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Ensuring a satisfactory statistical convergence of anharmonic thermodynamic properties requires
sampling of many atomic configurations, however the methods to obtain those necessarily pro-
duce correlated samples, thereby reducing the effective sample size and increasing the uncertainty
compared to purely random sampling. In previous works procedures have been implemented to ac-
celerate the computations by first performing simulations using an approximate Hamiltonian which
is computationally more efficient than the accurate one and then using various methods to correct
for the resulting error. Those rely on recalculating the accurate energies of a random subset of con-
figurations obtained using the approximate Hamiltonian thereby maximizing the effective sample
size. This procedure can be particularly suitable for calculating thermodynamic properties using
density-functional theory in which case the accurate and approximate Hamiltonians may be repre-
sented by parametrically suitably converged and non-converged ones. Whereas it is qualitatively
known that there needs to be a sufficient overlap between the phase spaces of the approximate and
the accurate Hamiltonians, the quantitative limits of applicability and the relative efficiencies of
such methods is not well known. In this paper a statistical analysis is performed first theoretically
and then quantitatively by numerical analysis. The sampling distributions of different free energy
estimators are obtained and the dependence of their bias and variance with respect to convergence
parameters, simulation times and reference potentials is estimated.

I. INTRODUCTION

Theoretical prediction of anharmonic thermodynamic
properties of a material from first principles requires a
fast and accurate method to sample the energies of rele-
vant microstates of the atomic system. For instance, in
order to obtain good estimates of the phase transition
temperatures, the Gibbs free energies typically need to
be determined to less than 1meV/atom at high temper-
atures [1–3] which is a fraction of a percent of the total
free energy. It has been proposed that density functional
theory (DFT) [4, 5] based calculations are able to provide
such a level of accuracy while taking into account the var-
ious contributions to the free energy, such as those from
vibrational, electronic and magnetic excitations [6, 7].

An integral part of any DFT calculation is verifying
the convergence of the results with respect to various ap-
proximations, such as the number of explicitly treated
electrons, truncation of the basis set of the wave func-
tions, the number of k-points used to sample the Brillouin
zone, smearing of the electronic states, stopping criteria
for the optimization of the density and so on [8, 9]. Apart
from the lattice dynamics method, which provides an an-
alytic expression [10, 11], calculating the free energy of a
crystal is done numerically by sampling atomic configu-
rations using Monte Carlo (MC) or molecular dynamics
(MD) simulations [12–14] and subsequently transform-
ing thermodynamic averages of energy differences to free
energy differences. In order to keep the statistical error
of the averages low at high temperatures, many simula-
tion steps are needed, which is impractical to accomplish
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with highly converged DFT. Therefore it has become a
standard practice to carry out the simulations using non-
converged energies and forces, after which various tech-
niques can be used to adjust the results to correct for the
resulting error [3, 7, 15–19].

This systematic error can be thought of as consisting
from the direct error in the computed energies due to the
non-convergence and the indirect error due to the sam-
pled structures being different from those that would be
obtained from simulations using converged forces and en-
ergies. The former can be corrected simply by taking a
smaller subset of the sampled configurations and recalcu-
lating the energies using parameters that ensure sufficient
convergence. This is the idea behind up-sampled ther-
modynamic integration using Langevin dynamics (UP-
TILD) [3, 16] and its two-stage variation (TU-TILD) [17].
In both cases the correction is applied to every step on
the thermodynamic integration (TI) [12, 20, 21] path be-
tween a harmonic reference and DFT in the case of the
former and an empirical potential and DFT when using
the latter method.

This approximation is exact in the limit where the en-
ergy differences between converged and non-converged
calculations do not depend on the atomic configuration,
i.e. remain constant throughout the simulation, which
implies that the forces are not affected. In general, how-
ever, changing DFT parameters can have a considerable
effect on the forces. In that case free energy perturba-
tion (FEP) can be used to obtain an estimate of the error
either by applying it directly [18], through its truncated
cumulant expansion [15, 19] or by reweighting ensemble
averages [7]. The latter approach, while strictly speaking
not FEP, entails calculating the same exponential aver-
ages which can be significantly biased in the limit of a
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small dataset and can exhibit poor convergence with re-
spect to the size of the dataset [22–29]. The problem
is further exacerbated when FEP is performed unidirec-
tionally [30] as is mostly the case when applying it to
adjust the non-converged DFT results.

In this paper first a statistical analysis is performed
theoretically, which is helpful to understand some aspects
of the different free energy estimators, but is also limited
since in general the distributions of energy differences
are not known and have to be sampled numerically. In
order to accelerate the latter, Spectral Neighbor Analy-
sis Potentials (SNAP) [31] are fitted to DFT-MD data
of different levels of convergence. This allows for fast
calculations of the sampling distributions of the energy
differences between both the reference and the approxi-
mate Hamiltonians and between the accurate and the ap-
proximate Hamiltonians throughout the whole TI path.
From these data the bias and the variance of the differ-
ent free energy estimators can be computed for different
combinations of DFT convergence parameters, expected
simulation times and reference potentials.

II. THEORY AND SETUP

A. Free energy estimators

When the potential energy of a system depends on a
parameter λ, the partial derivative of the Helmholtz free
energy with respect to λ is given by [12]:

(

∂F (λ)

∂λ

)

λ,NV T

=

〈

∂U(λ)

∂λ

〉

λ,NV T

(1)

This can be used to calculate the free energy difference
between two states with different potential energies U1

and U0 by choosing U(λ) as

U(λ) = λU1 + (1 − λ)U0 (2)

and integrating both sides of Equation 1 from λ = 0
to λ = 1, giving

(F1 − F0)NV T =

∫ 1

0

〈U1 − U0〉λ,NV T dλ (3)

The free energy F1 of any system with potential energy
U1 can therefore by estimated by choosing a suitable ref-
erence potential U0 for which the free energy F0 is known
and integrating the potential energy difference between
the systems on the path given by Equation 2. Common
reference potentials for solids include uncoupled, i.e. Ein-
stein crystal, and coupled harmonic oscillators as in both
cases the free energy can be calculated analytically.

