
Prepared for submission to JHEP FERMILAB-PUB-22-414-T

A Note on the Analytic Structure of Celestial
Amplitudes

Jiayin Gu,a Ying-Ying Li,b Lian-Tao Wangc
aDepartment of Physics and Center for Field Theory and Particle Physics, Fudan University,
Shanghai 200438, China

aKey Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai
200433, China

bTheoretical Physics Department, Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL
60510, U.S.A.

cDepartment of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637,
USA

cKavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
E-mail: jiayin_gu@fudan.edu.cn, yingying@fnal.gov,
liantaow@uchicago.edu

Abstract: Celestial amplitudes, obtained by applying Mellin transform and analytic
continuation on “ordinary” amplitudes, have interesting properties which may provide useful
insights on the underlying theory. Their analytic structures are thus of great interest and
need to be better understood. In this paper, we critically examine the analytic structure
of celestial amplitudes in a massless low-energy effective field theory. We find that, fixed-
order loop contributions, which generate multipoles on the negative β-plane, in general
do not provide an accurate description of the analytic structure of celestial amplitudes.
By resumming over the leading logarithmic contributions using renormalization group
equations (RGEs), we observe much richer analytic structures, which generally contain
branch cuts. It is also possible to generate multipoles or shifted single poles if the RGEs
satisfy certain relations. Including sub-leading logarithmic contributions is expected to
introduce additional corrections to the picture. However, without a new approach, it is
difficult to make a general statement since the analytic form of the Mellin transform is
challenging to obtain.
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1 Introduction

Celestial amplitude, reinterpreting scattering amplitudes as correlators in the two
dimensional conformal field theory (CFT) [1–3], has been extensively studied from various
viewpoints, see e.g. Refs. [4, 5] for overviews of this rapidly growing field. Instead of the
usual energy eigenstates, celestial amplitude considers the scattering of boost eigenstates
which have both UV and IR physics involved [6]. With this feature, celestial amplitude
violates the basic Wilsonian decoupling intuition and might provide a new route to probe
physics in the UV. Celestial amplitude also has interesting properties such as providing
the correspondence between soft theorem of gauge theory and Ward identities in the
celestial CFT [7–14], characterizing the infinite number of non-trivial symmetries of 4-
dimensional gauge and gravitational theories in asymptotically flat spacetime [15] that
may bring in new perspectives in understanding flat-space quantum field theory and the
construction of consistent S-matrix. Recently in Ref. [6], celestial amplitudes were applied
to a general effective field theory (EFT) with Wilsonian cutoff, and their properties have
been studied. Furthermore, with real boost weight β, a specific dispersion relation for
the celestial amplitude was established in Ref. [16], relating the imaginary parts of the
celestial amplitudes to their residues at negative even interger values of β. Great efforts are
still required to fully understand properties of celestial amplitudes, especially how these
properties manifest fundamental priciples of quantum field theory.
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The celestial amplitude of a certain process for massless external particles can be
obtained by taking the usual amplitude (with energy eigenstates) and performing a Mellin
transformation on its energy [3, 8, 17]. More specifically, a massless 4-point scalar amplitude
M is a function of Mandelstam variables s, t, u. With the relation s + t + u = 0, there
are only two independent kinematic variables, which can be chosen as the center-of-mass
energy ω and an angular variable z, given by1

s = ω2 , t = −zω2 , u = −(1− z)ω2 . (1.1)

with 0 ≤ z ≤ 1. The celestial amplitude A in terms of the boost weight β and the angular
variable z is then given by the Mellin transform of the amplitudeM with respect to ω,

A(β, z) =
∫ ∞

0

dω

ω
ωβM(ω, z) . (1.2)

Depending on the form ofM(ω, z), the integral only converges in certain regions of β. One
could nevertheless perform analytic continuation on A(β, z) so that it is defined on the
entire complex β-plane. It is the analytic structure of A(β, z) on the β-plane that we wish
to examine in this paper. For amplitudes with spinning particles, an additional factor is
needed to characterize its little group scaling, while the celestial amplitude is still obtained
by the same procedure [3, 6].

Several important observations were made in Ref. [6] about the analytic structure of
celestial amplitudes. The analytic structure in the negative (positive) β-plane generally
corresponds to the physics in the deep IR (UV). In the deep IR, one could expand the
amplitude in terms of ω and obtain an EFT. At tree level, it is simply given by a polynomial
of ω, which gives simple poles at negative integers in the β-plane after Mellin transformation.
As the residues of these simple poles are given by the corresponding Wilson coefficients,
they satisfy various positivity constratins implied from causality and unitarity [18–24]. On
the other hand, the analytic structure in the positive β-plane depends on the nature of
the UV theory. Poles at positive integers are expected for a general field theory; while in
quantum gravity, the positive β-plane is completely analytic. Loop contributions in general
massless EFT can be expressed in terms of a series in logω, which generates higher order
poles in the negative β-plane.

Let us be more specific on the statements for EFTs. A 4-point amplitude in a general
massless EFT can be written as

M(ω) =
∑
a,b≥0

ca,bω
a logb ω , (1.3)

where the coefficient ca,b are functions of z (which is not explicitly written). The parameters
a and b correspond to the EFT expansion and the loop expansion, respectively. The EFT is
only valid in the low energy region. As such, we will only look at the low energy contribution,
cutting off the integration at some arbitrary energy ω0, assuming it is smaller than the scale

1We use the convention for z in Ref. [6], which is different from the one in Ref. [16]. The two conventions
are related by z ↔ 1/z. We always assume s to be the physical channel with s ≥ 0 and u, t ≤ 0.
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of the possible UV physics. Without loss of generality, we can set ω0 = 1 and obtain2

A(β) =
∑
a,b≥0

ca,b

∫ 1

0

dω

ω
ωβ+a logb ω =

∑
a,b≥0

ca,b(−1)b b!
(β + a)b+1 , (1.4)

which has a pole at −a of order b+ 1 for any given a and b. Therefore, the order of the
EFT expansion (parameterized by the power of ω) determines the position of the pole,
which are at negative integer values on the β-plane, while the order of the loop correction
(parameterized by maximum power of the logω term) determines the order of the pole.
Notice that the above integration has to include physics in the ω → 0 limit to manifest
these pole structures. With any finite IR cut-off, taking β → −a gives finite A(β).

