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Many quantitative approaches to the dynamical scrambling of information in quantum systems
involve the study of out-of-time-ordered correlators (OTOCs). In this paper, we introduce an algebraic
OTOC (A-OTOC) that allows us to study information scrambling of generalized quantum subsystems
under quantum channels. For closed quantum systems, this algebraic framework was recently
employed to unify quantum information-theoretic notions of operator entanglement, coherence-
generating power, and Loschmidt echo. The main focus of this work is to provide a natural
generalization of these techniques to open quantum systems. We first show that, for unitary
dynamics, the A-OTOC quantifies a generalized notion of information scrambling, namely between
a subalgebra of observables and its commutant. For open quantum systems, on the other hand,
we find a competition between the global environmental decoherence and the local scrambling of
information. We illustrate this interplay by analytically studying various examples of algebras and
quantum channels. To complement our analytical results, we perform numerical simulations of two
paradigmatic systems: the PXP model and the Heisenberg XXX model, under dephasing. Our
numerical results reveal connections with many-body scars and the stability of decoherence-free
subspaces.

I. INTRODUCTION

Quantum information scrambling, in its purest form,
refers to the ability of quantum systems to generate en-
tanglement and correlations under time evolution [1–12].
In the Schrödinger picture, this is typically character-
ized by starting from distinguishable, low-entanglement
states (e.g., orthogonal product states), which, under
unitary dynamics become more and more indistinguish-
able to local measurements. In a similar spirit, in
the Heisenberg picture, scrambling manifests as the
growth of the support of initially local operators under
time evolution and their subsequent noncommutativity
with operators supported on distinct subsystems. This
spreading of initially localized information (delocaliza-
tion) allows for the emergence of nonlocal quantum
correlations, which are linked to many-body phenom-
ena such as thermalization [13] and quantum chaos
[3, 14, 15], among others. A central quantitative ap-
proach to information scrambling has been the study of
out-of-time-order-correlators (OTOCs), which possess a
principal position in theoretical insights into scrambling
dynamics for a variety of phenomena, ranging from, e.g.
many-body chaos to black hole physics [1–12]. This
theoretical investigation of OTOCs has been accom-
panied by a number of state-of-the-art experimental
implementations [16–26].

Recent works have revealed connections between
OTOCs and prominent quantum information-theoretic
concepts, such as operator entanglement and entropy
production [27–29], quantum coherence [30], Loschmidt
echo [31], quasiprobabilities [32], multiple-quantum co-
herences [33], among others [34–36]. In several of these
studies, the OTOCs were averaged over an appropri-
ate class of randomly distributed operators, thereby
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extracting features of the OTOC that are independent
of the specific choice of operators involved, manifesting
instead the typical features of the class of operators.
These results suggest that the averaged OTOC is a
promising tool for investigating scrambling properties
of dynamical systems, revealing connections to many-
body phenomena such as integrability, localization, and
quantum chaos.

Ref. [37] considers unitary dynamics and provides a
generalized formalism in which the notion of locality
is with respect to a generalized subsystem structure,
described by a ∗-closed unital algebra of observables.
This gives rise to a natural geometrical picture which
connects information scrambling to a distance between
algebras, while also conceptually unifying many of the
aforementioned results. In this paper, we provide a
quantitative framework for analyzing scrambling at the
algebra level when the evolution is allowed to be a unital
quantum channel (completely positive trace-preserving
map) in the Heisenberg picture, thus incorporating
open quantum system effects, e.g., decoherence.

Disentangling the contribution of environmental deco-
herence from unitary scrambling has been studied in
previous works using a host of ideas and techniques. To
this end, Ref. [28], by a subset of the current authors
introduced Haar averaged OTOCs for open quantum
systems, Ref. [35] introduced a quantum teleportation
based decoding protocol, Ref. [36] used the quantum
mutual information between the system and environ-
ment, and Ref. [38] introduced an interferometric and
weak-measurement based scheme, to list a few. These
works have focused on specific forms of environmental
decoherence or techniques to disentangle it from scram-
bling. Our algebraic approach, we believe, may provide
a much broader framework for this task.

This paper is structured as follows. In Section II, we
present general results (in the form of Propositions)
that combine and extend ideas of Refs. [27, 28, 30]. In
Section III, we treat analytically a few illustrative cases
of algebras and channels, that complement the general
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results and reveal the “competition” between decoher-
ence and information scrambling. In Section IV, we
study numerically the application of our tools in repre-
sentative open quantum spin chain models with selected
algebras that probe their respective physical properties.
In Section V, we conclude with a brief discussion of the
results. The detailed proofs of the technical results are
included in the Supplemental Material A.

II. THEORETICAL RESULTS

Let H ∼= Cd be a finite d-dimensional Hilbert space
representing a quantum system and L(H) be the space
of linear operators onH. The space L(H) endowed with
the Hilbert-Schmidt inner product 〈X,Y 〉 := Tr

[
X†Y

]
is a Hilbert space and the associated Hilbert-Schmidt
norm is the 2-norm ‖X‖2 :=

√
〈X,X〉. Quantum states

are identified as ρ ∈ L(H) with ρ ≥ 0 and Tr[ρ] = 1.

A. Preliminaries

The Schrödinger picture evolution of quantum states
is described by quantum channels, i.e., completely pos-
itive trace-preserving (CPTP) superoperators E† on
L(H). The Heisenberg picture evolution of observ-
ables is described by the adjoint channel E identified by
〈X, E†(Y )〉 = 〈E(X), Y 〉. Since E† is completely posi-
tive (CP) & trace-preserving, it follows that E is CP &
unital (namely the identity is a fixed point). Although
the concepts presented in the paper largely do not de-
pend on this, it is convenient to assume that E† is also
unital, which means that E is also trace-preserving.

Given a quantum channel E , the object we will use
to quantify scrambling dynamics is the norm of the
commutator [28]

CV,W (E) :=
1

2d
‖[E(V ),W ]‖22. (1)

To illustrate the intuition behind this quantity and the
connection with the OTOC, assume that V,W are local
operators that initially commute and the time evolu-
tion is unitary (E = Ut, where Ut(V ) ≡ Vt = U†t V Ut,
Ut ∈ L(H) are unitary operators depending on time t).
Then, under time evolution the support of Vt grows,
leading, after sufficient amount of time, to potential
non-commutativity with W , which is understood as
scrambling of information initially localized in the sup-
port of V . If in addition we assume that V,W are
unitaries, then

CV,W (Ut) = 1− 1

d
ReFV,W (Ut)

where

FV,W (Ut) :=
1

d
Tr
[
V †t W

†VtW
]

(2)

is the four point correlation function referred to as the
OTOC 1. Notice that, as the norm of the commutator

1 We focus on the infinite temperature case where the correlation

grows, the OTOC decays. If we allow for open system
dynamics, then CV,W (E) will also incorporate effects
of decoherence [28].

The main mathematical structures of interest are ∗-
closed unital algebras of observables A and their com-
mutants,

A′ = {Y ∈ L(H) | [X,Y ] = 0 ∀ X ∈ A} .

We denote the center of A as Z(A) := A∩A′. Note that
by virtue of the double commutant theorem (A′)′ = A
[39].

A fundamental structure theorem for C∗-algebras states
that there is an algebra-induced decomposition of H
into dZ = dimZ(A) blocks of the form [39]

H ∼= ⊕dZJ=1 C
nJ ⊗ CdJ ,

A ∼= ⊕dZJ=1 1nJ ⊗ L(CdJ ),

A′ ∼= ⊕dZJ=1 L(CnJ )⊗ 1dJ .

(3)

On account of the above decomposition,

dimH ≡ d =

dZ∑
J=1

nJdJ ,

dimA =

dZ∑
J=1

d2
J =: d(A),

dimA′ =

dZ∑
J=1

n2
J =: d(A′).

For any algebra A there exists a projection CP map PA,
such that P†A = PA, P2

A = PA, ImPA = A. Such a map
can be written in a Kraus operator sum representation
(OSR) form as

PA[•] =

d(A′)∑
γ=1

fγ • f†γ

where {fγ}d(A′)
γ=1 is a suitable orthogonal basis of A′ [37].

Similarly,

PA′ [•] =

d(A)∑
α=1

eα • e†α,

where {eα}d(A)
α=1 is a suitable orthogonal basis of A.