In practice the integral can be evaluated by perform-
ing several equilibrium MC or MD simulations at differ-
ent values of λ and using, for example, a Gauss-Legendre

quadrature or by fitting a function whose integral can be
found analytically through the calculated points. Com-
monly a polynomial of a suitable degree is chosen while
the λ values can be either equidistant or not [32, 33].
In some cases more sophisticated trigonometric functions
have been used in order to get a better fit compared to
a polynomial with the same number of parameters [3].

Regardless of the chosen integration method, when
DFT-MD is used to estimate the free energy difference,
both the errors in the potential energy U1 and forces
~f1 = −∇U1 due to chosen approximations (DFT conver-
gence) and the uncertainty of the ensemble average at
each λ (statistical convergence) have to be kept small
enough to ensure adequate accuracy of the results.

The natural way to estimate µ(λ) = 〈U1 − U0〉λ, is to
take the arithmetic mean of the samples obtained from
MD using potential U(λ)

µ̂(λ) =
1

N

N
∑

i=1

(U1i − U0i) (4)

however, due to autocorrelation of the samples, this can
be quite inefficient compared to random sampling, since
the variance of µ̂ does not decrease in proportion with the
sample size N , but the effective sample size, Neff which
can be significantly smaller.

If U1 in Equation 2 is replaced with another potential
U ′
1, such that

U ′(λ) = λU ′
1 + (1− λ)U0 (5)

then if

µ′(λ) =

〈

(U1 − U0) e
−βλ(U1−U ′

1)
〉

λ′

〈

e−βλ(U1−U ′

1)
〉

λ′

(6a)

= 〈U1 − U0〉λ′ +
cov

(

U1 − U0, e
−βλ(U1−U ′

1
)
)

λ′

〈

e−βλ(U1−U ′

1)
〉

λ′

(6b)

it follows that

µ′(λ) = µ(λ) (7)

The latter can be easily shown, since for any property
A that depends on the coordinates and momenta of the
atoms,

〈A〉λ =

〈

Ae−β[U(λ)−U ′(λ)]
〉

λ′

〈

e−β[U(λ)−U ′(λ)]
〉

λ′

(8)

where the subscripts λ and λ′ denote that the potential
energy of the ensemble is U1 and U ′

1 respectively.
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In order to analyze the advantage of estimating µ′ over
µ, we will first consider the case when

cov
(

U1 − U0, e
−βλ(U1−U ′

1
)
)

λ′

= 0 (9)

which, although not explicitly shown in the original
work, is the approximation behind the UP-TILD method
[16]. The corresponding unbiased estimator of µ′ is then

µ̂′
0(λ) =

1

N

N
∑

i=1

(U1i − U0i)

=
1

N

N
∑

i=1

(U ′
1i − U0i) +

1

N

N
∑

i=1

(U1i − U ′
1i)

(10)

Note that whereas the subscripts λ′ are omitted from
this and the following estimators, it is implied that the
samples are obtained using the potential U ′

1.
Using µ̂′

0 does not provide any possible improvement
in efficiency over using µ̂, since it entails first performing
the simulation using potential U ′(λ) followed by recal-
culating the energy of every sample using U1. However,
as pointed out above, for a given sample variance it is
equivalent to either take the average N correlated sam-
ples or Neff random samples. The simplest way to do the
latter is to calculate the mean of every k-th sample such
that the autocorrelation function for lag k has decreased
to a sufficiently small value. This results in estimators

µ̂′
1(λ) =

k

N

N/k
∑

i=1

(U1ki − U0ki) (11)

and

µ̂′
2(λ) =

1

N

N
∑

i=1

(U ′
1i − U0i) +

k

N

N/k
∑

i=1

(U1ki − U ′
1ki)

(12)
which can be faster to evaluate than µ̂, assuming that

it is faster to calculate U ′
1 compared to U1. The differ-

ence between Equations 11 and 12 is whether all of the
original energies are taken into account or only the ones
corresponding to the recalculated configurations. This
has no direct effect on the computational time, but the
variances of the estimators can differ. This will be inves-
tigated in more detail in Section III D.

In order for µ̂′
1 and µ̂′

2 to be unbiased, a sufficient con-
dition for U ′

1 is

var(U1 − U ′
1)λ′ = 0 ∀λ ∈ [0, 1] (13)

That is a stronger requirement than that of Equation 9,
and when true, means that k = N can be taken in the sec-
ond term of µ̂′

2, i.e. only a single recalculation is needed.

In practice, the variance does not need to be exactly zero.
If Equation 9 is not satisfied, then µ̂′

2 is a biased and
inconsistent estimator of µ′, but if the bias is smaller
than the required accuracy, the approximation can still
be used. Moreover, at λ = 0, Equation 9 is always true,
regardless of how large var(U1−U ′

1)0′ is, since the poten-
tial energy U ′(0) (in Equation 5) does not depend on U1.
Taking all of the above into account it follows that U ′

1

should be a close approximation of U1 up to a constant
and a typical choice for that is non-converged DFT.

Without any approximations, µ′ can be estimated by
using either

µ̂′
3(λ) =

N/k
∑

i=1

(U1ki − U0ki) e
−βλ(U1ki−U ′

1ki)

N/k
∑

i=1

e−βλ(U1ki−U ′

1ki)

(14)

or

µ̂′
4(λ) =

1

N

N
∑

i=1

(U ′
1i − U0i)−

k

N

N/k
∑

i=1

(U ′
1ki − U0ki)

+

N/k
∑

i=1

(U1ki − U0ki) e
−βλ(U1ki−U ′

1ki)

N/k
∑

i=1

e−βλ(U1ki−U ′

1ki)

= µ̂′
2 +

N/k
∑

i=1

(U1ki − U0ki) e
−βλ(U1ki−U ′

1ki)

N/k
∑

i=1

e−βλ(U1ki−U ′

1ki)

− k

N

N/k
∑

i=1

(U1ki − U0ki)

(15)

the difference being that at the limit of Equation 13 the
former approaches µ̂′

1 and the latter µ̂′
2 thereby making

use of all of the available data.
Both µ̂′

3 and µ̂′
4 are biased, but consistent estimators

of µ′ meaning that as the number of samples N goes to
infinity, the bias approaches 0. However, for small N and
large var(U1−U ′

1)λ′ it is possible that the uncertainty due
to the bias and the variance of the exponential ensemble
averages [28, 30, 34] is so large that estimating µ′ instead
of µ might not provide any improvement or even be less
efficient. An exception to that is when (U1 − U0)λ′ and
(U1 − U ′

1)λ′ follow a bivariate normal distribution. In
that case Equation 6 simplifies to

µ′
N (λ) = 〈U1 − U0〉λ′ − λβ cov (U1 − U0, U1 − U ′

1)λ′

(16)



4

which can be estimated without bias since the sam-
ple covariance is an unbiased estimator of the ensemble
covariance.