Unfortunately, the statements above have a critical flaw: as shown in Eq. (1.4), for each
given a, the contribution to the celestial amplitude is given by a series of poles at β = −a in
the form ∑

b≥0

f(b)
(β+a)b+1 . In the region sufficiently close to β = −a, the terms with higher order

poles always dominate, and the perturbative loop expansion breaks down. In this case, the
results at a fixed loop order generally would not capture the correct analytic structure. As
a naive example, let us consider the Laurent series of the following expression with a small
ξ, defined in the region outside the point −a+ ξ,

1
β + a− ξ

= 1
a+ β

+ ξ

(a+ β)2 + ξ2

(a+ β)3 + ξ3

(a+ β)4 + ... , (1.5)

which can be considered as a loop expansion with ξ being the loop suppression factor
(∼ 1/16π2). The lefthand side has a simple pole at −a+ ξ, while the righthand side contains
a series of higher order poles at −a. The expansion breaks down in the region |β + a| < |ξ|,
and fails to capture the analytic structure in this region!

Indeed, this “non-perturbativity” is inherited from the amplitude in Eq. (1.3), by noting
that the analytic structure in the negative β-plane is dominated by the physics in the deep
IR region, ω → 0. It is well known that, the logω terms become sufficiently large in this
region, and higher order terms in logω are more important and need to be resummed. With
resummation, indeed the large log problem is resolved, and the amplitude stays valid even
in the ω → 0 limit, unless the couplings become sufficiently large at the IR to reach a
confinement scale (e.g. as in QCD). As a first step, we will consider the resummation of
leading log contributions using the method of renormalization group (RG), assuming no
confinement in the IR. We will show that, at this order, in the massless EFT, the analytic
structures of the celestial amplitude are already much richer than the multi-pole structure,
and may contain shifted simple poles (as in the example above) or, more generally, branch
cuts. A better understanding of these structures could thus provide important insights
on the analytic structures of celestial amplitudes in general, and may eventually lead to a
deeper understanding of quantum field theory. Of course, it is important to check the effects
of sub-leading log contributions, i.e. whether they can generate new analytic structures. As
we will discuss later, these contributions bring mathematical challenges in the calculation
of celestial amplitudes. New approaches are likely needed to make further progress.

2The integration is obtained in the region β + a > 0 where it converges, and analytically continued to the
entire β-plane. We have checked that a more general ω0 does not generate additional analytic structures.
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The rest of this paper is organized as follows: We begin in Sec. 2 by discussing the general
structures of massless EFT amplitudes with resummation of the leading log contributions,
focusing on the ω dependence which is most important for the celestial amplitudes. We then
discuss in Sec. 3 their corresponding celestial amplitudes below a certain threshold. With the
simple case of considering one higher dimensional operator renormalized by a renormalizable
operator, general properties of celestial amplitude are presented. The discussions are further
extended to the most general case with operators at different dimensions. In Sec. 4, we
give an example of a four-scalar scattering amplitude, followed by an interesting case of
a four-fermion scattering amplitude that exhibits accidental multipole structures at the
leading-log order. Our conclusion is drawn in Sec. 5.

2 Resummed EFT amplitudes

Resummation of leading log contributions can be efficiently done in EFTs via the
RG running of operator coefficients (see [25] for a recent review). Starting from the UV
theory, the standard procedure is to integrate out the heavy resonances and match it
to the EFT at some matching scale M , which generates a set of operator coefficients.
These coefficients are then RG run down to a lower scale of interest µ (e.g. the scale of
experimental measurements). If the scale separation is large, the higher order terms in
log µ

M become non-negligible and need to be resumed. As we argued in the previous section,
this resummation must be included in the amplitudes in order to obtain the accurate
analytic structures of celestial amplitudes. The inclusion of the resummation in the EFT
amplitudes follows from a well known procedure, facilitated by the use of RGEs. In the rest
of the section, for completeness and establishing our notation, we review this procedure
and derive the result in our context for later use.

Given an EFT Lagrangian, it is straight forward to calculate the amplitude of a process
with field theory procedures. However, since our main objective is to Mellin transform an
amplitude, it is more illustrative to adopt the on-shell approach and directly parameterize
EFTs in terms of amplitudes [26–31]. Recently, it was shown that this approach also
provides an efficient way of calculating the anomalous dimension matrices and general
pattern of possible loop effects in EFTs [32–36]. In a massless EFT, the mapping between
higher dimensional operators and the amplitudes is straight forward. We will again use
a 4-point massless scalar amplitude for illustration. The generalization to other cases is
discussed at the end of this section.

At tree level, the 4-point amplitude can be written as an expansion of the Mandelstam
variables (assuming there is no 3-point renormalizable scalar interaction),

M(s, t) = c0 + c
(0)
2 s+ c

(1)
2 t+ c

(0)
4 s2 + c

(1)
4 st+ c

(2)
4 t2 + ... , (2.1)

where we have used the relation s+ t+ u = 0 to eliminate u. c0 is a dimensionless coupling
while c(i)

2 (c(i)
4 ) has mass dimension −2 (−4) and corresponds to dimension-6 (8) operator

coefficient. In general, each independent kinematic term has an independent coefficient
(with different labels on the superscripts), while symmetries may impose additional relations
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among them. WritingM in terms of ω and z, we have

M(ω, z) = c0 +
(
c

(0)
2 − zc

(1)
2

)
ω2 +

(
c

(0)
4 − zc

(1)
4 + z2c

(2)
4

)
ω4 + ... , (2.2)

where for each order in the ω expansion, different kinematic terms are parameterized by
different powers of −z. Note that we have chosen the superscripts of the c coefficients to
match the power of −z.

As shown in Eq. (1.3), loop contributions bring in logω terms in the amplitudes. Instead
of the log expansion in Eq. (1.3), we assume the amplitude can be written as

M(ω, z) =
∑
a≥0

fa(c(i)
a , log ω

µ
, z)ωa , (2.3)

where c(i)
a are now the running Wilson coefficients that depend on the renormalization scale

µ. Keeping only the contributions up to one loop, fa(c(i)
a , log ω

µ , z) can be written in the
form

fa =
a/2∑
i=0

(−z)i
(
c(i)
a + γij c̄

(j)
a log ω

µ
+ ...

