

Author’s version

1

Conceptual Modeling with Constraints

 Sabah Al-Fedaghi
salfedaghi@yahoo.com, sabah.alfedaghi@ku.edu.kw

Computer Engineering Department, Kuwait University, Kuwait

Abstract

An important factor in guaranteeing the quality of a system is
developing a conceptual model that reflects the knowledge
about its domain as well as knowledge about the functions it has
to perform. In software engineering, conceptual modeling has
gained importance as a discipline that offers languages,
methods, and methodologies to address the complexity of
software development. The key to understanding such
complexity is using tools such as diagrams at various levels of
representation. A conceptual model must include all relevant
static and behavioral aspects of its domain. In UML, the static
aspects include structural diagrams that represent the internal
architecture of a system with a special focus on the classes, the
connections and interactions that they have, and integrity
constraints over the state of the domain. UML does not have
sufficient expressiveness for complete specifications of certain
constraints. Constraints assist in analyzing permissible design
requirements and the limitations of the intended functions. To
overcome the limitations of the graphical notation, other types
of languages are used to complement the diagrammatic
language (e.g., the textual Object Constraint Language [OCL]).
In this paper, we study how to express constraints
diagrammatically using the thinging machine (TM) through
examples taken from the UML/OCL literature. This would
contribute to further understanding the notion of constraint in
conceptual modeling. It also demonstrates the expressiveness
and limitation of the TM. The paper suggests that the TM can
provide a diagrammatic constraints language in conceptual
models.

Key words:

Conceptual modeling, state, thinging machine model, state

machine, event

1. Introduction

Software development is said to be one of the most challenging

engineering activities [1][2]. According to Sommerville [3],

this is why software modeling has gained importance as a

discipline that offers languages, methods, and methodologies to

address the complexity of software development. The key to

understanding of such complexity is the use of tools such as

diagrams at various levels of representation. In this context,

modeling addresses, among other things, the quality of a

system by developing a conceptual model that reflects the

knowledge about its domain as well as knowledge about the

functions it has to perform [4].

Conceptual modeling must include all relevant static and

behavioral aspects of its domain [5]. The static aspects include

structural diagrams that represent the internal architecture of a

system with a special focus on the classes, the connections and

interactions that they have, and integrity constraints over the

state of the domain, which define conditions that each state of

the modeled system must satisfy [6]. According to Jairo [7], the

structural description does not detail the internal logic, only the

inputs and outputs.

Behavioral aspects of a system refer to operations and the

definition of their effect, including the changes they make

when they are executed. These dynamics are usually specified

by means of a behavioral model consisting of a set of system

operations [8]. A representative diagram of the behavior is

defined as a diagram that represents the different states of the

process. Behavioral description must be consistent with regard

to structural specification. Consistency refers to not having a

contradiction or unsatisfiable structural entities, e.g., classes.

1.1 UML/OCL

The Unified Modeling Language (UML) provides structural

specifications of several diagrams, including the class diagram,

the backbone of UML, which is used to define the entity types

and relationship types together with some constraints that can

be expressed graphically [6]. The constraints include

constrained elements—association classes and

aggregation/composition properties—together with other

constraints on these elements, including cardinality constraints

on properties and attributes, class hierarchy constraints,

generalization set constraints, and inter-association constraints

[9].

Nevertheless, the class diagram is not sufficient for a precise

and unambiguous specification about the objects in the model;

hence, there is a need to describe additional constraints. Some

constraints that cannot be expressed graphically can be

expressed by means of the Object Constraint Language (OCL)

[10]. The OCL is a formal high-level language used to write

expressions on UML models. It is a textual language that

2

provides constraint that cannot otherwise be expressed by

diagrammatic notation [11]. The OCL has been extended to

include general object query language definitions.

1.2 Constraints

According to Kamarudin et al. [12], constraint is the key to

understanding complexity. A constraint-based problem can

spark ideas for new knowledge, new possibilities, and new

opportunities. In every design, boundaries, controls and

restraints exist. A rule is a law or regulating principle for

producing a certain result or solution. A constraint is a

restriction or a condition that a lawful solution to a problem

must satisfy. It is a limitation under which a system must

operate, e.g., cost, time etc. In conceptual modeling, constraints

should be the first to be studied since they assist in analyzing

permissible design requirements and the limitations of the

functions’ work together. Inappropriate constraint management

in conceptual design can cause catastrophic failure, but

removing constraints will result in a chaotic system [13].