For any estimator µ̂′ disrobed above the free energy
difference F1 − F0 is estimated as

∆F̂ (N, k) =

∫ 1

0

µ̂′(λ;N, k)dλ (17)

It is noteworthy that even if µ̂′ is biased at almost
every λ, it is possible that ∆F̂ is unbiased, if the bias
integrates to 0, for example when using µ̂′

2 and

∫ 1

0

cov
(

U1 − U0, e
−βλ(U1−U ′

1
)
)

λ′

dλ = 0 (18)

Based on the computational results in this work, it can
be hypothesized that for a given U1 and U ′

1 it is in prin-
ciple possible to find U0 such that Equation 18 is true,
however doing that might be impractical. Nevertheless
the choice of U0 is important, since for random variables
X and Y

| cov(X,Y )| ≤
√

var(X) var(Y ) (19)

i.e. minimizing var(U1−U0)λ′ will reduce the bias, espe-
cially when λ is close to 1. This argument also applies to
other estimators of µ′. In this paper the significance of
that is studied by comparing several different reference
potentials.

The integral of the first term of both µ̂′
2 and µ̂′

4 esti-
mates

∫ 1

0

〈U ′
1 − U0〉λ′ dλ = F ′

1 − F0 (20)

Therefore the integral of the other terms estimates

F1 − F0 − (F ′
1 − F0) = F1 − F ′

1 (21)

i.e. the free energy difference between states with po-
tentials U1 and U ′

1. Varying λ from 0 to 1, however
switches the potential from U0 to U ′

1. It can be argued
that except when Equation 18 is true, as described above,
there is no obvious reason to expect that estimating the
free energy difference F1−F ′

1 via a path that does not di-
rectly connect the corresponding states is more efficient
than that which does. Typically U0 is a significantly
worse approximation of U1 than U ′

1, in which case the
samples of U1 − U ′

1 near λ = 0 provide much less in-
formation about F1 − F ′

1 than those near λ = 1 so it
might be advantageous to just gather more samples at
that endpoint of the path.

Moreover, since successful application of either µ̂′
2 or µ̂′

4

requires var(U1−U ′
1)λ′ to be as small as possible anyway,

it could be more reasonable to calculate F1 −F ′
1 directly

using FEP from

∆F11′ = F1 − F ′
1 = −β−1 ln

〈

e−β(U1−U ′

1
)
〉

λ′=1
(22)

When (U1 − U ′
1)λ′=1 has a Gaussian distribution, a

second order cumulant expansion of FEP (FEP-N )can
be used as

∆F11′ = F1 − F ′
1 = 〈U1 − U ′

1〉λ′=1 −
β

2
var(U1 − U ′

1)λ′=1

(23)
which has the advantage of converging much faster

than the full FEP [34] and being able to estimate it with-
out bias. When estimating F1 − F ′

1, then similarly to µ̂′

it is advantageous to take the averages over uncorrelated
samples. If every k-th sample is used, the corresponding
estimators are

∆F̂11′ = −β−1 ln
k

N

N/k
∑

i=1

e−β∆Uki (24)

and

∆F̂11′,N =
k

N

N/k
∑

i=1

∆Uki

− β

2

1

N/k − 1

N/k
∑

i=1

(

∆Uki −∆Uk

)2

(25)

where ∆Uki = U1ki − U ′
1ki and ∆Uk =

(k/N)
∑N/k

i=1 ∆Uki, both sampled at λ = 1 with U ′
1.

B. Uncertainties of the estimators

For the given potentials U0, U1 and U ′
1, i.e. the ref-

erence, accurate and the approximate one respectively,
all the described estimators of ∆F are expected to differ
in accuracy and precision. Whereas it might be possible
to quantify those by theoretical means, starting from the
λ-dependent multivariate distributions of the potential
energies together with a model of time correlations, in
practice it is easier to obtain the sampling distributions
of the different ∆F̂ and their dependence on N and k
using simulations. This also avoids making any assump-
tions about the underlying distributions or whether other
approximations such as the central limit theorem can be
applied.

In order to get a sufficiently converged sampling distri-
bution, enough values of ∆F̂ have to be calculated. If the
number of those is m, then that also requires m values
of µ̂′ at nλ values of λ, which results in a total number
of mnλ simulations. However, because the values of µ̂′

at any λ are uncorrelated with the values at any other λ,
the aforementioned calculations can in fact provide mnλ

estimates of ∆F̂ . If there are more than m values of µ̂′

to pick m out of, the number of estimates increases even
more and even for modest values of m and nλ it becomes
vast. A small subset of those, in this work obtained by
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Simulation results s1 s2 s3 .. sn

λ1

s1 s2 s3 .. sn

λ2

... s1 s2 s3 .. sn

λl

...

Resample s1 s3 s1 s1 ... s2 s6

Calculate µ̂∗(λ;N, k) µ̂∗(λ1) µ̂∗(λ2) µ̂∗(λn)

Fit a polynomial
and integrate

µ̂

λ

∆F̂ ∗

1
∆F̂ ∗

2
∆F̂ ∗

mGather ∆F̂ ∗

i

E[∆F̂ ] ≈ 1

m

∑m

1
∆F̂ ∗

i σ2[∆F̂ ] ≈ 1

m−1

∑m

1
(∆F̂ ∗

i −
1

m

∑m

1
∆F̂ ∗

i )
2

Estimate the statistics
of ∆F̂ (N, k)

FIG. 1. A scheme for obtaining the sampling distribution and the statistics of a free energy estimator. Refer to the text for a
detailed explanation.

random sampling, can be used to estimate the sampling
distribution of ∆F̂ .