)
, (2.4)

where c̄(j)
a are combinations of couplings that enter the loop (which has the same dimension as

c
(i)
a ), and the “...” part contain additional terms that are independent of µ at one loop order,
which include possible log(z) and log(1− z) terms from loop kinematics3. We have also
absorbed factors of 1/16π2 into γij . At this point, Eq. (2.3) with Eq. (2.4) is simply Eq. (1.3)
truncated to the order b ≤ 1. However, writing in the form of Eq. (2.4) makes it particularly
convenient to derive the RGEs. Given that ω and z are kinematic variables (which can
vary), for the physical amplitudes to be independent of µ, each

(
c

(i)
a + γij c̄

(j)
a log ω

µ + ...
)

term must be separately independent of µ, which gives a one-loop RGE for each c(i)
a as

d c
(i)
a

d logµ = γij c̄
(j)
a . (2.5)

Note that, the µ dependence in c̄(j)
a can be neglected at the one loop order. These RGEs

then captures the logω dependence of the (re-summed) one loop contribution. In particular,
the solution of Eq. (2.5), when expanded to one loop order (i.e. not re-summed), is given by

c(i)
a (µ) = c(i)

a (µ0) + γij c̄
(j)
a log µ

µ0
, (2.6)

where µ0 is some reference scale, often chosen to be the matching scale M where c(i)
a (M) is

calculated from the UV theory. Substituting Eq. (2.6) into Eq. (2.4) with µ0 = M , we have

fa =
a/2∑
i=0

(−z)i
(
c(i)
a (M) + γij c̄

(j)
a log ω

M
+ ...

)
, (2.7)

3For instance, log −t
µ2 = log ω2

µ2 + log(z). Note that, in the forward (z → 0) or backward (z → 1)
limit, the logarithmic factor log(z) or log(1− z) diverges and the amplitude may contain IR divergences.
Conventionally, we choose arguments of complex numbers to be in the interval (−π, π]. The corresponding
branch of the complex logarithm has discontinuities all along the negative real x axis
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which is indeed independent of the renormalization scale µ at the one-loop order. Another
way to obtain Eq. (2.7) is to set the renormalization scale µ→ g(z)ω, with g(z) being an
order one factor. 4 This way, the log term logω/µ in Eq. (2.4) can be neglected, and we get
fa = ∑

i
(−z)ic(i)

a (ω) + ... where c(i)
a (ω) is given by Eq. (2.6) with the substitution µ→ g(z)ω.

To effectively resum potential large logs, we will consider g(z) to be order one factor in the
following discussions. Importantly, the last method can be generalized to the resummed
case, where the amplitude is given by

M(ω) =
∑
a,i

(−z)ic(i)
a (µ)ωa|µ→g(z)ω , (2.8)

and c(i)
a (µ) is given by the exact solution of the RGE Eq. (2.5) instead of the one-loop result

Eq. (2.6). Note that Eq. (2.8) omits the rational loop contributions which are expected
to be sub-leading. For a general massless EFT, the rational loop terms will depend on
ω polynomially and will contribute to single pole structures of the celestial amplitude.
When including non-vanishing mass for the light particles, amplitudes at one loop level also
include branch-cut for producing massive-particles at threshold. The analytical structure of
the corresponding celestial amplitude is an interesting topic to be explored for the future.
Eq. (2.8) is our master formula for calculating the RG-resumed amplitude.

It is straight forward to apply the above procedure to spinning particles. The amplitude,
written in terms of ω and z, contains an additional factor of spinor products from the
little group scaling. The detailed derivation of this factor can be found in Appendix A
and Ref. [6]. A 4-point amplitude may also contain massless poles generated by on-shell
3-point amplitudes, though the existence of such 3-point amplitudes are subject to the
operator dimensions and little group scalings.5 In general, one could replace the (−z)i
factors in Eq. (2.8) with some more general rational functions of z. As long as one chooses
a “non-redundant basis” for such z functions to parameterize the fa in Eq. (2.4), the above
derivation still holds and a RGE can be written down for each c(i)

a .

3 Celestial Amplitude

With the prescription in Eq. (2.8) we are now ready to calculate the leading-log resumed
amplitude of a given theory and obtain its celestial amplitude. Let us start with the
simplest nontrivial case in Section 3.1, where an amplitude receives contributions from both
a dimensionless coupling and an irrelevant coupling (Wilson coefficient). This case already
contains all the essential features of the analytic structures. We then move on to a more
complicated case in Section 3.2 where a series of Wilson coefficients are considered.

4The factor g(z) parameterizes additional z dependence that may come from the loop kinematics.
5For instance, for particles with spin ≤ 1, the only on-shell 3-point amplitude at the level of dimension-6

operators is the 3-vector one with same helicities. See e.g. Refs. [32, 34] for more details.
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3.1 Wilson Coefficient Running from Dimensionless couplings

We consider the following 4-point amplitude with two running couplings λ(µ) and ca(µ)

M(ω) = λ(µ) + ca(µ)ωa + ...

∣∣∣∣
µ→g(z)ω

, (3.1)

where for simplicity, we have omitted the possible power-law z dependences, which is not
relevant for the following discussion. λ is a dimensionless coupling while ca has mass
dimension −a. A typical example of this is the amplitude of a complex scalar φφ → φφ,
where the only dimension-6 operator contribution is given by c2ω

2 due to the t ↔ u

symmetry of the amplitude. Here, we will work in a general framework without referring to
any particular model.

The one-loop RGEs of λ(µ) and ca(µ) are given by

d λ

d logµ = γλλ
2 , (3.2)

d ca
d logµ = γccaλ , (3.3)

where γλ and γc are determined by the particular theory and contain a loop factor (∼ 1/16π2).
Note that the form of these RGEs is dedicated by dimensional analysis. In a massless
theory, λ(µ) does not receive contributions from ca. One could solve Eq. (3.2) first, which
gives

λ(µ) = λM
1− γλλM log µ

M

, (3.4)

where we have conveniently fixed the boundary condition at the matching scale, λM ≡
λ(µ = M). We will focus on the case with γλ ≥ 0 so that the dimensionless coupling λ(µ)
is finite in the IR region ω → 0 (i.e. no confinement). On the other hand, γc can be either
positive or negative, as the ωa term always dominates over any log divergences to make the
EFT contribution well-behaved (i.e. irrelevant) in the IR.

