and &¢ is the a-th Pauli matrix on site i. This model can be
implemented with trapped ions [25]; see Fig. la), c). For
a < 2, the system exhibits a finite temperature transition
from a ferromagnet at low temperatures to a paramagnet at
high temperatures, provided the transverse field is sufficiently
weak [26, 27], c.f. also Ref. 28 for an experiment with adia-
batic state preparation.

The Jarzynski-inspired algorithm uses Monte Carlo (MC)
importance sampling of product states, where the state prob-
abilities are classically calculated from the Loschmidt echo
Gy(1) = (Yle”™'|y) that is measured on a quantum simulator;
Fig. 1b). We develop a scheme for measuring G (#) based on
Ramsey spectroscopy that involves a shelving state; Fig. 1a).
The Loschmidt echo G (¢) only needs to be evaluated to short
times, as proven in Ref. 13. To benchmark the algorithm, we
interpret it as a quantum-inspired classical algorithm by eval-
uating the Loschmidt echos G (f) with matrix product states
(MPS). We find that the finite temperature phase transition of
the LTFIM can be efficiently characterized with this algorithm
even for large systems. To assess the feasibility of the algo-
rithm in a realistic quantum simulator, we study its robustness
to a finite number of measurements and discuss dephasing
noise as well as state preparation and measurement (SPAM)
errors, demonstrating the immediate applicability of the algo-
rithm in current experimental technology.

Thermal properties from the Jarzynski equality.—The al-
gorithm of Ref. [13] can be motivated from the Jarzynski
equality [14], which is based on the following thought exper-
iment [29, 30]: A system is prepared in thermal equilibrium
at temperature 7' with respect to a Hamiltonian Hy. A mea-
surement of Hy is then performed, which projects the system
with probability Zioe‘ES/ T into the energy eigenstate |n°) with
energy E, where Z is the partition sum of A°. Then, a sec-
ond measurement in the eigenbasis of H is performed, which
yields the result E,, with probability | (n°m)|>. In this pro-
cess, the energy of the system changed and therefore work
w = E,, — EY has been performed. Repeating this experiment
many times, we can measure the probability distribution of
work w. It is given by p(w) = ZLO > e EnlT o | (10m) P6(w —

(E,, — EY)). By multiplying the work distribution with e=/"
and integrating, we find the Jarzynski equality
Z =17 fdwe""/Tp(a)), )

which relates an equilibrium quantity, the thermal partition
sum Z = Tr(e /), to a non-equilibrium quantity, the work
distribution. While in principle, all properties of a system can
be obtained from Z, it is in practice hard to evaluate. Here
we focus on the evaluation of finite temperature observables
(O)r = 1Tx (ée‘ﬂ/ T). In particular, by formally choosing
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FIG. 2. Data processing with classical resources. a) Loschmidt
echo shown for two different initial states—a completely polarized
state and a state with vanishing magnetization. This data can be
measured directly on a quantum simulator or can be obtained from
numerical simulations for the quantum-inspired classical algorithm.
b) The corresponding work distributions p,(w) are centred around
the energies of the initial states, with the width given by the energy
fluctuations. c¢) Magnetization evaluated from Monte Carlo impor-
tance sampling. d) The absolute error of the squared magnetization
((S%)?y at temperature T/J = 7 calculated by a Jackknife estimate.
Parameters: L = 16,8/J = 4, Jtyax = 1, At = 0.1.

Hj o 1 we can use the Jarzynski equality even without prepar-
ing a thermal state of ﬂo, since for this choice, the dependence
on H, becomes trivial.

In order to relate the work distribution function to the
Loschmidt echo, we interpret work as the Fourier con-
jugate to time by writing the Delta-function as d&(w)

%’Tei“”. Then, the Jarzynski equality becomes Z =

[dwe=!T [ &L eier Tr(e‘“q’). We expand the trace in
basis of product states 1 = 3, [)(¥| to write Z =
2w f dwe T py(w) with

o

dt . A
po(w) = f & e ) 3)

This way, we have reduced the evaluation of Z via the Jarzyn-
ski equality to a measurement of the Loschmidt echo G, (7) =
Wl emiflt [r) with respect to product states |if) without requir-
ing to prepare a thermal state in the quantum simulator.