1.3 Problem: Validation of structural and behavioral

diagrams

A UML/OCL model and its constraints should be validated and

verified before the start of its implementation because many

design mistakes and implementation faults can thus be avoided

[14]. Validation (i.e., finding out inconsistencies) and

verification of UML class diagrams constrained by OCL

invariants is an open question of research and a topic of great

interest [14]. According to Mokhtari [15], (2020), there is no

way to verify the satisfaction of the OCL constraint properties

by a modeled system. The UML class diagram analysis is a

complex problem. The addition of OCL constraints makes the

problem unsolvable in general [16].

According to Khan and Porres [17], although a lot of research

work has already been done in the area of the validation of

structural and behavioral diagrams, there is room for new

approaches in this area. OCL is just a special case of a general

pattern where diagrammatic modeling languages use textual

languages to define constraints that are difficult to express with

their own syntax and semantics. The identification of classes of

modifications for which an automatic synchronization of OCL

constraints is possible requires tool vendors to implement a

complex machinery [18]. Any modification in a model

structure (e.g., UML) must be reflected in the OCL constraints

which are related to the modified structure, but defining

automatic synchronization of OCL constraints for arbitrary

model modifications is not possible [19].

In general, the OCL is a language whose spread has not met the

optimistic expectations expressed since its inclusion as part of

UML 1.1 due to the ambiguities and gaps in the language

specification. According to Chiorean et al. [20], ―Although

there has been some progress in the above mentioned fields, the

developers’ feedback is far from satisfactory.‖ According to

Queralt Calafat [6], due to the high expressiveness of the

combination of the UML and OCL languages, checking the

correctness of a UML conceptual model manually becomes a

very difficult task, especially when the set of textual constraints

is large. There are a few proposals that take the behavioral

model into account in the validation process, none of them

dealing with UML schemas with general OCL constraints and

operations.

1.4 About this paper

In this paper, we study how to express constraints

diagrammatically using the thinging machine (TM) through

examples taken from the UML/OCL literature. This will

contribute to greater understanding of the notion of constraint

in conceptual modeling. The paper also demonstrates the

expressiveness and limitation of the TM. We propose that the

TM can provide a diagrammatic constraints language in

conceptual models.

The next section presents a brief description of the TM with an

example. The remaining part of the paper presents re-modeling

of examples from the literature that involve constraints.

2. Thinging Machine (TM)

Models can be viewed as frameworks for organizing

knowledge without presupposition that models must resemble

the real world in any form or fashion [21]. The TM (see

[22][23]) views the world as a thimac (things/machines)

constructed from thimacs. The thimac is an encapsulation of a

thing that reflects the unity and hides the internal structure of

the thimac, and a machine (see Fig. 1) shows the structural

components (called region), including potential actions of

behavior. The static ―thing‖ does not actually exist, change or

move, but it has potentialities for these actions when combined

with time. A TM event is an encapsulation of a region and

time.

Receive

Fig. 1 Thinging machine.

Create

Process Accept

Transfer Release

Arrive

 Output Input

3

2.1 Things that are machines

A thimac is a thing. A thing is what can be created (seen,

observed), processed (changed), released, transferred, and/or

received. A thing is manifested (can be recognized as a unity)

and related to the ―sum total‖ of a thimac. The whole TM

occupies a conceptual ―space‖ that forms a compositional

structure of thimacs that link together like the links of a whole

network. The whole is a grand thing/machine. Thimacs can be

―located‖ only via flow connections among thimacs. The

thimac is also a machine that creates, processes, releases,

transfers, and/or receives. Fig. 1 shows a general picture of a

machine. The figure indicates five ―seeds‖ of potentialities of

dynamism: creation, processing, releasing, transferring, and

receiving.

All things are created, processed, released, transferred, and
received, and all machines (thimacs) create, process, release,
transfer, and receive other things. Things ―flow through‖
(denoted by a solid arrow in Fig. 1) other machines. Thus,
things flow within other things. Thimacs flow through other
thimacs. A TM event is a thing comes into being when a region
(subdiagram) combines with time. This picture is in line with
the Heraclitean idea that to be alive is to inhale something new
and mysterious [24]. The thing in a TM diagram is a
presentation of any ―existing‖ (appearing) entity that can be
―counted as one‖ and is coherent as a unity.

