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Abstract 

An important factor in guaranteeing the quality of a system is 
developing a conceptual model that reflects the knowledge 
about its domain as well as knowledge about the functions it has 
to perform. In software engineering, conceptual modeling has 
gained importance as a discipline that offers languages, 
methods, and methodologies to address the complexity of 
software development. The key to understanding such 
complexity is using tools such as diagrams at various levels of 
representation. A conceptual model must include all relevant 
static and behavioral aspects of its domain. In UML, the static 
aspects include structural diagrams that represent the internal 
architecture of a system with a special focus on the classes, the 
connections and interactions that they have, and integrity 
constraints over the state of the domain. UML does not have 
sufficient expressiveness for complete specifications of certain 
constraints. Constraints assist in analyzing permissible design 
requirements and the limitations of the intended functions. To 
overcome the limitations of the graphical notation, other types 
of languages are used to complement the diagrammatic 
language (e.g., the textual Object Constraint Language [OCL]). 
In this paper, we study how to express constraints 
diagrammatically using the thinging machine (TM) through 
examples taken from the UML/OCL literature. This would 
contribute to further understanding the notion of constraint in 
conceptual modeling. It also demonstrates the expressiveness 
and limitation of the TM. The paper suggests that the TM can 
provide a diagrammatic constraints language in conceptual 
models.  
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1. Introduction 

Software development is said to be one of the most challenging 

engineering activities [1][2]. According to Sommerville [3], 

this is why software modeling has gained importance as a 

discipline that offers languages, methods, and methodologies to 

address the complexity of software development. The key to 

understanding of such complexity is the use of tools such as 

diagrams at various levels of representation. In this context, 

modeling addresses, among other things, the quality of a 

system by developing a conceptual model that reflects the  

 

 

 

 

knowledge about its domain as well as knowledge about the 

functions it has to perform [4].  

 

Conceptual modeling must include all relevant static and 

behavioral aspects of its domain [5]. The static aspects include 

structural diagrams that represent the internal architecture of a 

system with a special focus on the classes, the connections and 

interactions that they have, and integrity constraints over the 

state of the domain, which define conditions that each state of 

the modeled system must satisfy [6]. According to Jairo [7], the 

structural description does not detail the internal logic, only the 

inputs and outputs. 

 

Behavioral aspects of a system refer to operations and the 

definition of their effect, including the changes they make 

when they are executed. These dynamics are usually specified 

by means of a behavioral model consisting of a set of system 

operations [8]. A representative diagram of the behavior is 

defined as a diagram that represents the different states of the 

process. Behavioral description must be consistent with regard 

to structural specification. Consistency refers to not having a 

contradiction or unsatisfiable structural entities, e.g., classes. 

 

1.1 UML/OCL 
 

The Unified Modeling Language (UML) provides structural 

specifications of several diagrams, including the class diagram, 

the backbone of UML, which is used to define the entity types 

and relationship types together with some constraints that can 

be expressed graphically [6]. The constraints include 

constrained elements—association classes and 

aggregation/composition properties—together with other 

constraints on these elements, including cardinality constraints 

on properties and attributes, class hierarchy constraints, 

generalization set constraints, and inter-association constraints 

[9]. 

 

Nevertheless, the class diagram is not sufficient for a precise 

and unambiguous specification about the objects in the model; 

hence, there is a need to describe additional constraints. Some 

constraints that cannot be expressed graphically can be 

expressed by means of the Object Constraint Language (OCL) 

[10]. The OCL is a formal high-level language used to write 

expressions on UML models. It is a textual language that 
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provides constraint that cannot otherwise be expressed by 

diagrammatic notation [11]. The OCL has been extended to 

include general object query language definitions. 