In order to obtain observables O from Z, we shift A —
H + hO and evaluate

A T dzZ
=== 4
(O)r Z dhlio 4)

While in principle any observable can be evaluated this way
(see supplement [31]), the simplest algorithm can be de-
rived for observables satisfying O |¢) = Oy |). Inserting the



Jarzynski equality, Eq. (2), we find in this case

AL 2 Pu(T)Oy

O)r = , 5
(O)r S (D) 4)

where
pu(T) = f py(w)e™ dw. (6)

Due to the exponential size of the Hilbert space, we cannot
evaluate Eq. (5) exactly. However, because py(T)/ 3, py(T)
is a probability distribution (even for frustrated and fermionic
models), we can use a classical Monte Carlo importance sam-
pling algorithm to select product initial states:

(1) Start with some product state |i/).
(2) Repeat Nyc times for a given temperature 7'

(a) Propose a new state [i/”).

(b) Measure Gy () on a quantum simulator.

(c) Evaluate py (w) from Eq. (3).

(d) Evaluate p (T) from Eq. (6).

(e) Accept |i") with probability py (T)/py(T).

(f) Evaluate Oy.
(3) Obtain thermal expectation value by averaging O,.
This algorithm is the same as the one introduced in Ref. 13
based on energy filtering. Here, we provide an interpretation
of this algorithm based on the Jarzynski equality.

In the following, we discuss each step in more detail and
apply it to the LTFIM. For step (1), a basis needs to be chosen.
We use z-product states for which &7 ) = o7 /). As a state
proposal in step (2a) we flip a single, randomly chosen spin,
which fulfills ergodicity and, together with the acceptance step
(2e), detailed balance [32].

In step (2b), we measure G (¢) on the quantum simulator in
a time interval [0, f,,x] With equal time steps Ar; Fig. 2a). The
evaluation of G(?) is the only step performed on the quan-
tum simulator—all other steps use classical resources and take
negligible computation time. We will discuss below how to
measure this quantity in trapped ion simulators.

From G(#), we then evaluate p,(w) from Eq. (3) by a dis-
crete Fourier transform in step (2c),

Ar 'S w?
_ = iwnAt —'T
Pu@) = n;ve Gy(e™ =, @

where w = 2nn/(At(2N+1)), N = tnax/At. Above, we have in-
troduced a Gaussian filter with standard deviation 1/4 in order
to suppress artifacts due to the finite #,,,x; Fig. 2b). Because
py(w) in Eq. (3) is the density of states weighted by the over-
lap of |) with the eigenstates, its width is given by the energy
fluctuations g VL (see supplement [31]). Hence, in order for
the frequency range of the discrete Fourier transform to cover
p(w), the timestep needs to be scaled as Af oc 1/ VL. The
width of the Gaussian filter 6 can be chosen independently of
L and, hence, fmax ~ 1/0. In fact, even a scaling ¢ oc VL
leads to convergence (with fp,x ~ 1/ \/Z) leaving the number
of time step evaluations constant [13, 33].

From py(w), we classically evaluate p,(T) according to
Eq. (6) in step (2e). In this evaluation, small errors intro-
duced by experimental errors or numerical imprecision are
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FIG. 3. Detecting the phase transition in the LTFIM. Data points
for a) the squared magnetization and b) the Binder cumulant are ob-
tained by the quantum-inspired classical algorithm discussed in the
main text. In this algorithm the Loschmidt echos G, (¢) are numeri-
cally simulated and could alternatively be obtained from a quantum
simulator; c.f. blue box in Fig. 1c). Error bars are estimated from a
Jackknife binning analysis.

exponentially amplified at low temperatures for large negative
w and low T. To mitigate this problem, we set p,(w) = 0
when py(w) < pew. Moreover, py(T) is centred around
Ey, = (W|H W), which can be problematic as Ey oc Lif  has a
large overlap with states on the edges of the spectrum. This is
for example the case for the totally polarized state in Fig. 2a).
In order to resolve the fast oscillation, At < 1/L would have to
be chosen. However, we can circumvent this problem by shift-
ing the zero of the frequency by E, when evaluating Eqgs. (7)

and (6). This guarantees that Af oc 1/ VL.