The simplified overview of the method used here is ex-
plained in Figure 1. First, at each λ a series of MD simu-
lations, differing only by the initial conditions, are run in
order to precompute sufficiently representative samples
of U0, U1 and U ′

1. Alternatively a single long simulation
could be performed, however it has been shown that the
former helps with faster spanning of the phase space and
improving parallelization [35].

In the next step m estimates of ∆F are obtained. This
is achieved by first choosing the number of timesteps N
and the constant k. Then the estimators µ̂(λ;N, k) are
applied to the data which are resampled with replace-
ment from the set of precomputed short simulations such
that the total number of timesteps is N . For example, if
the number of timesteps in a single simulation was 5000
and N = 20000, the results of 4 randomly chosen simu-
lations are combined together. Since the simulations are
independent, the correlations in the time series which
reduce the effective sample size are trivially preserved.
In order to simplify the analysis, N is here taken to be
constant with respect to λ. Next a polynomial is fitted
through the obtained µ̂(λ) data points. The degree of the
polynomial is chosen such that the leave-one-out cross-
validation score is minimized in order to avoid overfitting.
The integral of the polynomial from λ = 0 to λ = 1 is
then stored.

In the third step the expected value and variance of
∆F̂ can be obtained from the estimates of ∆F computed
in the previous step. For a good estimate of the bias, the
reference ∆F is computed from the integral of Equation 4
with all the available data.

As mentioned, the scheme in Figure 1 is a slight sim-
plification as in practice the different means in µ̂∗ were
calculated, fitted to a different order polynomials and
integrated separately. This allows for analyzing the con-

tributions of the different parts to the uncertainty of F̂ .
In addition, since k can be relatively large (at the limit
equal to N), in order to better utilize the available data
and converge the sampling distributions of F̂ faster, each
of the simulations was resampled with random starting
offset between the first and the k-th timestep.

This approach of obtaining the sampling distribution
closely resembles the bootstrap method [36]. The main
difference here is that the resampled sample sizes are con-
siderably smaller than the original dataset which results
in more accurate sampling distributions. In other words,
when enough data have been precalculated, the error
made by sampling from those instead of the canonical
distribution becomes insignificant. This can be checked,
for example, by dividing the precalculated data into mul-
tiple chunks, calculating the sampling distributions from
each of those separately, and verifying that the results do
not vary appreciably.

C. Potentials

Several useful conclusions about the statistics of the
different F̂ could likely be drawn by performing numer-
ical simulations using any reasonable set of U0, U ′

1 and
U1 even without any DFT calculations. For example,
a simple analytical potential could be taken as U1 and
small perturbations made to its parametrization in or-
der to obtain U ′

1. Although being simple to implement
and very fast, this would not provide much quantitative
information about realistic problems which could solved
using DFT. On the other hand, even with the resam-
pling method described above, resources are limited to
calculate everything using DFT-MD. A compromise can
be made by performing the analysis with less computa-
tionally expensive potentials fitted to DFT. In this work,
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TABLE I. DFT parameters

Parameter DFT-0 DFT-1 DFT-2 DFT-3 DFT-4

Cutoff energy (eV) 400.0 223.1 167.3 223.1 167.3
K-points (Γ-centered) 4× 4× 4 2× 2× 2 2× 2× 2 1× 1× 1 1× 1× 1

FFT grid 64× 64× 64 36× 36× 36 32× 32× 32 36× 36× 36 32× 32× 32

Fine FFT grid 128× 128× 128 72× 72× 72 48× 48× 48 72× 72× 72 48× 48× 48

Projection space reciprocal real real real real

Stopping tolerance 1.0−6 1.0−6 1.0−6 1.0−6 1.0−4

XC-functional Perdew-Burke-Ernzerhof generalized gradient approximation
Electrons per atom 6

Occupancy smearing Fermi-Dirac, σ = 0.318 eV

Relative speed 1 16 28 50 95

the choice is quadratic SNAP [31] due to its good and
tunable accuracy and ease of fitting, while being orders
of magnitude faster than DFT.

A 54-atom supercell of BCC tungsten with lattice
parameter of 3.242Å was chosen as the system to be
investigated. The training data were calculated using
vasp [37–40] with projector-augmented wave method
[41]. The convergence parameters used for the reference
(DFT-0) and the successively worsely converged (DFT-1
to DFT-4) electronic structure calculations are given in
Table I. The canonical ensemble was sampled at 3687K
using Langevin dynamics with 10 ps−1 friction coefficient
and 5 fs timestep.

As shown in Table I, the speedup achieved by us-
ing non-converged instead of converged DFT-MD was
between one and two orders of magnitude, with the
fastest and slowest calculation taking 152 and 14457
core-seconds per timestep respectively. Recalculating the
energies using DFT-0 for structures sampled by non-
converged DFT-MD was however two times slower, 28230
core-seconds per timestep. This is due to the high cor-
relation between subsequent samples in MD allowing for
prediction of the wavefunctions which results in faster
convergence of the electronic structure. Given that the
recalculation is typically done for uncorrelated samples,
this sort of prediction is not applicable.

The fitting was done using fitsnap [42]. The train-
ing data consisted of energies and forces of 5374 and
7000 configurations for DFT-0 and the non-converged
DFT respectively. The maximum order of the bispec-
trum components was set to Jmax = 4, cutoff distance
to Rmax = 4.8Å and the maximum latitude for remap-
ping neighbor positions to θmax

0 = 0.99363π. In order to
handle short atomic distances, Ziegler-Biersack-Littmark
potential was added with smooth transition to zero be-
tween Rzbl,i = 4.0Å and Rzbl,o = 4.8Å.