Let us first consider a special case in which γλ → 0, i.e. λ does not run. The solution
to Eq. (3.3) in this case is given by

ca(µ) = caM

(
µ

M

)γcλM
, (3.5)

where we have again fixed the boundary condition at the matching scale M (with caM ≡
ca(µ = M)). Following the prescription in Eq. (2.8), the RG-improved amplitude is given by

M(ω) = λM + caM

(
ω

M

)γcλM
ωa + ... , (3.6)

where for simplicity we have set g(z) = 1, since it generates an overall factor which does
not change the analytic structure of celestial amplitudes. The λM contribution generates
a simple pole at β = 0 in the celestial amplitude as in the tree-level case [6]. For the

– 7 –



contribution of ca, we have

A(β) =
∫ M

0
caM

(
ω

M

)γcλM
ωaωβ−1dω

= caM
Ma+β

β + a+ γcλM
, (3.7)

where we have naturally chosen to cut off the integration at M as well.6 The integration is
obtained in the region β + a+ γcλM > 0 where it converges, and analytically continued to
the entire β-plane. We see that, the celestial amplitude has a simple pole at β = −a−γcλM ,
which is shifted from the tree-level simple pole at β = −a. This is exactly the case described
by Eq. (1.5). Without resummation, the series in logω would generate a series of multipoles
at β = −a, which does not capture the correct analytic structure. Note that the shifted-pole
observed here for an IR finite amplitude is different from the one related to IR-divergent
amplitudes as found in [6].

The case of nonzero γλ is even more interesting. In this case, the solution to Eq. (3.3) is

ca(µ) = caM

(
1− γλλM log µ

M

)−γc/γλ
. (3.8)

Note that, Eq. (3.8) reduces to Eq. (3.5) in the limit γλ → 0 as expected. The RG-improved
amplitude is given by

M(ω) = λM

(
1− γλλM log g(z)ω

M

)−1
+ caM

(
1− γλλM log g(z)ω

M

)−γc/γλ
ωa + ...

= λMκ
−1
(
ρ− log ω

M

)−1
+ caMκ

−r
(
ρ− log ω

M

)−r
ωa + ... , (3.9)

where in the second line we have defined r = γc/γλ, κ = γλλM and ρ = κ−1 − log g(z) to
simplify the expressions. As g(z) being an order-one factor, we will restrict ourselves to the
case of ρ > 0.

Focusing on the ca contribution, the Mellin transformation of the amplitude is given
by:

A(β) = caMκ
−r
∫ M

0

(
ρ− log ω

M

)−r
ωa+β−1dω

= caMκ
−rMβ+aeρ(β+a)(β + a)r−1

∫ ∞
ρ(β+a)

e−t
′
t′−rdt′ ,

= caMκ
−rMβ+aeρ(β+a)(β + a)r−1Γ(1− r, ρ(β + a)) , (3.10)

where in the second line we have performed changes of variables t = log ω
M and then

t′ = (β + α)(ρ− t), and in the last line we used the definition of the incomplete Gamma
function, Γ(s, x) =

∫∞
x ts−1e−tdt. Note again that the integration is obtained in the β > −a

region and analytically continued to the entire β-plane. Properties of the incomplete Gamma
function [37] lead to a few important observations.

6Again, a different cut off generates an overall factor which does not affect the analytic structure.
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Figure 1: Analytical structures of the celestial amplitudes considering one-loop resumma-
tion. The shifted pole position depends on the sign of γc, where for clarity we show the
case with negative γc.

In general, A(β) has a branch cut on (−∞, a]. Furthermore, we find that at β = −a,
A(β) is finite (divergent) for r > 1 (r < 1), and logarithmically divergent for r = 1. This
dependence on r is related to how fast ca goes to zero or diverges as ω → 0, as shown in
Eq. (3.8). More details of these results can be found in Appendix B.

We also note that, for small non-zero γλ, (the first line of) Eq. (3.9) can be expanded in
γλ which reproduces Eq. (3.6) with a series of higher orders terms in logω, and the celestial
amplitude has a series of multipoles at β = −a− γcλM . Expanding Eq. (3.9) in terms of
log ω

M instead, one then recovers the series in Eq. (1.3) with the celestial amplitude having
multipoles at β = −a. In both cases, the expanded celestial amplitude could not reproduce
the analytic structure of the original one. As explained earlier, this is because the log ω

M

series diverges in the deep IR ω → 0, which the analytic structures of celestial amplitudes
are sensitive to.

We would also like to point out an interesting special case. Note that Γ(s, x) =

(s− 1)!e−x
s−1∑
k=0

xk

k! if s is a positive integer. Therefore, when r is a nonpositive integer, we
have

A(β) = caMκ
−rMβ+a(−r)!

−r∑
k=0

ρk

k!(β + a)1−r−k , (3.11)

which contains a series of multipoles up to order 1− r. This is also expected, since in this
case the ca contribution in Eq. (3.9) can be expanded, and the log series actually terminates
at the order −r. For r = 0, we thus have A(β) = caMMβ+a

β+a . This is exactly the tree-level
result since caM does not run when r = 0. A negative integer r is generally difficult to obtain,
but we find it possible to tune the particle contents and the corresponding quantum numbers
for certain theories in a way that negative integer r can be realized at the leading-log level.
In this case, the higher order log contributions accidentally cancel. In Sec. 4 we will show
an explicit example of it.
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To summarize, we observe the following structures for A(β) on the complex β-plane as
shown in Fig. 1:

• r ∈ Z−: poles at −a with pole order up to 1− r.

• γλ = 0 (r →∞): shifted poles at −a− γcλM .

• for other values of r: branch cut on (−∞, a].