1.2 Constraints 
 

According to Kamarudin et al. [12], constraint is the key to 

understanding complexity. A constraint-based problem can 

spark ideas for new knowledge, new possibilities, and new 

opportunities. In every design, boundaries, controls and 

restraints exist. A rule is a law or regulating principle for 

producing a certain result or solution. A constraint is a 

restriction or a condition that a lawful solution to a problem 

must satisfy. It is a limitation under which a system must 

operate, e.g., cost, time etc. In conceptual modeling, constraints 

should be the first to be studied since they assist in analyzing 

permissible design requirements and the limitations of the 

functions’ work together. Inappropriate constraint management 

in conceptual design can cause catastrophic failure, but 

removing constraints will result in a chaotic system [13]. 

 

1.3 Problem: Validation of structural and behavioral 

diagrams  
 

A UML/OCL model and its constraints should be validated and 

verified before the start of its implementation because many 

design mistakes and implementation faults can thus be avoided 

[14]. Validation (i.e., finding out inconsistencies) and 

verification of UML class diagrams constrained by OCL 

invariants is an open question of research and a topic of great 

interest [14]. According to Mokhtari [15], (2020), there is no 

way to verify the satisfaction of the OCL constraint properties 

by a modeled system. The UML class diagram analysis is a 

complex problem. The addition of OCL constraints makes the 

problem unsolvable in general [16].  

 

According to Khan and Porres [17], although a lot of research 

work has already been done in the area of the validation of 

structural and behavioral diagrams, there is room for new 

approaches in this area. OCL is just a special case of a general 

pattern where diagrammatic modeling languages use textual 

languages to define constraints that are difficult to express with 

their own syntax and semantics. The identification of classes of 

modifications for which an automatic synchronization of OCL 

constraints is possible requires tool vendors to implement a 

complex machinery [18]. Any modification in a model 

structure (e.g., UML) must be reflected in the OCL constraints 

which are related to the modified structure, but defining 

automatic synchronization of OCL constraints for arbitrary 

model modifications is not possible [19].  

 

 

 

 

In general, the OCL is a language whose spread has not met the 

optimistic expectations expressed since its inclusion as part of 

UML 1.1 due to the ambiguities and gaps in the language 

specification. According to Chiorean et al. [20], ―Although 

there has been some progress in the above mentioned fields, the 

developers’ feedback is far from satisfactory.‖ According to 

Queralt Calafat [6], due to the high expressiveness of the 

combination of the UML and OCL languages, checking the 

correctness of a UML conceptual model manually becomes a 

very difficult task, especially when the set of textual constraints 

is large. There are a few proposals that take the behavioral 

model into account in the validation process, none of them 

dealing with UML schemas with general OCL constraints and 

operations.  

 

1.4 About this paper 
 

In this paper, we study how to express constraints 

diagrammatically using the thinging machine (TM) through 

examples taken from the UML/OCL literature. This will 

contribute to greater understanding of the notion of constraint 

in conceptual modeling. The paper also demonstrates the 

expressiveness and limitation of the TM. We propose that the 

TM can provide a diagrammatic constraints language in 

conceptual models. 

 

The next section presents a brief description of the TM with an 

example. The remaining part of the paper presents re-modeling 

of examples from the literature that involve constraints. 

2. Thinging Machine (TM) 

Models can be viewed as frameworks for organizing 

knowledge without presupposition that models must resemble 

the real world in any form or fashion [21]. The TM (see 

[22][23]) views the world as a thimac (things/machines) 

constructed from thimacs.  The thimac is an encapsulation of a 

thing that reflects the unity and hides the internal structure of 

the thimac, and a machine (see Fig. 1) shows the structural 

components (called region), including potential actions of 

behavior. The static ―thing‖ does not actually exist, change or 

move, but it has potentialities for these actions when combined 

with time. A TM event is an encapsulation of a region and 

time. 

 

  

 
Receive 

    

 
  

Fig. 1 Thinging machine. 
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2.1 Things that are machines  
 

A thimac is a thing. A thing is what can be created (seen, 

observed), processed (changed), released, transferred, and/or 

received. A thing is manifested (can be recognized as a unity) 

and related to the ―sum total‖ of a thimac. The whole TM 

occupies a conceptual ―space‖ that forms a compositional 

structure of thimacs that link together like the links of a whole 

network. The whole is a grand thing/machine. Thimacs can be 

―located‖ only via flow connections among thimacs. The 

thimac is also a machine that creates, processes, releases, 

transfers, and/or receives. Fig. 1 shows a general picture of a 

machine. The figure indicates five ―seeds‖ of potentialities of 

dynamism: creation, processing, releasing, transferring, and 

receiving.  
 