Among all of the fitted potentials, the lowest root
mean square errors of energy per atom and force com-
ponents were 2.6meV and 0.13 eV/Å for SNAP-0 (fit-
ted to DFT-0) and the largest errors were 4.4meV and
0.22 eV/Å for SNAP-4 (fitted to DFT-4). This is also

Γ P H Γ N P
0

1

2

3

4

5

ν
(T

H
z)

DFT-0

DFT-4

SNAP-0

SNAP-4

FIG. 2. High temperature phonon dispersions of DFT and
SNAP. The force constant matrices were fitted to forces and
displacements obtained from 3687K molecular dynamics sim-
ulations.

illustrated on Figure 2, which depicts the phonon disper-
sions of the harmonic temperature-dependent effective
potentials (TDEP) [43] fitted to the high temperature
MD data for DFT and the corresponding SNAP. There
is very little difference between SNAP-0 and DFT-0 and
whereas the error is slightly larger between SNAP-4 and
DFT-4, the former is able to adequately reproduce the
overall decrease in the effective frequencies caused by
non-converged DFT.

The average computational cost of SNAP during the
molecular dynamics simulations was 0.02 core-seconds
per timestep, i.e. 4 to 6 orders of magnitude faster than
DFT.
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−1
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ν
(T

H
z)

DFT-0

DFT-4

SNAP-0

SNAP-4

FIG. 3. Comparison of the 0K phonon dispersions of DFT
and SNAP.

D. Reference potentials and switching calculations

Almost any potential can be used as U0, given its free
energy is known or can be calculated by another simu-
lation. A simple and easily obtainable choice is the har-
monic approximation (HA) of the target potential whose
free energy has to be estimated. However, because here
U ′
1 is used for sampling and U1 for recalculations, it is not

clear whether the HA of one should be preferred over that
of the other. One one hand, the closer the reference po-
tential is to the target, the more efficient the λ-switching
calculation, which suggests using the HA of U ′

1. On the
other hand, the configurations sampled with a potential
more similar to that which is used for recalculating the
energies, might make the computationally more expen-
sive recalculations more efficient, suggesting the use of
the HA of U1.

An exception to when the HA could be used as a ref-
erence is when some of the phonons have imaginary fre-
quencies since then the free energy is not real-valued.
This happens to be the case with DFT-4 near the H-point
as shown on Figure 3. Despite that the SNAP training
data consisted of only high temperature MD forces and
energies, the 0K phonon dispersions were still adequately
reproduced while not containing any imaginary frequen-
cies. Therefore the HAs of the fitted potentials were used
instead of the DFT ones.

With increasing anharmonicity, the 0K HA is expected
by definition to become a successively worse reference po-
tential in terms of efficiency. An improved reference can
be obtained by fitting another potential that can take
the anharmonicity either implicitly or explicitly into ac-
count. In this work two types of such potentials were
used. The first ones were the effective harmonic ones
described above. The advantage of those is that the ref-
erence free energy is known analytically and no extra sim-
ulations are needed. The second ones were simpler linear

SNAPs (from here on referred to as POT in order to avoid
confusing it with the SNAPs approximating DFT) [44]
with reduced maximum order of bispectrum components
(Jmax = 3) compared to the DFT-based potentials and
the other parameters unmodified. Using those the ref-
erence free energy needs to be calculated separately and
whereas this requires setting up simulations and perform-
ing additional analysis, the improvement in efficiency can
be significant [17]. As with the HA reference, since it
is not immediately obvious whether the fitted potentials
should be based on U ′

1 or U1, both were compared in this
work. Since using the latter to directly sample the con-
figurations can be computationally expensive, it might
instead be necessary to use the recalculated energies and
forces for fitting, the effect of which is also investigated.

All the simulations were performed using lammps [45].
In order to shorten the equibliration time, the initial po-
sitions and velocities were randomly sampled from dis-
tributions determined by the HA of the target potential
[35]. The canonical ensemble was sampled at 3687K by a
Generalized Langevin Equation thermostat [46, 47] with
a timestep of 1 fs. The drift matrix of the thermostat
was generated for optimal sampling in frequency range
between 0.07 and 7THz. Each simulation consisted of
12 ps out of which the first 2 ps was equibliration. Ev-
ery 10th configuration was stored and later recalculated
using, resulting in 1000 U1, U ′

1 and U0 values per sim-
ulation. The total number of simulations at each λ (21
equidistant values between 0 and 1) was 200 for the HA
and TDEP references, and 60 for the POT ones. An
example of the results is shown in Figure 4.

Due to the combination of the chosen geometry of the
simulation box, lattice type and high temperature, oc-
casionally the whole crystal rotated relative to the box
to another symmetry-equivalent configuration. Whereas
this did not pose a problem to the SNAP potentials,
due to the fixed reference positions the displacements for
evaluating the harmonic energies and forces became er-
roneous. In this case the results of the simulation were
discarded and another one with different initial condi-
tions was performed. Since the number of those was rel-
atively low due to the short simulation times, about 1%
at λ = 1 and none at λ = 0 since the harmonic potential
constrains that type of rotation, the effect on the results
is expected to be minimal. Another solution would be to
use a supercell for which such rotations are not possible,
such as 4× 4× 4 instead of 3× 3× 3.

III. RESULTS

A. The effect of reference systems

It was qualitatively explained in Section II A how the
choice of the reference system could affect the accuracy
of the results, but without knowing the specific poten-
tials involved, it was not possible to predict how much
difference does it make in practice. The results of using
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either HA, TDEP or POT as U0 and SNAP-4 as U ′
1 are

given in Figure 5.
As expected, in terms of variability, POT is the best

reference, followed by TDEP and HA. Using the former
makes it possible to determine both ∆F (µ̂′

2) and ∆F (µ̂′
4)

to a precision of less than 1 meV/atom with a relatively
short simulation time of 10 ps and only about 10 to 20
recalculated energies at each λ. With the other two ref-
erences the variance of U ′

1 − U0 increases the baseline
of the uncertainty significantly so either more recalcula-
tions, longer simulations, or both are needed to achieve
similar precision. In each case the variance of ∆F̂ (µ̂′

2)

is smaller than that of ∆F̂ (µ̂′
4) meaning that for a given

target precision, the former is a more efficient estimator,
however the difference becomes smaller with a better ref-
erence system.