Fig. 1 can be described in terms of the following generic actions
(those having no more primitive action):
Arrive: A thing moves to a machine.
Accept: A thing enters the machine. For simplification, we
assume that all arriving things are accepted; thus, we can
combine the arrive and accept stages into one stage, the receive
stage.
Release: A thing is ready for transfer outside the machine.
Process: A thing is changed, handled, and examined, but no
new thing results.
Create: A new thing ―comes into being‖ (is found/manifested)

in the machine and is realized from the moment it arises

(emergence) in a thimac. Things come into being in the model

by ―being found.‖

Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes the triggering mechanism
(denoted by a dashed arrow in this article’s figures), which
initiates a flow from one machine to another. Multiple machines
can interact with each other through the movement of things or
through triggering. Triggering is a transformation from one
series of flows to another.

A thimac world is a very inclusive thing. Anything about that
thimac (e.g., a person) and of interest (e.g., in modeling) is to be
abstractly included. Likewise the thimac world is inclusive in
time (e.g., a living or dead person) and can be part of this same
world.

A thimac is connected to its subthimacs (parts) if there is any
flow or triggering between them (e.g., the existence (creation) of
a person triggers the existence of a body, etc.). Any thimac has
storage compartments for its instances. It also interacts with its
subthimacs and other outside thimacs through lines of flow
knitted by actions.

2.2 Example

Before introducing the issue of modeling constraints in the TM,
to familiarize readers with TM modeling, we introduce a an
example given by the IBM Rational Software Modeler [25] and
shown in Fig. 2 that models a class that represents a shopping
cart relating to classes that represent customers, purchase orders,
and items for sale. To save space, we are going to model only
addItem and removeItem without showing the attributes, as they
are understood.

2.2.1 TM static model

A class as a thimac is a type of self-contained orderly ―world‖
that includes instances of this world. It contains structure (e.g.,
subthimacs) and its internal dynamics through five actions that
construct (e.g., create) and handle its instances. The totality of
thimacs is a thimac. Similarly, properties are small world
subthimacs which themselves may be subdivided into even
simpler sub-subthimacs.

Fig. 3 shows the corresponding TM static model. There are
three machines: Shopping Cart (yellow number 1), Customer
(2), and Item (3). The customer gets a shopping cart (pink 4 and
5). The cylinder indicates a collection of carts. Adding Items
starts in the Customer (blue 6), where a request for an item is
created that moves to Items (7) to be processed (8). The
processing triggers the retrieval of the data (record) of the
ordered item (e.g., it includes price) (9), which flows to the
customer (10). The item is directed (11) to a machine (module)
called insert in list (12) that receives ordered items (13 and 14).
The ordered item and the list of already ordered items are
processed (15) to trigger (16) the creation of a new list (17) that
includes the newly ordered item.

Fig. 2 A class that represents a shopping cart relates to classes that

represent customers and items for sale.

4

To delete an item from the cart involves creating a request to
delete the item (pink 18) that flows (19) to a comparison
machine (module). For the purpose of this comparison (search
for the item in the current list), the ordered list in the cart is
processed (20) to extract one item from the list (21). The
extracted item moves to the comparison machine (22). The two
items are compared (23) and,

- If they are not equal (24), then the next item in the list
is extracted (25).

- Else (26), the item in the list is skipped (27) to create
(28) a new list without that item.

2.2.2 Events and behavior models

An event in TM is a subdiagram (call region) of the static
diagram and a time subdiagram. For example, Fig. 4 shows the
event The customer gets a shopping cart. For simplification’s
sake, the event may be represented by its region.

Accordingly, Fig. 5 shows four selected events that correspond
to the static model of Fig. 3.

E1: A customer appears in the system, i.e., there exists a
customer.
E2: The customer gets a shopping cart.
E3: An item is added to the cart.
E4: An item is removed from the cart.

Shopping
cart

Customer

Receive Transfer

T
ra

n
sf

er

R
el

ea
se

Region

Event

Transfer

Transfer

Receive

Process

Release

Time

Fig. 4 The event The customer gets a shopping cart.

Fig. 3 The TM static model.