All things are created, processed, released, transferred, and 
received, and all machines (thimacs) create, process, release, 
transfer, and receive other things. Things ―flow through‖ 
(denoted by a solid arrow in Fig. 1) other machines. Thus, 
things flow within other things. Thimacs flow through other 
thimacs. A TM event is a thing comes into being when a region 
(subdiagram) combines with time. This picture is in line with 
the Heraclitean idea that to be alive is to inhale something new 
and mysterious [24]. The thing in a TM diagram is a 
presentation of any ―existing‖ (appearing) entity that can be 
―counted as one‖ and is coherent as a unity.  
 
Fig. 1 can be described in terms of the following generic actions 
(those having no more primitive action): 
Arrive: A thing moves to a machine. 
Accept: A thing enters the machine. For simplification, we 
assume that all arriving things are accepted; thus, we can 
combine the arrive and accept stages into one stage, the receive 
stage. 
Release: A thing is ready for transfer outside the machine. 
Process: A thing is changed, handled, and examined, but no 
new thing results. 
Create: A new thing ―comes into being‖ (is found/manifested) 

in the machine and is realized from the moment it arises 

(emergence) in a thimac. Things come into being in the model 

by ―being found.‖  

Transfer: A thing is input into or output from a machine. 

Additionally, the TM model includes the triggering mechanism 
(denoted by a dashed arrow in this article’s figures), which 
initiates a flow from one machine to another. Multiple machines 
can interact with each other through the movement of things or 
through triggering. Triggering is a transformation from one 
series of flows to another. 

A thimac world is a very inclusive thing. Anything about that 
thimac (e.g., a person) and of interest (e.g., in modeling) is to be 
abstractly included. Likewise the thimac world is inclusive in 
time (e.g., a living or dead person) and can be part of this same 
world.  

 

A thimac is connected to its subthimacs (parts) if there is any 
flow or triggering between them (e.g., the existence (creation) of 
a person triggers the existence of a body, etc.). Any thimac has 
storage compartments for its instances. It also interacts with its 
subthimacs and other outside thimacs through lines of flow 
knitted by actions.  

2.2 Example 

Before introducing the issue of modeling constraints in the TM, 
to familiarize readers with TM modeling, we introduce a an 
example given by the IBM Rational Software Modeler [25] and 
shown in Fig. 2 that models a class that represents a shopping 
cart relating to classes that represent customers, purchase orders, 
and items for sale. To save space, we are going to model only 
addItem and removeItem without showing the attributes, as they 
are understood. 

2.2.1 TM static model 

A class as a thimac is a type of self-contained orderly ―world‖ 
that includes instances of this world. It contains structure (e.g., 
subthimacs) and its internal dynamics through five actions that 
construct (e.g., create) and handle its instances. The totality of 
thimacs is a thimac. Similarly, properties are small world 
subthimacs which themselves may be subdivided into even 
simpler sub-subthimacs.  

Fig. 3 shows the corresponding TM static model. There are 
three machines: Shopping Cart (yellow number 1), Customer 
(2), and Item (3). The customer gets a shopping cart (pink 4 and 
5). The cylinder indicates a collection of carts. Adding Items 
starts in the Customer (blue 6), where a request for an item is 
created that moves to Items (7) to be processed (8). The 
processing triggers the retrieval of the data (record) of the 
ordered item (e.g., it includes price) (9), which flows to the 
customer (10). The item is directed (11) to a machine (module) 
called insert in list (12) that receives ordered items (13 and 14). 
The ordered item and the list of already ordered items are 
processed (15) to trigger (16) the creation of a new list (17) that 
includes the newly ordered item. 