The situation becomes different and more complex
when the bias is also taken into account. Firstly, in every
case the bias of ∆F̂ (µ̂′

4) is smaller than that of ∆F̂ (µ̂′
2)

and at least for the small system considered also signifi-
cantly smaller than the variability. Interestingly, the bias
of ∆F̂ (µ̂′

2) can be excessive even when using a good ref-
erence system. In addition, it is not necessarily easy to
quantify without directly comparing µ̂′

2 and µ̂. For ex-
ample, it has been proposed that one of the measures
for the applicability of the UP-TILD method is that the
correction term k

N

∑N/k
i=1 (U1ki − U ′

1ki) would be nearly
independent of λ [16]. As shown in Figure 6, this is not
always the case. With POT fitted to SNAP-4 as U0 this
term varies by much less than 1 meV/atom, whereas the
bias of µ̂′

2 grows linearly with λ and is over 4 meV/atom
for ∆F̂ . Conversely, with POT fitted to SNAP-0 as U0,
the correction term changes by 7.9 meV/atom between
λ = 0 and λ = 1, while the bias is negligible. In short,
the estimator of the bias based on the proposal above

could itself be biased.
Given that the bias of ∆F̂ (µ̂′

4) is typically significantly
smaller than that of ∆F̂ (µ̂′

2), then the latter can also be
approximated as

E[∆F̂ (µ̂′
2)]−∆F ≈ E[∆F̂ (µ̂′

2)]− E[∆F̂ (µ̂′
4)]

=

∫ 1

0

E [µ̂′
2 − µ̂′

4] dλ
(26)

Since in practice the expectation values in the equation
above will be replaced by a single sample, the estimate
of the bias can have large uncertainty for large values
of k. This can make it less useful in the cases where
var[∆F̂ (µ̂′

4)] is significantly larger than var[∆F̂ (µ̂′
2)],

however, it is asymptotically correct.
As evident, there can be a significant difference in the

results whether the reference potential is fitted to U1 or
U ′
1. In every case the former is a better choice with the

largest change observed in the bias of ∆F̂ (µ̂′
2). There is

also a great improvement in both the variance and the
bias when the reference potential is fitted indirectly to U1

by first sampling the configurations using U ′
1 and then re-

calculating the energies and forces of those using U1 to
be used in the fitting database. Whereas those configu-
rations are not necessarily the same as those from direct
sampling, it can be expected that the fitted potential is
at least somewhat transferable, therefore providing an
improvement.

B. Choice of the approximate Hamiltonian

Choosing which DFT parameters to modify in order
to speed up the calculations is not obvious. For the sake
of argument, suppose that using Equation 12 does not
result in excessive bias so it can be used to obtain good
estimates of ∆F and in addition the covariance between
the first and the second term is zero, in which case the to-
tal variance is the sum of the variances of the two terms.
If U ′

1 is a close approximation of U1, then by definition
var(U ′

1 − U1) is small and not many recalculations are
needed to have the uncertainty of the second sum be
sufficiently small. At the same time the MD simulation
itself is slower and therefore the time to statistically con-
vergence the first term longer compared to using a worse
approximation. In the latter case var(U ′

1 − U1) is larger,
so either more recalculations are needed to converge the
second sum to the same level as with a better U ′

1 or the
simulation needs to be run longer in order to get a better
convergence of the first sum such that the total uncer-
tainty remains the same. If the time to perform the ad-
ditional calculations are compensated by the faster speed
of the worse approximation, the total computational time
is reduced.

Given the reasoning above, it is probably not possi-
ble to give universal guidelines for choosing optimal U ′

1,
since it depends on the chosen type of µ̂, atomic system,
its size, reference and target potentials, required accuracy
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and available computational resources. Therefore the re-
sults presented here should be taken as one illustration
of many possible outcomes.

A comparison between the computational times of
∆F̂ (µ̂′

2) and ∆F̂ (µ̂′
4) with different approximating po-

tentials U ′
1 and TDEP of SNAP-0 as U0 is given in Fig-

ure 7. The substantial overlap of different lines on each
plot, especially on the first one depicting the standard
deviation of ∆F̂ (µ̂′

2), is a good example of what was de-
scribed above. This indicates that for a given error and
computational time there can be several equivalent solu-
tions in terms of chosen U ′

1, the simulation time and the
number of recalculations. For example, it is seen that
there is only a slight difference in σ(∆F̂ ) at around 1000
core-hours of total computational time whether 20 recal-
culations of 50 ps simulations, 100 recalculations of 10 ps
simulations or 10 recalculations of 10 ps simulations at
each λ are done using SNAP-4, SNAP-2 and SNAP-1
respectively as U ′

1.

It is also clear that recalculating more energies lowers
the standard deviation significantly when U ′

1 is a bad ap-
proximation of U1, as is the case with SNAP-4, and that
there is almost no change except for added computational
time with a good approximation, such as SNAP-1. In ad-
dition, it is seen that although DFT-4 is about 6 times
faster than DFT-1 in MD simulations, it is at best only
about 2 times as fast when approximating ∆F due to the
high computational cost of recalculations.

There is a significant change in the results when the
bias of ∆F̂ (µ̂′

2) is taken account in the error, as shown
in the second plot of Figure 7. The biases of ∆F̂ (µ̂′

2)
are 0.05, −0.8, 0.3, −0.5 and meV/atom for SNAP-1
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to SNAP-4 respectively. It is notable that apart from
SNAP-1, the bias seems essentially random. Whereas
it could be expected that SNAP-2 is a significantly bet-
ter approximation of SNAP-0 than SNAP-4, its bias is
considerably larger. As shown in Figure 8, this is due
to different cancellation of the biases of µ̂′

2 when inte-
grating over λ. If instead the error would be defined as
√

∫ 1

0 (µ̂
′
2 − µ̂)2dλ, the corresponding values would be 0.2,

1.1, 1.3 and 1.7 meV/atom.

Whether the bias of ∆F̂ (µ̂′
2) can be considered small

enough depends on the application. When free energy
differences between different phases are compared, it is
possible that the biases either cancel out or add and as
shown, the sign of each can depend on the chosen U ′

1.
Furthermore, if the bias is highly non-linear with tem-
perature or volume, it can also have a considerable effect
on the derivative properties, such as the heat capacity
or thermal expansion coefficient. Therefore in order to
obtain accurate results it is best not to rely on the pos-
sible cancellation effect which would mean constraining
the use of ∆F̂ (µ̂′

2) to only cases when U ′
1 is a good ap-

proximation of U1.