Having evaluated py(T), we can now accept the state with
probability py (T)/py(T) (step 2e) and store the value of Oy,
of the state after the acceptance step; Fig. 2c). After repeating
the importance sampling iteration for Nyc times, we evalu-
ate thermal observables by averaging the Oy (step (3)). For
the LTFIM, we evaluate the squared magnetization ($%/L)>
as well as the Binder cumulant (3/2) — (S /(2 ($92)))
by calculating a power of the magnetization $¢ = Y, g% in
the importance sampling. The Binder cumulant is a standard
observable for the detection of Ising phase transitions as the
Binder cumulant approaches 1 (0) in the ferromagnetic (para-
magnetic) phase [34]. Because importance sampling creates
correlated samples, we use a Jackknife binning analysis to de-
termine error bars. In Fig. 2d) we show that these errors scale
as 1/ /Ny as expected from the central limit theorem.

Quantum-inspired classical algorithm.—The algorithm
described above can also be used as a purely classical method,
requiring an exact method for calculating the Loschmidt echos
Gy () up to short times. We use the Time-Dependent Varia-
tional Principle (TDVP) for MPS [35, 36], which can be read-



ily applied to systems with long-range interactions. In order
to reach the required times, a relatively small bond dimension
X = 15 is sufficient (see supplement for convergence [31]).

In Fig. 3 we show the observables obtained from the al-
gorithm for system sizes L = 8 — 64 and compare them to
exact results from matrix-product operator based imaginary
time evolution [37] of a purified MPS [38]. We find excel-
lent agreement even in the vicinity of the phase transition. To
simulate the algorithm, we used a timestep JAt = 0.1 — 0.05,
approximately following the scaling Az o« 1/ VL noted above.
The maximum time Jt,,,x = 2 (1) for L = 8 — 32 (64) is small.
We chose a filter width §/J = 2(4) for L = 8 — 32(64), a
cut-off po = 107 and averaged over 10 — 19 independent
MC runs with Nyc = 6000, 10000, 2000, 4000 iterations each
for L = 8,16, 32, 64, where the first 1000 iterations were dis-
carded as burn-in of the Markov chain.

Measurement of Loschmidt echo with trapped ions.—
While we have now shown that the algorithm can detect the
phase transition in the LTFIM once the Loschmidt echos G (¢)
are known, we have yet to show how G () can be measured
in a trapped ion quantum simulator [step (2b) in the algo-
rithm above]. To this end, consider the polar decomposition
of Gy (1) = re'. The absolute value r is given by the prob-
ability of measu{ing [) after time evolving |) for a time ¢,
ie., > = | (Yle"™y) [>, which has previously been measured
in trapped ions [39]. The phase ¢ can be obtained from a
Ramsey-type experiment by interfering a state which evolves
under A with one that does not. To engineer such a state,
we introduce a shelving state |s) which does not couple to the
qubit levels under H, such as one of the Ds /2 Zeeman sub-
levels in “°Ca* [40] or the *Ds, state in '7'Yb* [41]. This al-
lows us to obtain the phase ¢ by rotating into a superposition
between [if) and |s - - - 5), evolving it in time, rotating back and
measuring the return probability to [/) (see supplement [31]
and Ref. 13). However, this superposition is a GHZ-type state,
which is in general difficult to prepare.

To avoid the creation of a GHZ state, we can instead use a
sequence of Ramsey experiments, akin to the sequential pro-
tocol proposed in Ref. 13: For each j € [0, L— 1], we consider
the state |y;), in which the j leftmost ions are in the qubit state
corresponding to |¢/) and the rest are in the shelving state [s);
c.f. Fig. 4. The phase difference Apj.1 = @1 — ¢; of the
Loschmidt echos of two states is then obtained through the
following Ramsey experiments:

(1) For a set of phases 6:
(a) Prepare the state |y;).
(b) Act with a single ion operation Vj+1(9) onion j+ 1:
Vi@ ) = %(W’j) + e i)

(c) Evolve with H for time z.

(d) Act with V]TH(O) onion j+ 1.