 
Fig. 2 A class that represents a shopping cart relates to classes that 

represent customers and items for sale. 
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To delete an item from the cart involves creating a request to 
delete the item (pink 18) that flows (19) to a comparison 
machine (module). For the purpose of this comparison (search 
for the item in the current list), the ordered list in the cart is 
processed (20) to extract one item from the list (21). The 
extracted item moves to the comparison machine (22). The two 
items are compared (23) and, 

- If they are not equal (24), then the next item in the list 
is extracted (25).  

- Else (26), the item in the list is skipped (27) to create 
(28) a new list without that item.  

2.2.2 Events and behavior models 

An event in TM is a subdiagram (call region) of the static 
diagram and a time subdiagram. For example, Fig. 4 shows the 
event The customer gets a shopping cart. For simplification’s 
sake, the event may be represented by its region.  

Accordingly, Fig. 5 shows four selected events that correspond 
to the static model of Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
E1: A customer appears in the system, i.e., there exists a 
customer. 
E2: The customer gets a shopping cart. 
E3: An item is added to the cart. 
E4: An item is removed from the cart. 
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Fig. 4 The event The customer gets a shopping cart. 

Fig. 3 The TM static model. 
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Fig. 6 shows the behavior model. Naturally, this model is a 
portion of the system. Many functions can be added, such as 
listing a certain list, checking for deleted item that is not in the 
ordered list, finishing, etc. Note that the TM diagrams can be 
simplified. For example, in the static model (Fig. 3), the 
operations release, transfer, and receive can be eliminated under 
the assumption that the arrows indicate the direction of flow as 
shown in Fig. 7.  

 

E1 E2 E3 E4 

Fig. 6 The behavior model. 
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Fig. 5 The events model. 

Fig. 7 Simplified TM static model. 
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3. Constraints 

As mentioned in the introduction, OCL is a textual language 
that provides constraints that cannot otherwise be expressed by 
diagrammatic notation. As an example, according to Warmer 
and Kleppe [26], the association between the class Flight and 
the class Person in Fig. 8, indicating that a certain group of 
persons are the passengers on a flight, has multiplicity on the 
side of the Person class. In reality, the number of passengers is 
restricted to the number of seats on the airplane that is 
associated with the flight. However, it is impossible to express 
this restriction in the diagram. In this example, the correct way 
to specify the multiplicity is to add a corresponding OCL 
constraint to the diagram. 

Fig. 9 shows the TM static model that corresponds to this flight 
class. There are the Person (Pink 1), Flight (2), and Airplane (3). 
In Person, a name is sent to Flight (Green 4 and 5). Receiving 
the name (6) triggers processing (7) of the current number of 
passengers with seats (denoted as x (8)). We assume that x is 
initially equal to zero. The processing of x increments it, 
producing y (9). The number of seats of the airplane, n (10 and 
11), and y (12) are compared (13).  

- If y > n, then a rejection message is produced (14). 
- Else, y replaces x as the current number of occupied 

seats (15) and the name is added to the list of 
passengers (17 and 18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 shows a simplification of Fig. 9 by eliminating the 
sequence release, transfer, transfer, and receive, assuming that 
the direction of the arrow is sufficient to indicate the direction 
of flow. This simplified model of Fig. 10 can be used to identify 
selected events as shown in Fig. 11 as follows. 

E1: A name is input to be added to the flight. 
E2: The number of occupied seats is compared with the total 
number of available seats. 
E3: A seat is available, and thus the passenger name is added to 
the fight. 
E4: No seat is available, hence a rejection message is sent back. 
 

 

 
Fig. 8 Flight class model (From [26]). 
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Fig. 12 shows the TM behavior model. Fig. 13 shows a sample 
pseudo code script to a sample run. 

Accordingly, The TM static model can facilitate the structural 
description and any declared constraint as demonstrated in this 
example. 

 

 

 

 

Fig. 10 Simplified TM static model. 
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Fig. 11 TM events model. 
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Fig. 12 TM behavior model. 