As explained before, another way to avoid biased re-
sults is to use ∆F̂ (µ̂′

4). For the results shown in Figure 7,
the bias was typically less than 0.1 meV/atom, there-
fore σ(F̂ ) was very close to RMSE(F̂ ). The reduced bias
comes, however, with the cost of increased variance with
an exception when SNAP-1 is used as U ′

1 as in that case
there is essentially no difference between ∆F̂ (µ̂′

2) and
∆F̂ (µ̂′

4). This is due to var(U1 −U ′
1) being small enough

that essentially for any number of recalculations the error
is dominated by var(U ′

1 − U0).
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C. Comparison to FEP

As explained in Section II A, the correction term

µ̂′
c(λ) =

∫ 1

0

[

µ̂′(λ) − 1

N

N
∑

i=1

(U ′
1i − U0i)λ′

]

dλ (27)

with µ̂′ being either µ̂′
2 of µ̂′

4, estimates the free energy
difference ∆F11′ = F1 −F ′

1. Since both of the estimators
depend on the reference potential U0 (it does not appear

explicitly in the correction term when using µ̂′
2, but is

included in the potential U ′ that is used for sampling),
so do the bias and variance of the estimated ∆F11′ which
in turn propagates to the error of ∆F̂ .

Free energy perturbation provides a more natural way
of estimating ∆F11′ such that its error does not depend
on U0, but only on the distribution of U1 − U ′

1 sampled
at λ = 1. As the results in Figure 9 show, when using
either ∆F̂11′ or ∆F̂11′,N the uncertainty of the results
in all cases is dominated by the standard deviation in-
stead of bias with the latter being approximately an or-
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der of magnitude smaller. This can be attributed mainly
to the small system size which limits var[β(U1 − U ′

1)] to
reasonably small values (1.4 with 54 and 3.3 with 128
atoms) even for the worst U ′

1 . The bias of ∆F̂11′,N does
not depend significantly on the number of recalculated
energies, which is expected since the sample variance is
an unbiased estimator of the population variance. The
value of the bias, although not zero, which indicates that
the distribution of U1 − U ′

1 is not perfectly Gaussian, is
nevertheless small enough that it can be considered neg-
ligible and ∆F̂11′,N is therefore a good approximation
for the potentials used in this work. The main advan-
tage of ∆F̂11′,N compared to ∆F̂11′ is the approximately
two times decrease in the standard deviation of the es-
timated free energy difference. Given uncorrelated sam-
ples, about four times fewer calculations would be needed
to reach the same uncertainty, however, the improvement
can be even higher as evident by the leveling off of the
decrease in σ when more than 10-20% energies are recal-
culated.

The latter also means that given some fixed number
of samples at each λ that is needed to converge the un-
corrected free energy difference F ′

1−F0 (Equation 20), it
is possible that using FEP might not be as efficient for
estimating F1 − F ′

1 compared to Equation 27. Assum-
ing that each recalculated energy provides certain con-
stant amount of information about F1−F ′

1, then instead
of recalculating, for example, 5% of energies at 10 val-
ues of λ when calculating ∆F̂ (µ̂′

2) or ∆F̂ (µ̂′
4), with FEP

10 · 5 = 50% energies would have to be recalculated in
order to get the same uncertainty. If that fraction of en-
ergies is greater than the threshold above which the cor-
relations between samples become large enough, there is
no reduction in the overall uncertainty.

In practice, the comparison is more complicated mainly
because each recalculated sample does not necessarily
provide the same amount of information. It can expected
that with ∆F̂ (µ̂′

2) and ∆F̂ (µ̂′
4) either recalculating dif-

ferent number of energies at each λ or assigning different
weights to each µ̂ when fitting the polynomial could re-
sult in slightly better σ(∆F̂ ). Whereas this was not as
crucial for the results in the previous sections since the
comparison was between methods that used the same
data, this is not the case when estimating ∆F11′ using
FEP. Consequently a full analysis would deserve a sepa-
rate study and the results presented here are only for the
case when neither the length of the simulation nor the
number of recalculated energies do not depend on λ and
the comparison will only be made for estimating F1−F ′

1,
not F1 − F0.

The results in Figure 10 illustrate what was pointed
out above. FEP-N can have larger error when estimating
F1 − F ′

1 compared to µ̂′
2 or µ̂′

4 for short simulation times
as the decrease in variance due to added number of re-
calculations will be limited due to time correlations. For
longer simulation times, in which case both µ̂-based esti-
mators and FEP-Nmake use of only uncorrelated data,
the latter is more efficient and has smaller error. In
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other words, at least for the given potentials and system
size, FEP-Nmakes better use of the recalculated energies
given that those are randomly sampled. FEP, however, is
not necessarily better due to significantly larger variance.

D. Comparisons of µ̂′

1 to µ̂′

2 and µ̂′

3 to µ̂′

4

The estimators of ∆F presented so far have been based
on either µ̂′

2 and µ̂′
4 and not µ̂′

1 or µ̂′
3, i.e. the variants

that only incorporate energy differences corresponding to
the recalculated timesteps. It would be natural to expect
that using fewer samples would result in increased stan-
dard deviation, which is the case for a regular sample
mean, but as shown in Figure 11 this is not necessarily
the case. The results show that among the combinations
of U ′

1 and U0 considered in this study, the standard devi-
ation can indeed increase significantly, but also decrease.
Because those cases are not in any way guaranteed to
form a representative sample and do not explain the mag-
nitude and the direction of the change in the standard
deviation, it is worthwhile to investigate it theoretically.
For simplicity, only the comparison between µ̂′

1 and µ̂′
2 is

given.