3.2 Running of Higher Dimensional Operators

Let us now apply the analysis in Section 3.1 to a more general amplitude with a series
of Wilson coefficients as in Section 2. For simplicity, we only consider 4-point interactions,
and denote c0 as λ, a common notation for a 4-point dimensionless scalar interaction. Note
however that our RGE results below also apply if the renormalizable part of the amplitude is
constructed by two 3-point interactions (e.g. for 4-fermion amplitudes) with the replacement
λ→ g2 (gauge coupling) or λ→ y2 (Yukawa coupling). Indeed, the RGEs of λ, g2 and y2

in the SM all have the same structure. On the other hand, if the anomalous dimension
matrices involve different dimensionless couplings, e.g. operator mixings between ψ2XH

and X2H2 where the dimensionless four-point coupling part is proportional to gy [38], the
structures of RGEs below could become more complicated and difficult to solve. We do not
consider these cases here.

With the above assumptions, the general one-loop RGE of the Wilson coefficient c(i)
a

can be written as (the indices j, k are summed over)

dc
(i)
a

d logµ = γija c
(j)
a λ+

a1+a2=a∑
a1≥1,a2≥1

γijka,a1,a2c
(j)
a1 c

(k)
a2 , (3.12)

where, instead of Eq. (2.5), the righthand side of the RGE is written in two parts, the first
part characterize the RG mixing among the c(i)

a s, and the second part are the contributions
from lower-dimensional coefficients. We can always choose the basis of c(i)

a to diagonalize
the matrix γija , so that Eq. (3.12) can be written as

dc
(i)
a

d logµ = γ(i)
a c(i)

a λ+
a1+a2=a∑
a1≥1,a2≥1

γijka,a1,a2c
(j)
a1 c

(k)
a2 . (3.13)

Eq. (3.13) can be solved for all c(i)
a by induction. First, we note that for λ and c(i)

1 ,7 the
second term on the righthand side is absent and the solutions are given by (see Eq. (3.4)
and Eq. (3.8))

λ(µ) = λM

(
1− γλλM log µ

M

)−1
,

c
(i)
1 (µ) = c

(i)
1M

(
1− γλλM log µ

M

)−γ(i)
1 /γλ

. (3.14)

7Or the lowest-order non-zero c(i)
a , for instance c(i)

2 in the scalar case in Eq. (2.2).
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Then, the RGE of c(i)
2 is given by

dc
(i)
2
dt

= γ
(i)
2 c

(i)
2 λM (1− γλλM t)−1 + γijk2,1,1c

(j)
1M c

(k)
1M (1− γλλM t)

−γ(j)
1 −γ(k)

1
γλ , (3.15)

where we have defined t ≡ logµ/M for convenience. The solution is

c
(i)
2 (t) = A (1− γλλM t)−

γ
(i)
2
γλ −

γijk2,1,1c
(j)
1M c

(k)
1M (1− γλλM t)1−

γ
(j)
1 +γ(k)

1
γλ

λM (γ(i)
2 + γλ − γ

(j)
1 − γ

(k)
1 )

, (3.16)

where the constant A can be fixed by the boundary condition c
(i)
2 (t = 0) = c

(i)
2M , and is

not explicitly written. From Eq. (3.16) we could then derive the running of c(i)
3 , and so on.

Indeed, the RGEs of c(i)
a have the general form

dc

dt
= αc (1− κt)−1 +

∑
n

βn (1− κt)−xn , (3.17)

with xn being functions of several different γ(j)
a /γλ’s, and κ = γλλM , α = γcλM . Assuming

xn − 1− r 6= 0 for r = γc
γλ

= α
κ , it has the solution8

c(t) = A (1− κt)−r −
∑
n

βn (1− κt)1−xn

κ(r + 1− xn) . (3.18)

With Eq. (3.18) and our prescription in Eq. (2.8), the amplitude is given by a series of the
form ∑

fa,i
(
ρ− log ω

M

)−ri ωa+β−1, where the Mellin transform of each term is given by
Eq. (3.10) with the replacement r → ri. The analytic structures discussed in Section 3.1
thus still apply in the more general case. Let us verify this with an explicit example where
the amplitude is given by

M(ω) = λ+ c2ω
2 + c4ω

4 + c6ω
6 + ... , (3.19)

where, for simplicity, we have only considered operator coefficients with even dimensions,
and only one coefficient at each dimension. The RGEs can be written as (again with
t ≡ logµ/M)

dλ

dt
= γλλ

2 ,

dc2
dt

= γ2λc2 ,

dc4
dt

= γ4λc4 + γ′4c
2
2 ,

dc6
dt

= γ6λc6 + γ′6c2c4 ,

... , (3.20)
8When r+1−xn = 0, the RGE is solved by replacing the factor 1/(r+1−xn) by log(1− κt) in Eq. (3.18).

We will not consider this case since the corresponding celestial amplitude is difficult to obtain analytically.
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and the celestial amplitude is given by

A(β) = e
β
γλ

γλ
Γ
(

0, β
γλ

)
+ e

β+2
γλ

γλ

(
β + 2
γλ

)r2−1
Γ
(

1− r2,
β + 2
γλ

)

+ e
β+4
γλ

γλ

A4

(
β + 4
γλ

)r4−1
Γ
(

1− r4,
β + 4
γλ

)
+
γ′4

(
β+4
γλ

)2r2−2
Γ
(
2− 2r2,

β+4
γλ

)
γλ(2r2 − 1− r4)


+ e

β+6
γλ

γλ

A6

(
β + 6
γλ

)r6−1
Γ
(

1− r6,
β + 6
γλ

)
+
A4γ

′
6

(
β+6
γλ

)r2+r4−2
Γ
(
2− r2 − r4,

β+6
γλ

)
γλ(r2 + r4 − 1− r6)

+
γ′6γ
′
4

(
β+6
γλ

)3r2−3
Γ
(
3− 3r2,

β+6
γλ

)
γ2
λ(2r2 − 1− r4)(3r2 − 2− r6)