Shopping
cart

Request to
Add Item

Transfer

Create Process

Transfer

Receive

Release

Release

6

Process

1

Transfer

Receive

Transfer

Release

Items

Ordered items (list)

Create
Release

Process: next item

Request to
Delete Item

Create

Transfer

Process
If not equal

Else

Process: skip item

Release

Transfer Transfer

Create

Receive Transfer

Release

Receive
Release

Release

Transfer

Transfer

Transfer

Item

Transfer
Comparison

Transfer

Insert in list

3

Item

7

8

Receive

9

10

Customer

Receive Transfer

2

4

5

T
ra

n
sf

er

R
el

ea
se

 Attributes Create Name …

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

Create

5

Fig. 6 shows the behavior model. Naturally, this model is a
portion of the system. Many functions can be added, such as
listing a certain list, checking for deleted item that is not in the
ordered list, finishing, etc. Note that the TM diagrams can be
simplified. For example, in the static model (Fig. 3), the
operations release, transfer, and receive can be eliminated under
the assumption that the arrows indicate the direction of flow as
shown in Fig. 7.

E1 E2 E3 E4

Fig. 6 The behavior model.

Shopping
cart

Request to
Add Item

Transfer

Create Process

Transfer

Receive

Release

Release

Process

Transfer

Receive

Transfer

Release

Items

Ordered items (list)

Create
Release

Process: next item

Request to
Delete Item

Create

Transfer

Process
If not equal

Else

Process: skip item

Release

Transfer Transfer

Create

Receive Transfer

Release

Receive
Release

Release

Transfer

Transfer

Transfer

Item

Transfer
Comparison

Transfer

Insert in list

Item

Receive

Receive Transfer

T
ra

n
sf

er

R
el

ea
se

 Attributes Create Name …
Create

Custom
er E1

E2

E3

E4

Fig. 5 The events model.

Fig. 7 Simplified TM static model.

Shopping cart

Request to Add
Item

Create Process

Process

Ordered items (list)

Create

Process: next item
 Request to

Delete Item

Create

Process

If not equal Else

Process: skip item

Create

Item

Comparison

Insert in list

Item

Create Customer Attributes Name

Items

Create …

6

3. Constraints

As mentioned in the introduction, OCL is a textual language
that provides constraints that cannot otherwise be expressed by
diagrammatic notation. As an example, according to Warmer
and Kleppe [26], the association between the class Flight and
the class Person in Fig. 8, indicating that a certain group of
persons are the passengers on a flight, has multiplicity on the
side of the Person class. In reality, the number of passengers is
restricted to the number of seats on the airplane that is
associated with the flight. However, it is impossible to express
this restriction in the diagram. In this example, the correct way
to specify the multiplicity is to add a corresponding OCL
constraint to the diagram.

Fig. 9 shows the TM static model that corresponds to this flight
class. There are the Person (Pink 1), Flight (2), and Airplane (3).
In Person, a name is sent to Flight (Green 4 and 5). Receiving
the name (6) triggers processing (7) of the current number of
passengers with seats (denoted as x (8)). We assume that x is
initially equal to zero. The processing of x increments it,
producing y (9). The number of seats of the airplane, n (10 and
11), and y (12) are compared (13).

- If y > n, then a rejection message is produced (14).
- Else, y replaces x as the current number of occupied

seats (15) and the name is added to the list of
passengers (17 and 18).

Fig. 10 shows a simplification of Fig. 9 by eliminating the
sequence release, transfer, transfer, and receive, assuming that
the direction of the arrow is sufficient to indicate the direction
of flow. This simplified model of Fig. 10 can be used to identify
selected events as shown in Fig. 11 as follows.

E1: A name is input to be added to the flight.
E2: The number of occupied seats is compared with the total
number of available seats.
E3: A seat is available, and thus the passenger name is added to
the fight.
E4: No seat is available, hence a rejection message is sent back.

Fig. 8 Flight class model (From [26]).

Airplane

No.
seats
(n)

Transfer

2
 Flight

number
Flight

Create Create

1

5

Create

No. occupied seats

Process: increment x

Process: compare

N<x

x

Else

Rejection
message

Create

Person

Transfer

3

Transfer

Name
4

Transfer

Release

Transfer

Release

Transfer

Receive Transfer

Release

Release

Receive

Transfer Receive Release Transfer

Release

Create

Create

Create

Receive

Transfer

Persons with seats

Process

6

7

8

9

10

11

12
 13

14

16

17

18

15

Fig. 9 TM static model.

y

7

Fig. 12 shows the TM behavior model. Fig. 13 shows a sample
pseudo code script to a sample run.