By virtue of the Cauchy-Schwarz inequality d2 ≤
d(A) d(A′). The equality is satisfied when dJ =
λnJ ∀J (for some λ ∈ Z), in which case we say that
the pair (A,A′) is collinear. We note that in the above
decomposition, the Hilbert space is broken into or-
thogonal blocks with a virtual (algebra induced) “local”
structure. These observations are exemplified by two
physically relevant choices of collinear algebras [37]: (i)
For dZ = 1, the algebra A induces a bipartition into

functions are over the Gibbs state ρβ=0 = 1
d
, hence the factor

of 1
d
.
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virtual subsystems, H ∼= Cn1 ⊗ Cd1 [40, 41].
(ii) For nJ = 1 ∀J , the algebra A induces a decomposi-
tion in super-selection sectors, H ∼= ⊕dZJ=1CdJ [42]. The
case of a maximal abelian algebra A (nJ = dJ = 1 ∀J)
is, in fact, intimately related to the study of the dy-
namical generation of quantum coherence [43, 44].

B. A-OTOC

We are now ready to define the main object of this
study, which we refer to as the A-OTOC.

Definition 1. Let E : L(H)→ L(H) be a unital CPTP
map. We define the open (averaged) A-OTOC as:

GA(E) :=
1

2d
EXA,YA′

[
‖[XA, E(YA′)]‖22

]
. (4)

where EXA,YA′ [•] :=
∫

Haar
[•] dXAdYA′ denotes averag-

ing over the Haar measures on the unitary subgroups of
operators in A and A′. Note that the above definition
is closely related to but distinct from the geometric
algebra anti-correlator (GAAC) introduced in Ref. [37]
for the case of unitary dynamics. The key difficulty
in generalizing the GAAC to open systems is that the
algebra structure is, in general, not preserved under
the mapping E(·). Hence, the geometric interpretation
of scrambling as a distance between algebras ceases to
be straightforward. However, as we will see through-
out this paper, the A-OTOC can help mitigate this
issue. First, it provides a natural generalization to open
quantum systems, capturing both scrambling and deco-
herence and hence generalizing the results of Ref. [28],
which was focused on the bipartite algebra case. Sec-
ond, when restricted to unitary dynamics and collinear
algebras, it turns out to be exactly equal to the GAAC,
thereby retaining the intuitive geometric notion of dis-
tance between algebras.

In order to perform the averaging in Eq. (4), we consider
the replica space, H⊗2 = H⊗H and let S denote the
swap operator between the two copies.

Proposition 1.

GA(E) =
1

d
Tr
[
S(1d2 − ΩA) E⊗2(ΩA′)

]
, (5)

where

ΩA :=

d(A)∑
α=1

eα ⊗ e†α,

ΩA′ :=

d(A′)∑
γ=1

fγ ⊗ f†γ ,

and {eα}d(A)
α=1 , {fγ}

d(A′)
γ=1 are suitable orthogonal bases

of A, A′ respectively.

Note that the orthogonal bases {eα}d(A)
α=1 , {fγ}

d(A′)
γ=1 are

defined up to unitary transformations. The doubled
Hilbert space in Eq. (5) is the usual cost one has to
pay when linearizing Eq. (4). In the special case of a
bipartite system H ∼= HA ⊗ HB (HA ∼= CdA , HB ∼=

CdB ) with A ∼= 1A⊗L(HB), A′ ∼= L(HA)⊗1B , the A-
OTOC reduces to the open (averaged) bipartite OTOC
[28] and if we further restrict to unitary dynamics
generated by Ut one recovers the bipartite OTOC [27],
which coincides with the operator entanglement of Ut
[45, 46]. The quantities ΩA, ΩA′ , while abstract at first
sight, provide the input of the algebra. For example, for
the bipartite case they reduce just to swaps between the
subsystem copies, ΩA = SBB′/dB , ΩA′ = SAA′/dA.

A corollary of Proposition 1 is that the A-OTOC can
be expressed in terms of 2-point correlation functions
as stated below.

Corollary 1.

GA(E) =
1

d

d(A′)∑
γ′=1

‖E(fγ′)‖22 −
1

d

d(A′)∑
γ,γ′=1

∣∣∣〈f̃†γ , E(fγ′)〉
∣∣∣2
(6)

where f̃γ :=
fγ
‖fγ‖2 is the normalized basis of A′.

This formula is practically useful as it allows the direct
computation of the A-OTOC for specific examples of
algebras and channels (Section III) and also suggests
how one could potentially measure the A-OTOC by a
“process tomography” of the channel E .
Decoherence and scrambling.— From Definition 1 we
can deduce that a sufficient condition for the A-OTOC
to vanish is that the channel E does not map elements of
A′ outside ofA′, i.e., commutativity withA is preserved
under time evolution. The following result shows that
the A′ invariance is also a necessary condition for the
vanishing of the A-OTOC.

Proposition 2.

GA(E) = 0⇔ E(A′) ⊆ A′ (7)

This suggests that theA-OTOC quantifies the deviation
of A′ from itself under the map E . Intuitively, if we
denote by A′ the relevant degrees of freedom of our
quantum system, then, as long as they are mapped
within the set, there is no scrambling of information
within the system. Indeed, this becomes apparent by
manipulating Eq. (5) into the following form.

Proposition 3.

GA(E) =
1

d

d(A′)∑
γ=1

(
‖E(fγ)‖22 − ‖PA′ E(fγ)‖22

)
=

1

d

d(A′)∑
γ=1

‖(I − PA′) E(fγ)‖22

(8)

The second formula in Eq. (8) shows that the quan-
tification we alluded to is obtained exactly by the
norm of the components of E(A′) that are in the or-
thogonal complement of A′. In addition, the first
formula in Eq. (8) breaks the A-OTOC into two
terms, G(1)

A (E) := 1
d

∑d(A′)
γ=1 ‖E(fγ)‖22 and G

(2)
A (E) :=

1
d

∑d(A′)
γ=1 ‖PA′ E(fγ)‖22. Similar to Ref. [28], we asso-

ciate the first term with decoherence effects and the
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second term with information scrambling inside the
system. Notice that indeed the decoherence term is
in general upper bounded by one and is exactly equal
to one if we restrict to unitary dynamics, where there
is no decoherence. Thus, decoherence and scrambling
have competing roles in the A-OTOC, which roughly
corresponds to information (as seen by A′) becoming
inaccessible, even if the system is otherwise maximally
scrambling. This observation will become explicit in the
physical example of stabilizer algebras and dephasing
channels in Sec. III. This type of competition between
information scrambling and decoherence in OTOCs has
been previously studied in terms of the mutual informa-
tion for the case of a Hilbert space that is bipartitioned
in subsystems [35, 36]. Other approaches for isolat-
ing only the information scrambling in the presence of
environmental noise involve attempts to "normalize"
the information scrambling term [47] and time-reversal
experimental protocols that account for imperfections
[38, 48].

As a corollary of Proposition 3, we can express the
scrambling term of the A-OTOC in terms of out-of-
time-ordered four point correlation functions involving
structural elements of the pair (A,A′).
Corollary 2.

G
(2)
A (E) =

1

d

d(A′)∑
γ=1

d(A)∑
α=1

Tr
[
E(fγ)† e†α E(fγ) eα

]
(9)

This recovers an analog expression of Eq. (2) in the
framework of theA-OTOC, where the out-of-time-order
correlation function now contains uniform contributions
from all choices of operators in some bases of A and
A′. Since the OTOC FV,W is related to information
scrambling in terms of the local structure of V and W ,
the term G

(2)
A is understood to relate to the average in-

formation scrambling in terms of the structure induced
by the pair (A,A′).
Upper bound, GAAC, & typical value.— Given an
algebra A, a natural question concerns the upper bound
of scrambling as quantified by the A-OTOC, which we
address in the following proposition.

Proposition 4.

GA(E) ≤ min

{
1− 1

d(A)
, 1− 1

d(A′)

}
(10)

Situations where the bound Eq. (10) is saturated, e.g.
the ones described in the collinear case below and the
examples in Section III, are identified with maximal
scrambling of the algebra degrees of freedom.

In order to understand the scrambling ability of open
quantum systems as characterized by the A-OTOC, it
is useful to first focus on the case of unitary channels. In
this case, we find that the double commutant theorem
and the unitary invariance of the 2-norm imply that
there is a simple relation when exchanging the role of
A and A′ as emphasized by the following result.