Create Airplane=A380   */create an instance of an airplane called A380/* 
Create Airplane A380. NoSeats=300            */put the value 300 as the     
                                                                            number of seats of A380/* 
Create Flight=Flight1    */ create an instance of Flight called Flight1/* 
Create Flight=Flight1.FlightNo=3825           */Put the value 3825 as the  
                                                                             flight number of Flight1/* 
Create Person=Person1    */create an instance of Person called Person1/* 
 
E1: 
Create.Person=Person1.Name=Michael.release.transfer→Flight=Flight1. 
                                                       FlightNo=3825.Transfer.Receive  
Trigger Event E2    */implicitly E2 is applied to ―Michael‖ and ―3825‖/* 

If E3 print ―OK‖ 

If E4 print rejection message 

Fig. 13 Sample script of adding a passenger to a flight. 
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4. Constraints in Logic 

In practice, constraints are captured in a natural language such 
as English and then expressed in OCL. According to Bajwa et 
al. [27], it is common knowledge that OCL is difficult to write 
specifically for new users with little or no prior knowledge of 
OCL. They give the sample constraint; A customer cannot place 
more than one order, modeled in UML and expressed in logic 
in Fig. 14.  

In this section, we construct the corresponding TM model, 
which is shown in Fig. 15. The TM diagram facilitates 
expression of the constraint because it is not a pure structural 
diagram but incorporates potential actions. In Fig. 15, when a 
customer places an order (number 1 in the figure), e.g., via 
his/her screen, the order is processed (2). Assuming that the 
number of orders is initialized to zero, accordingly,  

- If the number of orders is > zero, then an error message 
is issued (3). 

- If the number of orders is equal to zero, the order is 
released (4) and sent to the module order (5). 

Naturally, the number of orders is reset to zero when the order is 
delivered.  

 Fig. 16 shows the events model, and Fig. 17 shows the behavior 
model.  

5. Everything is a model 

Rutle et al. [18] introduced a formal diagrammatic approach to 

modeling based on category theory. According to the authors, 

an appropriate approach to object-oriented modeling is to 

describe models as graphs. However, the expressive power may 

not be sufficient to represent certain constraints a system must 

obey. Accordingly, the authors investigated a completely 

diagrammatic approach for the specification of structural 

models. This approach obeys the ―everything is a model‖ rule 

by having both structure and constraints in the same model-

centric format. They give an example that illustrates the usage 

of some constraints which are not expressible by UML itself. 

These constraints are specified in OCL. In Fig. 18, from 

Rutle et al. [18], a UML class diagram of an information 

system for the management of employees and projects is 

presented. Rutle et al. [18] require that the following set of 

rules be satisfied at any state of the system: 

Fig. 15 The TM static model. 
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Fig. 17 The TM behavior model. 

 
Fig. 18 A UML class diagram for the management of employees and 

projects [18]. 

 

Fig. 14 Sample constraint and its expression in logic (From [27]). 
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1. An employee must work for at least one department. 

2. An employee may be enrolled in no or many projects. 

3. A department may have no or many employees. 

4. A department may control no or many projects. 

5. A project must be controlled by at least one department. 

6. An employee enrolled in a project must work in the 

controlling department. 

7. A set of employees working for a controlling department 

must not be enrolled in the same controlled project more than 

once. 

 

5.1 TM models 
 

Fig. 19 shows the TM static model that corresponds to the 

given example, according to our understanding. The figure 

shows only the basic items mentioned by Rutle et al. [18]. 

There are three thimacs: employee, department, and project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the figure, an employee is created (number 1—e.g., a record 

in the database) and flows to join the appropriate department 

(2). Similarly, a project (3) is controlled by a department (4). 

An employee may join a certain project (5). In the department, 

the number of employees is incremented when an employee 

joins the department.  

 

Fig. 20 shows selected events in this example. The following 

events are defined: 

E0: A department (i.e., instance) is created. 

E1: The number of employees in the department is set to zero 

E2: A new employee is created. 

E3: An employee joins a department.  

E4: The number of employees in the department is 

incremented.  

E5: A project is created. 

E6: A project is assigned to a certain department. 

E7: An employee is employed in a certain project.  

Fig. 20 A behavior model. 
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Fig. 21 shows the TM behavior model. 

  

5.2 Modeling constraints 
 

The basic idea in this section is realizing some constraints by 

binding events together. Consider the given rules as follows. 

 

Constraint 1. An employee must work for at least one 

department. 

Such a rule can be enforced by binding the events E2 and E3 

together to form the high-level event E2-3 as represented by 

the dotted box in Fig 22. That is, 

  

When a new employee x is created (E2), then this employee 

joins department y (E3).  

 

Thus, no employee exists that is not in a department. The 

system would require a department name whenever a new 

employee is created. 

 

Note that E2 may be interpreted as ―creating a new x‖ or ―there 

exists x.‖ Thus, the event E2-3 specifies: if x is a new 

employee, then create it and then make him/her join department 

x OR if x already exists (from a previous E2-3), then make 

him/her join, additionally, department y. Thus, as in the given 

rule, an employee may join more than one department. 

 

Constraint 2. An employee may be enrolled in no or many 

projects. 

 

This rule is available in the behavioral model since E2 → E7 

may be applied several times. In this case the semantics state 

that an existing employee (E2) may join a project (E7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constraint 3. A department may have no or many employees. 

This rule is enforced by E4, where a department’s number of 

employees is initialized to zero (E0 is immediately followed by 

E1 in the behavior model). Additionally, the number of 

employees is incremented when an employee joins the 

department (E4).   

E1 

E2 E3 

E6 

E4 

E5 E0 E6 

Fig. 21  Eventsmodel.  

Fig. 22 High-level events E2-3 and E5-6. 
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Rutle et al. [18] did not mention removing an employee from a 

department; however, the removed employee had previously 

caused incrementing of the number of employees, thus, this 

number is always greater than zero. 

 

Constraint 4. A department may control no or many projects. 

 

This rule can be specified by the high-level event E5-6, as 

shown in the dotted box in Fig. 22, in a manner similar to that 

described in the previous case of E2-3. The controlling 

department is specified when creating a project; hence, a 

department may not have a project to control. 

 

Constraint 5. A project must be controlled by at least one 

department. 

 

The event E2-3 guarantees this rule. 

 

Constraint 6. An employee enrolled in a project must work in 

the controlling department. 

 

Fig. 23 shows the event E2-3-5-6-7, which is indicated by a 

dotted boundary. It indicates, for employee x, department y, 

and Project z, that x is an employee (E2) in department y (E3) 

enrolled in project z (E7), and project z (E5) is controlled by 

department y (E6). In other words, if x is an employee in 

department y and enrolled in project z, then z is controlled by 

department y. 

 

Constraint 7. A set of employees working for a controlling 

department must not be enrolled in the same controlled project 

more than once. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This rule is applied to the same high-level event, E2-3-5-6-7, as 

in the previous rule; however, it is expressed in the behavior 

model as shown in Fig. 24. In Fig. 24, we need a second level 

language that expresses E5 (z) where z is a specific project. 

Then, ⌐(E2-3-5(z)-6-7) denotes the end of E2-3-5(z)-6-7, i.e., 

the employee is no longer enrolled in project z. Assuming the 

employee is no longer enrolled in project z, then the event E2-

3-5(z)-6-7 cannot (cross on the chronology arrow) occur again. 

 

6. Conclusions  

 

In this paper, we have expressed constraints diagrammatically 

using the thinging machine (TM) through examples taken from 

the UML/OCL literature. This contributes to greater 

understanding of the notion of constraint in conceptual 

modeling. It also demonstrates the expressiveness and 

limitation of the TM. We can conclude that the TM provides as 

viable a diagrammatic tool as constraints language. Further 

research will explore this matter further by experimenting with 

different types of constraints. 

 

Fig. 23 An Event E2-3-5-6-7. 
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