Accordingly, The TM static model can facilitate the structural
description and any declared constraint as demonstrated in this
example.

Fig. 10 Simplified TM static model.

Airplane

No.
seats
(n)

 Flight
number

Flight

Create
Create

Create

 No. occupied seats

Process: increment x

Process

N<x

x

Else

Rejection
message Create

Person

Name

Receive

Create

Create

Create y

Receive

Persons with seats

Process

Fig. 11 TM events model.

Airplane

No.
seats
(n)

 Flight
number

Flight

Create
Create

Create

 No. occupied seats

Process: increment x

Process

N<x

x

Else

Rejection
message Create

Person

Name

Receive

Create

Create

Create y

Receive

Persons with seats

Process

E1
E2

E3

E4

E1 E2

E3

E4
Fig. 12 TM behavior model.

Create Airplane=A380 */create an instance of an airplane called A380/*
Create Airplane A380. NoSeats=300 */put the value 300 as the
 number of seats of A380/*
Create Flight=Flight1 */ create an instance of Flight called Flight1/*
Create Flight=Flight1.FlightNo=3825 */Put the value 3825 as the
 flight number of Flight1/*
Create Person=Person1 */create an instance of Person called Person1/*

E1:
Create.Person=Person1.Name=Michael.release.transfer→Flight=Flight1.
 FlightNo=3825.Transfer.Receive
Trigger Event E2 */implicitly E2 is applied to ―Michael‖ and ―3825‖/*

If E3 print ―OK‖

If E4 print rejection message

Fig. 13 Sample script of adding a passenger to a flight.

8

4. Constraints in Logic

In practice, constraints are captured in a natural language such
as English and then expressed in OCL. According to Bajwa et
al. [27], it is common knowledge that OCL is difficult to write
specifically for new users with little or no prior knowledge of
OCL. They give the sample constraint; A customer cannot place
more than one order, modeled in UML and expressed in logic
in Fig. 14.

In this section, we construct the corresponding TM model,
which is shown in Fig. 15. The TM diagram facilitates
expression of the constraint because it is not a pure structural
diagram but incorporates potential actions. In Fig. 15, when a
customer places an order (number 1 in the figure), e.g., via
his/her screen, the order is processed (2). Assuming that the
number of orders is initialized to zero, accordingly,

- If the number of orders is > zero, then an error message
is issued (3).

- If the number of orders is equal to zero, the order is
released (4) and sent to the module order (5).

Naturally, the number of orders is reset to zero when the order is
delivered.

 Fig. 16 shows the events model, and Fig. 17 shows the behavior
model.

5. Everything is a model

Rutle et al. [18] introduced a formal diagrammatic approach to

modeling based on category theory. According to the authors,

an appropriate approach to object-oriented modeling is to

describe models as graphs. However, the expressive power may

not be sufficient to represent certain constraints a system must

obey. Accordingly, the authors investigated a completely

diagrammatic approach for the specification of structural

models. This approach obeys the ―everything is a model‖ rule

by having both structure and constraints in the same model-

centric format. They give an example that illustrates the usage

of some constraints which are not expressible by UML itself.

These constraints are specified in OCL. In Fig. 18, from

Rutle et al. [18], a UML class diagram of an information

system for the management of employees and projects is

presented. Rutle et al. [18] require that the following set of

rules be satisfied at any state of the system:

Fig. 15 The TM static model.

Create

Customer

Request
to

order
Release

Order
Receive

Process

=zero

>zero

Number of orders

Transfer

Transfer

Error

Release

Transfer

1
 2

3

4

5

Create

Create

Customer

Request
to

order Release

Order
Receive

Process

=zero

>zero

Number of orders

Transfer

Transfer

 Error

Create

Release

Transfer

E1 E2

E3

E4

Fig. 16 The TM events model.

E3

E4

E2 E1

Fig. 17 The TM behavior model.

Fig. 18 A UML class diagram for the management of employees and

projects [18].

Fig. 14 Sample constraint and its expression in logic (From [27]).

9

1. An employee must work for at least one department.

2. An employee may be enrolled in no or many projects.

3. A department may have no or many employees.

4. A department may control no or many projects.

5. A project must be controlled by at least one department.

6. An employee enrolled in a project must work in the

controlling department.

7. A set of employees working for a controlling department

must not be enrolled in the same controlled project more than

once.