Proposition 5. For a unitary channel U [•] = U •U†
(U is a unitary operator on L(H)) it follows that

GA(U) = GA′(U†) (11)

Namely, for unitary dynamics, exchanging the role of
A ↔ A′ is akin to U ↔ U†. Furthermore, we find that
if A is collinear, then the A-OTOC coincides with the
GAAC.

Proposition 6. For the collinear case (dJ = λ nJ ∀J)
and a unitary channel U it follows that

GA(U) = G̃A(U) (12)

where 2

G̃A(U) = 1−
〈PA′ ,PU(A′)〉HS
‖PA′‖2HS

is the GAAC [37].

It follows that even though the definition of the
A-OTOC in Eq. (4) was an algebraic construction, by
restricting to unitary channels (and collinear algebras)
one recovers the geometrical intuition associated with
the GAAC, i.e., the distance between the commutant
and its dynamically evolved image. Note that the
GAAC was found to be upper-bounded by exactly the
same quantity as in Eq. (10) [37]. Moreover, for the
collinear case, the bound is achievable if and only if
PA′ U PA′ = T or PA U PA = T , where T [•] = Tr[•] 1d
is the completely depolarizing channel, whence from
the point of view of A (or A′) the degrees of freedom
are maximally scrambled.

To gain insights into the scrambling ability of unitary
dynamics, we consider the dynamics generated by the
ensemble of Haar random unitaries, also known as the
circular unitary ensemble (CUE) in the theory of ran-
dom matrices [49, 50]. For finite-dimensional systems,
they provide a natural proxy for “maximally scram-
bling” evolutions [12]. In particular, while local quan-
tum many-body systems cannot scramble information
as quickly, random unitaries provide an analytically
tractable case to quantitatively estimate how close a
quantum system is to maximally scrambling informa-
tion. It is important to note, however, that for the
bipartite case, namely, when A ∼= 1A ⊗ L(HB), locally
interacting, chaotic many-body systems can quickly
equilibrate near to the random matrix theory predicted
value, see, e.g., the numerical results in Refs. [27, 29].
To this end, we compute the typical value of the A-
OTOC for Haar unitary channels.

Proposition 7. The average of the A-OTOC over
Haar distributed unitary channels U is:

GA(U)
U

=

(
d2 − d(A)

) (
d2 − d(A′)

)
d2(d2 − 1)

(13)

The symmetry of this average value in A, A′ is a
direct consequence of Proposition 5. As anticipated

2 The superoperator space L(L(H)) is endowed with the inner
product 〈X ,Y〉HS := TrHS

[
X †Y

]
:=
∑d2

k=1〈X (Bk),Y(Bk)〉,
where {Bk}d

2

k=1 is an orthonormal basis of L(H). The corre-
sponding inner product norm is ‖X‖HS :=

√
〈X ,X〉HS .
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GA(U)
U

= 0 if and only if d(A) = d2 or d(A′) = d2,
in which cases A′ = C1 and A′ = L(H) respectively,
implying that A′ is (trivially) unitarily invariant. No-
tions of A-chaoticity can emerge by comparing typical
values as in Eq. (13) with infinite-time averages [37].

III. SPECIAL ALGEBRAS AND CHANNELS

In order to concretely illustrate our formalism, we will
now apply it to a few analytically tractable physical
choices of algebras and channels. To that end, given an
algebra A, we will use Eq. (6) to calculate the A-OTOC
for some channel E .

A. Maximal abelian subalgebras &
coherence-generating power

We consider the algebra AB of operators diagonal with
respect to an orthonormal basis B := {|µ〉}dµ=1, i.e.,
AB = {Pµ = |µ〉 〈µ|}dµ=1. This is a d-dimensional
maximal Abelian subalgebra of L(H), so as AB = A′B
(which on account of Eq. (3) corresponds to dJ = nJ =

1 ∀J). Then, one has {fγ}d(A′)
γ=1 = {Pµ}dµ=1, and thus

we find [51]

GAB (E) =
1

d

 d∑
µ=1

‖E(Pµ)‖22 −
d∑

µ,µ′=1

|Tr [Pµ′E(Pµ)]|2


=
1

d

d∑
µ=1

‖QB E(Pµ)‖22

(14)

where QB := 1− PAB is the projector on the orthogo-
nal complement of AB. The quantity in Eq. (14) is a
coherence generating power (CGP) [43, 51, 52] measure
for CP unital maps [53]. Operationally, the CGP ex-
presses the average coherence generated by the map E
on initially incoherent states (identified as states that
are B-diagonal). In Eq. (14) the averaging is taken
over the basis states |µ〉, i.e., the extremal points of
the simplex IB formed by the set of B-diagonal states
[53]. The CGP has been used as a signature of local-
ization transitions in many-body systems [52] and as a
diagnostic tool for quantum chaos [30].

Note that the bound 1 − d−1 of Eq. (10) can be
achieved by a unitary channel [43] E [•] = U • U† with
| 〈µ′|U |µ〉| = d−1/2, e.g., a unitary that is mutually
unbiased with respect to the basis B [54].

Let us specify E in two physically relevant examples
of Lindbladian dynamics Et = eLt for the case of n-
qubit systems H ∼= C2⊗n (d = 2n). These examples
illustrate effects of open dynamics, similarly observed
in the bipartite case [28].

Example 1. Consider the Lindbladian

L1 = AdM − I

where AdM [•] := M •M†, M ≡ H⊗n0 and H0 is the
Hadamard gate. Then, M = M† = M−1 and, letting

B be the computational basis, | 〈µ′|M |µ〉| = 2−n/2. By
direct exponentiation, one then finds that the evolution
is the convex combination

E1t = α(t) I + β(t)AdM

with α(t) =
(
1 + e−2t

)
/2, β(t) =

(
1− e−2t

)
/2. Then,

the A-OTOC becomes

GAB (E1t) = β2(t)

(
1− 1

2n

)
The evolution is, by construction, a convex combination
of the identity and a unitary evolution generated by M
with time dependent probabilities. The identity evo-
lution is non-scrambling, while the evolution by AdM
is maximally scrambling. For t→ 0 only the identity
evolution is present, whereas for t→∞ both evolutions
become equiprobable. The resulting A-OTOC depends
only on the AdM evolution, starting from zero and
tending asymptotically to

GAB (E∞) =
1

4

(
1− 1

2n

)
.

Example 2. Consider the Lindbladian

L2 = i adH + λ(DH − I)

where adH[•] := [H, •] corresponds to a Hamiltonian
evolution and DH [•] =

∑2n

i=1 Πi •Πi is dephasing gen-
erated by one-dimensional eigenprojectors Πi of H. By
exponentiation, one finds that the evolution is a convex
combination of a unitary channel and dephasing

E2t = a(t) eit adH + (1− a(t))DH

with a(t) = e−λt. Letting B be the computational
basis, we assume that H = σ⊗nx , where σx is the x
Pauli operator, and thus Tr [PµΠi] = 2−n. Then, the
A-OTOC becomes

GAB (E2t) = a2(t)GAB (eit adH)

Furthermore, we have H2 = 1 and 〈µ′|H|µ〉 = δµ′µ̄,
where |µ̄〉 ≡ H |µ〉. Then,

GAB (E2t) = a2(t)
sin2(2t)

2

which corresponds to damped oscillations.

B. Projector algebra & Loschmidt echo

Let |ψ〉 ∈ H be a quantum state. We consider the alge-
bra ALE of operators that leave the subspace C |ψ〉 and
its orthogonal complement invariant. Then, A′LE =
C{1,Π = |ψ〉 〈ψ|}3 is the unital ∗-closed algebra gener-
ated by Π. One then has {fγ}d(A′)

γ=1 = {Π,1−Π}, and
thus we find:

GALE (E) =
2

d

(
‖E(Π)‖22 −

L2(dL2 − 2) + 1

d− 1

)
(15)

3 CG denotes the group algebra of G
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J Sg1 Sg2 . . . Sgn−k−1 S
g
n−k

1 + + . . . + +
2 + + . . . + −
...

...
...

...
...

