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It has been proven that Boson sampling
is a much promising model of optical quan-
tum computation, which has been applied
to designing quantum computer success-
fully, such as "Jiuzhang". However, the
meaningful randomness of Boson sampling
results, whose correctness and significance
were proved from a specific quantum me-
chanical distribution, has not been utilized
or exploited. In this research, Boson sam-
pling is applied to design a novel Quantum
Random Number Generator (QRNG) by
fully exploiting the randomness of Boson
sampling results, and its prototype system
is constructed with the programmable sil-
icon photonic processor, which can gen-
erate uniform and unbiased random se-
quences and overcome the shortcomings
of the existing discrete QRNGs such as
source-related, high demand for the pho-
ton number resolution capability of the
detector and slow self-detection generator
speed. Boson sampling is implemented
as a random entropy source, and random
bit strings with satisfactory randomness
and uniformity can be obtained after post-
processing the sampling results. It is the
first approach for applying the random-
ness of Boson sampling results to develop
a practical prototype system for actual
tasks, and the experiment results demon-
strate the designed Boson sampling-based
QRNG prototype system pass 15 tests of
the NIST SP 800-22 statistical test com-
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ponent, which prove that Boson sampling
has great potential for practical applica-
tions with desirable performance besides
quantum advantage.

1 Introduction
Random numbers play an important role in dif-
ferent kinds of applications and provide essen-
tial resources [1], such as cryptography [2], lot-
tery industry [3], genetics, scientific simulations
[4, 5], etc. While the generation of good random-
ness is an obviously difficult problem [6, 7]. In
the classical field, there are many random num-
ber generator (RNG) schemes, most of which in-
volve deterministic algorithms and start from a
small bit string called seed, such as the linear
congruential RNG based on number theory [8],
the Mersenne Twister based on linear shift feed-
back registers [9], etc. Those schemes can simply
generate random numbers at an advantageous ef-
fective rate, while they cannot be considered as
true RNGs, called pseudorandom number gener-
ators (PRNGs). When the small string random
seed is leaked, the random numbers generated by
those schemes may be exactly known. The im-
portant requirement for the unpredictability of
random number generators limits the application
scope of classical PRNGs.

Fortunately, the intrinsic randomness of quan-
tum physics makes quantum systems a good
source of RNG [10], and many quantum random
number generators (QRNGs) [11] are proposed,
including Branching path generator [12], Photon
counting generator [13], etc. Branching path gen-
erator generates random numbers by measuring
the path superposition state or polarization su-
perposition state [12], which depends on the in-
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put source that once the superposition state is
controlled by a third-party, the measurement re-
sult may be controlled as well. Photon count-
ing generator obtains the random number by de-
tecting the photon number of the coherent states
[13], whose efficiency depends on the dead time
and the photon resolving capability of photon de-
tectors. The non-local correlation between two
particles can also generate the randomness [14]
which provides an important resource in RNG
protocols, like randomness expansion [15, 16] and
random amplification [17]. These methods for
constructing QRNGs are called device indepen-
dent or self-testing QRNGs [18, 19, 20], while
their generation bit rate is relatively slow that
they lack wide applications. In general, discrete
QRNGs still have the following possible prob-
lems: source-related, high demand for the pho-
ton number resolution capability of the detector
and slow self-detection generator speed. Thus
the principle and implementation of QRNGs need
to be improved urgently, and more and more
new methods are expectively proposed to design
QRNGs [21, 22, 23].

On the other hand, at the very beginning
of noisy intermediate-scale quantum (NISQ) era
[24], quantum supremacy [25] has been proposed
that certain computing tasks may be executed
exponentially faster on quantum computers than
on classical computers[26]. Boson sampling is
considered as a powerful candidate for experi-
mental verification of quantum supremacy [27],
which samples the probability distribution gener-
ated by the evolution of single photons through
a linear optical network only including phase
shifters and beam splitters. The application of
Boson sampling has attracted the attention of
researchers, e.g. Boson sampling-based one-way
function [28] , Boson sampling-based random uni-
tary encryption [29] and Boson sampling-based
hash function [30] have been proposed respec-
tively. The branches of applications of Boson
sampling shorten the research process of solving
practical problems with Boson sampling. How-
ever, the meaningful randomness of Boson sam-
pling results, whose correctness and significance
were proved from a specific quantum mechanical
distribution [31], has not been fully utilized or
exploited.

We are so excited to discover that there are
three favorable factors for taking advantages and

exploiting the randomness of Boson sampling to
design QRNG. First, the Boson sampling result
is a superposition state before the photon output
detection that the output is random and indepen-
dent of the input source. Second, we merely need
a normal single-photon detector instead of a pho-
ton number resolver in concluding the output of
Boson sampling since we only concern whether a
mode has photons instead of the specific number
of photons. Third, it is possible to generate multi-
bit random numbers for sampling only once with
multi-modes Boson sampling, which may be more
efficient compared to the generators for single-bit
random numbers with one sampling. Moreover,
the Boson sampling-based QRNG corresponding
to above three factors is capable to overcome the
defects of the existing QRNGs for the require-
ments of reliable safe input source, high photon
number resolution and improved bit rate poten-
tially. Boson sampling is a sampling problem
which is closely related to random number gen-
eration indeed. As early as 1999, Petrie et al.
electronically amplified and sampled natural phe-
nomena such as heat or shot noise signals to gen-
erate random numbers [32]. Zhou et al. sampled
vacuum fluctuations to design practical quantum
random number generation [33]. In 2021, Bai et
al. performed homodyne detection and sampling
on the vacuum state to realize the fastest and
miniaturized QRNG at present[34]. In the field
of experiments, many ingenious experiments have
implemented small-scale Boson sampling [35, 36].
At the same time, the Boson sampling model
has also been extended, i.e. Scattershot Boson
sampling [37], Lossy Boson sampling [38, 39],
Gaussian Boson sampling [40, 41] etc. In 2019,
Wang et al. realized the 20-photons 60-modes Bo-
son sampling experiment[42]. In 2020 and 2021,
quantum computing prototypes jiuzhang and ji-
uzhang 2.0 were proposed [43, 44], respectively,
which proved the advantages of quantum com-
puting in the optical quantum system.

In order to overcome the above shortcomings of
the existing QRNGs and in the interest of fully
exploiting the randomness of Boson sampling re-
sults, we present an exploratory work in this pa-
per to utilize Boson sampling as an entropy source
to generate quantum random numbers, where the
sampling results are independent with the input
source, only a normal single-photon detector is
required without photon number resolution, and
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the generator is quite efficient and effective with
ideal post-processing. The Von Neumann correc-
tion method for post-processing is applied to gen-
erate uniform and unbiased random numbers. A
Boson sampling-QRNG prototype system is con-
structed with the programmable silicon photonic
processor to implement the experiments for NIST
SP 800-22 statistical test [45] of the proposed
scheme.

2 PRELIMINARIES

In this section, we first briefly review the basic
knowledge of Boson sampling, and then introduce
the design methods of using quantum optical sys-

tems to construct QRNGs.

2.1 Boson sampling model
The problem of Boson sampling is proposed by
Aaronson and Arkhipov in 2013 [27], claiming
that the fock state is input into the passive lin-
ear optical interferometer, and the output dis-
tribution is sampled with the photon detectors,
as shown in the Fig.1(a). Without the exponen-
tial cost of time or resources, the sampling out-
come cannot be predicted with a classical com-
puter [46, 47]. For Boson sampling model of m-
modes linear transformation and n indistinguish-
able Bosons, the output probability is calculated
by a tricky matrix function called permanent

PI,O = |〈O|U ⊗ U . . .⊗ U |I〉|2 = |Per (UI,O)|2

j1!j2! . . . jm!g1!g2! . . . gm! , (1)

where |I〉 = |j1j2 . . . jm〉 is the input state satisfy-
ing j1 +j2 + . . .+jm = n, ji is the number of pho-
tons input to the i-th mode, |O〉 = |g1g2 . . . gm〉
is the output state, UI,O is the sub-matrix of the
unitary transformation matrix U for the linear
optical interferometer.

2.2 Quantum random number generator
The uncertainty of quantum systems is guar-
anteed by the inherent randomness of quantum
physics, where true randomness is a basic feature
of quantum mechanics [48]. With the develop-
ment of quantum optics, the inherent randomness
in many parameters of the quantum states of light
provides options for the realization of QRNGs
[11].

Branching path QRNGs generate random num-
bers based on the measurement of path super-
position state. The light source is input into a
balanced beam splitter, where the transmittance
and reflectivity are equal. The output is 0 when
D0 detects a photon, and the output is 1 whenD1
detects a photon [10], as shown in the Fig.1(b).
Photon counting QRNGs generate random num-
bers based on the number of photons detected on
the coherent state [13]. Coherent states can be
described as a superposition of fork states

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (2)

where α is a complex number, the amplitude |α|2
corresponds to the mean photon number of the
state. The number of photons arriving at the
detector in a fixed time follows a Poisson distri-
bution. The probability of detecting n photons
in T time is

P (n) = (λT )n

n! e−λT . (3)

Boson sampling can be handled with optical
quantum systems, of which the necessary ele-
ments can be implemented with the current tech-
nologies, i.e. sources, linear evolution and detec-
tion. The result of Boson sampling is random and
can be used as a method of realizing a QRNG.

3 Quantum random number generator
based on Boson sampling
In this section, we describe the overall scheme and
individual modules of the Boson sampling-based
QRNG. The Boson sampling-based QRNG pro-
totype system is constructed on a programmable
silicon photonic processor.

3.1 The scheme of Boson sampling-based
QRNG

The QRNGs are divided into well-defined inde-
pendent modules according to their functions,
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Figure 1: (a) n photons m modes Boson sampling
model. n Bosons are input into the passive linear net-
work of m modes, which is composed of beam splitters
and phase shifters. After the interference effect of the
network, the photons are detected and sampled by the
detectors at the output modes. (b) The structure of
Branching path QRNG. The photon is sent to a bal-
anced beam splitter and the output is detected with the
same probability.

as shown in Fig.2(a), where the most impor-
tant parts are the entropy source and the post-
processing. The entropy source is composed of a
quantum system and measurement operations to
output initial random data. Since noise exists in
the entire system and the measurement process,
the initial random data is not necessarily in the
form of random bits. Therefore, post-processing
operations are required, such as encoding, ran-
dom extraction, random amplification, etc, en-
suring the random sequence obtained at the final
output can become a uniform random number se-
quence with unbiased and independent bit 0 and
bit 1.

In the Boson sampling-based QRNG scheme we
designed, five major components are included as
described in Fig.2(b), i.e. input Boson source,
linear optical network, photon detection, post-
processing, and output. The entropy source is
described by the Boson sampling, in which the
quantum system is composed of the input Boson
source and the linear optical network, and the
measurement process is detected by the photon
detectors.

With high probability, the Boson sampling dis-

tribution created by a haar-random matrix U is
far away from the uniform distribution[49]. The
Von Neumann correction method[50] as shown in
Table 1 is applied to the random numbers ob-
tained directly from the Boson sampling to get
a completely uniform and unbiased random bi-
nary bit sequence. The specific steps of the post-
processing are summarized as follows.

Step 1 Perform a Boson sampling and record
the sampling result as S1.

Step 2 Perform Boson sampling again and
record the result as S2.

Step 3 Comparing S1 with S2, the output code
of a mode is 0 bit if it detects photon in S1
but does not detect photon in S2. Similarly,
a mode does not detect photon in S1 but
detects photon in S2, then the output code
of this mode is 1 bit. No coding in other
cases.

Step 4 The coded bits of the modes numbered 1
toM are output in order to obtain the result
of the random number generator.

Step 5 Repeat Step 1 to Step 4 until the re-
quired number of random numbers are gen-
erated

3.2 The Boson sampling-based QRNG proto-
type system
We have constructed the QRNG prototype sys-
tem using a programmable silicon photonic pro-
cessor [51] and observed two Bosons sampling
statistics after a five-mode Haar random unitary
process U5, as shown schematically in Fig.3. To
simulate a state of two Bosons created in modes 1
and 2, we first generate the two-photon entangled
state

1√
2

(|1〉s|2〉i + |2〉s|1〉i) , (4)

where |k〉(k = 1, 2, 3, 4, 5) denotes the path of
a photon, s and i denote the signal and idler
photon from coherently generated photon pairs.
Each photon is then routed to a universal linear
optical network, which applies the unitary trans-
formation U5 with fixed input. Finally, photons
are detected off the chip, and two-photon coin-
cidence events are recorded, from which we ex-
tract the correlated detection probability Pr,q of
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Figure 2: (a) Block structure of QRNG. The block structure consists of the entropy source and the post-processing.
The entropy source includes the quantum system and the measurement process, generating the initial random num-
bers. The post-processing ensures the random number sequence can be uniform and unbiased with 0bit and 1bit
derived on equal probability. (b) The structure of Boson sampling-based QRNG. The sampling results are post-
processed with Von Neumann correction method to obtain a uniform 01-bit sequence.

mode 1 2 3 4 5 6 7 8 9 10 11 12 ... M

The first sampling result S1 ...
The second sampling result S2 ...

Coding 0 * * 0 1 * 0 1 * 1 * 0 ... 1
The final random number sequence 0010110...1

represents one or more photons is detected
represents no photon is detected

Table 1: The post-processing with the Von Neumann correction method

measuring a photon at output r and q of two net-
works, respectively. According to the simulating
scheme, we obtain Γr,q, the probability to mea-
sure two Bosons occupying modes r and q after
the unitary process U5, as Γr,q = Pr,q (shown in
the Fig.4(a)).

4 Experiments and Results

In this subsection, we use the Boson sampling-
based QRNG prototype system to experimentally
generate random numbers. Furthermore, the sta-
tistical test suite is performed on the random
numbers obtained from experiments to test the
randomness.

4.1 Experimental setup

Bright light with the wavelength of 1549.3 nm
is collected from a continuous-wave tunable laser
and further amplified up to 50 mW using an op-
tical erbium-doped fiber amplifier. After spec-
trally filtered by a dense wavelength division mul-
tiplexing module and tuned by a polarization
controller, the bright light is then injected into
the silicon photonic chip (shown in Fig.3) via
a V-Groove fiber array. The chip mainly inte-
grates two spontaneous four-wave mixing spiral
sources, 22 simultaneously running thermo-optic
phase shifters, 32 multimode interferometer beam
splitters, and 16 optical grating couplers. The
two SFWM sources are pumped by 50:50 split
laser and create possible (signal-idler) maximally
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Two-photon entangled state generation Linear optical network Detection

Figure 3: The programmable silicon photonic processor chip. The silicon chip integrates two functional parts: (i)
creating two-photon entangled state through spontaneous four-wave mixing (SFWM) and (ii) applying arbitrary
five-dimensional unitary transformations with fixed inputs through configurable linear optical networks.
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Figure 4: (a) The theoretical probability distribution and experimental probability distribution of each output state.
(b) The experimental results pass the 15 tests of the NIST SP 800-22 random number statistical tests. The P−value
of each test is greater than the confidence level α = 0.01.

entangled photon pairs. The two five-mode uni-
versal linear optical networks comprised of beam
splitters and phase shifters arranged in Reck et

al.–style are used to implement arbitrary five-
mode unitary transformation with fixed inputs.
In our prototype demonstration, we apply a Haar-
random generated unitary operator U5 as

0.01311 + 0.33011 ∗ I 0.65648 + 0.18793 ∗ I 0.05465 + 0.16879 ∗ I 0.49720 + 0.04980 ∗ I 0.18845 + 0.32849 ∗ I
0.14759 + 0.47792 ∗ I −0.24696 − 0.23840 ∗ I 0.34173 + 0.03745 ∗ I 0.25733 + 0.55151 ∗ I −0.05311 − 0.37496 ∗ I
0.32357 + 0.04518 ∗ I −0.10722 + 0.56648 ∗ I 0.50920 + 0.17247 ∗ I −0.29096 − 0.15241 ∗ I 0.39168 − 0.10264 ∗ I
0.35818 − 0.46781 ∗ I −0.13350 − 0.15289 ∗ I −0.09973 + 0.00157 ∗ I 0.07696 + 0.51280 ∗ I 0.42931 + 0.38538 ∗ I
−0.31110 + 0.30001 ∗ I −0.20562 + 0.00389 ∗ I 0.13427 − 0.73030 ∗ I −0.01605 − 0.05381 ∗ I 0.35379 + 0.30204 ∗ I

.

(5)

Photons from different chip outputs are col-
lected by the same fiber array and detected by
superconducting nanowire single-photon detec-
tors. With the coincidence counting logic, two-
photon coincidences are recorded by using a time-

interval-analyzer in a 468.75ps integration win-
dow. During the continuous running time, a to-
tal of 914286 two-photon coincidence events are
recorded.
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number Test
1 The Approximate Entropy Test
2 The Binary Matrix Rank Test
3 The Cumulative Sums Test
4 The Frequency (Monobit) Test
5 Frequency Test within a Block
6 The Runs Test
7 Tests for the Longest-Run-of-Ones in a Block
8 The Discrete Fourier Transform (Spectral) Test
9 The Non-overlapping Template Matching Test
10 The Overlapping Template Matching Test
11 Maurer’s "Universal Statistical" Test
12 The Linear Complexity Test
13 The Serial Test
14 The Random Excursions Test
15 The Random Excursions Variant Test

Table 2: The 15 tests of NIST SP 800-22

4.2 Standard statistical randomness test

A total of 1.8772 Mbit 01bit sequences were ob-
tained after post-processing using the Von Neu-
mann correction method, where the probabilities
of 0 and 1bit are 0.49999814 and 0.50000186, re-
spectively, implementing an unbiased distribution
of random number sequences. We use the NIST
SP 800-22 statistical test suite to test the ran-
domness [45], which is based on hypothesis test-
ing, containing 15 tests in total, as shown in Table
2. A p-value is calculated for each test item sum-
marizing the degree of evidence rejecting the null
hypothesis, which is the function of data. Choos-
ing the significance level α = 0.01, if the p-value
obtained by the statistical test is greater than
or equal to 0.01, it indicates that the sequence
has passed the test, and the resulting sequence is
random. If the p-value is less than 0.01, it indi-
cates that the sequence has failed the test. The
p-values of all test items are showed in Fig.4(b),
which are all greater than 0.01, indicating that
the bit sequence obtained by the experiment has
superior performance at random.

5 Discussion

In this section, we describe the influence of circuit
parameters on QRNG randomness, and analyze
some attractive properties of the Boson sampling-
based QRNG.

5.1 Influence of Boson sampling circuit param-
eters on randomness

We use mathematical entropy function to mea-
sure the uncertainty and randomness of the Boson
sampling circuit output in the information theory,
where different entropy values reflect the degree
of surprise for the result. Shannon entropy is
calculated as H(A) = −

∑
a∈χ PA(a) log2 PA(a),

where PA is the probability distribution of ran-
dom variable A, PA(a) is the probability of get-
ting output a, and χ is a discrete set of val-
ues of random variable A. Ŕnyi entropy is an
extension of the usual Shannon entropy [52].
The Ŕnyi entropy of order β is calculated as
Hβ(A) = 1

1−β log2
∑
a∈χ PA(a)β . When β → 1,

the Ŕnyi entropy corresponds to Shannon en-
tropy. When β → ∞, the Ŕnyi entropy cor-
responds to the Min-entropy. In another way,
the Min-entropy H∞ can be defined as H∞ =
− log2 [maxa∈χ PA(a)]. 2−H∞(A) describes the
probability of hitting the first guess from a ran-
dom variable A with a known probability distri-
bution.

In the case of fixed input Boson sampling, dif-
ferent linear interferometer unitary matrices are
constructed to obtain the output probability dis-
tribution of Boson sampling by adjusting the ro-
tation parameters of the linear optical network
phase shifters. As shown in Fig.5 and Fig.6, the
Shannon entropy and Min-entropy of the Boson
sampling output distribution vary with different
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Figure 5: (a)-(j) present the curves of Shannon entropy and Min-entropy changing with circuit rotation angle
parameters θ2I , θ1I , θ1E , θ4I , θ3I , θ3E , θ6I , θ5I , θ5E , θ8I , respectively.

circuit parameters in the range of [0, 2π). The
parameters of the 1I and 2I interferometers have
a greater impact on the randomness of the cir-
cuit output probability distribution, which are
the first optical device that the photons enter-
ing the optical network from the light source
needed to pass. The general trend of each en-
tropy curve is ascending, descending, ascending,
descending and repeating. The experimental re-
sults show that for a fixed input 5 modes 2 pho-
tons Boson sampling, the randomness of the out-
put of the Boson sampling system can be effec-
tively increased by selecting appropriate linear
optical network parameters to improve the ran-

dom numbers generation rate of Boson sampling-
based QRNG.

5.2 Performance analysis

The output probability distribution of Boson
sampling is not close to the uniform distribution
in variation distance [49], which is the advantage
of Boson sampling compared with other sampling
distributions. A uniform distribution of 01 bits in
the output sequence is an important feature re-
quired by the random number generator, where
the probability of each bit being 0 or 1 is both
0.5, which is unbiased (otherwise the possibility
of "guessing" successfully increases). The Von
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Figure 6: (a) denotes the curves of Shannon entropy changing with circuit rotation angle parameters.

Neumann correction method is used to achieve
unbiasedness in the proposed scheme. However,
we have not changed the output probability dis-
tribution generated by Boson sampling, which is
still far from the uniform distribution. After fin-
ishing the post-processing, the probability of each
mode coded as 0 and 1 is equivalent, the 01 bits
in the final random number sequence are also a
uniform distribution at the same time. Differ-
ent from other schemes that directly change the
probability distribution of quantum systems, this
scheme has the advantage that it retains the non-
uniform distribution of boson sampling. In addi-
tion, the Boson sampling-based QRNG has sev-
eral attractive properties.

Unpredictability. The entire system is in a su-
perposition state of |φout 〉 =

∑
i λi |n1n2 . . . nn〉

before being detected by photon detectors, the
measurement may destroy the coherence of the
superposition state. According to the Born
rule[53], when a quantum superposition state is
observed and measured, the probability that the
state collapses at a specified position is propor-
tional to the square of the coefficient of the state.
The measurement result of a quantum system is
related to probability, which can never be pre-
dicted better than blindly guessing. At the same
time, Boson sampling is a process of sampling in
the probability distribution obtained by the evo-
lution of the Boson through the beam splitters
and the phase shifters, where the final output re-
sult is random and unpredictable.

Independent of input source. In the tradi-
tional QRNGs, the random numbers are gener-
ated by three stages: input source, measurement
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Figure 7: After changing different input states, the prob-
ability of 1bit in the random number sequence generated
by QRNG.

operation, and post-processing, where the origi-
nal input source of QRNGs must be fully trusted.
If the input source is controlled by a third-party,
for example, he/she fixes your source to a com-
bination sequence of ground state |0〉 and |1〉 in-
stead of the superposition state |+〉, when mea-
suring the state on the Z basis, you may "look" to
get "random" 0 and 1 bits which are controlled by
the third-party. In the proposed Boson sampling-
based QRNG, a haar random linear optical net-
work is placed between the initial input source
and the measurement operation, where the Bo-
son source can be detected and measured by the
photon detectors at the output modes after the
evolution of the interference. Since the output
state is an unknown superposition state ensured
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by the interference effect, the result obtained af-
ter the measurement can not be completely de-
termined. In addition, we can also increase the
random sampling process before post-processing.
Perform boson sampling T times to obtain T sam-
ple sets (T > 2), from which two sets of sam-
ples are randomly selected for post-processing to
obtain the output sequence, avoiding the attack
problems caused by continuously changing the in-
put source. We change the input source to other
states instead of |11000〉 state to simulate the sit-
uation that the input source is controlled by the
third party. Evolving in the same unitary ma-
trix of the linear optical network, the probabili-
ties of 1 bit in the output random sequence are
shown in Figure X, where the obtained random
numbers are still unbiased, which are indepen-
dent of changing input sources. On the other

hand, when the third-party controller alternately
gives us different input sources, as shown in Fig.7,
the probability of generating 1 bit in the random
sequence has obvious deviations, which can be
easily identified. The random bits will be dis-
carded when there is a significant bias in the 01
bits. Therefore, regardless of whether the input
source is mastered by a third-party, we can gen-
erate unbiased random numbers or identify the
enemy and discard the generated random num-
bers, the proposed QRNG is independent of the
input source.
Uniform (unbiased). After the Von Neumann
correction post-processing, the probability of get-
ting 0 bit and 1 bit in the random number se-
quences can be equivalent. For the x-th output
mode of Boson sampling, the probability of out-
putting 0 (1) bit is

Px(0) = P(detecting photon in S1)× Px(not detecting photon in S2), (6)
Px(1) = Px(not detecting photon in S1)× Px(detecting photon in S2). (7)

In the case of the same input photon source
and linear optical network, two consecu-
tive Boson sampling experiments are inde-
pendent, where Px(detect photon in S1) =
Px(detect photon in S2), so Px(0) = Px(1).
Therefore, the probability of 0 and 1 in the final
random number sequence is both 50%, leading to
a physically unbiased QRNG in this work.
Unsimulateability. The complexity theory
analysis demonstrates that under the plausible
conjectures about the permanent of i.i.d. Gaus-
sian matrices[27], the problems of accurate and
approximate Boson sampling can not be effec-
tively solved by classical computers unless

PP = PostBQP = PostBPP ⊆ BPPNP, (8)

which means that the polynomial hierarchy col-
lapses to the third level according to Toda’s the-
orem [54]. The output probability distribution of
Boson sampling is calculated by the permanent of
the unitary transformation matrix of the linear
optical network, which is a #P − hard task on
classical computer. The time complexity of the
classic algorithm to calculate the matrix perma-
nent is O(2nn2), where the demand for classical
computer resources exponentially increases with
n [55, 56]. Therefore, the Boson sampling-based
QRNG can not be simulated classically.

Multiphoton. In the post-processing process,
we only record whether a certain mode detects
photons instead of the specific number of de-
tected photons. Compared with the photon
counting QRNGs using photon number resolution
detectors[13], the Boson sampling-based QRNG
using single-photon detector is relatively easy to
realise that it only requires a binary choice be-
tween no click (no photon has been detected) and
click (one or more photons are detected). Most of
the proposed Boson sampling-based applications
rely on collision-free conditions (n � m), where
the number of photons detected in each output
mode is either 0 or 1[27], the probability of de-
tecting multiple photons in a mode at the out-
put is almost zero. However, the probability of
multiphoton in a mode gradually increases with
non-collision-free conditions, seen Fig.8(a). The
scheme we proposed is not limited to collision-
free conditions, where multi-photon and single-
photon are handled at the same time in the post-
processing, which is more universal.

Multiple random bits. Only one bit can be
generated at a time in branching path QRNGs
with limited generation rate. In the scheme men-
tioned in this article, the linear optical network
of Boson sampling has m modes, each of which
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Figure 8: (a) In 10 modes Boson sampling with a fixed
haar random U , the variation curve of the single-photon
probability and the multi-photon probability with the
number of photons n. Under collision-free conditions,
the probability of multi-photon in a mode is almost zero.
With the increase of the number of photons n, the prob-
ability of multi-photons gradually increases which cannot
be ignored. (b) The number of random number bits gen-
erated single photon branching path QRNG and Boson
sampling-based QRNG with M = 16, N = 6.

places a photon detector at the end. Multiple re-
sults of the presence or absence of photons can
be obtained with one measurement. According
to the post-processing principle, more than one
random bit can be finally obtained through Bo-
son sampling. We find that the Boson sampling-
based QRNG generates random numbers at a
faster rate and generates more random numbers
at a time by simulating the number of random
bits generated by QRNGs of single photon and
Boson sampling with M = 16 and N = 6 respec-
tively, as shown in Fig.8(b).

6 Conclusion
An available and unbiased quantum random
number generator has been proposed by fully
exploiting the meaningful randomness of Boson

sampling results, in which the sampling result
of Boson sampling is encoded to generate binary
random number sequences. The experimental re-
sults on the Boson sampling-based QRNG proto-
type system with programmable silicon photonic
processor chip passed 15 NIST SP 800-22 statisti-
cal test component, indicating that the proposed
QRNG scheme performs well in randomness. Per-
formance analysis shows that this scheme can
generate random numbers that are uniform, un-
biased, unpredictable, source-independent, and
non-classical simulation to guarantee security and
generates random numbers with multiple bits at
a time to speeds up the generation rate simul-
taneously, which can solve the problems of the
existing discrete QRNGs for the high demand of
reliable safe input source, strong photon number
resolution and improved bit rate potentially. In
addition, this scheme inherits the merits of Boson
sampling, making use of the randomness of Boson
sampling results to develop a physical prototype
system. This fact provides additional evidence
that Boson sampling is capable of solving practi-
cal application problems besides quantum advan-
tage. At the same time, it inspires more potential
applications of Boson sampling in quantum de-
vices, such as quantum key distribution (QKD)
which can be implemented by the synchroniza-
tion of Boson sampling.
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