+ ... (3.21)

where ra = γa/γλ, λ(t = 0) = 1, c2(t = 0) = 1, and A4, A6 are some constants fixed by the
boundary conditions of c4 and c6. For simplicity, we have also fixed the g(z) in Eq. (2.8) to
be one. Several interesting observations can be made for the A(β) in Eq. (3.21). First, it
can be shown that, in the limit γλ → 0, A(β) still reduces to a series of shifted simple poles,
following the derivation in the previous section. The poles are shifted by factors depending
on only γa’s (γλ, γ2, γ4, ...) which are the anomalous dimension matrices involving λ, not
depending on the ones from only dimensional Wilson coefficients (γ′4, γ′6, ...). Second, for
nonzero γλ, the analytic structure of A(β) also only depends on γa’s, as a result of the
structure of the running couplings in Eq. (3.16). The analytical structure of A(β) is thus
sensitive to specific contributions to the RGEs. This pattern should be general if we include
only one dimensionless couplings, e.g. λ, y or g. When including multiple dimensionless
couplings, the analytical structure of A(β) is difficult to obtain and may have entangled
dependence on various anomalous dimensions. Generally, Eq. (3.21) contains branch cuts
on the negative β axis starting from β = 0, −2 ,−4 ..., unless the corresponding parameters
(r2, r4, 2r2 − 1, r6, ...) are non-positive integers, as discussed in the previous section.

4 A Couple of Examples

4.1 λφ4

For simplicity, we will focus on the Higgs sector with the dimensionless coupling λ|H†H|2
in the Standard Model EFT (SMEFT) and consider the four scalar scattering amplitude
A(H2

αβH
†2
α̇β̇

) with α, β, α̇, β̇ being the indices of SU(2)L. This scattering amplitude receives
contributions from the following two dimension-6 operators in the unbroken phase:

OH� = (H†H)�(H†H), OHD = (H†DµH)∗(H†DµH), (4.1)
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with the corresponding Wilson coefficients CH� and CHD, respectively. The anomalous
dimension matrix for SMEFT has been computed in [38–43] with the following RGEs:

µ
d

dµ
λ = 24 λ2

16π2 , (4.2)

µ
d

dµ
CH� = 24λ(µ)

16π2CH�(µ), (4.3)

µ
d

dµ
CHD = 12λ(µ)

16π2CHD(µ). (4.4)

where we also assume massless particles so that the λ is only renormalzied by itself and is
solved as:

λ(µ) = λM

1− 24λ(M)
16π2 log µ

M

(4.5)

with λM = λ(µ = M). Solving Eq. (4.4), we obtain

CH�(µ) = CH�(M)
(

1− 24λ(M)
16π2 log µ

M

)−1
= CH�(M)

(
λ(M)
λ(µ)

)−1
, (4.6)

CHD(µ) = CHD(M)
(

1− 24λ(M)
16π2 log µ

M

)−1/2
= CHD(M)

(
λ(M)
λ(µ)

)−1/2
. (4.7)

Their contribution to A(H2
αβH

†2
α̇β̇

) are given by:

A(H2
αβH

†2
α̇β̇

) ∝ ω2

M2 (δαα̇δββ̇ + δβα̇δαβ̇)
(
CHD(ω)− 2CH�(ω)

)
+ (−2z + 1)ω2

M2 (δαα̇δββ̇ − δβα̇δαβ̇)
(
CHD(ω) + 2CH�(ω)

)
, (4.8)

where the renormalization scale is set to the collision energy of particles H2
αβ as µ = ω.

As A(H2
αβH

†2
α̇β̇

) receives contributions from the dimension six operator with r = 1(CH�)
or r = 1/2(CHD), its celestial amplitude diverges at β = −2 and has branch cut on
β ∈ (−∞,−2].

4.2 Accidental multipole structures

In this subsection, we consider an explicit example where the celestial amplitude
generated by an EFT exhibits accidental multipole structures, as mentioned in the previous
section. For the sake of convenience, we restrict ourselves to dimension-6 operators in
the SMEFT, but with strong coupling and the weak couplings turned off in the following
discussions. In particular, we consider the four-fermion scattering amplitudes A(LαQaβuȧe),
which receives contributions from the two operators

O(1)
lequ = (l̄je)εjk(q̄ku) , O(3)

lequ = (l̄jσµνe)εjk(q̄kσµνu) , (4.9)

with the corresponding Wilson coefficients C(1)
lequ and C(3)

lequ, respectively [44]. We will fix
the hypercharges that fermions carry to be the SM values, and modify them later on to
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achieve the desired accidental multipole structure. The running of the Wilson coefficients
are then given by [41–43]

µ
d

dµ
C

(1)
lequ = g2

1
16π2

{
− 6(y2

e + yeyu − yeyq + yqyu)C(1)
lequ − 24(yq + yu)(2ye − yq + yu)C(3)

lequ

}
,

µ
d

dµ
C

(3)
lequ = g2

1
16π2

{
− 1

2(yq + yu)(2ye − yq + yu)C(1)
lequ

+ 2(y2
e − yeyq + yeyu − 2y2

q + 5yqyu − 2y2
u)C(3)

lequ

}
,

µ
d

dµ
g2

1 = nGg
4
1

16π2
4
3(2y2

l + y2
e + ncy

2
u + ncy

2
d + 2ncy2

q ) ≡ γgg4
1, (4.10)

where in the SM, yq = 1
6 , ye = −1, yd = −1

3 , yu = 2
3 , yl = −1

2 , nc = 3 which gives
γg = 1

16π2
40nG

9 (with nG the number of generations). To solve the differential equations, we
can rotate to a basis in which the running of the dimension-six operators is diagonal and
can be expressed as:

µ
d

dµ

(
C1

C3

)
= g2

1

(
γc1 0
0 γc3

)(
C1

C3

)
,

with

C(1)
lequ

C
(3)
lequ

 =
(
−4

9(7 + 2
√

73) −4
9(7− 2

√
73)

1 1

)(
C1

C3

)
≡ P

(
C1

C3

)
,(4.11)

where P is the invertible matrix to diagonalize the anomalous dimension matrix. The
(ratios of) anomalous dimensions turn out to be γc1/γg = −0.485... and γc3/γg = 0.226...,
which are irrational numbers. The RGEs can be easily solved, and the solutions follow the
pattern in Eq. (3.8):