(e) Measure the return probability M(6) to state |/ ;):

1
M) = 5 (7 + 72+ 2rparjcos(@ + Agun) . (8)
(2) Fit the measured M(6) to Eq. (8), to obtain the phase dif-
ference Agp;, ;. We found this fit to perform best if 7; and rj,,
are also measured, such that Apj,; is the only unknown.
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FIG. 4. Ramsey protocol and robustness. a) Pseudo-circuit dia-
gram of the Ramsey protocol for measuring the phase. For j = 0,
Jj =1, etc. there are L — 1, L — 2, etc. additional ions in the |s) state
which we do not display for simplicity as the time evolution acts triv-
ially as an identity on these states. b) Results of a full simulation of
the Ramsey protocol for a finite number of measurement repetitions.
Inset: work distribution of totally polarized state, showing the influ-
ence of the noise. Grey dashed line illustrates p.,. We used 10* MC
iterations, 6 = 1, L = 10, Jtnx = 4, JAr = 0.1, cut poy = 5 X 1072
(100 shots), 8 x 10~* (100k shots).

(3) Add up all L phase differences to find ¢. To see this, we
use that ¢y = 0 because Gis..;y = 1, which gives

Apjir. )

L—-1
(p =

=0

~

We have therefore found an algorithm which determines the
phase of G, (7) using O(L) single-ion Ramsey experiments,
that can be implemented directly on current experiments.
Robustness.— In order to demonstrate the robustness of the
algorithm, we consider several sources of error in the mea-
surement of Gy (¢) in the following. In an experiment, M(6)
and r can only be determined up to a precision ~ 1/ /N
due to quantum projection noise [42] introduced by measur-
ing N, times. In order to show that this algorithm works
even for a finite Ny, we simulated the above Ramsey pro-
tocol and show results in Fig. 4b). We used N repetitions
for r; as well as N,/4 repetitions for M(6) for four equally
spaced values of 8 € [0,x], such that 2N,L measurements
are performed per time point. The algorithm therefore re-
quires Nuyic(tmax/At)2LNg measurements, which reduces to
Nyc(tmax/Af)Ng when using the GHZ protocol. The noise
leads to errors when p,(w) is small, which we remove by us-
ing a cut pey o 1/+/Ny; c.f. Fig. 4b) inset. We find good
results even for a small number of measurements. At low tem-
peratures, more measurements are needed as small values of



py(w) for large negative w become more important due to the
factor e=/T in Eq. (6).

Another source of imprecision are errors in state prepa-
ration and measurement (SPAM). The leading contribution
is given by uncorrelated single-qubit state assignment errors
with probability p. The return probability |G¢(t)|2 then has
an error of 1 — (1 — p)*. Current trapped-ion devices have
p ~ 1073 (see e.g. Ref. 11), such that the error on |G, (1) is
5% for L = 50. Uncorrelated SPAM errors can be corrected
by multiplying the measured probability distribution with the
tensor product of the inverse single qubit measurement error
matrices, see e.g. [43, 44].

The effect of dephasing noise may be modelled by an
exponential decay of the Loschmidt amplitude G,(f) —
G, (t)exp(—yLt). The resulting 1/ w? tails in the work distri-
bution lead to errors at large positive or negative frequencies.
Similar to measurement noise, this error can in principle be
mitigated by using a suitably small cut-off. If vy is known,
multiplying the measured signal with exp(yLt) might lead to
an even more efficient removal of decoherence effects. How-
ever, we expect decoherence effects not to be very strong as
the time scales Jt ~ 1 — 2 are small compared to those rou-
tinely employed in trapped-ion quantum simulators.

Discussion & Outlook.—To summarize, we have applied
a protocol to probe finite temperature observables in ana-
logue quantum simulators of spin systems. We benchmarked
the protocol by studying a thermal phase transition in the
transverse-field Ising mode with long-range interactions as re-
alized with trapped-ions. This algorithm is well suited to cur-
rent noisy devices as only short times are needed, independent
of system size. Due to the importance sampling, the main bot-
tleneck is the number of measurements. Current trapped ion
simulators employing “°Ca* (!”'Yb*) have a shot time on the
order of 100ms (10ms), such that Ny;c = 1000 samples seem
to be realistically achievable.