If three sample means are defined as
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m̂1 =
k

N

N/k
∑

i=1

(U ′
1ki − U0ki)λ′ (28a)

m̂2 =
k

N

N/k
∑

i=1

(U1ki − U ′
1ki)λ′ (28b)

m̂3 =
1

N

N
∑

i=1

(U ′
1i − U0i)λ′ (28c)

then µ̂′
1 and µ̂′

2 can be written as

µ̂′
1 = m̂1 + m̂2 (29a)

µ̂′
2 = m̂3 + m̂2 (29b)

Although the N samples in Equation 28c are usually
correlated, assuming that they are random does not qual-
itatively change the results and in that case

var(m̂1) = k var(m̂3) (30)

Then by defining γ and ρ as

var(m̂1) = γ var(m̂2) (31a)

ρ = corr(m̂1, m̂2) (31b)

it can be shown that

var(µ̂′
1)

var(µ̂′
2)

= η(ρ, γ, k) =
γ + 2ρ

√
γ + 1

γ/k + 2ρ
√
γ/k + 1

(32)

The values of this function at fixed k = 100 are shown
in Figure 12. Irrespective of the value of k, the condition
for η < 1, i.e. that using fewer samples results in smaller
variance, is

ρ ≤ −
√
γ

2
(33)

Which means that in addition to ρ being negative the
value of γ can be at most 4.

Since

var(m̂1) = k/N var (U0 − U ′
1) (34a)

var(m̂2) = k/N var (U1 − U ′
1) (34b)

then γ can also be written as

γ =
var (U0 − U ′

1)

var (U1 − U ′
1)

(35)
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FIG. 12. Dependence of η on γ and ρ at k = 100. Region
where η < 1 indicates conditions when using fewer data, i.e.
µ̂′

1 instead of µ̂′

2, results in smaller variance.

and using similar reasoning

ρ = corr(U ′
1 − U0, U1 − U ′

1) (36)

This suffices to explain the results in Figure 11. Since
typically U0 does not approximate U ′

1 as well as U1,
γ ≫ 1 and it is better to use µ̂′

2 over µ̂′
1. This is ob-

served for both cases when TDEP was used as the refer-
ence potential. With SNAP-1 as U ′

1, η is larger due to
the variance of U1 − U ′

1 being significantly smaller. At
the limit of infinite γ, η approaches k.

At γ = 1 and ρ = −1, for example when U0 = U1, η
becomes zero. SNAP as a reference potential, although
not perfect, is able to get closer to that point compared
to TDEP, in this case on average over all λ values γ = 1.8
and ρ = −0.71. This satisfies Equation 33 which results
in ∆F̂ (µ̂′

1) having slightly lower variance than ∆F̂ (µ̂′
2).

Whereas not investigated here, it must be noted that as
U0 approaches U1, the need for using U ′

1 disappears, since
it likely becomes better to estimate F1 − F0 directly by
FEP or FEP-N .

IV. CONCLUSIONS

Even though only a single atomic system was inves-
tigated and the numerical calculations were performed
using SNA potentials fitted to DFT instead of the lat-
ter directly, the results nevertheless provide insight into
the possible issues and pitfalls when employing different
correction schemes for estimating converged free energy
differences from non-converged DFT-MD simulations.

The choice between estimating the free energy differ-
ence between a target and a reference system either by
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using the UP-TILD method (∆F̂ (µ̂′
2)) or by weighted en-

semble averages (∆F̂ (µ̂′
4)) determines whether the error

of the results is dominated by bias, as is the case for the
former method, or by variance as is the case for the lat-
ter. As opposed to ∆F̂ (µ̂′

4), the bias of ∆F̂ (µ̂′
2) cannot

be reduced by longer simulations or by recalculating a
larger number of energies using the converged potential
U1. This limits the choice of both the reference (U0)
and the approximating (U ′

1) potentials, which have to be
relatively close approximations of U1. Most importantly,
fitting U0 to U ′

1 instead of U1 can significantly increase
the bias, in some cases by more than an order of mag-
nitude, and should therefore be avoided. In addition, an
anharmonic U0 is substantially better than a harmonic
one both for reducing the bias and the variance of either
estimator. Whereas this complicates the analysis, since
the free energy of the reference system has to be calcu-
lated separately, for a given computational time it allows
for much more accurate and precise results.

As opposed to ∆F̂ (µ̂′
2), ∆F̂ (µ̂′

4) could estimate ∆F
accurately even using the worst U ′

1 and U0. For the com-
binations of potentials, simulation times and the number
of recalculated energies considered in this paper, the bias
of ∆F̂ (µ̂′

4) did not pose a problem since the variance of
it was significantly larger. Therefore, by minimizing the
variance to an acceptable level, the bias was reduced to
be insignificant. However, the variance was in every case
larger than that of ∆F̂ (µ̂′

2), which requires longer sim-
ulations and more recalculations in order to achieve the
same precision.

Choosing an optimal U ′
1 can be difficult. Using a bad

approximation results in faster MD simulations, but due
to the increased variance more recalculated energies are
needed and for a given target precision the total compu-

tational time can be longer compared to when a better U ′
1

is used. Since poor U ′
1 can also significantly increase the

bias of ∆F̂ (µ̂′
2) or the variance of ∆F̂ (µ̂′

4), although pos-
sibly not the optimal one, a relatively safe choice is DFT
with only a slightly reduced convergence parameters.

Both of the correction schemes estimate F1−F ′
1, i.e. the

free energy difference between systems with converged
and non-converged potentials. As opposed to the direct
thermodynamic path, this is done on a path between the
non-converged potential to the reference. Therefore the
estimated F1−F ′

1 depends on U0 whereas the actual free
energy difference does not. This can reduce the efficiency
and accuracy compared to a direct FEP estimate. How-
ever, as the results show, FEP is not necessarily better in
every case. The main reason behind this is that distribut-
ing the recalculated energies among all the λ-values can
result in a larger amount of uncorrelated samples than
doing it at only λ = 1, as is the case with FEP. On the
other hand, even with the worst U ′

1, the bias did not pose
a problem neither with FEP nor its cumulant expansion
approximation.

Finally, for both ∆F̂ (µ̂′
2) and ∆F̂ (µ̂′

4) there are cor-
responding estimators that as opposed to all of the MD
data, only use that which corresponds to the recalculated
timesteps. Whereas in general using more data results in
smaller variance, in some cases, namely when using a
good reference potential, the opposite can be true.
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