C1(µ) = C1(M)
(

1− γgg2
1M log µ

M

)−γc1/γg

,

C3(µ) = C3(M)
(

1− γgg2
1M log µ

M

)−γc3/γg

. (4.12)

with g2
1M ≡ g2

1(µ = M). The four fermion amplitude focusing on the positive-helicity
configurations can then be calculated as:

A(L+
αQ

+
aβu

+
ȧ e

+)

∝ εαβδaȧ
1
M2

(
− 8C(3)

lequ(µ)[13][24]− 4C(3)
lequ(µ)[14][23] + C

(1)
lequ(µ)[14][23]

)
∝ ω2

M2

{
C1(ω)

(
P11(1− z) + 4P12(3z − 1)

)
+ C3(ω)

(
P12(1− z) + 4P22(3z − 1)

)}
,

(4.13)

with the renormalization scale set to µ = ω. The corresponding celestial amplitude can
then be seen to follow our previous discussions, and its analytic structure depends on the
two important ratios, γc1/γg and γc3/γg. Both ratios will lead to branch-cut structures
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in the complex β plane running from −∞ to −2. The celestial amplitude A(β) is also
divergent (both real and imaginary parts) at β = −2. As γc1 < 0, C1(ω) is divergent in the
small ω region and dominates the contributions to the analytical structure of the celestial
amplitudes.

Let us now change the quantum numbers of the fermions in order to obtain the accidental
multipole structures. Following the discussion in the previous section, it is desirable to tune
the quantum numbers such that γc1/γg and γc3/γg are either zero or negative integers. A
consistent quantum field theory coupled to gravity may only have fermions with rational
hypercharges [45–47], and we will stick to this case. Note that, the hypercharges also needs
to satisfy the relation yl + yq − ye − yu = 0 to have hypercharge conservation for the two
operators, which are already implemented in Eq. (4.10). Consider first the case of γi = 0
(i = c1, c3), there is no solution except for the trivial one with ye = yq = yu = yl = 0. The
single pole structure only shows up trivially and preserves to higher loop orders. For an
abelian gauge theory, γg cannot be zero for non-vanishing γi and the shifted-pole structure
cannot be achieved at one loop level (or higher-order levels). Note that if we instead consider
non-abelian gauge theories, it is possible to have γg = 0 for the one-loop beta function and
observe shifted-pole structure for the four-fermion celestial amplitudes. We further consider
the possibility of γi/γg being a negative integer. For simplicity, we require yq + yu = 0
to avoid operator mixing at one-loop level. We are able to find solution for γc3/γg = −1
(ye = −yu, yd = yu, yl = yu, nG = 1, nc = 3) for the running of C(3)

lequ. This solution gives
γc1/γg = 3/5. The celestial amplitude for A(LαQaβuȧe) thus has both pole structure of
order 2 at β = −2 and branch cut structure for β < −2. With these hypercharges, however,
the U(1)3

Y anomaly cancellation requires existences of heavy chiral fermions charged under
the U(1)Y gauge group. Other negative integer values for γi/γg can not be achieved unless
we choose smaller values of nc, e.g. to be one. Larger nG increases γg which results in even
smaller |γi/γg| < 1, evading solutions of negative integer values of γi/γg.

We note here again that the multipole structures in the celestial amplitude is due to the
termination of leading log contribution (to C(3)

lequ) at finite loop order. This feature should
be accidental, and would not hold, for instance, once the resummation of sub-leading log
terms or contributions from more than one dimensionless couplings are included. Due to the
difficulties of solving the RGEs and performing the corresponding Mellin transformations,
in general we are not able to do analytical calculations for higher loop-order contributions.
However, we do note that in certain SU(N) non-abelian gauge theories with coupling g,
γg 6= 0 at the one-loop order, while with higher order loop contributions the theory can
flow to an interacting fixed point in the IR [48–51] for certain numbers of fermion flavors
charged. At this fixed point, the gauge coupling g does not run, and the celestial amplitude
generated by the higher dimensional operators have shifted-pole structures (as in Eq. (3.7))
instead of branch cuts.

5 Conclusions

The analytic structure of celestial amplitudes in the negative β-plane encodes informa-
tion on the EFT in the deep IR. Loop contributions generate logn ω terms in the amplitude,
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which naively map to multipoles structures at (negative) integer values of β. However, as the
log series diverges in the ω → 0 limit and needs to be resummed, so is the celestial amplitude
in the region near the poles. To obtain the correct analytic structure, one needs to first
resum the log contributions in the amplitude before doing the Mellin transformation. In
this paper, we examine the analytic structure of celestial amplitudes for massless EFTs with
this treatment, focusing on the leading log contributions. Not surprisingly, the results differ
significantly from the multipole structures of fixed-order loop contributions. Branch cuts
are ubiquitous, which originate from incomplete Gamma functions, generated by the Mellin
transform of amplitudes of the form ∼ (1− γ logω)−r. Different structures in the celestial
amplitudes are also observed if the anomalous dimensions satisfy certain conditions. Instead
of branch cuts, shifted-single pole can be generated in theories in which the dimensionless
couplings do not run at leading order. It is also possible to tune the anomalous dimensions
in a 4-fermion amplitude to make the leading log contributions terminate at a certain order,
in which case the single or multipole structures remain under the resummation of leading log
terms. These pole structures are likely to be accidental and unstable under slight changes in
the anomalous dimensions, for instance with the inclusion of next-leading log contributions.

As we argued above, the resummation of the leading log contributions resolves the
large log problem in the deep IR and generates meaningful celestial amplitudes in regions
near the negative integers on the β-plane. It is yet unclear whether the leading log
contributions capture at least qualitatively all possible analytical structures in the negative
β-plane, or if new structures can be generated by higher-order contributions. To include
the next-leading log contributions, two-loop RGEs are needed, which can be difficult to
solve analytically. Furthermore, a complicated function of ω can also be difficult to Mellin
transform analytically. In massive theories, the ω dependences in the amplitudes are
also generally more complicated. The investigation of the analytic structures of celestial
amplitudes in these more complicated cases turn out to be challenging, and may require
novel tools and strategies.