...
2n−k − − . . . − −

Table I: Irreducible representations of stabilizer group.
Each irrep J is characterized by the 1-dimensional rep-
resentation of the n − k stabilizers, that generate the
stabilizer group ({Sµ}2

n−k
µ=1 = 〈Sgα〉n−kα=1).

where L2 := Tr [Π E(Π)] and reduces to a Loschmidt
echo for unitary dynamics. In Section IV, we analyze
Eq. (15) in the context of quantum many-body scars
[55, 56]. The maximum value of Eq. (15) as a function of
L2 is 2/d (‖E(Π)‖22−1/d) and is achieved for L2 = 1/d,
which corresponds to the intuition of |ψ〉 being scram-
bled into an equal weight superposition in some basis
of L(H). The bound 1/2 of Eq. (10) is achievable only
for d = 2 and is realized by E(Π) = 1/d

∑d
i,j=1 |i〉 〈j|,

where {|i〉}di=1 is an orthonormal basis of L(H) contain-
ing |ψ〉.

C. Stabilizer algebra & Dephasing

Let {Sµ}2
n−k

µ=1 be a stabilizer group identified as an
Abelian subgroup of the n-qubit (d = 2n) Pauli group
such that S2

µ = 1 ∀µ [57]. We consider the algebra Ast,
such that A′st = C{Sµ}2

n−k

µ=1 . Then, the Hilbert space
decomposes into 2k-dimensional sectors H ∼= ⊕2n−k

J=1 C2k

and Ast contains all the stabilizers and additionally all
logical-error operators of the corresponding stabilizer
code. The stabilizers act as scalars on each sector
(see Table I). We consider a dephasing channel D[•] =∑d

i=1 Πi •Πi generated by rank-1 orthogonal projectors
. Denoting as 1J the restriction of the identity onto
the irrep J , we have {fγ}d(A′)

γ=1 = {1J}2
n−k

J=1 . This is

unitarily equivalent to {f̂δ}d(A′)
δ=1 = {Sµ/2(n−k)/2}2n−kµ=1 ,

which contains an element proportional to the identity
(see Eq. (A26)). Using the latter orthogonal basis of
A′st, the expression for the A-OTOC is

GAst(D) =
2k

22n

2n−k∑
µ=1

〈Sµ,D(Sµ)〉

− 2k

23n

2n−k∑
µ,µ′=1

|〈Sµ′ ,D(Sµ)〉|2
(16)

For simplicity, let us make a specific choice for the
dephasing operators. For each irrep J of the stabilizer
group we choose χ of the Πi’s to project onto a state
in J , while the rest 2n − 2n−k χ of the Πi’s to project
onto a uniform superposition of states from each irrep.
Then,

GAst(Dχ) =

(
1− 2k

2n

)
χ

2k

(
1− χ

2k

)
(17)

The A-OTOC depends on the ratio χ
2k

and is directly
related to the average information obtained for Ast by

measuring the stabilizers A′st and knowing the form
of the channel Dχ. Notice that the result does not
depend on the choice of states on each irrep J , as A′st
is insensitive to transformations inside an irrep (logical
errors). Moreover, the A-OTOC is zero if χ = 2k or
χ = 0. The former case is a model that contains only
logical errors and from the perspective of A′st this is
equivalent to no scrambling; in this case both terms
in Eq. (16) are equal to one. The latter case is a
model of “white noise”, where all states are projected
to equivalent (from the perspective of A′st) superpo-
sitions; in this case both terms in Eq. (16) equal to
2k/2n. Despite the scrambling being intuitively maxi-
mal, decoherence (from the perspective of A′st) is also
maximal. As a result, the A-OTOC vanishes, thereby
showing a competition between information scrambling
and decoherence in accordance with observations in the
case of a bipartite algebra [28, 35, 36].

IV. QUANTUM SPIN-CHAIN MODELS

As a physical application of the A-OTOC formalism,
we consider representative spin-chain models with open
system dynamics, which are a result of system-bath
interactions. For systems where the bath is Markovian,
the system evolution is described by a continuous, one-
parameter family of dynamical maps 4 Et = etL, t ≥ 0
generated by the Lindbladian [58]

L[•] = i[H†, •] +
∑
j

(
L†j • Lj −

1

2
{L†jLj , •}

)
(18)

where H is the Hamiltonian and {Lj}j are the Lindblad
operators that describe the system-bath interactions.

To numerically simulate the evolution, we vectorize
the Hilbert-Schmidt space [59] and the Linbladian L is
represented in matrix form as

L .−→ i
(
1⊗H† −H∗ ⊗ 1

)
+
∑
j

(
LT
j ⊗ L

†
j

−1

2
1⊗ L†jLj −

1

2
LT
j L
∗
j ⊗ 1

)
(19)

where XT and X∗ denote the matrix transpose and
matrix conjugate of X, respectively.

A. PXP model

We consider a 1D spin-1/2 chain model with N sites, pe-
riodic boundary conditions and Hamiltonian dynamics
given as:

HPXP = J
N∑
j=1

Pj−1σ
x
j Pj+1 (20)

where Pj :=
(
1− σzj

)
/2 and {σαj }α=x,y,z are the Pauli

operators. In our numerical simulations, we set J = 1,

4 Note that this is the Heisenberg picture evolution map.
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Figure 1: Temporal variation of the A-OTOC GA(E) for the PXP model with N = 14 and A′ = C{1,Π} for (a)
Π = |Z2〉 〈Z2|, (b) Π = |0〉 〈0| and varying dissipation strengths α, γ. The characteristic periodic recurrences of scar
dynamics are present in Fig. 1a, but are increasingly suppressed as we scale up α, γ, obfuscating the distinction with
the thermal behavior in Fig. 1b.
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Figure 2: Temporal variation of the separated terms G(1)
A (E) = 1

d

∑d(A′)
γ=1 ‖E(fγ)‖22, G

(2)
A (E) = 1

d

∑d(A′)
γ=1 ‖PA′ E(fγ)‖22 for

the PXP model with N = 14 and A′ = C{1,Π} for (a) Π = |Z2〉 〈Z2|, (b) Π = |0〉 〈0| and varying dissipation strengths
α, γ. After a time-scale that depends on the system-environment coupling the open system effects dominate and the
scrambling is “saturated”.

which sets the energy scale of the Hamiltonian, and
in turn the timescale of the dynamics. This model
is relevant in Rydberg atom experiments [60] in the
limit of Rydberg blockade [61, 62]. The projectors Pj
effectively truncate the Hilbert space so as to exclude
states with neighboring excitations (here corresponding
to |↑〉). Scrambling properties of the PXP model were
recently studied using OTOCs for specific choices of
local observables [63].

In terms of level-statistics the PXP Hamiltonian was
shown to exhibit level repulsion [55], a characteristic of
non-integrable systems. However, the system exhibits
weak ergodicity breaking that has been associated with
a small set of special many-body eigenstates (scars)
[55, 64]. Specifically, quenching the system from states
inside the scar subspace leads to revivals of the wave-
function and local observable correlations. A proto-
typical example is the Neél state |Z2〉 := |↑↓↑↓ · · ·〉,
which was shown to have an unusually large overlap
with the scar eigenstates compared to eigenstates with
similar energy E, violating the strong eigenstate ther-
malization hypothesis (ETH) [65, 66] conjectured for
quantum ergodic systems. On the contrary, other ini-
tial sates, like the ferromagnetic state |0〉 := |↓↓ · · ·〉,
quickly thermalize without revivals [64]. Generally, this
scar behavior is sensitive to perturbations, which can

make the model integrable [67] or thermalizing [64],
although some robustness is exhibited with respect to
disorder [68].

We consider Lindbladian dynamics of Eq. (18), with
Lindblad operators corresponding to bulk-dephasing
L

(z)
j =

√
ασzj and bulk-driving L±j =

√
γ σ±j , where

σ±j = 1/2
(
σxj ± i σ

y
j

)
. Simulating exact dynamics for

N = 14, we compute the corresponding A-OTOCs
as a function of time for the algebra ALE with Π =
|Z2〉 〈Z2| and Π = |0〉 〈0|. As we increase the system-
bath couplings α,γ, we observe that the A-OTOC starts
decaying from its closed system value (α = γ = 0) due
to open system effects (Fig. 1). At the same time, the
scar dynamics (revivals) that clearly distinguish the
scar from the thermal dynamics in the closed system
case are still present but become less apparent as we
scale α and γ.