5.1 TM models

Fig. 19 shows the TM static model that corresponds to the

given example, according to our understanding. The figure

shows only the basic items mentioned by Rutle et al. [18].

There are three thimacs: employee, department, and project.

In the figure, an employee is created (number 1—e.g., a record

in the database) and flows to join the appropriate department

(2). Similarly, a project (3) is controlled by a department (4).

An employee may join a certain project (5). In the department,

the number of employees is incremented when an employee

joins the department.

Fig. 20 shows selected events in this example. The following

events are defined:

E0: A department (i.e., instance) is created.

E1: The number of employees in the department is set to zero

E2: A new employee is created.

E3: An employee joins a department.

E4: The number of employees in the department is

incremented.

E5: A project is created.

E6: A project is assigned to a certain department.

E7: An employee is employed in a certain project.

Fig. 20 A behavior model.

Department

 No. Employee

Create

Create Release Transfer

Transfer

Receive

Receive Create Release Transfer Transfer Control

R
ec

ei

v
e

Release

Transfer

Process: Increment

Release
Transfer

Employe

e T
ra

n
sf

er

Transfer

Release

Project

>Zero

Transfer
Receive

Create

E4

E2

E5

E3

E6

E7
E0

Zero E1

Department

 No. Employee

Create

Create Release Transfer

Transfer

Receive

Receive Create Release Transfer Transfer Control

R
ec

ei
v

e

Release

Transfer

Process: Increment

Release
Transfer

Employee
Transfer

Release

Project

>Zero

Transfer
Receive

Create

Zero

Fig. 19 The static model.

1

2

3

4

5

T
ra

n
sf

er
 6

Incrementing

10

Fig. 21 shows the TM behavior model.

5.2 Modeling constraints

The basic idea in this section is realizing some constraints by

binding events together. Consider the given rules as follows.

Constraint 1. An employee must work for at least one

department.

Such a rule can be enforced by binding the events E2 and E3

together to form the high-level event E2-3 as represented by

the dotted box in Fig 22. That is,

When a new employee x is created (E2), then this employee

joins department y (E3).

Thus, no employee exists that is not in a department. The

system would require a department name whenever a new

employee is created.

Note that E2 may be interpreted as ―creating a new x‖ or ―there

exists x.‖ Thus, the event E2-3 specifies: if x is a new

employee, then create it and then make him/her join department

x OR if x already exists (from a previous E2-3), then make

him/her join, additionally, department y. Thus, as in the given

rule, an employee may join more than one department.

Constraint 2. An employee may be enrolled in no or many

projects.

This rule is available in the behavioral model since E2 → E7

may be applied several times. In this case the semantics state

that an existing employee (E2) may join a project (E7).

Constraint 3. A department may have no or many employees.

This rule is enforced by E4, where a department’s number of

employees is initialized to zero (E0 is immediately followed by

E1 in the behavior model). Additionally, the number of

employees is incremented when an employee joins the

department (E4).

E1

E2 E3

E6

E4

E5 E0 E6

Fig. 21 Eventsmodel.

Fig. 22 High-level events E2-3 and E5-6.

Department

 No. Employee

Create

Create Release Transfer

Transfer

Receive

Receive Create Release Transfer Transfer Control

R
ec

ei
v

e

Release

Transfer

Process

Release

Transfer
Employe

e T
ra

n
sf

er

Transfer

Project

>Zero

Transfer

Receive

Create

E4

E2

E5

E3

E6

E7
E0

Zero E1

E2-3

Release

E5-6

11

Rutle et al. [18] did not mention removing an employee from a

department; however, the removed employee had previously

caused incrementing of the number of employees, thus, this

number is always greater than zero.

Constraint 4. A department may control no or many projects.

This rule can be specified by the high-level event E5-6, as

shown in the dotted box in Fig. 22, in a manner similar to that

described in the previous case of E2-3. The controlling

department is specified when creating a project; hence, a

department may not have a project to control.

Constraint 5. A project must be controlled by at least one

department.

The event E2-3 guarantees this rule.

Constraint 6. An employee enrolled in a project must work in

the controlling department.

Fig. 23 shows the event E2-3-5-6-7, which is indicated by a

dotted boundary. It indicates, for employee x, department y,

and Project z, that x is an employee (E2) in department y (E3)

enrolled in project z (E7), and project z (E5) is controlled by

department y (E6). In other words, if x is an employee in

department y and enrolled in project z, then z is controlled by

department y.