While the analytic structures of momentum space amplitudes have clear physical
meanings for either poles or branch cuts, the implications of those in celestial amplitudes
are far less clear. It is also difficult to write down dispersion relations in the β-plane (the
ones in Ref. [16] are in the ω-plane), as the behavior of the contour at infinity is not well
understood. A better understanding of the physics information encoded in the celestial
amplitudes may also tell us what analytic structures are expected in general.

Acknowledgements

We would like to thank Florian Herren, Hongliang Jiang and Ding Yu Shao for useful
discussions. JG is supported by National Natural Science Foundation of China (NSFC)
under grant No. 12035008. Fermilab is operated by Fermi Research Alliance, LLC under
contract number DE-AC02-07CH11359 with the United States Department of Energy. LTW
is supported by the DOE grant DE-SC0013642.

– 16 –



A Celestial Sphere Kinematics

Focusing on the massless amplitude, the null four-momenta pαα̇ can be written in terms
of spinor-helicity variables, pαα̇ = λαλ̃α̇. With specific choice of frame, it is natural to write

λα = η
√

2ω
(

1
z

)
, λ̃α̇ =

√
2ω
(

1
z̄

)
, (A.1)

where η = ± corresponds to outgoing/incoming particles. The variable z gives the direction
of the null momentum and specifies a point on the celestial sphere as one can write

p = ηω(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) = ηω(1 + |z|2,Re(z), Im(z), 1− |z|2), (A.2)

where for the second equlity, we use the fact that for real momentum, z̄ = z∗. The inner
product in terms of the helicity spinors are written as

〈ij〉 = εαβλj,αλi,β = 2ηiηj
√
ωiωjzij , [ij] = εα̇β̇λ̃j,α̇λ̇i,β̇ = 2√ωiωj z̄ij , (A.3)

with zij = zi − zj and z̄ij = z̄i − z̄j . The Mandelstam variable sij satisfies the following
relation;

sij = 〈ij〉 [ij] , zij
z̄ij

= ηiηj
〈ij〉2

sij
. (A.4)

Consider the kinematic configuration with the incoming state in the s− channel for massless
4-point amplitude 12→ 34, we have η1 = η2 = −η3 = −η4. In this case, to have momentum
conservation satisfied, the factor 0 ≤ z = z13z24

z12z34
= z̄ ≤ 1. Setting s = ω2, we have

t = −zω2 ≤ 0 (13 → 24), u = −(1 − z)ω2 ≤ 0 (14 → 23). Notice that z = 1−cos θ
2 with θ

being the scattering angle in the center of mass frame, z = 0 corresponds to the forward
limit. Using the spinor brackets, momentum conservation also gives the following equities:

〈23〉
〈13〉 t+ 〈24〉

〈14〉u = 0, 〈12〉
〈32〉u+ 〈14〉

〈34〉s = 0, 〈12〉
〈42〉 t+ 〈13〉

〈43〉s = 0. (A.5)

With the above relations, we can rewrite, e.g. [13] [24] and [14] [23] as:

[13] [24] = t

(
z̄12z̄34
z12z34

)1/2
, [14] [23] = −u

(
z̄12z̄34
z12z34

)1/2
. (A.6)

The functions of zij(z̄ij) here quantifies the non-trivial action of the Lorentz group on the
external massless states. Additional functions of zij z̄ij are also required to match A(β, z)
to the convential celetial amplitude, with more details shown in [6].

B Properties of the incomplete Γ function

Here we provide more details on the incomplete Gamma function and the corresponding
celestial amplitude. Considering r = 1, 2, 3, ..., Γ(1− r, x) can be expanded as [37]:

Γ(1− r, x) = 1
(r − 1)!

(
e−x

xr−1

r−2∑
k=0

(−1)k(r − k − 2)!xk + (−1)r−1Γ(0, x)
)
, (B.1)
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with Γ(0, x) = −EulerGamma− log(x)−∑∞k=1
(−x)k
k(k)! . When r = 1, the summation above

equals zero. We thus have for A(β) in Eq. (3.10):

A(β) =

caM
1

Γ(r)
Mβ+a

κ

(
exp{ρ(β + a)}(−β − a

κ
)r−1Γ(0, ρ(β + a)) +

r−2∑
k=0

(r − k − 2)!ρk(−β − a)k
)
.

(B.2)

In addition, the logarithmic function in Γ(0, x) indicates branch cut when β + a crosses the
negative real axis. The branch cut can be derived from the imaginary part of A(β) as:

DiscA = 2i ImA(β)
∣∣∣∣
β<−a

= −2caM i
π

Γ(r)
Mβ+a

κ
exp{ρ(β + a)}(β + a

κ
)r−1. (B.3)

As r = 1, 2, ... and Γ(0, x) only diverges logarithmically as β+a→ 0, there are no single-pole
or multi-pole structure at β = −a. It is only when r = 1 that the real part of the celestial
amplitude diverges logarithmically at β + a = 0.

For r 6= 1, 2, ..., one could instead use the following expansion [52]

Γ(1− r, x) = −x1−re−x
∞∑
k=0

xk

(1− r)(2− r)...(k + 1− r) + Γ(1− r), (B.4)

which reduces to Γ(1 − r, x) = (−r)!e−x
−r∑
k=0

xk

k! for r being non-positive integer. One can
identify that

A(β) = finite + caM
Mβ+a

κ
exp{ρ(β + a)}

(
β + a

κ

)r−1
Γ(1− r), (B.5)

where the finite piece comes from the fact that the absolute value of the summation over
k is smaller than α× e|β+a|/κ with α > 0. As Γ(x) is finite for x 6= 0,−1,−2, ..., the only
singularity possible in the above celestial amplitude is at β = −a region. Notice that due
to the (β + a)r−1 term, the celestial amplitude also has branch cut for β + a < 0 if r − 1 is
non-integer. We then have:

DiscA = 2i ImA
∣∣∣∣
β<−a

= −2caM i
Mβ+a

κ
exp{ρ(β + a)}

( |β + a|
κ

)r−1
Γ(1− r) sin(πr).

(B.6)

The above equations shows that the branch cut vanishes when r is nonpositive interger
r ∈ Z−. Notice that when r = 0, the real part has single pole at β = −a as expected.
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