Given the intuition following Proposition 3, we com-
pute the terms G

(1)
A (Et) = 1

d

∑d(A′)
γ=1 ‖E(fγ)‖22 and

G
(2)
A (Et) = 1

d

∑d(A′)
γ=1 ‖PA′ E(fγ)‖22 separately in Fig. 2.

We observe that the decoherence term G
(1)
A (Et) provides

an enveloping function to the information scrambling
term G

(2)
A (Et). After a certain timescale, the distance

between the functions diminishes and the system (in
terms of scrambling of the algebra degrees of freedom)
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Figure 3: (a) Temporal variation of the scrambling term G
(2)
A (Et) = 1

d

∑d(A′)
γ=1 ‖PA′ E(fγ)‖22 of λ-perturbed DFS sub-

space algebras for the Heisenberg XXX model with collective decoherence and N = 6, α = γ = 0.05. G(2)
A (Et) exhibits

a decaying oscillatory behavior and as we scale up the rotation strength λ, the long-time limit decreases (which cor-
responds to increased scrambling). (b) The long-time average of the G(2)

A (Et) depends quadratically on the rotation
strength λ, showing a first-order stability of the DFS in terms of information scrambling.

becomes “saturated”, in the sense that open system
effects have dominated and the interesting information
scrambling behavior is suppressed.

B. Heisenberg model & DFS

Consider the Hamiltonian of a 1D spin-1/2 Heisen-
berg XXX model with N sites and periodic boundary
conditions

HXXX = J
N∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1 + σzjσ

z
j+1

)
(21)

In our numerical simulations, we set J = 1, which sets
the energy scale of the Hamiltonian, and in turn the
timescale of the dynamics.

Let us assume that the evolution is described by Lind-
bladian dynamics as in Eq. (18) with Lindblad opera-
tors corresponding to collective decoherence L(z) =√
α
∑N
j=1 σ

z
j , L

(±) =
√
γ
∑N
j=1 σ

±
j . Then, for even

N there exists a decoherence-free subspace (DFS)
[69–71] spanned by the spin=0 eigenstates of S2 :=∑
α=x,y,z

(∑N
j=1 σ

α
j

)2

. In fact, the underlying struc-
ture is exactly as in Eq. (3), where J now labels the
irreducible representations of sl(2) on C⊗N and the
DFS simply corresponds to the singlets J = 0.

We consider the unital algebra of observables ADFS
that act non-trivially only on the orthogonal comple-
ment of the DFS. Then, for the commutant A′DFS we
have the orthogonal basis

{fγ}
d2D+1
γ=1 =

{
1⊥,
|p〉 〈q|√
dD

}dD
p,q=1

where {|p〉}dDp=1 is an orthonormal basis of the DFS
and 1⊥ := 1 −

∑dD
p=1 |p〉 〈p|. We also consider

λ-perturbed algebras defined by unitary rotations
U(λ) := exp{i

∑N
j=1 λ~ηj · ~σj} via |pλ〉 := U(λ) |p〉,

where ~ηj is a uniformly distributed vector on the unit

sphere in R3 and ~σj ≡ (σxj , σ
y
j , σ

z
j ). The free parameter

λ provides a simple representation of departure from
exact DFS dynamics due to model inaccuracies. Simu-
lating exact dynamics for N = 6, we compute the cor-
responding scrambling terms G(2)

A (Et) of the A-OTOCs
as functions of time for various values of λ. Naturally,
for λ = 0 there is no scrambling, as the DFS is invari-
ant under both the Heisenberg XXX Hamiltonian and
collective decoherence and thus G(2)

A (Et) is constant in
time. As λ is scaled up, effects of decoherence and infor-
mation scrambling strengthen and G(2)

A (Et) exhibits a
decaying oscillatory behavior (Fig. 3a). In the long-time
limit the system generally transitions to fixed points
that are not entirely in the λ-perturbed subspace. As
an example, for N = 2, the singlet is invariant, the diag-
onal elements of the triplet subspace transition to 1⊥,
while all non-diagonal elements vanish. As we increase
λ, the λ-perturbed algebra of observables moves further
from the fixed points, leading to increased scrambling
under evolution (which corresponds to the decreased
long-time limit of G(2)

A (E)).

In order to gauge the stability of the DFS in the λ-
perturbation, we time average G(2)

A (Et) for each λ in
the time interval [0, 30] using a time-step ∆t = 0.075.

We find that G(2)
A (Et)

t

depends quadratically on the
parameter λ (Fig. 3b), which shows a first-order stabil-
ity of the DFS in terms of scrambling. This result is in
accordance with previous stability considerations under
addition of symmetry-breaking Hamiltonian terms [71].

V. CONCLUSION

In this paper, we have established a formalism for quan-
titatively describing scrambling at the level of algebras
of observables in open quantum systems. In doing so,
we have defined an algebraic (averaged) out-of-time-
order correlator, termed the A-OTOC, generalizing the
open bipartite OTOC to arbitrary algebras of observ-
ables that correspond to the relevant physical quantities
of interest of the system. Explicit analytic calculations
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showed that the A-OTOC quantifies the degree of de-
viation of A′ from its dynamically evolved image E(A′)
(Proposition 3) and allowed for the identification of
a competing role of the effects of decoherence and
information scrambling in the A-OTOC. For unitary
dynamics and a collinear algebra, we have shown that
the A-OTOC is exactly equal to the geometric algebra
anti-correlator [37]. We also computed its typical value
for Haar random unitaries, thereby providing a quanti-
tative estimate for the A-OTOC in chaotic quantum
systems, which, after an initial transient, are expected
to equilibrate to this random matrix theory value.

Additionally, we have studied concrete, physically mo-
tivated examples of algebras and channels, showing
that the A-OTOC recovers, as special cases, the open-
system extensions of information-theoretic notions like
the coherence-generating power (CGP) and Loschmidt
echo. Analytic calculations for a stabilizer algebra,
as well as numerical simulations for the Loschmidt
echo algebra, demonstrate how decoherence, after a
certain timescale, suppresses the signatures of informa-
tion scrambling. The competing effects are described
by separated terms, with “saturation” occurring when
open system effects dominate. A concrete manifestation
of this phenomenon was observed in the PXP model,
where the characteristic revivals related to the quan-
tum scars are suppressed as open dynamics become
predominant. In addition, we have analyzed subspace
algebras for the Heisenberg XXX model with collective
decoherence, where the subspaces are obtained by uni-
tary rotations of the decoherence-free subspace (DFS)
and determined that the DFS is stable to first-order

in terms of the time averaged scrambling term of the
A-OTOC.

A worthwhile direction for future investigation is the
detailed characterization of the separate contributions
of decoherence and information scrambling in the gen-
eralized framework introduced in this paper, so that
one can disentangle their contributions, both in prin-
ciple and in experimental setups. Additionally, it is
of interest to consider the role of the A-OTOC frame-
work in general classifications of ergodicity-breaking
in physical models, e.g., with regards to the spectrum-
generating algebra of scar systems [56] or Hilbert space
fragmentation [72].
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Appendix A: Supplemental Material

1. Proof of Proposition 1

Note that for a CPTP map E(Y )† = E(Y †). Then, Eq. (4) can be rewritten as:

GA(E) =
1

d
EXA,YA′

[
Tr
[
E(Y †A′) E(YA′)

]
− Re

(
Tr
[
XA E(YA′)X

†
A E(Y †A′)

])]
(A1)

where XA ∈ A, YA′ ∈ A′ and EXA,YA′ denotes averaging over the Haar measures on the unitary subgroups of
operators in A and A′. Letting S denote the swap operator in the replica space H⊗2 = H⊗H and recalling the
“replica trick”:

Tr [S (M ⊗N)] = Tr [MN ] (A2)

we have further

GA(E) =
1

d

(
Tr
[
S E⊗2

(
EYA′

[
YA′ ⊗ Y †A′

])]
− Tr

[
SEXA

[
XA ⊗X†A

]
E⊗2

(
EYA′

[
YA′ ⊗ Y †A′

])])
≡ 1

d
Tr
[
S(1d2 − ΩA) E⊗2(ΩA′)

]
(A3)

where ΩA := EXA
[
XA ⊗X†A

]
, ΩA′ := EYA′

[
YA′ ⊗ Y †A′

]
. We now use the following result:

EQ
[
Q⊗Q†

]
=
S

d
(A4)

A proof of this result is as follows. Left invariance of the Haar measure implies that for any linear operators
M,U ∈ L(H) where U is unitary, we have that

[
U,EQQMQ†

]
= 0 and as a consequence of Schur’s lemma:

EQQMQ† =
Tr[M ]

d
1d (A5)

By direct computation one can also show that:

Tr2 [S (M ⊗ 1d) S] = Tr2 [1d ⊗M ] = Tr[M ] 1d (A6)

Tr2

[
(Q⊗Q†)(M ⊗ 1d) S

]
= QMQ† (A7)

where Tr2 denotes the partial trace over the second copy of H⊗H. Eq. (A4) then follows by combining Eq. (A5),
(A6), (A7). Note that left invariance of the Haar measure also implies that:

EQQ = 0 (A8)

In our case, we have XA ∈ A, which means that XA = ⊕dZJ=11nJ ⊗XdJ . So:

ΩA = EXA
[
XA ⊗X†A

]
= EXA

[
⊕dZJ,J ′=11nJ ⊗XdJ ⊗ 1nJ′ ⊗X

†
dJ′

]
= ⊕dZJ=1 EXdJ

[
1nJ ⊗XdJ ⊗ 1nJ ⊗X

†
dJ

]
⊕dZJ 6=J′=1 EXdJ ,XdJ′

[
1nJ ⊗XdJ ⊗ 1nJ′ ⊗X

†
dJ′

]
∼= ⊕dZJ=11

⊗2
nJ EXdJ

[
XdJ ⊗X

†
dJ

]
⊕dZJ 6=J′=1 1nJ ⊗ 1nJ′ EXdJ′

[(
EXdJXdJ

)
⊗X†dJ′

]
(A4),(A8)
=== ⊕dZJ=11

⊗2
nJ ⊗

SdJ
dJ

(A9)

By virtue of the structure theorem Eq. (3) we can choose the following orthogonal basis of A

eα =
1nJ√
dJ
⊗ |k〉 〈l| , α := (J, l,m), l,m = 1, . . . , dJ , J = 1, . . . , dZ (A10)

Then,

d(A)∑
α=1

eα ⊗ e†α = ⊕dZJ=1

dJ∑
k,l=1

1nJ√
dJ
⊗ |k〉 〈l| ⊗ 1nJ√

dJ
⊗ |l〉 〈k| ∼= ⊕dZJ=11

⊗2
nJ ⊗

SdJ
dJ

(A11)

Comparing Eq. (A9), (A11) we get

ΩA =

d(A)∑
α=1

eα ⊗ e†α ∼= ⊕
dZ
J=11

⊗2
nJ ⊗

SdJ
dJ

(A12)
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Similarly,

ΩA′ =

d(A′)∑
γ=1

fγ ⊗ f†γ ∼= ⊕
dZ
J=1

SnJ
nJ
⊗ 1⊗2

dJ
(A13)

where fγ is an orthogonal basis of A′ given as

fγ = |p〉 〈q| ⊗ 1dJ√
nJ
, γ := (J, p, q), p, q = 1, . . . , nJ , J = 1, . . . , dZ (A14)

Note that the orthogonal bases in Eq. (A10), (A13) are defined up to unitary transformations and are suitable for
expressing the projectors on A′, A in an OSR as PA′ [•] =

∑d(A)
α=1 eα[•]e†α, PA[•] =

∑d(A′)
γ=1 fγ [•]f†γ .

2. Proof of Corollary 1

Using Eq. (A12) we have

ΩA ∼= ⊕dZJ=11
⊗2
nJ ⊗

SdJ
dJ

= S ⊕dZJ=1

SnJ
dJ
⊗ 1⊗2

dJ
∼= S

d(A′)∑
γ=1

f̃γ ⊗ f̃†γ (A15)

where f̃γ :=
fγ
‖fγ‖2 . Then, from Eq. (5) we have

GA(E) =
1

d
Tr

S
1− S

d(A′)∑
γ=1

f̃γ ⊗ f̃†γ

 d(A′)∑
γ′=1

E(fγ′)⊗ E(f†γ′)


=

1

d

d(A′)∑
γ′=1

Tr
[
S E(fγ′)⊗ E(f†γ′)

]
−
d(A′)∑
γ=1

Tr
[
f̃γ E(fγ′)⊗ f̃†γ E(f†γ′)

]
=

1

d

d(A′)∑
γ′=1

‖E(fγ′)‖22 −
1

d

d(A′)∑
γ,γ′=1

∣∣∣〈f̃†γ , E(fγ′)〉
∣∣∣2 (A16)

3. Proof of Proposition 2

Using the definition Eq. (4):

GA(E) = 0⇔ EXA,YA′ ‖[XA, E(YA′)]‖22 = 0⇔ ‖[X, E(Y )]‖22 = 0

⇔ [X, E(Y )] = 0 ∀ X ∈ U(A), Y ∈ U(A′) (A17)

Since every finite dimensional C∗-algebra is ∗-isomorphic to the direct sum of full matrix algebras [39], it follows
that one can always find a unitary basis for A, A′, thus Eq. (A17) is equivalent to

GA(E) = 0⇔ [M, E(N)] = 0 ∀M ∈ A, N ∈ A′

⇔ E(A′) ⊆ A′
(A18)

4. Proof of Proposition 3

Using Eq. (A12), (A13) in Eq. (5) we have

GA(E) =
1

d

d(A′)∑
γ=1

Tr

S
1d2 − d(A)∑

α=1

eα ⊗ e†α

 E⊗2

d(A′)∑
γ=1

fγ ⊗ f†γ


=

1

d

d(A′)∑
γ=1

Tr
[
S E(fγ)⊗ E(f†γ)

]
−
d(A)∑
α=1

Tr
[
S eαE(fγ)⊗ e†αE(fγ)†

]
=

1

d

d(A′)∑
γ=1

(〈E(fγ), E(fγ)〉 − 〈E(fγ),PA′ E(fγ)〉) (A19)
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Since PA′ is an orthogonal projector 〈(I − PA′) E(fγ),PA′ E(fγ)〉 = 0 and Eq. (A19) becomes

GA(E) =
1

d

d(A′)∑
γ=1

(
‖E(fγ)‖22 − ‖PA′ E(fγ)‖22

)
(A20)

On the other hand Eq. (A19) also yields

GA(E) =
1

d

d(A′)∑
γ=1

〈E(fγ), (I − PA′) E(fγ)〉

=
1

d

d(A′)∑
γ=1

‖(I − PA′) E(fγ)‖22 (A21)

5. Proof of Corollary 2

From Eq. (A20) we have

G
(2)
A (E) =

1

d

d(A′)∑
γ=1

‖PA′ E(fγ)‖22 =
1

d

d(A′)∑
γ=1

〈E(fγ),PA′ E(fγ)〉

=
1

d

d(A′)∑
γ=1

d(A)∑
α=1

Tr
[
E(fγ)† e†α E(fγ) eα

]
(A22)

6. Proof of Proposition 4

Recall that any unital, positive, trace-preserving map T is contractive for the p-norm 5 ∀ p ∈ [1,∞] in the sense
that supX

‖T (X)‖p
‖X‖p ≤ 1 [74]. Since E is a unital CPTP map, this in particular implies that

‖E(X)‖2 ≤ ‖X‖2 ∀ X ∈ L(H) (A23)

Moreover, as a direct consequence of
∥∥X − TrX

d 1d
∥∥2

2
≥ 0 we have

‖X‖22 ≥
|TrX|2

d
∀ X ∈ L(H) (A24)

Finally, recall that the Cauchy-Schwarz inequality implies that d2 ≤ d(A′) d(A). Using the above observations in
Eq. (A20)

GA(E) ≤ 1

d

d(A′)∑
γ=1

‖fγ‖22 −
1

d

d(A′)∑
γ=1

|Tr [PA′ E(fγ)]|2

d

=
1

d

d(A′)∑
γ=1

Tr
[
f†γfγ

]
− 1

d

d(A′)∑
γ=1

∣∣∣Tr
[∑d(A)

α=1 eαE(fγ)e†α

]∣∣∣2
d

=
1

d
Tr

[
dZ∑
J=1

nJ∑
p,q=1

1
√
nJ
f(Jqq)