Constraint 7. A set of employees working for a controlling

department must not be enrolled in the same controlled project

more than once.

This rule is applied to the same high-level event, E2-3-5-6-7, as

in the previous rule; however, it is expressed in the behavior

model as shown in Fig. 24. In Fig. 24, we need a second level

language that expresses E5 (z) where z is a specific project.

Then, ⌐(E2-3-5(z)-6-7) denotes the end of E2-3-5(z)-6-7, i.e.,

the employee is no longer enrolled in project z. Assuming the

employee is no longer enrolled in project z, then the event E2-

3-5(z)-6-7 cannot (cross on the chronology arrow) occur again.

6. Conclusions

In this paper, we have expressed constraints diagrammatically

using the thinging machine (TM) through examples taken from

the UML/OCL literature. This contributes to greater

understanding of the notion of constraint in conceptual

modeling. It also demonstrates the expressiveness and

limitation of the TM. We can conclude that the TM provides as

viable a diagrammatic tool as constraints language. Further

research will explore this matter further by experimenting with

different types of constraints.

Fig. 23 An Event E2-3-5-6-7.

Department

 No. Employee

Create

 Control

R
ec

ei
v

e

Release

Transfer

Process

Release
Transfer

Employee

T
ra

n
sf

er

Project

>Zero

Transfer

Receive

Create

E4

E2

E5

E3

E6

E7
E0

Zero E1

Transfer

Transfer

Release

E2-3-5-6-7

Transfer Release Create

Receive Create Release Transfer Transfer Receive

Fig. 24 The behavior that expresses Constraint 7.

E2-3-5(z)-6-7 ⌐ (E2-3-5(z)-6-7)

The employee leaves project z

12

References

[1] S. Bernardi, J. Merseguer, and D.C. Petriu, ―Dependability modeling of

software systems with UML and DAM: a guide for real-time
practitioners,‖ Software, vol.1, 2, pp.146-163, 2022. DOI: 10.3390/
software1020007

[2] B.W. Boehm, ―A spiral model of software development and
enhancement,‖ Computer, vol.21, 5, pp.61-72, 1988.

[3] I. Sommerville, Software Engineering, 10th ed., Pearson, London, 2015.
[4] A. Olivé, Conceptual Modeling of Information Systems, Springer, Berlin,

2007.
[5] J. Cabot, ―From declarative to imperative UML/OCL operation

specifications,‖ LNCS, vol.4801, pp. 198-213, 2007.
[6] A. Queralt Calafat, Validation Of UML Conceptual Schemas with OCL

Constraints and Operations, PhD. Thesis, Universitat Politècnica De
Catalunya Departament De Llenguatges I Sistemes Informàtics,
Barcelona, 2009.

[7] J. A. Cortes M., L. C. Gutiérrez, J. A. Paez Paez, F. A. Simanca H., and
F. Blanco Garrido, ―Storage system for software quality metrics
associated with UML diagrams,‖ Journal of Positive School Psychology,
vol.6, no.4, pp.9126-9132, 2022.

[8] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process, 2nd ed., Prentice
Hall, 2001.

[9] M. Balaban, I. Khitron, and M. Kifer, ―Logic-based software modeling
with FOML,‖ Journal of Object Technology, vol.19, no.3, 2020.
DOI:10.5381/jot.2020.19.3.a19

[10] OMG, ―About the Object Constraint Language specification version 2.4,‖
February 2014, https://www.omg.org/spec/OCL/2.4/About-OCL/,
accessed 20/3/2022.

[11] J. Cabot and M. Gogolla, ―Object Constraint Language (OCL): a
definitive guide,‖ in Formal Methods for Model-Driven Engineering, ed.
M. Bernardo, V. Cortellessa, and A. Pierantonio, pp.58-90, SFM 2012,
Lecture Notes in Computer Science, vol.7320, Springer, Berlin,
Heidelberg, 2012. DOI:10.1007/978-3-642-30982-3_3

[12] K. M. Kamarudin, K. Ridgway, and M. R. Hassan, ―Modelling
constraints in the conceptual design process with TRIZ and F3,‖ Procedia
CIRP, vol.39, pp.3-8, 2016. DOI:10.1016/j.procir.2016.01.034

[13] S. Song. ―Using constraint to design for innovation,‖ Nov. 11, 2008,
https://manypossibilities.net/2008/11/using-constraint-to-design-for-
innovation/, accessed May 30, 2022.