The algorithm can be directly employed in other platforms.
Rydberg atoms in tweezers have access to efficient GHZ state
preparation [45], shelving states as well as a high measure-
ment repetition rate. They could probe 2D or 3D interact-
ing Ising models in frustrated lattices, for which classical al-
gorithms are plagued by the sign problem, thus providing a

route to obtain quantum advantage [46]. In these cases, find-
ing more efficient update rules for the importance sampling,
e.g. by using the quantum simulator for the proposal step [47]
might be advantageous. Moreover, the free energy of the sys-
tem can in principle be evaluated via F = —T InZ using for
example multi-canonical sampling strategies [48]. The range
of models accessible in analogue simulators can be extended
by applying prethermalization (e.g. the XY model in trapped
ions [49]), or Floquet engineering (e.g. Heisenberg mod-
els [50, 51]).

While our primary motivation was the application to quan-
tum simulators, this algorithm can also be used to study previ-
ously inaccessible regimes with MPS methods due to the low
requirement on the maximum time and hence the entangle-
ment.

Note added.—During the completion of this manuscript,
a work appeared proposing this algorithm as a quantum-
inspired classical algorithm for MPS [33].
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Appendix A: Variance of p,(w)

The variance of p,(w) is defined as

@pu@ = | dwwzmw)—( | dwwpww))z. (A1)
Using that
pot@) = [ dre wle ™y (A2)
= > [y Pow - ) (A3)
We find
[ dwaputw) = wiry (Ad)

and therefore (Apgz,(a)))2 = (wl(ﬁ)zlw) - (<¢|I€I|zp>)2. Specializing to the case in the main text, i.e., z-product states and the
long-range transverse field Ising model, we find for the standard deviation

Apy(w) = g VL, (A5)

explicitly showing the VL scaling discussed in the main text.

Appendix B: Observables from the Jarzynski equality

Here we show how to get from Eq. (4) to Eq. (5) in the main text, in particular showing how Eq. (5) generalizes to arbitrary
observables. To do so, we start from Eq. (4) and insert the Jarzynski equality in the form Z = f dwe™ T 2y Py(w). We then
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shift A — H + hO in the evaluation of py(w) (c.f. Eq. (3)). We find

~ T dZ
__Tdz BI
(O)r Z dhlpo (B1)
T dr A —ifl iw
=5 [dwen Y [ Scinwioe . B2)
¥
By using [ dwe™/Te " = 275(t +i/T), we get
. 2y Puo(T)
(O = ————, (B3)
NG
where
dr . A i)
puo®) = [dweem [ S ioe ). (B4)

The quantity Gy o(H) = (¥ OeiH! [) needs to be measured separately to G,(f) by acting with O onto the state after time
evolution. We can rewrite this equation into a form useful for importance sampling by inserting a unity 1 = py(T)/py(T),

Pu.o(T)
_ Zup(D% 7 ®5)
;= —————
2 Pu(T)
Hence, we sample over the states |y), where the acceptance probability of a new state |y’) is given by py (T)/py(T). To evaluate
the observable, we average over %(TT)). We can also rewrite Eq. (B3) slightly differently by inserting a unity by 1 = py(w)/py(w)
in the numerator,

-w/T Pyo(w)
~ 2 fdwe © pw(a))—pw(w)

S fdwe“"/pr(w)

A

(O)r =

(B6)

where py o(w) = f g—;é‘”‘ Wl Oeifl! [¥). In this case, we need to sample over both the states |i/) as well as frequencies w, with

the acceptance probability of a new state and frequency given by e~ @'~/ T%. Observables are evaluated by averaging over
Pyo(w)

Py(w)
Finally, for the case 10) |y = Oy |¢r) considered in the main text, we find

in the end. This is equivalent to Eq. (38) in Ref. 13.

Py,o(T) = Oypy(T), (B7)

such that Eq. (B5) reduces to Eq. (5) of the main text.
The measurement of py o(T) can be avoided if powers of the Hamiltonian are to be evaluated. By using that

N A
(H))r = (—D"m (B8)

and inserting the representation of Z in terms of the work distribution, we get

. Sy pu(T) A
mny, = —— 7 B9
((H)")r ) (B9)
with
Pu(T) = f dww"e T p(w). (B10)

Hence, only p,(w) needs to be measured to measure any power of the Hamiltonian. In particular, this way the specific heat
Cy = (B — (I:I)i)/ (LT?) can be directly evaluated.
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FIG. 5. Convergence with bond dimension. Work distribution evaluated for a state with zero magnetization, system size L = 36, §/J = 2,
At = 0.05, Jtny = 2. For all relevant frequencies, i.e., those with p(w) > pey (black, solid line), the relative error is smaller than 1074,

Appendix C: Convergence of MPS

In Fig. 5 we show the work distribution for two values of the bond dimension, showing that small bond dimension y = 15
indeed suffices to capture the dynamics. This is due to two effects: First, we only evolve to short times. Secondly, even within
those short times, the later times do not contribute much to the low frequency behaviour of the work distribution because G(¢)
has already decayed to small values for most |i/). Even for states that do not decay quickly, such as the completely polarized
state shown in Fig. 2a) of the main text, the latter fact is enforced by the filter, which suppresses late time contributions.

Appendix D: Measurement of G, (¢) = (/| e |y in analogue quantum simulators

Here, we provide further details on the protocol to measure G (). As in Ramsey interferometry, a stationary path is compared
to one which has evolved. We consider a system Hamiltonian H which acts on the states {|0), |1)}, where [) is an arbitrary state
in that basis. In addition, we introduce a shelving state |s) which does not evolve in time, emiflt s --85)=|s---5).

The basic principle of the protocol is understood easiest when using a GHZ state—the single ion Ramsey protocol, which is
easier to implement with quantum simulators, then follows.

1. GHZ state protocol
This protocol, similar to the “cat state” protocol in Ref. 13, uses the GHZ state

1
=—(0---0)y+[L---1 DI
WGrz) ﬁ(l )+ ) (D1)

as a resource. The protocol proceeds as follows. First, transfer 0 — s. Then, apply single qubit flips in 0 — 1 subspace to rotate
[1---1) into the target product state [/). Do this in a way so that a total phase 6 is accumulated (e.g. by acting with a phase gate
on one of the qubits), such that the system is now in

Fenn(0) = % (15 5)+ e 10)). (D2)

We define W(6) as the operation that takes [0 - 0) to Wehz), i.e. Wouz) = W(6)]0---0). After having prepared [fGuz(6)), we
evolve this state and apply W'(0). Finally, we measure the probability to be in |0 - - 0), given by

N@©) = [€0--- 0l WH (0)e ™ |igpz) IP (D3)

1
=7 (7 +1+2rcos(@ +9)), (D4)

where we inserted G, (f) = (gb|e‘”9’ [¢) = re*. By measuring N(6) for several values of §, we can obtain ¢ by fitting a cosine.
What we have effectively done is a Ramsey experiment, where we used the fact that the state |s - - - s) does not evolve in time.
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This protocol has the obvious disadvantage of needing a GHZ state, which is in general hard to prepare. We alleviate this in
the following by replacing this protocol with a series of single ion Ramsey experiments.

2. Single ion Ramsey protocol

The single ion Ramsey protocol is explained in the main text. Here, we give some details on how to arrive at Eq. (8). The
return probability to M(6) after step (le) is given by

M@©) = [, V1, e V10 1)) P (D5)
1 .
= 716y, (0 + Gy, (O, (D6)

where we used that H cannot couple the states [y ;> and |y 41 ) because they differ in the number of qubits that are in the shelving
state. Inserting Gy ) = rjei‘/’f , we get Eq.(8) of the main text: M(6) = }1 (r]2 + rﬁﬂ +2rjrjcos(d + Ap j+])>. It is advantageous
to measure the amplitudes r; and r;,; occurring in this equation independently. Then only the phase of the cosine needs to be
extracted from the fit by relating y(6) = cos(@ + ¢;.1 — ¢;) to

aM©O) 13 =13,

¥(6) = , (D7)

2rj+1rj

which improves stability. This way, the phase difference ¢ ;| — ¢; is the only fitting parameter.

We note that the error on y is inversely proportional to ». This may seem like a restriction when r — 0, which is the case for
large times, because then the error on y will blow up. However, times for which r is small do not contribute to p(w). Hence, the
increase of the error on y for small r is not important. We show explicitly in Fig. 4 of the main text that a small number of shots
is sufficient.
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