]
− 1

d

d(A′)∑
γ=1

∣∣∣Tr
[∑dZ

J=1

∑dJ
k,l=1 E(fγ) 1√

dJ
e(Jll)

]∣∣∣2
d

=
1

d
Tr[1d]−

1

d

d(A′)∑
γ=1

|Tr [E(fγ)1d]|2

d
= 1− 1

d

d(A′)∑
γ=1

|Tr fγ |2

d
= 1− d(A)

d2
≤ 1− 1

d(A′)
(A25)

On the other hand consider a unitary transformation êβ :=
∑d(A)
α=1 (U)αβ eα of the basis in Eq. (A10), given by a

unitary U such that (U)(Jkl)1 =
√

dJ
d(A)δkl. This is a valid choice since

∑
(Jkl)(U

†)1(Jkl)(U)(Jkl)1 = 1, as it should

5 The (Schatten) p-norm [73] is defined as ‖X‖p :=
(∑

i s
k
i

)1/k,
where {si}i are the singular values of X.
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for a unitary matrix. Then,

ê1 =

dZ∑
J=1

dJ∑
k,l=1

√
dJ
d(A)

δkl
1nJ√
dJ
⊗ |k〉 〈l| = 1d√

d(A)
(A26)

Moreover, expressing

1nJ =

nJ∑
n(J)=1

∣∣∣n(J)
〉〈

n(J)
∣∣∣ , 1dJ =

dJ∑
d(J)=1

∣∣∣d(J)
〉〈

d(J)
∣∣∣ , E [•] =

∑
δ

Kδ •K†δ

and using Eq. (A10), (A14) one can find after some algebra that

d(A′)∑
γ=1

Tr
[
êβE(fγ)ê†βE(f†γ)

]
=

=

dZ∑
J=1

∑
δ,δ′

dJ∑
d(J),d′(J)=1

1

nJ

∣∣∣∣∣∣
dZ∑
J′=1

d(A)∑
k,l=1

d(A′)∑
p=1

nJ∑
n(J′)=1

(U)(J′kl)β√
dJ′

〈
n(J′), l

∣∣∣Kδ

∣∣∣p, d(J)
〉 〈

p, d′
(J)
∣∣∣K†δ′ ∣∣∣n(J′), k

〉∣∣∣∣∣∣
2

≥ 0 ∀β

Then, using Eq. (A20), (A22) with the basis êβ and Eq. (A23) we obtain

GA(E) ≤ 1

d

d(A′)∑
γ=1

‖E(fγ)‖22 −
1

d

∑
γ=1

Tr[E(fγ)†ê†1E(fγ)ê1]

=
1

d

d(A′)∑
γ=1

‖E(fγ)‖22 −
1

d d(A)

∑
γ=1

Tr
[
E(fγ)†E(fγ)

]
=

(
1

d
− 1

d d(A)

) d(A′)∑
γ=1

‖E(fγ)‖22

≤
(

1

d
− 1

d d(A)

) d(A′)∑
γ=1

‖fγ‖22 = 1− 1

d(A)
(A27)

From Eq. (A25), (A27) it follows that GA(E) ≤ min
{

1− 1
d(A) , 1− 1

d(A′)

}
.

7. Proof of Proposition 5

This follows from the fact that [XA,U(YA′)] = −U
(
[YA′ ,U†(XA)]

)
, the unitary invariance of the 2-norm and the

double commutant theorem. Using the definition Eq. (4)

GA(U) : =
1

2d
EXA,YA′ ‖[XA,U(YA′)]‖22 =

1

2d
EXA,YA′

∥∥−U ([YA′ ,U†(XA)]
)∥∥2

2

=
1

2d
EXA,YA′

∥∥[YA′ ,U†(XA)]
∥∥2

2
= GA′(U†) (A28)

8. Proof of Proposition 6

Note from Eq. (A10) that {eα} is †-closed, which implies that S ΩA S = Ω†A = ΩA ⇔ [S,ΩA] = 0. Also, clearly
[S,U⊗2] = 0. Finally, for the collinear case and using Eq. (A13), (A15) we have

ΩA′ = ⊕dZJ=11
⊗2
dJ
⊗ SnJ

nJ
= ⊕dZJ=1λ1

⊗2
dJ
⊗ SnJ

dJ
=

d

d(A′)
S ΩA

Then, using (A3) we find

GA(U) =
1

d
Tr
[
S(1d2 − ΩA) U⊗2(ΩA′)

]
=

1

d
Tr

[
S (1d − ΩA) U⊗2

(
d

d(A′)
S ΩA

)]
=

1

d(A′)
(
Tr
[
U⊗2(ΩA)

]
− Tr

[
ΩA U⊗2(ΩA)

])
= 1− 1

d(A′)
〈
ΩA,U⊗2(ΩA)

〉
(A29)
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where in the last line we also used that from Eq. (A12)

Tr
[
U⊗2(ΩA)

]
= Tr ΩA = Tr

[
⊕dZJ=11

⊗2
nJ ⊗

SdJ
dJ

]
=

dZ∑
J=1

n2
J = d(A′)

The last expression in Eq. (A29) coincides with Eq. (4) for the GAAC in Ref. [37].

9. Proof of Proposition 7

By Schur-Weyl duality the commutant of the algebra K generated by {M⊗2 |M ∈ L(H)} is K′ = CS2, where
S2 = {1d, S} is the symmetric group over the copies in H ⊗ H [75]. Since we can always find a unitary
basis of L(H), it follows that K is equivalently generated by {U⊗2 |U ∈ L(H), U U† = 1d}. Also, note that

PK′ [•] := U⊗2•
U
≡ U⊗2[•]U†⊗2

U

is an orthogonal projector on K′ 6. So, we can express PK′ in terms of the

orthonormal basis
{

1d+S√
2d(d+1)

, 1d−S√
2d(d−1)

}
of CS2:

PK′ [•] = U⊗2(·)
U

=
∑
η=±1

1d + η S

2d(d+ η)
〈1d + η S, •〉 (A30)

Now, using Eq. (A3), (A12), (A13), (A30) we have

GA(U)
U

=
1

d
Tr
[
S(1d2 − ΩA) U⊗2(ΩA′)

U]
=

1

d
Tr

S(1d2 − ΩA)
∑
η=±1

1d + η S

2d(d+ η)
〈1d + η S,

d(A′)∑
γ=1

fγ ⊗ f†γ〉


=

1

d
Tr

S(1d2 − ΩA)
∑
η=±1

1d + η S

2d(d+ η)

d(A′)∑
γ=1

Tr
[
fγ ⊗ f†γ

]
+ ηTr

[
S(fγ ⊗ f†γ)

]
=

1

d
Tr

S(1d2 − ΩA)
∑
η=±1

1d + η S

2d(d+ η)

d(A′)∑
γ=1

|Tr fγ |2 + ηTr
[
fγf

†
γ

]
=

1

d
Tr

[
S(1d2 − ΩA)

∑
η=±1

1d + η S

2d(d+ η)
(d(A) + η d)

]

=
∑
η=±1

d(A) + η d

2d2(d+ η)
Tr [S + η 1d − S ΩA − η S ΩA S]

=
∑
η=±1

d(A) + η d

2d2(d+ η)

d+ η d2 − Tr

S d(A)∑
α=1

eα ⊗ e†α

− ηTr

d(A)∑
α=1

eα ⊗ e†α


=
∑
η=±1

d(A) + η d

2d2(d+ η)

d+ η d2 −
d(A)∑
α=1

Tr
[
eαe
†
α

]
− η

d(A)∑
α=1

|Tr eα|2


=
∑
η=±1

(d(A) + η d)

2d2(d+ η)
η
(
d2 − d(A′)

)
=

(
d2 − d(A)

) (
d2 − d(A′)

)
d2(d2 − 1)

(A31)

10. Example 1 calculations

Notice that since M is a unitary involution (AdM)2 = I, so L2
1 = −2L1 and inductively Ln1 = (−2)n−1L1 ∀n ≥

1, n ∈ Z. So,

E1t =

∞∑
n=0

(tL1)n

n!
= I + L1

∞∑
n=1

tn(−2)n−1

n!
= I + (AdM − I)

1

2

(
1− e−2t

)
= α(t) I + β(t)AdM (A32)

6 It is not hard to check that P†K′ = PK′ , P2
K′ = PK′ ,

{PK′ (M) |M ∈ L(H⊗2)} ⊆ K′, PK′ (1d) = 1d, PK′ (S) = S.
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where α(t) ≡ 1+e−2t

2 , β(t) ≡ 1−e−2t

2 . Recalling the definition Eq. (4)

GAB (E1t) =
1

2 2n
EXAB ,YA′B

[∥∥[XAB , α(t)YA′B + β(t)AdM(YA′B )
]∥∥2

2

]
= β2(t)

1

2 2n
EXAB ,YA′B

[∥∥[XAB ,AdM(YA′B )
]∥∥2

2

]
= β2(t)GAB (AdM) (A33)

Since AdM is a unitary channel with | 〈µ′|M |µ〉| = 2−n/2,

GAB (AdM) = 1− 1

2n

2n∑
µ,µ′=1

| 〈µ′|M |µ〉|4 = 1− 1

2n
(A34)

so,

GAB (E1t) = β2(t)

(
1− 1

2n

)
(A35)

11. Example 2 calculations

Notice that since Πi are eigenprojectors of H, [adH,DH ] = 0 and adH DH = 0. Also, DH is an orthogonal
projector, so

E2t = eit adHeλtDHe−λt = eit adH
(
1−DH + eλtDH

)
e−λt = e−λt

(
eit adH +

(
eλt − 1

)
DH
)

= a(t) eit adH + (1− a(t))DH (A36)

where a(t) ≡ e−λt. Since Tr [PµΠi] = 2−n,

DH (Pµ) =

2n∑
i=1

ΠiPµΠi = 2−n
2n∑
i=1

Πi =
1

2n
(A37)

so,

GAB (E2t) =
1

2 2n
EXAB ,YA′B

[∥∥[XAB , a(t) eit adH(YA′B ) + (1− a(t))DH(YA′B )
]∥∥2

2

]
= a2(t)

1

2 2n
EXAB ,YA′B

[∥∥[XAB , eit adH(YA′B )
]∥∥2

2

]
= a2(t)GAB (eit adH) (A38)

Note that eit adH [•] = eitH • e−itH is a unitary channel and since H2 = 1, eitH = cos t1+ i sin tH. So,

GAB (eit adH) = 1− 1

2n

2n∑
µ,µ′=1

| 〈µ′|cos t1+ i sin tH|µ〉|4 = 1− 1

2n

2n∑
µ,µ′=1

|δµ′µ cos t+ i δµ′µ̄ sin t|4

= 1− 1

2n

2n∑
µ,µ′=1

δµ′µ cos4 t+ δµ′µ̄ sin4 t+ 2 δµ′µ δµ′µ̄ cos2 t sin2 t = 1−
(
cos4 t+ sin4 t

)
=

sin2(2t)

2

(A39)

where we used that 〈µ′|H|µ〉 = δµ′µ̄ and µ̄ 6= µ ∀µ. So,

GAB (E2t) = a2(t)
sin2(2t)

2
(A40)
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12. Proof of Eq. (15)

Using {fγ}d(A′)
γ=1 = {Π,1−Π} in Eq. (6) and the fact that E is CPTP, we have

GALE (E) =
1

d

(
‖E(Π)‖22 + ‖E(1−Π)‖22 − |〈Π, E(Π)〉|2 − |〈Π, E(1−Π)〉|2 −

∣∣∣∣〈 1−Π√
d− 1

, E(Π)〉
∣∣∣∣2 − ∣∣∣∣〈 1−Π√

d− 1
, E(1−Π)〉

∣∣∣∣2
)

=
1

d

(
‖E(Π)‖22 + Tr[1+ E(Π) E(Π)− 2 E(Π)]− |Tr[Π E(Π)]|2 − Tr[Π−Π E(Π)]

2 − 1

d− 1
|Tr[E(Π)−Π E(Π)]|2

− 1

d− 1
|Tr[1− E(Π)−Π + Π E(Π)]|2

)
=

1

d

(
2‖E(Π)‖22 + d− 2− L2

2 − (1− L2)
2 − 1

d− 1
(1− L2)

2 − 1

d− 1
(d− 2 + L2)

2

)
=

2

d

(
‖E(Π)‖22 −

L2 (dL2 − 2) + 1

d− 1

)
(A41)

where L2 := Tr[Π E(Π)].

13. Proof of Eq. (17)

One can compute the A-OTOC using either the basis {fγ}d(A′)
γ=1 = {1J}2

n−k

J=1 or the basis {f̂δ}d(A′)
δ=1 =

{Sµ/2(n−k)/2}2n−kµ=1 . Here, it is convenient to use the former. Let us now formalize the chosen rank-1 dephasing
operators

Π
(J)
i =

∣∣∣ψ(J)
i

〉〈
ψ

(J)
i

∣∣∣ , i = 1, . . . , χ, J = 1, . . . , 2n−k

Πjα =

2n−k∑
J=1

λ
(J)
jα

∣∣∣ψ(J)
j

〉2n−k∑
J=1

λ̄
(J)
jα

〈
ψ

(J)
j

∣∣∣
 , j = χ+ 1, . . . , 2k, α = 1, . . . , 2n−k,

∣∣∣λ(J)
jα

∣∣∣2 =
1

2n−k

(A42)

where
{∣∣∣ψ(J)

k

〉}2k

k=1
is an orthonormal basis of the J irrep, the phases of λ(J)

jα are chosen such that the projectors

to be orthogonal and λ̄ denotes the complex conjugate. Let us compute the following quantity

〈1J′ ,Dχ(1J)〉 = Tr

1J′
 χ∑
i=1

2n−k∑
J1=1

Π
(J1)
i 1J Π

(J1)
i

+

2k∑
j=χ+1

2n−k∑
α=1

2n−k∑
J2,J3,J4,J5=1

λ
(J2)
jα λ̄

(J3)
jα λ

(J4)
jα λ̄

(J5)
jα

∣∣∣ψ(J2)
j

〉〈
ψ

(J3)
j

∣∣∣1J ∣∣∣ψ(J4)
j

〉〈
ψ

(J5)
j

∣∣∣


= Tr

 χ∑
i=1

2n−k∑
J1=1

δJ1J′ δJ1J Π
(J1)
i

+

2k∑
j=χ+1

2n−k∑
α=1

2n−k∑
J2,J3,J4,J5=1

δJ2J′ δJ3J δJ3J4 λ
(J2)
jα λ̄

(J3)
jα λ

(J4)
jα λ̄

(J5)
jα

∣∣∣ψ(J2)
j

〉〈
ψ

(J5)
j

∣∣∣


=

χ∑
i=1

δJ′J +

2k∑
j=χ+1

2n−k∑
α=1

2n−k∑
J5=1

λ
(J′)
jα λ̄

(J)
jα λ

(J)
jα λ̄

(J5)
jα δJ′J5

= χ δJ′J +

2k∑
j=χ+1

2n−k∑
α=1

∣∣∣λ(J′)
jα

∣∣∣2 ∣∣∣λ(J)
jα

∣∣∣2 = χ δJ′J +
(
2k − χ

)
2n−k

1

(2n−k)2

= χ δJ′J +
2k − χ
2n−k

(A43)
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Now, using Eq. (A43) the A-OTOC is

GAst(Dχ) =
1

2n

2n−k∑
J=1

〈Dχ(1J),Dχ(1J)〉 −
2n−k∑
J,J ′=1

∣∣∣∣〈 1J′√
2k
,Dχ(1J)

〉∣∣∣∣2


=
1

2n

2n−k∑
J=1

〈1J ,Dχ(1J)〉 − 1

2k

2n−k∑
J,J ′=1

∣∣∣∣χ δJ′J +
2k − χ
2n−k

∣∣∣∣2


=
1

2n

2n−k∑
J=1

(
χ+

2k − χ
2n−k

)
− 1

2k

2n−k∑
J,J ′=1

χ2 δJ′J +

(
2k − χ
2n−k

)2

+ 2χ

(
2k − χ
2n−k

)
δJ′J


=

1

2n

(
χ 2n−k + 2k − χ− 1

2k

(
χ2 2n−k +

(
2k − χ

)2
+ 2χ

(
2k − χ

)))
=

(
1− 2k

2n

)
χ

2k

(
1− χ

2k

)
(A44)
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