[14] E. Pakalnickiene and L. Nemuraite, ―Checking of conceptual models with
integrity constraints,‖ Information Technology and Control, vol.36, no.3,
2007.

[15] R. Mokhtari, ―Validation of UML class diagram and OCL pre-and post-
conditions using OTS/CafeOBJ proof scores,‖ 2020 4th International
Symposium on Informatics and Its Applications (ISIA), pp.1-4, 2020.
DOI:10.1109/ISIA51297.2020.9416542

[16] A. Shaikh, U. Wiil and N. Memon, ―Evaluation of tools and slicing
techniques for efficient verification of UML/OCL class diagrams,‖
Advances in Software Engineering, vol.2011, Article ID 370198, 2011.
DOI:10.1155/2011/370198

[17] A. H. Khan and I. Porres, ―Consistency of UML class, object and
statechart diagrams using ontology reasoners,‖ Journal of Visual
Languages & Computing, vol.26, pp.42-65, Feb. 2015.

[18] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter, ―A diagrammatic
formalisation of MOF-based modelling languages,‖ in TOOLS
2009, ed. M. Oriol, B. Meyer, W. Aalst, et al., LNBIP, vol.33, pp.37-56,
Springer, 2009.

[19] S. Marković and T. Baar, ―Refactoring OCL annotated UML class
diagrams,‖ SoSyM, vol.7, no.1, pp.25-47, 2008.

[20] D. Chiorean, V. Petraşcu, and I. Ober, ―Using constraints in teaching
software modeling,‖ Models in Software Engineering, MODELS 2011,
ed. J. Kienzle, Lecture Notes in Computer Science, vol.7167, Springer,
Berlin, Heidelberg, 2012. DOI:10.1007/978-3-642-29645-1_5

[21] H. Couclelis, ―Modeling frameworks, paradigms, and approaches,‖ in
Geographic Information Systems and Environmental Modeling, ed. K.C.
Clarke, B.E. Parks, and M.P. Crane, Longman & Co., New York, 2000.

[22] S. Al-Fedaghi, ―Diagramming the class diagram: toward a unified
modeling methodology,‖ International Journal of Computer Science and
Information Security, vol.15, no.9, pp. 30-41 , Sept. 2017.
arXiv:1710.00202

[23] S. Al-Fedaghi, ―Conceptual modeling in simulation: a representation that
assimilates events,‖ International Journal of Advanced Computer Science
and Applications, vol.7, no.10, pp. 281-289, 2016. DOI:
10.14569/IJACSA.2016.071038

[24] J. Beukes, ―Applied philosophy and psychotherapy: Heraclitus as case
study,‖ HTS Teologiese Studies/Theological Studies, vol.58, no.3, 2002.
DOI:10.4102/hts.v58i3.584

[25] IBM Rational Software Modeler, ―Class diagrams,‖ Version 7.5.0, IBM
Documentation, Mar. 5, 2021,
https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams

[26] J. Warmer and A. Kleppe, The Object Constraint Language, Second
Edition: Getting Your Models Ready for MDA, Addison-Wesley, 2003.

[27] I. S. Bajwa, M. Lee, and B. Bordbar, ―Translating natural language
constraints to OCL,‖ Journal of King Saud University - Computer and
Information Sciences, vol.24, no.2, pp.117-128, July 2012.
DOI:10.1016/j.jksuci.2011.12.003

 Sabah S. Al-Fedaghi is an associate

 professor in the Department of Computer

 Engineering at Kuwait University. He

holds an MS and a PhD from the

Department of Electrical Engineering and

Computer Science, Northwestern

University, Evanston, Illinois, and a BS

in Engineering Sciences (computer) from

from Arizona State University. He has published many

journal articles and papers in conferences on software

engineering, database systems, information ethics, privacy,

and security. He headed the Electrical and Computer

Engineering Department (1991–1994) and the Computer

Engineering Department (2000–2007). He previously

worked as a programmer at the Kuwait Oil Company. Dr.

Al-Fedaghi has retired from the services of Kuwait

University on June 2021. He is currently (Fall 2021/2022)

seconded to teach in the department of computer

engineering, Kuwait University.

https://www.omg.org/spec/OCL/2.4/About-OCL/
https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams

