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Abstract. We study the thermodynamics and criticality of the su(m|n) Haldane–
Shastry chain of BCN type with a general chemical potential term. We first derive
a complete description of the spectrum of this model in terms of BCN -type motifs,
from which we deduce a representation for the partition function as the trace of a
product of site-dependent transfer matrices. In the thermodynamic limit, this formula
yields a simple expression for the free energy per spin in terms of the Perron–Frobenius
eigenvalue of the continuum limit of the transfer matrix. Evaluating this eigenvalue
we obtain closed-form expressions for the thermodynamic functions of the chains with
m,n 6 2. Using the motif-based description of the spectrum derived here, we study
in detail the ground state of these models and their low energy excitations. In this
way we identify the critical intervals in chemical potential space and compute their
corresponding Fermi velocities. By contrast with previously studied models of this
type, we find in some cases two types of low energy excitations with linear energy-
quasimomentum relation. Finally, we determine the central charge of all the critical
phases by analyzing the low-temperature behavior of the expression for the free energy
per spin.

Keywords: integrable spin chains and vertex models; quantum criticality; solvable lattice
models.
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1. Introduction

The original (trigonometric) Haldane–Shastry (HS) spin chain [1, 2] describes an array
of N spins 1/2 fixed at equally spaced points on a circle and interacting through a
two-body exchange potential whose strength is inversely proportional to the square of
the chord distance. This model turns out to be both integrable [3] and exactly solvable,
and is in fact invariant under the Yangian algebra Y (su(2)) even for a finite number of
sites [4,5]. In fact, its energy levels can be fully classified in terms of finite-dimensional
representations of the Yangian labeled by a type of skew Young diagrams, the so called
border strips [6–8], which in part explains the exceptionally high degeneracies found in
its spectrum [9]. The physical properties of the HS chain are also remarkable, being
relevant in such disparate areas as the theory of one-dimensional anyons and fractional
statistics [10–12], conformal field theory [8, 13–15], entanglement in low-dimensional
systems [16], and quantum chaos [17–19].

The thermodynamics of the (spin 1/2) HS chain was studied by Haldane himself,
who found an indirect expression for the entropy using the spinon description of
the spectrum [13]. Shortly afterwards, the free energy per spin of the rational
(Polychronakos–Frahm) [20,21] and hyperbolic (Frahm–Inozemtsev) [22] versions of the
HS chain (in the absence of a magnetic field or chemical potential term) was computed
in closed form in the latter two references. In fact, the method used in the latter
reference was ultimately based on a heuristic description of the spectrum in terms of
border strips and their associated motifs [4]. This description was rigorously proved and
generalized to the su(m|n) supersymmetric case in Ref. [23]. To be more specific, the
latter description entails the equivalence of the HS chain (and its rational/hyperbolic
variants) to a classical (inhomogeneous) vertex model with couplings proportional to
the chains’ dispersion function. Using this equivalence, it is possible to express the
chains’ partition function as the trace of a product of N (site-dependent) transfer
matrices of order (m+n)× (m+n). This result, when extended to allow for a chemical
potential term, yields a simple expression for the thermodynamic free energy per spin
in terms of the largest eigenvalue (in module) of the continuum limit of the transfer
matrix. This technique has been successfully applied to study the thermodynamics of
the trigonometric, rational and hyperbolic spin chains of HS type, both in the non-
supersymmetric [24] and supersymmetric cases [25].

The spin chains of HS type discussed above are naturally related to the AN−1

classical root system. In fact, generalizations of the latter models associated to the
other classical (extended) root systems have also been constructed, most notably for
the BCN system [26–33] and its BN [34] and DN [35, 36] reductions. Although these
models have also been solved, i.e., their partition function has been computed in closed
form, to the best of our knowledge the study of their thermodynamics has not been
addressed. This is basically due to the fact that a motif-based description of their
spectrum has not been derived until very recently, and only for the rational [37] and
trigonometric [38] BCN chains.
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The first aim of this work is to analyze the thermodynamics of the su(m|n) HS chain
ofBCN type. This model can be regarded as the open counterpart of the supersymmetric
version of the original (AN−1-type) HS chain, in which the spins lie on a half-circle
(in general not uniformly spaced) and interact both among themselves and with their
reflections with respect to the origin. As we shall see, in this case it is possible to
extend the description of the spectrum in terms of BCN -type motifs found in Ref. [38]
to include a chemical potential term. Using this description and applying the transfer
matrix method we have derived a simple expression for the thermodynamic free energy
per spin formally akin to that of the AN−1 case, but with a different dispersion relation
depending on a non-negative parameter. More precisely, the latter expression involves
again the largest eigenvalue of the continuum version of the transfer matrix, which by
the Perron–Frobenius theorem is positive and non-degenerate. This eigenvalue can be
easily computed in closed form for m,n 6 2, thus obtaining simple expressions for the
thermodynamic functions of the corresponding chains in terms of a definite integral. In
general, these functions behave as those of a two- or three-level system (respectively
for m = n = 1 and mn > 1), which is not surprising since the partition function can
be expressed as the trace of (m + n) × (m + n) transfer matrices [39]. In particular,
for mn > 1 the specific heat features a double Schottky peak for certain values of the
fermionic chemical potential.

As mentioned above, spin chains of HS type are closely connected to (1 + 1)-
dimensional conformal field theories. Indeed, the spectrum of the su(0|n) HS chain of
AN−1 type can be described at low energies by the su(n) WZWN CFT at level 1 [4,12,13].
This result was soon extended in Ref. [40] to the su(0|n) Polychronakos–Frahm (PF)
chain. In particular, this shows that the su(0|n) HS and PF chains are both critical.
Likewise, in Ref. [41] it was shown that the specific heat of the su(m|n) PF chain behaves
at low temperatures as that of a CFT with central charge c = m−1+n/2 (for mn 6= 0),
or c = m − 1 in the purely bosonic/fermionic su(m) case. A similar analysis for the
su(m|n) supersymmetric HS chain was carried out in Ref. [8]. More specifically, it was
shown that the ground state degeneracy is finite only for the su(0|n) and su(1|n) chains,
which also feature low energy excitations with linear energy-momentum relation. Thus
these models are both critical. Moreover, the central charge of the su(1|n) chain was
shown in the latter reference to be n/2, in agreement with the formula quoted above.
The low-temperature behavior of the free energy per spin of su(m|n) HS chains of type
AN−1 with the addition of a general chemical potential term was analyzed in Ref. [25]
for several low values of m and n. This made it possible to determine the regions in
the space of chemical potentials in which the models can be critical, and to compute
the central charge of the related CFT. In particular, it was found in the latter reference
that this central charge can take rational (non-integer or half-integer) values for suitable
values of the chemical potentials. It should be stressed that the results mentioned in
this paragraph only apply to HS chains of AN−1 type; in fact, we are not aware of similar
results in the literature for chains of HS type associated to the BCN , BN , or DN root
systems.
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The second main aim of this paper is to study the critical behavior of the su(m|n)
supersymmetric (open) HS chain of BCN -type with a chemical potential term for
m,n 6 2. To this end, we take advantage of the motif-based description of the spectrum
of this model to determine its ground state and establish the existence of low-energy
excitations with a linear energy-(quasi)momentum relation, characteristic of a critical
system. In this way we determine the critical regions and the value of the Fermi velocity
therein. In particular, we find that in some cases there are two types of excitations,
associated to changes in either end of the non-trivial part of the ground state bond
vector. We then use the explicit formula for the free energy per spin derived in this
paper to determine the central charge of the associated CFT. This provides a complete
description of the criticality properties of the model under study for all values of the
chemical potential.

The paper is organized as follows. In Section 2 we recall the definition of the BCN -
type su(m|n) HS chain introduced in Ref. [38], and explain how to construct a chemical
potential term commuting with its Hamiltonian. The partition function of this model is
computed in Section 3 using Polychronakos’s freezing trick argument [42]. In Section 4
we establish the equivalence of the model under study with a suitable inhomogeneous
vertex model, which yields an explicit description of the spectrum (including the correct
degeneracy of the energy levels) with the help of BCN -type motifs. This description
is used in Section 5 to derive a general expression for the model’s thermodynamic free
energy per spin in terms of the Perron–Frobenius eigenvalue of an appropriate transfer
matrix. By evaluating this eigenvalue, we then obtain a simple explicit formula for
the free energy in the case m,n 6 2. In Section 6 we determine the ground state of
the latter models using the motif-based description of the spectrum, and identify the
low-energy excitations with linear energy-momentum relation and their corresponding
Fermi velocities. The results of the previous sections are used in Section 7 to analyze
the critical behavior of the chains with m,n 6 2 for arbitrary values of the fermionic
chemical potential, and in particular to determine the central charge of the associated
CFT in the critical regions by studying the low-temperature behavior of the free energy
per spin. In Section 8 we derive closed-form expressions for the main thermodynamic
functions of the latter chains and discuss their qualitative behavior. We summarize
our main results in Section 9, where we also point out several possible lines for future
research suggested by the present work. Finally, in the Appendix we present the detailed
calculation of the low-temperature asymptotic expansion of the free energy per spin for
the su(0|2), su(1|2), su(2|1) and su(2|2) chains, which is used in Section 7 to derive their
central charge.

2. The model

The open (i.e., BCN -type) supersymmetric Haldane–Shastry chain consists of an array
of N particles, which can be either bosons or fermions, lying on the upper unit half-circle
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at fixed angles 2θi ∈ (0, π) (with 1 6 i 6 N), where θi is a root of the equation

P
(β1−1,β2−1)
N (cos 2θ) = 0. (2.1)

Here β1 and β2 are two positive parameters, and P
(β1−1,β2−1)
N is a Jacobi polynomial

of degree N . We shall respectively denote by m and n the number of bosonic and
fermionic internal degrees of freedom. In order to label these degrees of freedom, we
divide the set {1, . . . ,m + n} into two non-intersecting subsets B = {b1, . . . , bm} and
F = {f1, . . . , fn}, where b1 < b2 < · · · < bm and f1 < f2 < · · · < fn . The single particle
state |s〉 (with s = 1, . . . ,m+n) shall then be regarded as bosonic if s ∈ B or fermionic
if s ∈ F . We shall accordingly define the grading p : {1, . . . ,m+n} → {0, 1} as p(s) = 0
if s ∈ B and p(s) = 1 if s ∈ F . The Hilbert space of the system is the linear space
S(m|n) = ⊗Ni=1S

(m|n)
i , with S(m|n)

i = Cm+n, spanned by the basis vectors

|s1 · · · sN〉 := |s1〉 ⊗ · · · ⊗ |sN〉, 1 6 si 6 m+ n. (2.2)

Following reference [38], we take the model’s Hamiltonian as

H
(mε|nε′)
0 = J

4
∑
i<j

(1− S(m|n)
ij

sin2 θ−ij
+

1− S̃(mε|nε′)
ij

sin2 θ+
ij

)
+J8

∑
i

(
β1

sin2 θi
+ β2

cos2 θi

)
(1−S(mε|nε′)

i ), (2.3)

where J ∈ R\{0}, the Latin indices (as in the sequel, unless otherwise stated) run from
1 to N , θ±ij := θi ± θj and‡

S̃
(mε|nε′)
ij := S

(mε|nε′)
i S

(mε|nε′)
j S

(m|n)
ij . (2.4)

The supersymmetric spin permutation operators S(m|n)
ij = S

(m|n)
ji in the latter formula

are defined by

S
(m|n)
ij | · · · si · · · sj · · ·〉 := (−1)ν(si,...,sj)| · · · sj · · · si · · ·〉 , (2.5)

where ν(si, . . . , sj) = p(si) if si = sj and is otherwise equal to the number of fermionic
spins sk in the range k = i + 1, . . . , j − 1. Similarly, the supersymmetric spin reversal
operators S(mε|nε′)

i are defined by

S
(mε|nε′)
i | · · · si · · ·〉 := λεε′(si)| · · · ı(si) · · ·〉 , (2.6)

where ε, ε′ ∈ {±1} are two fixed signs and

λεε′(s) =

 ε, s ∈ B
ε′, s ∈ F .

Here ı is any involution leaving invariant the bosonic and fermionic sectors, i.e., ı2 = I,
ı(B) = B and ı(F ) = F , with at most one fixed point in each sector. The existence of
fixed points of ı obviously depends only on the parity of the integers m and n: indeed,
there is a bosonic (respectively fermionic) fixed point if and only if m (resp. n) is odd.
We can without loss of generality fix the action of the involution ı by setting

ı(bα) := bm+1−α , ı(fβ) := fn+1−β ,

‡ We shall usually omit in what follows the explicit dependence of H0, Sij , S̃ij and Si on m,n ε, and
ε′.
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where, as in the sequel (unless otherwise stated), the Greek indices are assumed to label
the elements of the sets B and F . One can intuitively think of ı as reversing the spin of
a site, by relabeling the bosonic degrees of freedom by bα − (m+ 1)/2 or the fermionic
ones by fβ − (n + 1)/2. In view of the above we shall say from now on, with a slight
abuse of notation, that a spin is of type ±α if it is either of type α or of type ı(α). Since
±α = ±ı(α), all the different values of ±α can be obtained by restricting α to the set

B0 ∪ F0 :=
{
b1, . . . , bdm/2e

}
∪
{
f1, . . . , fdn/2e

}
,

where dxe is the lowest integer greater that or equal to x (for an integer k we have
dk/2e = (k + π(k))/2, where π(k) ∈ {0, 1} is the parity of x).
Remark 1. As mentioned in the Introduction, the model (2.3) can be regarded as the
open version of the (supersymmetric) Haldane–Shastry chain. Indeed, the chain sites
zj := e2iθj lie on the upper unit circle, and the spin at zj interacts not only with the
remaining spins at zk (with k 6= j) but also with their reflections z̄k with respect to the
real axis. The strength of these interactions is inversely proportional to the square of
the (chord) distance between zj and the points zk and z̄k, respectively. Note also that,
since the last sum in Eq. (2.3) can be written as∑

i

(
β1 − β2

sin2 θi
+ 4β2

sin2(2θi)

)
(1− Si),

the Hamiltonian (2.3) is obviously related to the BCN extended root system with
positive roots θ±ij , θi and 2θi, with 1 6 i < j 6 N .

We next define the number operators Nα by

Nα|s1 · · · sN〉 = Nα(s)|s1 · · · sN〉 , 1 6 α 6 m+ n ,

where

Nα(s) :=
N∑
i=1

δα,si

is the number of spins of type α in the basis vector |s1 · · · sN〉. It is clear that
[Sij,Nα] = 0, since Sij preserves the spin content of a basis vector. On the other
hand, the operators Si, and hence S̃ij, do not commute with Nα unless ı(α) = α, since
Si changes a spin of type α into one of type ı(α). For this reason, the Hamiltonian H0

in general does not commute with the linear combination

H1 := −
∑
α

µαNα , (2.7)

where µα is an arbitrary real number. However, it is also clear that Si preserves the
number Nα(s) +Nı(α)(s) of spins of type ±α, so that

[Si,Nα +Nı(α)] = [S̃ij,Nα +Nı(α)] = 0

and hence

[H0,Nα +Nı(α)] = 0 .
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Thus H0 will commute with H1 provided that
µα = µı(α) , ∀α ∈ B ∪ F , (2.8)

a condition that we shall assume from now on to hold.
The partition function of the Hamiltonian H0 was computed in closed form in

Ref. [38]. In order to study the thermodynamics of the open supersymmetric HS chain,
in the next section we shall evaluate the partition function of the modified Hamiltonian

H := H0 +H1 (2.9)
for arbitrary values of the parameters µα satisfying condition (2.8) above. The coefficient
µα = µı(α) can then be regarded as the chemical potential for the spins of type
±α, since H commutes with H0 and Nα + Nı(α) for all α. More precisely, H0

leaves invariant the subspaces H(N) with well defined numbers N±α of particles of
all types ±α, where N := (N±α)α∈B0∪F0

and the non-negative integers N±α satisfy the
condition ∑α∈B0∪F0 N±α = N . It follows that the partition function ZN of the modified
Hamiltonian H can be expressed as

ZN =
∑∑

α∈B0∪F0

N±α=N
q

−
∑

α∈B0∪F0

µαN±α

Z0,N, q := e−1/T ≡ e−β ,

where Z0,N denotes the partition function of the restriction of H0 to H(N) and we have
taken Boltzmann’s constant kB as 1. Since Z0,N is independent of the µα’s, the thermal
average n±α := 〈N±α〉/N of the density of particles of type ±α is given by

n±α =
∑∑

α∈B0∪F0

N±α=N

N±α
N

q
−
∑

α∈B0∪F0

µαN±α

Z0,n = −∂fN
∂µα

,

with
fN := −(Nβ)−1 logZN .

In the thermodynamic limit this becomes

n±α = − ∂f

∂µα
, (2.10)

where
f := lim

N→∞
fN

is the thermodynamic free energy per particle. All the other thermodynamic functions
can then be computed from f . For instance, the energy, specific heat and entropy per
particle are respectively given by

u = ∂(βf)
∂β

, cV = −β2 ∂u

∂β
, s = β2∂f

∂β
= β(u− f) . (2.11)

Likewise, a straightforward calculation shows that the variance ∆±α := (〈N2
±α〉 −

〈N±α〉2)/N of the number of spins of type ±α is equal to

∆±α = − 1
β

∂2f

∂µ2
α

. (2.12)
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3. Partition function

In this section we shall compute the partition function of the modified Hamiltonian (2.9)
in closed from. Since we shall closely follow the method used in Ref. [38] to evaluate the
partition function of the Hamiltonian H0 in Eq. (2.3), we shall only outline the main
steps in the calculation and omit unnecessary details.

The method is based on the connection of the spin chain Hamiltonian (2.3) with
the dynamical one

Hspin = −
∑
i

∂2
xi

+ a
∑
i 6=j

(
a− Sij
sin2 x−ij

+ a− S̃ij
sin2 x+

ij

)
+
∑
i

 β̂1(β̂1 − Si)
sin2 xi

+ β̂2(β̂2 − Si)
cos2 xi


− 8a

J

∑
α

µαNα (3.1)

and its scalar version

Hsc = −
∑
i

∂2
xi

+ a(a− 1)
∑
i 6=j

( 1
sin2 x−ij

+ 1
sin2 x+

ij

)
+
∑
i

(
β̂1(β̂2 − 1)

sin2 xi
+ β̂2(β̂2 − 1)

cos2 xi

)
, (3.2)

where a is a positive parameter and we have set β̂1,2 := β1,2a, x±ij := xi± xj. Indeed, we
clearly have

Hspin = Hsc + 8a
J
H(x) = −

∑
i

∂2
xi

+ a2U(x) +O(a) ,

where H(x) is obtained from the spin chain Hamiltonian H replacing the fixed sites θi
by the dynamical variables (coordinates) xi, and

U(x) :=
∑
i 6=j

(
1

sin2 x−ij
+ 1

sin2 x+
ij

)
+
∑
i

(
β2

1
sin2 xi

+ β2
2

cos2 xi

)
.

As a tends to infinity the particles oscillate with decreasing amplitude about the
coordinates of the equilibrium position of the scalar potential U(x) on the configuration
space

C ′ = {x := (x1, . . . , xN) ∈ RN : 0 < x1 < x2 < · · · < xN < π/2} .

This equilibrium is unique [29], and its coordinates coincide with the chain sites θi [43].
Thus in the large a limit the spin degrees of freedom decouple from the dynamical ones,
and are governed by the Hamiltonian H(θ1, . . . , θN) = H. As a consequence, when
a� 1 the eigenvalues Eij of Hspin behave as

Eij = Esc,i + 8a
J
Ej + o(a),

where Esc,i and Ej denote any two eigenvalues of the scalar (dynamical)
Hamiltonian (3.2) and the spin chain Hamiltonian H, respectively. Denoting by Zspin

and Zsc the partition functions of Hspin and Hsc, the partition function ZN of H can
then be computed from the exact expression

ZN(T ) = lim
a→∞

Zspin(8aT/J)
Zsc(8aT/J) . (3.3)
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This method of computing the partition function of the spin chain Hamiltonian H

exploiting its connection with the dynamical spin Hamiltonian (3.1) goes by the name
of “Polychronakos’s freezing trick” in the literature.

We shall next compute the large a limit of the partition functions Zsc(8aT/J) and
Zspin(8aT/J). To begin with, the a → ∞ limit of the former partition function can be
derived from the result in Ref. [31] replacing q by qJ , namely

lim
a→∞

q−JE0/8aZsc(8aT/J) =
N∏
i=1

(1− qJE(i))−1 , (3.4)

where the dispersion function E(i) is given by

E(i) := 1
2 i(2 β̄ + 2N − i− 1) , β̄ := 1

2(β1 + β2) , (3.5)

and

E0 = 2
3 Na

2[2N2 + 3(2β̄ − 1)N + 6β̄(β̄ − 1) + 1]

is the ground state energy of both Hsc and Hspin. In the spin case, it was shown in
Ref. [38] that when µα = 0 for all α the Hamiltonian Hspin is upper triangular in a
(non-orthonormal) basis with elements

|p, s〉 := Λ(e2ip·xφ(x)|s1 · · · sN〉) , (3.6)

where s = (s1, . . . , sN) ∈ (B ∪ F )N , p = (p1, . . . , pN) ∈ (N ∪ {0})N , x := (x1, . . . , xN),

φ(x) :=
∏
i<j

| sin x+
ij sin x−ij|a

∏
k

| sin xk|β̂1| cosxk|β̂2 ,

and Λ denotes the total symmetrizer with respect to particle permutations and
simultaneous reversal of a particle’s coordinates and spins. In other words, Λ is the
projector onto states symmetric under the action of the operators Πij := Pij ⊗ Sij and
Πi := Pi ⊗ Si, where the operators Pij and Pi act on scalar functions as

Pijf(. . . , xi, . . . , xj, . . .) = f(. . . , xj, . . . , xi, . . .) , Pif(. . . , xi, . . .) = f(. . . ,−xi, . . .) .

Moreover, for the wave function (3.6) to be a basis the quantum numbers p and s must
satisfy the following conditions (or trivial variants thereof):

(B1) The integer multiindex p = (p1, . . . , pN) is nonnegative and nonincreasing, i.e.,
pi ∈ N ∪ {0} and pi > pi+1 for all i.

(B2) If pi = pi+1 then si > si+1 if si ∈ B, or si > si+1 if si ∈ F .
(B3) If pi = 0 then si ∈ Bε ∪ Fε′ , where

Bε := {b1, . . . , bmε} , Fε′ := {f1, . . . , fnε′} .

with

mε := 1
2(m+ επ(m)), nε′ := 1

2(n+ ε′π(n)).
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If the wave functions |p, s〉 are suitably ordered, the Hamiltonian Hspin,0 :=
Hspin|µ1=···=µm+n=0 acts on the resulting basis as an upper triangular operator with
diagonal elements
(Hspin,0)ps,ps =

∑
i

(2pi + β̂1 + β̂2 + 2a(N − i))2 = 4
∑
i

[pi + a(β̄ +N − i)]2 (3.7)

(see [38] for details). Since the operator H1 is diagonal in the basis (3.6), with diagonal
elements −∑α µαNα(s), the action of the full Hamiltonian Hspin on the latter basis is
still upper triangular, with diagonal elements —i.e., eigenvalues—

Eps = 4
∑
i

[pi + a(β̄ +N − i)]2 − 8a
J

∑
α

µαNα(s)

= E0 + 8a
∑
i

pi(β̄ +N − i)− 8a
J

∑
α

µαNα(s) +O(1) . (3.8)

If we parametrize the multiindex p satisfying condition (B1) above as
p = (π1, . . . , π1,︸ ︷︷ ︸

k1

. . . , πr, . . . , πr︸ ︷︷ ︸
kr

) , (3.9)

with ki > 0, k1 + · · ·+ kr = N and π1 > · · · > πr > 0, we can write∑
i

pi(β̄ +N − i) =
r∑
j=1

πjkj

[
β̄ +N −Kj−1 −

1
2(kj + 1)

]
=: λ(π,k) ,

where

Kj :=
j∑
i=1

ki .

We thus have
lim
a→∞

q−JE0/8aZspin(8aT/J) =
∑

k∈PN

∑
π1>···>πr>0

qJλ(π,k) ∑
s∈p

q−
∑

α
µαNα(s) ,

where PN denotes the set of partitions of the integer N taking order into account and
the last sum runs over all spin vectors s = (s1, . . . , sN) whose components si satisfy
conditions (B2)-(B3) for a given multiindex p of the form (3.9). We clearly have∑

s∈p
q−
∑

α
µαNα(s) =

r−1∏
j=1

σ(kj) · σ̃(kr, pr) ,

where
σ(k) =

∑
s1�···�sk

q−
∑

α
µαNα(s1,...,sk) ,

σ̃(k, pr) =


σ(k), pr > 0∑
s1�···�sk
sj∈Bε∪Fε′

q−
∑

α
µαNα(s1,...,sk), pr = 0 ,

and the notation s � t indicates that s > t if the spin s is bosonic or s > t if it is
fermionic. The sigma functions can be easily expressed in terms of the complete and
elementary symmetric polynomials [44]
hj(x1, . . . , xl) :=

∑
i16···6ij6l

xi1 · · ·xij , ej(y1, . . . , yl) :=
∑

i1<···<ij6l
yi1 · · · yij .



The open Haldane–Shastry chain: thermodynamics and criticality 11

(with ej(y1, . . . , yl) := 0 if j > l). Indeed, since
∑
α

µαNα(s1, . . . , sk) =
k∑
i=1

µsi ,

taking into account condition (B2) above we have

σ(k) =
k∑
j=0

∑
α16···6αj

q−µbα1 · · · q−µbαj
∑

β1<···<βk−j
q
−µfβ1 · · · q−µfβk−j

=
k∑
j=0

hj(x1, . . . , xm)ek−j(y1, . . . , yn) =: Ek(x,y) , (3.10)

where

xα := q−µbα , yβ := q−µfβ (3.11)

and Ek(x,y) denotes the elementary symmetric function in the variables x =
(x1, . . . , xm), y = (y1, . . . , yn) [44]. A similar calculation shows that

σ̃(k, 0) = Ek(x̃, ỹ),

where

x̃ = (x1, . . . , xmε) , ỹ = (y1, . . . , ynε′ ) . (3.12)

From the equality

Σl :=
∑

π1>···>πl>0
qJλ(π1,...,πl,k1,...,kl) =

l∏
i=1

qJE(Ki)

1− qJE(Ki)

proved in Ref. [31] we then obtain

lim
a→∞

q−E0/8aZspin(8aT/J) =
∑

k∈PN

(
r∏
i=1

Eki(x,y) · Σr + Ekr(x̃, ỹ)
r−1∏
i=1

Eki(x,y) · Σr−1

)

=
∑

k∈PN

(
Ekr(x,y) qJE(N)

1− qJE(N) + Ekr(x̃, ỹ)
)
r−1∏
i=1

Eki(x,y) qJE(Ki)

1− qJE(Ki)
. (3.13)

Using Eqs. (3.4) and (3.13) in the freezing trick formula (3.3) we obtain the following
closed formula for the partition function of the Hamiltonian H in Eq. (2.9):

ZN(T ) =
∑

k∈PN

[
Ekr(x̃, ỹ) +

(
Ekr(x,y)− Ekr(x̃, ỹ)

)
qJE(N)

]
F (q,k)

r−1∏
i=1

Eki(x,y)

=: ZN(q; x,y) , (3.14)

where

F (q,k) :=
r−1∏
i=1

qJE(Ki)
N−r∏
j=1

(1− qJE(K′j)) (3.15)

and {K ′1, . . . , K ′N−r} = {1, . . . , N}\{K1, . . . , Kr} (with K ′1 < K ′2 < · · · < K ′N−r). Note,
finally, that the vectors x, y, x̃, ỹ appearing in the latter explicit formula for ZN(T ) are
defined in terms of the chemical potentials µα by Eqs. (3.11)-(3.12).
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Figure 1. The border strip 〈3, 1, 2, 4, 2〉 (right) and a (3|2) supersymmetric Young
tableau of shape 〈3, 1, 2, 4, 2〉 for the choice B = {1, 2, 3}, F = {4, 5} (left).

4. Equivalent vertex model

Following Ref. [38], we shall next construct a vertex model whose partition function
exactly coincides with ZN(T ). The key idea in this respect is the following identity,
proved in the latter reference for arbitrary values of the arguments x ∈ Rm, y ∈ Rn:

ZN(q; x,y) =
∑

k∈PN

(
S〈k1,...,kr〉,0(x,y) + S〈k1,...,kr〉,1(x,y)qJE(N)

)
q
∑r−1

i=1 JE(Ki). (4.1)

Here S〈k1,...,kr〉,γ(x,y) is the BCN -type su(m|n)-supersymmetric Schur polynomial of
type γ ∈ {0, 1}, whose definition in terms of the BCN -type motifs introduced in Ref. [38]
we shall recall next (see the latter reference for a review of the notation and relevant
results).

Let us associate to each ordered partition k = (k1, . . . , kr) ∈ PN the border
strip with columns of lengths k1, . . . , kr (from right to left), which we shall denote
by 〈k1, . . . , kr〉; see, e.g., Fig. 1 (left). An su(m|n)-supersymmetric Young tableau of
shape 〈k1, . . . , kr〉 is defined as a filling of the latter border strip with the integers in
B ∪ F = {1, . . . ,m+ n} that is:
(YT1) Weakly increasing along rows and strictly increasing down columns for integers

in F .
(YT2) Strictly increasing along rows and weakly increasing down columns for integers

in B
(see Fig. 1 (right) for an example). Such a Young tableau can be identified with a bond
vector (s1, . . . , sN), with si ∈ B ∪ F for all i, by reading the tableau from right to left
and top to bottom. For instance, the tableau in Fig. 1 (right) is equivalent to the bond
vector (1, 1, 4, 4, 2, 3, 2, 2, 3, 5, 4, 5). Let us next order the integers in B ∪ F in such a
way that

Bε ∪ Fε′ = {1, . . . ,mε + nε′} . (4.2)
Two such orderings are, for instance,
F = {1, . . . , nε′ , nε′ +m+ 1, . . . ,m+ n} , B = {nε′ + 1, . . . , nε′ +m} (4.3)
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B = {1, . . . ,mε,mε + n+ 1, . . . ,m+ n} , F = {mε + 1, . . . ,mε + n} . (4.4)
Let us denote by Tα(k) (with α ∈ {0, 1}) the set of all su(m|n)-supersymmetric Young
tableau, or equivalently bond vectors s = (s1, . . . , sN), of shape 〈k1, . . . , kr〉 such that sN 6 mε + nε′ , if α = 0

sN > mε + nε′ , if α = 1.
The BCN type super Schur polynomials S〈k1,...,kr〉,α(x,y) are then defined for
arbitrary x ∈ Rm, y ∈ Rn by

S〈k1,...,kr〉,α(x,y) =
∑

s∈Tα(k)
x
νb1(s)
1 · · ·xνbm(s)

m y
νf1 (s)
1 · · · yν

f
n(s)
n ,

where νbα(s) (resp. νfβ (s)) is the number of times the integer bα (resp. fβ) appears in the
bond vector s (in other words, νbα(s) = Nbα(s), νfβ (s) = Nfβ(s)).

Given a border strip 〈k1, . . . , kr〉, we define its associated motif as a sequence
of N − 1 0’s and 1’s with the 1’s occupying the positions K1, . . . , Kr−1 (recall that
Ki = ∑i

j=1 kj). For example, the motif associated to the border strip 〈3, 1, 2, 4, 2〉 in
Fig. 1 is (0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0). There is clearly a one-to-one correspondence between
motifs and border strips, since a motif determines the partial sums Ki, which in turn
yield the integers ki through the relation ki = Ki−Ki−1 (i = 1, . . . , r, with K0; = 0 and
Kr = N). To rewrite Eq. (4.1) as the partition function of an equivalent vertex model,
we note that

r−1∑
i=1
E(Ki) =

N−1∑
j=1
E(j)δ(sj, sj+1) , (4.5)

where s is any bond vector whose associated tableau has shape 〈k1, . . . , kr〉 and the
function δ : (B ∪ F )2 → {0, 1} is defined by

δ(s, t) =

 0, s < t or s = t ∈ B,
1, s > t or s = t ∈ F .

(4.6)

Indeed, δ(sj, sj+1) = 1 if and only if j is the last box of one of the columns of the border
strip 〈k1, . . . , kr〉 except the last one, i.e., if j = K1, . . . , Kr−1. We thus have∑
k∈PN

S〈k1,...,kr〉,0(x,y) q
∑r−1

i=1 JE(Ki) =
∑

k∈PN

∑
s∈T0(k)

x
νb1(s)
1 · · ·xνbm(s)

m y
νf1 (s)
1 · · · yν

f
n(s)
n q

∑r−1
i=1 JE(Ki)

=
∑

k∈PN

∑
s∈T0(k)

x
νb1(s)
1 · · · xνbm(s)

m y
νf1 (s)
1 · · · yν

f
n(s)
n qJ

∑N−1
j=1 E(j)δ(sj ,sj+1)

=
∑

s∈(B∪F )N
sN6mε+nε′

x
νb1(s)
1 · · · xνbm(s)

m y
νf1 (s)
1 · · · yν

f
n(s)
n qJ

∑N−1
j=1 E(j)δ(sj ,sj+1) . (4.7)

A similar calculation shows that∑
k∈PN

S〈k1,...,kr〉,1(x,y) qJE(N)q
∑r−1

i=1 JE(Ki)

=
∑

s∈(B∪F )N
sN>mε+nε′

x
νb1(s)
1 · · ·xνbm(s)

m y
νf1 (s)
1 · · · yν

f
n(s)
n qJ

∑N

j=1 E(j)δ(sj ,sj+1) , (4.8)
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where we have used the fact that Kr = N . From Eqs. (4.1) and (4.7)-(4.8) it then
follows that

ZN(q; x,y) =
∑

s∈(B∪F )N
sN6mε+nε′

x
νb1(s)
1 · · ·xνbm(s)

m y
νf1 (s)
1 · · · yν

f
n(s)
n qJ

∑N−1
j=1 E(j)δ(sj ,sj+1)

+
∑

s∈(B∪F )N
sN>mε+nε′

x
νb1(s)
1 · · · xνbm(s)

m y
νf1 (s)
1 · · · yν

f
n(s)
n qJ

∑N

j=1 E(j)δ(sj ,sj+1)

=
∑

s∈(B∪F )N
x
νb1(s)
1 · · ·xνbm(s)

m y
νf1 (s)
1 · · · yν

f
n(s)
n qJ

∑N

j=1 E(j)δ(sj ,sj+1) , (4.9)

where we have set

sN+1 = s∗ := mε + nε′ +
1
2 . (4.10)

We stress that the identity (4.9) is valid for arbitrary values of the variables x ∈ Rm,
y ∈ Rn. If we now specialize to the particular values in Eq. (3.11) we obtain the following
formula for the partition function of the Hamiltonian H = H0 +H1:

ZN(T ) =
∑

s∈(B∪F )N
qEV (s), (4.11)

with

EV (s) = J
N∑
j=1
E(j)δ(sj, sj+1)−

m∑
α=1

νbα(s)µbα −
n∑
β=1

νfβ (s)µfβ

=
N∑
j=1

[
JE(j)δ(sj, sj+1)− µsj

]
(4.12)

and sN+1 given by Eq. (4.10). The right-hand side of Eq. (4.11) is the partition function
of a classical vertex model with N + 2 vertices whose N + 1 bonds can respectively
take the values s1, . . . , sN ∈ B ∪ F and sN+1 = s∗. The first and last vertices,
which are connected to only one bond, have zero energy, while the k-th vertex (with
k = 2, . . . , N + 1) is assigned the energy JE(k− 1)δ(sk−1, sk)−µsk−1 . Equations (4.11)-
(4.12) are the starting point of the transfer matrix method used in the following section
to evaluate the free energy of the open su(m|n)-supersymmetric Haldane–Shastry chain
in the thermodynamic limit.

5. Free energy in the thermodynamic limit

5.1. Thermodynamic limit

In this section we shall obtain a closed-form expression for the thermodynamic limit of
the partition function (per spin) of the open su(m|n)-supersymmetric Haldane–Shastry
chain with the chemical potential term H1. To this end, we shall rely on the equivalence
of the latter model and the vertex model with energies (4.12) established in the previous
section. In order to proceed with the calculation, we first normalize the Hamiltonian H0
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so that the average energy per spin 〈H〉 of the full Hamiltonian H = H0 + H1 is finite
in the limit N →∞. We can easily compute 〈H〉 using Eq. (4.12), with the result

〈H〉 = (m+ n)−N
∑

s∈(B∪F )N
EV (s) = (m+ n)−N

[
J(m+ n)N−2

N−1∑
j=1
E(j)

∑
sj ,sj+1∈B∪F

δ(sj, sj+1)

+ J(m+ n)−1E(N)
∑

sN∈B∪F
δ(sN , s∗)− (m+ n)N−1 ∑

sj∈B∪F
µsj

]

= J

(m+ n)2

[1
2(m+ n)(m+ n− 1) + n

]N−1∑
j=1
E(j) + JE(N)

m+ n
(m+ n−mε − nε′)

− N

m+ n

∑
α

µα

= J

12

(
1− m− n

(m+ n)2

)
N(N − 1)(3β̄ + 2N − 1) + J

2

(
1− mε + nε′

m+ n

)
N(2β̄ +N − 1)

− N

m+ n

∑
α

µα .

Thus for 〈H〉/N to tend to a finite limit as N →∞ we must take

J = K

N2 ,

where K is a real (positive or negative) N -independent constant. Setting xi := i/N

(with i = 1, . . . , N) we can therefore write

JE(j) = Kϕ(xj) ,

with

ϕ(x) = x
(
γN −

x

2

)
, γN := 1 + β̄ − 1/2

N
. (5.1)

Note that limN→∞ γN > 1 as β̄ > 0.
In order to apply the transfer matrix method developed in Refs. [25,45], we rewrite

Eq. (4.12) in the equivalent form

EV (s) =
N−1∑
j=1

[
Kϕ(xj)δ(sj, sj+1)− 1

2 (µsj + µsj+1)
]

+K(γN − 1/2)δ(sN , s∗)−
1
2 (µs1 + µsN ) .

Introducing the (m+ n)× (m+ n) matrices A(x) and B with entries

Aαβ(x) = qKϕ(x)δ(α,β)− 1
2 (µα+µβ) , Bαβ = qK(γN−1/2)δ(α,s∗)− 1

2 (µα+µβ) (5.2)

and using Eq. (4.11) we can express the partition function ZN(T ) as

ZN(T ) = tr [A(x1) · · ·A(xN−1)B] .

To pass to the thermodynamic limit, we note that all the entries of the matrix A(x)
are strictly positive. By the Perron–Frobenius theorem, the latter matrix has a simple
positive eigenvalue λ1(x) satisfying

λ1(x) > |λα(x)| , ∀α > 1, (5.3)
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where the λα(x) are the other eigenvalues of A(x). Let J(x) be the Jordan canonical
form of A(x), and let R(x) be the corresponding invertible matrix such that

A(x) = R(x)J(x)R(x)−1.

The matrix R(x) is of course not unique, but it should be chosen in such a way that it
depends smoothly on the variable x ∈ [0, 1] and so that its first column is an eigenvector
of A(x) for the Perron–Frobenius eigenvalue λ1(x). Calling Ri := R(xi) we have

ZN(T ) = tr
[
J(x1)(R−1

1 R2)J(x2)(R−1
2 R3) · · · (R−1

N−2RN−1)J(xN−1)R−1
N−1BR1

]
.

From the smoothness of R(x) it follows that

R−1
i Ri+1 = R(xi)−1R(xi + 1/N) = 1I +O(N−1),

and hence

logZN(T ) = log tr
[
J(x1) · · · J(xN−1)R−1

N−1BR1
]

+O(1) .

If the product J(x1) · · · J(xN−1) is diagonal we can write

tr
[
J(x1) · · · J(xN−1)R−1

N−1BR1
]

=
∑
α

cα
N−1∏
i=1

λα(xi),

with cα := (R−1
N−1BR1)αα. When N →∞ we have

1
N

log
∏N−1
i=1 |λα(xi)|∏N−1
i=1 λ1(xi)

= 1
N

N−1∑
i=1

log
( |λα(xi)|
λ1(xi)

)
→
∫ 1

0
log

( |λα(x)|
λ1(x)

)
dx .

Since the integrand is negative everywhere for all α > 1 on account of Eq. (5.3), it
follows that ∏N−1

i=1 |λα(xi)|∏N−1
i=1 λ1(xi)

= O(e−CN) , α > 1 ,

with C a positive constant. Hence
logZN(T )

N
= 1
N

N−1∑
i=1

log λ1(xi) + 1
N

log
(
c1 +

∑
α>1

cα

∏N−1
i=1 λα(xi)∏N−1
i=1 λ1(xi)

)
+O(1/N)

= 1
N

N−1∑
i=1

log λ1(xi) +O(1/N)→
∫ 1

0
log λ1(x) dx ,

provided that

lim
N→∞

c1 =
(
R(1)−1BR(0)

)
11
6= 0 . (5.4)

It can be shown that the latter condition is always satisfied (see Remark 2 below). We
thus conclude that if the product J(x1) · · · J(xN−1) is diagonal for sufficiently large N ,
the free energy per spin in the thermodynamic limit N →∞ is given by

f(T ) = −T lim
N→∞

logZN(T )
N

= −T
∫ 1

0
log λ1(x) dx , (5.5)

where λ1(x) is the Perron–Frobenius eigenvalue of the matrix A(x) in Eq. (5.2) with
γN replaced by γ := limN→∞ γN . Equation (5.5), from which all other thermodynamic
functions can be easily obtained, is one of the main results of the present work.
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Remark 2. We shall next prove that condition (5.4) is automatically satisfied. Indeed,
since by construction the numbers R(x)β1 are the components of a Perron–Frobenius
eigenvector of A(x), by the Perron–Frobenius theorem their sign is independent of β. (In
fact, it is easy to show that R(0)β1 is proportional to q−µβ/2.) On the other hand, from
the definition of the matrix R it follows that R−1A = JR−1 (where we have omitted,
for simplicity, the argument x of the matrices), and thus∑

α

(R−1)1αAαβ =
∑
α

J1α(R−1)αβ = λ1(R−1)1β .

In other words, the vector with components [R−1(x)]1α is an eigenvector of the matrix
A(x)T with eigenvalue λ1(x). Since A(x) and its transpose have the same eigenvalues,
λ1(x) is also the Perron–Frobenius eigenvalue of A(x)T . By the Perron–Frobenius
theorem, all the components [R−1(x)]1α of its corresponding eigenvector have the same
sign. Since (

R(1)−1BR(0)
)

11
=
∑
α,β

[R−1(1)]1αBαβRβ1(0) ,

where Bαβ > 0 and the sign of [R−1(1)]1α and Rβ1(0) is respectively independent of α
and β, condition (5.4) is trivially satisfied.

5.2. General properties of the free energy

Let us next discuss several basic properties of the thermodynamic free energy f that
shall be used to simplify the discussion in the following sections. To begin with, note
that f depends only on the Perron–Frobenius eigenvalue of the matrix A(x) in Eq. (5.2).
The latter matrix, in turn, could in principle depend on the parameters ε and ε′ through
the function δ in Eq. (4.6), since our analysis requires that the spin degrees of freedom
be ordered so that Eq. (4.2) is satisfied. The value of f , however, cannot depend on this
ordering provided that the latter equation holds. In particular, since the ordering (4.3)
(resp. (4.4)) is independent of ε (resp. ε′), f cannot depend on ε (resp. ε′). This shows
that, unlike the partition function ZN , the thermodynamic free energy is independent
of the parameters ε and ε′.

Let us next study the behavior of f under the exchange of bosonic and fermionic
degrees of freedom. To this end, following Refs. [33, 46] let us denote by U : S(m|n) →
S(n|m) the unitary operator defined by

U |s1, . . . , sN〉 = (−1)
∑N

k=1 kp(sk)|s′1, . . . , s′N〉 ,

where the prime is defined by (for instance) b′α = fα, f ′β = bβ. A straightforward
calculation shows that

US
(m|n)
ij U−1 = −S(n|m)

ij , US
(mε|nε′)
i U−1 = S

(nε′|mε)
i = −S(n,−ε′|m,−ε)

i ,

US̃
(mε|nε′)
ij U−1 = −S̃(nε′|mε)

ij = −S̃(n,−ε′|m,−ε)
ij ,

and therefore

UH
(mε|nε′)
0 U−1 = C −H(n,−ε′|m,−ε)

0 ,
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where

C = J

2
∑
i<j

(
sin−2 θ−ij + sin2 θ+

ij

)
+ J

4
∑
i

(
β1

sin2 θi
+ β2

cos2 θi

)
.

On the other hand, we obviously have

UNαU−1 = Nα′ ,

and hence (since the prime operator is an involution)

UH1U
−1 =

∑
α

µαNα′ =
∑
α

µα′Nα .

Combining the previous equations we obtain the relation

UH(mε|nε′)[µ, K]U ′ = C +H(n,−ε′|m,−ε)[µ′,−K] ,

where µ = (µ1, . . . , µm+n), µ′ = (µ1′ , . . . , µ(m+n)′), and the arguments of the
Hamiltonians denote the values of the parameters (chemical potential and interaction
strength) on which they depend. From the previous identity it follows that the
corresponding free energies per spin are related by

f (m|n)[µ, K] = lim
N→∞

C

N
+ f (n|m)[µ′,−K] .

The constant term can be easily evaluated by noting that C is the maximum energy of
the fermionic Hamiltonian H(0|n,−1)

0 , and thus

C = J
N∑
i=1
E(i) = K

N∑
i=1

ϕ(xi) ,

whence it follows that

f0 := lim
N→∞

C

N
= K

∫ 1

0
ϕ(x)dx = K

(
γ

2 −
1
6

)
. (5.6)

(Note that f0 > K/3, since γ > 1.) We can thus write

f (m|n)[µ, K] = f0 + f (n|m)[µ′,−K] . (5.7)

From the latter relation it follows that we can restrict ourselves w.l.o.g. either to the case
m 6 n with arbitrary K 6= 0, or to the case K > 0 with arbitrary m, n. In particular,
for m = n we can always assume that K > 0.

It is also worth mentioning that in the genuinely supersymmetric case mn 6= 0 the
matrix A(x) always has a zero eigenvalue. Indeed, using (for instance) the ordering (4.3)
if nε′ < n we have m+ nε′ ∈ B,m+ nε′ + 1 ∈ F , so that

δ(α,m+ nε′) = δ(α,m+ nε′ + 1) =

 0, 1 6 α 6 m+ nε′

1, m+ nε′ < α 6 m+ n,
and therefore

Aα,m+nε′+1(x) = q
1
2 (µm+nε′−µm+nε′+1)Aα,m+nε′ (x) .

A similar argument shows that A1α(x) = qKϕ(x)+ 1
2 (µm+n−µ1)Am+n,α(x) if nε′ = n (i.e., if

n = ε′ = 1). Thus, for fixed m + n the genuinely supersymmetric models are easier to
treat than their non-supersymmetric counterparts.
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µα λ1(x)

su(1|1) µ1 = µ, µ2 = 0 1 + e−β(ϕ−µ)

su(0|2) µ1 = µ2 = 0 e−βϕ/2 + e−βϕ

su(2|0) µ1 = µ2 = 0 1 + e−βϕ/2

su(1|2) µ1 = µ3 = µ, µ2 = 0 1
2 + e−β(ϕ−µ) +

√
e−β(ϕ−µ) + e−β(ϕ−2µ) + 1

4

su(2|1) µ1 = µ, µ2 = µ3 = 0 1 + 1
2e−β(ϕ−µ) +

√
e−βϕ + e−β(ϕ−µ) + 1

4e−2β(ϕ−µ)

su(2|2) µ1 = µ4 = µ, µ2 = µ3 = 0
(
1 + e−βϕ/2

)(
1 + e−β(ϕ/2−µ)

)
Table 1. Chemical potentials and Perron–Frobenius eigenvalue for the (nontrivial)
su(m|n) HS chains of BCN type with m,n 6 2.

5.3. Discussion

Equation (5.5) in the previous section makes it possible to compute the thermodynamic
free energy in closed form if the Perron–Frobenius eigenvalue λ1(x) of the transfer matrix
A(x) can be explicitly determined and the product J(x1) · · · J(xN−1) is diagonal for
sufficiently large N . Since, as remarked above, the transfer matrix always has a zero
eigenvalue in the truly supersymmetric case mn 6= 0, its eigenvalues can be easily found
in closed form in the cases (m,n) = (1, 1), (2, 0), (0, 2), (2, 1) and (1, 2). Furthermore, it
can be readily shown that in all of these cases A(x) is diagonalizable for x > 0, so that
the method of the previous section can be applied. It turns out that when (m,n) = (2, 2)
the zero eigenvalue of the transfer matrix has algebraic multiplicity 2, and the product
J(x1) · · · J(xN−1) is diagonal for N > 4. Thus the Perron–Frobenius eigenvalue λ1(x)
can also be explicitly found in this case.

We list in Table 1 the expressions of the Perron–Frobenius eigenvalue λ1(x) for
each of the tractable cases mentioned in the previous paragraph, for which m,n 6 2.
Note that, as explained in Section 5.2, we can take w.l.o.g. K > 0. To simplify the
ensuing formulas, we shall accordingly choose units so that K = 1. Note also that the
condition µα = µı(α) implies that in the su(2|0) and su(0|2) cases we can set w.l.o.g. all
the chemical potentials to zero, while in the remaining cases mentioned above only one
chemical potential is needed, which shall always be taken as the one for the fermions.
Moreover, although as explained above the thermodynamic free energy is independent
of ε and ε′, for definiteness we shall order in all cases the internal degrees of freedom
following the convention (4.3) with ε′ = 1. We list in Table 1 the chemical potentials and
Perron–Frobenius eigenvalues of the (nontrivial) su(m|n) HS chains of BCN type with
m,n 6 2, whose thermodynamic free energy can be computed in closed form through
Eq. (5.5). A cursory inspection of the latter table evinces the following facts:

1. The free energy of the su(1|1) HS chain of BCN type is that of a system of free
fermions with momentum ±πx and dispersion function ϕ(|p|/π).
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2. The free energy of the purely bosonic su(2|0) model is that of a free fermion system
with dispersion function ϕ(|p|/π)/2 and zero chemical potential. Moreover, the
su(2|0) and su(0|2) models are in fact equivalent, since their thermodynamic free
energies differ by a constant:

f (0|2) = 1
2

∫ 1

0
ϕ(x)dx+ f (2|0) = f0

2 + f (2|0) , (5.8)

with f0 given by Eq. (5.6). For this reason, in what follows we shall only consider
the su(0|2) case.

3. As is well known, the thermodynamic free energy of the inhomogeneous (classical)
one-dimensional Ising model with Hamiltonian

H =
N∑
i=1

J(i/N)σiσi+1 , σi ∈ {±1} , σN+1 = σ1 ,

is given by [39]

f(T ) = −T
∫ 1

0
log
(
2 cosh(βJ(x))

)
dx ,

where J(x) is the continuum limit of J(i/N). It follows that the su(1|1) and su(0|2)
chains are respectively equivalent (up to a trivial additive term) to a one-dimensional
inhomogeneous Ising model with couplings J(x) = (ϕ(x)− µ)/2 and J(x) = ϕ(x)/4.

4. The su(2|1) and su(1|2) free energies are related by

f (2|1)(T ) = f0 − µ− f (1|2)(−T ) ,

which is in fact a consequence of the general relation (5.7).
5. The su(2|2) free energy

f (2|2) = −T
∫ 1

0
log(1 + e−βϕ/2)dx− T

∫ 1

0
log(1 + e−β(ϕ/2−µ))dx (5.9)

is the sum of the free energies of two free fermion systems with dispersion function
ϕ(|p|/π)/2 and chemical potentials 0 and µ.

6. The free energy density (5.5) of each of the models listed in Table 1 satisfies the
condition

lim
T→∞

f(T )
T

= − log(m+ n) ,

which is a direct consequence of the definition of the partition function ZN .

Remark 3. The thermodynamic free energy f , given by the closed formula Eq. (5.5) for
the tractable cases listed in Table 1, provides a reasonably accurate approximation to
its counterpart fN := −(T/N) logZN even when the number of spins N is relatively
low (∼ 10). To illustrate this fact, we show in Fig. 2 (left) the plots of f and fN for
the su(1|1) chain (with ε = ε′ = 1) for γ = 2, N = 10, 25 and several values of µ. In
fact, as remarked above, for large N the dependence of fN on ε and ε′ is expected to
be negligible, since f is independent of the latter parameters. This is shown in Fig. 2
(right) for the su(1|1) chain with γ = µ = 2 and N = 20 (for larger values of N the
plots of f and the four types of fN ’s become indistinguishable).
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Figure 2. Left: thermodynamic free energy f of the su(1|1) chain with γ = 2,
ε = ε′ = 1 and µ = −1, 1, 2 (solid blue lines) compared to their finite counterparts
fN for N = 10 and N = 25 spins (dashed red and green lines, respectively). Right:
similar comparison for N = 20 and γ = µ = 2 and all values of ε, ε′ ∈ {±1}.

6. Ground states and low energy excitations

In this section we shall determine the ground state as a function of the (fermionic)
chemical potential µ for the tractable cases listed in Table 1, and compute the zero
temperature fermion and energy densities. We shall also find the infinitesimal energy
excitations above the ground state in the gapless regime, and evaluate their Fermi
velocities. These results will then be applied in the analysis of the critical behavior of
the models under study performed in the next section. The discussion will be based on
Eq. (4.12) for the energy spectrum, which in the present context can be written as

E(s) =
N∑
i=1

ϕ(xi)δ(si, si+1)− µNf (s) , (6.1)

where Nf (s) is the number of fermionic components in the bond vector s labeling an
energy eigenstate. Although, as explained above, the thermodynamic free energy is
independent of the values of the parameters ε and ε′, the same is not true for the ground
state. It can be shown, however, that the qualitative features we shall be interested in
(namely, the ground state degeneracy and the nature of the low energy excitations) are
essentially the same for all values of ε and ε′. For definiteness, we shall restrict ourselves
in what follows to the case ε = ε′ = 1 and use the order (4.3).

6.1. su(1|1)

In this case F = {1}, B = {2}, mε = nε′ = 1, so that sN+1 = s∗ = 5/2 and
δ(sN , sN+1) = 0. Obviously, if µ < 0 the ground state is labeled by the purely bosonic
bond vector§

sg = (2, . . . , 2) . (6.2)

§ We conjecture that, just as seems to be the case for the AN−1 Haldane–Shastry chain, the particle
content of a state labeled by a bond vector s coincides with that of the vector s itself.
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Likewise, if µ > ϕmax := ϕ(1) the ground state is the purely fermionic one with bond
vector

sg = (1, . . . , 1) . (6.3)

Let us next consider the interval 0 < µ < ϕmax. The state with minimum energy
in the subspace labeled by bond vectors with k fermionic variables (i.e., k 1’s) has bond
vector

sg = (1, . . . , 1
↓
k

, 2, . . . , 2) . (6.4)

Since the increase in energy caused by replacing the first 2 by a 1 in the above bond
vector is ϕ(xk)− µ, the number of fermions k0 in the ground state is given by‖

k0 = min{k : ϕ(xk) > µ} = dNx0(µ)e , (6.5)

where x0 is the inverse function of ϕ : [0, 1]→ R:

x0(µ) = γ −
√
γ2 − 2µ . (6.6)

Note that the condition 0 < µ < ϕmax implies that k0 ∈ (0, 1). In the thermodynamic
limit (more precisely, up to terms of order N−1) we have

µ ' ϕ(xk0) =⇒ nF (0) = k0

N
= xk0 = x0(µ) ,

where nF (0) denotes the fermion density at zero temperature. Note, in particular, that
in this case the ground state is non-degenerate. The zero temperature energy density
u(0) is also easily computed:

u(0) = lim
N→∞

E(sg)
N

= lim
N→∞

 1
N

k0−1∑
i=1

ϕ(xi)−
k0

N
µ

 =
∫ x0(µ)

0
(ϕ(x)− µ)dx (6.7)

= 1
3
[
γ(γ2 − 3µ)− (γ2 − 2µ)3/2

]
, (6.8)

where we have used the previous equation for xk0 = k0/N in the thermodynamic limit.
Obviously, for µ < 0 we have u(0) = 0 (since E(sg) = 0), and for µ > ϕmax

u(0) = lim
N→∞

[
1
N

N−1∑
i=1

ϕ(xi)− µ
]

=
∫ 1

0
(ϕ(x)− µ)dx = f0 − µ . (6.9)

Note that the expressions for u(0) in the non-critical regions µ < 0 and µ > ϕmax can
be obtained from Eq. (6.7) by setting x0(µ) = 0 for µ < 0 and x0(µ) = 1 for µ > ϕmax.
With this convention, the fermion density nF (0) is given by the simple expression

nF (0) = x0(µ) . (6.10)

The limiting cases µ = 0 and µ = ϕmax can be dealt with in much the same way. For
instance, for µ = 0 there are two ground states, labeled by the bond vectors

sg = (2, . . . , 2) , s′g = (1, 2, . . . , 2) , (6.11)

‖ For the sake of simplicity, we shall suppose in the following discussion that µ /∈ ϕ(Q ∪ [0, 1]).
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with nF (0) = u(0) = 0, i.e., the µ → 0 limits of the expressions (6.8)-(6.10). Likewise,
when µ = ϕmax the ground state is still the purely fermionic one, with nF (0) and u(0)
given by the µ→ 1 limit of the latter expressions. Note also that the expressions for the
zero temperature fermion and energy densities could also have been obtained by taking
the β →∞ limit of

f(T ) = −T
∫ 1

0
log(1 + e−β(ϕ(x)−µ))dx

(since u(0) = f(0)) and the corresponding formula for nF :

nF (T ) =
∫ 1

0

dx
1 + eβ(ϕ(x)−µ) .

Let us next discuss the existence of excitations of infinitesimal energy (as N →∞)
above the ground state, i.e., whether the spectrum is gapless or gapped. To begin with,
for µ < 0 the spectrum is clearly gapped with gap energy |µ|, since replacing a boson
by a fermion in the i-th position of the lowest energy bond vector (6.2) increases the
energy by ϕ(xi−1) + |µ|. Similarly, if µ > ϕmax replacing a fermion by a boson in the
i-th position of the lowest energy bond vector (6.3) raises the energy by µ − ϕ(xi−1),
and hence the spectrum is gapped with energy gap µ− ϕmax.

Consider next the interval 0 < µ < ϕmax. In this case the lowest energy excitations
above the ground state are labeled by bond vectors s obtained from sg in equation (6.4)
replacing a boson by a fermion, or a fermion by a boson, at the (k0 + l)-th position of
the latter vector, provided that |l| � N . In the former case the increase in energy of
these excitations is given by

∆E = ϕ(xk0+l−1)− µ ' ϕ(xk0+l−1)− ϕ(xk0−1) ' ϕ′(xk0−1)∆x ,
with l > 0 and

∆x = xk0+l−1 − xk0−1 = l

N
.

Similarly, when a fermion is replaced by a boson we have
∆E = µ− ϕ(xk0+l−1) ' ϕ(xk0−1)− ϕ(xk0+l−1) ' ϕ′(xk0−1)∆x ,

with l < 0 and

∆x = xk0−1 − xk0+l−1 = |l|
N
.

Hence in both cases the excitation energy is of order N−1, and the spectrum is therefore
gapless. We shall use in what follows the term “Fermi excitations” to refer to these
excitations, since they are obtained by modifying the ground state bond vector near the
border (Fermi “surface”) between its fermionic and bosonic sectors.

In order to determine the Fermi velocity of these excitations, we need to assign
them a (quasi)momentum. In the AN−1 case, where momentum is conserved, it is well
known that the energy and momentum of the energy eigenstate labeled by a bond vector
s is given by

E(s) =
N−1∑
i=1

i(N − i)δ(si, si+1) , P (s) = 2π
N−1∑
i=1

xiδ(si, si+1) mod 2π
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(see, e.g., [4, 8]). In the BCN case the situation is of course different, since momentum
is not conserved. However, motivated by the AN−1 result and Eq. (6.1), we shall use
the following modification of the previous formula to define the effective momentum (or
quasimomentum) P (s) of an energy eigenstate with bond vector s:

P (s) = π
N∑
i=1

xiδ(si, si+1) mod 2π . (6.12)

The missing factor of 2 is justified by the fact that the dispersion relation (5.1) of the
BCN -type HS chain is not symmetric about the midpoint x = 1/2, so that the interval
0 6 x 6 1 corresponds only to the positive momentum¶ sector. In other words, the
true dispersion relation in this case is the function ϕ(|p|/π) with −π 6 p 6 π. With
this definition, the momentum of the infinitesimal excitations described above (added if
l > 0, or removed if l < 0) is given

p = πxk0+l−1 = πxk0−1 + πl

N
= p0 ± π∆x ,

where the plus sign corresponds to the excitations increasing the fermion number and
the Fermi momentum

p0 := πxk0−1

is defined as the largest excited momentum πxi in Eq. (6.12). Calling

∆p = p− p0 = ±π∆x ,

the velocity of the Fermi excitations, whose momentum is close to the Fermi momentum
p0, is given by

v := lim
N→∞

∣∣∣∣∆E∆p

∣∣∣∣ = lim
N→∞

ϕ′(xk0−1)
∣∣∣∣∆x∆p

∣∣∣∣ = ϕ′(x0(µ))
π

=
[
πx′0(µ)

]−1
. (6.13)

Finally, the limiting cases µ = 0 and µ = ϕmax can be handled similarly. Indeed,
if µ = 0 the low energy excitations arise when a component of the ground state
bond vectors (6.11) near their left end is modified. We shall refer in the sequel to
these excitations, whose momentum ∆p is O(N−1) as N → ∞, as small momentum
excitations. For instance, if

s = (2, . . . , 2, 1
↓
l

, 2, . . . , 2) (6.14)

we have

∆p = πxl−1, ∆E = ϕ(xl−1) ' ϕ′(0)xl−1 .

The spectrum is thus gapless, with Fermi velocity

v = [πx′0(0)]−1 . (6.15)

¶ From now on, for the sake of conciseness we shall use the shorter term “momentum” instead of the
more correct one “quasimomentum”.



The open Haldane–Shastry chain: thermodynamics and criticality 25

Likewise, if µ = ϕmax the low energy excitations are obtained by changing a component
of the bond vector (6.3) near its right end. If γ > 1, proceeding as before we conclude
that the spectrum is again gapless, with Fermi velocity

v = [πx′0(ϕmax)]−1 . (6.16)

In other words, both at µ = 0 and at µ = ϕmax (when γ > 1) the Fermi velocity
is a continuous function of the chemical potential µ. The situation is quite different
if γ = 1 and µ = ϕmax = ϕ(1), since in this case ϕ′(1) = γ − 1 = 0 implies that
x′0(µ) = x′0(ϕmax) = 1/ϕ′(1) = ∞. The low energy excitations above the ground state,
obtained by replacing a fermion by a boson in the (N − l + 1)-th component of the
fermionic bond vector (1, . . . , 1) (with 1 6 l� N), now carry an energy

∆E = µ− ϕ(xN−l) = ϕ(1)− ϕ(1− l/N) ' −1
2 ϕ
′′(1) l

2

N2 = l2

2N2 .

The fact that ∆E is not linear in ∆p = −πl/N suggests that the system is not critical
when γ = 1 and µ = ϕmax. This will indeed be confirmed in the next section by studying
the low temperature behavior of the free energy per spin.

6.2. su(0|2)

In this case µ = 0, s∗ = 3/2 and δ(sN , sN+1) = 0 for sN = 1. It is easy to verify that
the ground state corresponds to the bond vector

sg = (1, 2, . . . , 1, 2, 1) (6.17)

for odd N , or to the vectors

sg = (2, 1, . . . , 2, 1) , s′g = (1, 1, 2, 1, . . . , 2, 1) (6.18)

for even N . In other words, the ground state bond vectors essentially consist of
a sequence of pairs (1, 2) or (2, 1). In either case, the ground state energy in the
thermodynamic limit is given by

u(0) = 1
2

∫ 1

0
ϕ(x)dx = f0

2 ,

since only the even (for odd N) or odd (for even N) components of the ground state
bond vectors give rise to a non-zero energy. Clearly the lowest energy excitations in this
case, obtained by changing a component of either ground state bond vector near its left
end, are all small momentum excitations. For instance, for odd N such an excitation is
labeled by the bond vector

s = (1, 2, . . . , 1, 2, 1, 1
↓
2l

, 1, 2, . . . , 1, 2, 1) ,

with

∆E = ϕ(x2l−1) ' ϕ′(0)x2l−1 .

This is a low momentum excitation with ∆p = πx2l−1, and hence v is given by Eq. (6.15).
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6.3. su(1|2)

Now F = {1, 3}, B = {2}, mε = nε′ = 1, and hence sN+1 = s∗ = 5/2 and
δ(sN , sN+1) = 0 for sN 6 2. Obviously, if µ < 0 the ground state is the purely bosonic
one labeled by the bond vector (6.2). The energy spectrum is clearly gapped, with
energy gap |µ|.

Consider next the interval 0 < µ < ϕmax/2. In this case the ground state has bond
vector

sg = (1, 3, . . . , 1, 3, 1
↓

2k0+1

, 2, · · · , 2) (6.19)

with

k0 := max{k : ϕ(x2k) < 2µ} =
⌊
N

2 x0(2µ)
⌋
, (6.20)

and Fermi momentum p0 = πx2k0 . Indeed, adding a pair (3, 1) at positions (2k, 2k + 1)
in a bond vector of the latter form increases the energy by ϕ(x2k) − 2µ. In the
thermodynamic limit we have

ϕ(x2k0) ' 2µ =⇒ x2k0 = 2k0

N
' x0(2µ), (6.21)

and the zero temperature fermion and energy densities are thus given by

nF (0) = x0(2µ) , u(0) =
∫ x0(2µ)

0

(
ϕ(x)

2 − µ
)

dx = 1
6

[
γ(γ2 − 6µ)− (γ2 − 4µ)3/2

]
.

The lowest energy excitations about the ground state (6.19) are of two types,
depending on whether ∆Nf = 0 or ±2. In the former case we simply replace a 1
by a 3 (or vice versa) near the start of the bond vector (6.19). These small momentum
excitations are gapless, with Fermi velocity

v1 = [πx′0(0)]−1 . (6.22)

For instance, if

s = (1, 3, . . . , 1, 3, 1, 1
↓
2l

, 1, 3, . . . , 1, 3, 1, 2, . . . , 2) ,

we have

∆E = ϕ(x2l−1) ' ϕ′(0)x2l−1 = ϕ′(0) ∆p
π

= ∆p
πx′(0) .

The second type of low energy excitations are Fermi excitations obtained by replacing
a pair (2, 2) near the Fermi position 2k0 of the bond vector (6.19) by the pair (1, 3) or
(3, 1), or alternatively replacing one of these pairs by a pair of bosons. These excitations
are also gapless, with Fermi velocity

v2 = [πx′0(2µ)]−1
. (6.23)

For instance, if

s = (1, 3, . . . , 1, 3, 1, 2, . . . , 2, 3
↓

2k0+l

, 1, 2, . . . , 2)
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with l > 2 then

∆E = ϕ(x2k0+l)− 2µ ' ϕ(x2k0+l)− ϕ(x2k0) ' ϕ′(x2k0) l
N
' ϕ′(x0(2µ)) l

N
= l

Nx′0(2µ) .

Since the momentum of this excitation is given by

p = πx2k0+l = πx2k0 + lπ

N
= p0 + lπ

N

we have ∆p = lπ/N , which immediately yields Eq. (6.23). When γ > 1 a similar
analysis is valid in the limiting case µ = ϕmax/2, in which the ground state bond vector
is (1, 3, . . . , 1, 3, 1) for odd N and (1, 3, . . . , 1, 3, 1, 2) for even N . On the other hand,
for γ = 1 and µ = ϕmax/2 the Fermi excitations, coming from changes in the last
components of the ground state bond vectors, carry an energy proportional to (∆p)2

instead of ∆p. As in the su(1|1) case, this is an indication that only the small momentum
excitations are critical in this case, with Fermi velocity given by Eq. (6.22). Likewise,
when µ = 0 the ground state is twice degenerate, with bond vectors

sg = (1, 2, . . . , 2) , s′g = (2, 2, · · · , 2) .

The spectrum is still gapless, but the only low energy excitations are small momentum
ones with Fermi velocity given again by Eq. (6.22).

Consider next the case µ > ϕmax/2. Now the ground states are labeled by the
purely fermionic bond vectors (6.17) for odd N and (6.18) for even N , with 2 replaced
by 3. Indeed, if ϕ(x) < 2µ for all x ∈ [0, 1] it is always energetically favorable to
introduce a fermionic pair (1, 3) or (3, 1). Thus in this case nF (0) = 1 and u(0) = f0/2.
The low energy excitations above the ground state are obtained by changing a 1 by a
3, or vice versa, near the start of the ground state bond vector(s). Thus the spectrum
is again gapless, with only small momentum excitations whose Fermi velocity is given
by Eq. (6.22).

6.4. su(2|1)

In this case F = {1}, B = {2, 3}, mε = nε′ = 1, and hence sN+1 = s∗ = 5/2 and
δ(sN , sN+1) = 0 for sN 6 2. Since δ(3, sN+1) = 1, for all values of the chemical potential
µ the ground state and the zero temperature densities nF (0) and u(0) are as in the
su(1|1) case. When µ < 0 the only low energy excitations above the bosonic ground
state are small momentum excitations with bond vector

s = (2, . . . , 2, 3
↓
l

, 2, . . . , 2), l� N ,

for which

∆E = ϕ(xl) ' ϕ′(0)xl , ∆p = πxl .

Hence the spectrum is gapless, with Fermi velocity given by Eq. (6.22). The same is
true for µ = 0, the only difference being that in this case there are additional small
momentum excitations with bond vector (6.14). For 0 < µ < ϕmax the low energy
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excitations above the ground state (6.4)-(6.5) are obtained, as in the su(1|1) case,
replacing a 2 boson by a fermion or a fermion by either boson near the Fermi position
k0 of the ground state bond vector. Hence the spectrum is again gapless, with Fermi
excitations whose velocity is given by Eq. (6.13). Likewise, again as in the su(1|1) case,
for µ = ϕmax and γ > 1 the spectrum is still gapless, with Fermi velocity given by
Eq. (6.15). On the other hand, for µ = ϕmax and γ = 1 the low energy excitations have
energy proportional to (∆p)2, thus signaling that although the spectrum is gapless the
system is not critical. Finally, for µ > ϕmax the spectrum is clearly gapped, with energy
gap µ− ϕmax.

6.5. su(2|2)

Here F = {1, 4}, B = {2, 3}, mε = nε′ = 1, s∗ = 5/2 and hence δ(sN , sN+1) = 0 for
sN 6 2. The ground state bond vectors are as in the su(1|2) case, with 3 replaced by 4.
In other words,

sg =



(2, . . . , 2) , µ < 0
(∗, 2, . . . , 2) , µ = 0
(1, 4, . . . , 1, 4, 1

↓
2k0+1

, 2, · · · , 2) , 0 < µ < ϕmax/2

(1, 4, . . . , 1, 4, 1, 2) , µ = ϕmax/2 and N even
(1, 4, . . . , 1, 4, 1) , µ > ϕmax/2 and N odd
(†, 1, 4, 1, . . . , 4, 1) , µ > ϕmax/2 and N even

with ∗ = 1, 2, † = 1, 4 and k0 given by Eq. (6.20). As a consequence, the zero
temperature densities nF (0) and u(0) are as in the su(1|2) case. For µ 6 0 the low
energy excitations are obtained replacing a 2 near the left end of the ground state
bond vector(s) by a 3 (and, if µ = 0, by a 1 or a 4). Hence the spectrum is gapless,
with only small momentum excitations of Fermi velocity given by Eq. (6.22). When
0 < µ < ϕmax/2 we have similar small momentum excitations obtained by replacing
a 4 fermion by a 1 fermion, or vice versa, near the left end of the ground state bond
vector(s). The Fermi velocity of these excitations is again given by Eq. (6.22). Moreover,
in this case we also have Fermi excitations obtained by adding or removing a pair (1, 4)
or (4, 1) near the Fermi position k0, with velocity (6.23). The analysis is very similar
for the case µ = ϕmax/2 and γ > 1, with the second Fermi velocity given by Eq. (6.16)
—i.e., the µ → ϕmax/2 limit of v2 in Eq. (6.23). On the other hand, for µ = ϕmax and
γ = 1 the Fermi excitations, coming from changes in the right end of the ground state
bond vector, do not have the correct energy/momentum relation. Hence in this case
there are only small momentum excitations with Fermi velocity given by Eq. (6.22).
Finally, if µ > ϕmax/2 the only low energy excitations are again the small momentum
excitations with Fermi velocity (6.22).

For future reference we display below the expression for the zero temperature
densities nF (0) and u(0) in the tractable cases we have just discussed. To wit, in
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Figure 3. Zero temperature fermion and energy densities for the su(m|n) chains in
Table 1 with m 6= 0 and γ = 2.

the su(0|2) case we have

nF (0) = 1, u(0) = f0

2 ,

while in the remaining cases

nF (0) =


0 , µ 6 0

x0(nµ) = γ −
√
γ2 − 2nµ , 0 6 µ 6 ϕmax

n

1 , µ > ϕmax
n

,

(6.24)

and

u(0) =



0 , µ 6 0∫ x0(nµ)

0

(
ϕ(x)
n
− µ

)
dx = 1

3n
[
γ(γ2 − 3nµ)− (γ2 − 2nµ)3/2

]
, 0 6 µ 6 ϕmax

n

f0

n
− µ , µ > ϕmax

n
,

where n denotes the number of fermionic degrees of freedom.
Remark 4. From the previous analysis it follows that the ground state degeneracy of the
su(m|n) chains with m,n 6 2 and ε = ε′ = 1 is at most 2 for all values of the chemical
potential. (Actually, it is easily checked that the same is true for all other values of
ε, ε′ ∈ {±1}.) By contrast, for m > 1 and values of the chemical potential inside the
critical interval, the degeneracy of the type-AN−1 HS, PF and FI chains grows with N .
Thus, as pointed out in Ref. [8], strictly speaking the latter models cannot be critical
even if their free energy per spin grows as T 2 at low temperatures. The reason for this
important difference in the ground state degeneracy lies in the last (N -th) component
of BCN -type motifs, which is absent in standard (AN−1) motifs. For instance, for the
su(2|0) PF chain of AN−1 type the ground state bond vectors are of the form [25]

sk = (1, · · · , 1︸ ︷︷ ︸
k

, 2, · · · , 2︸ ︷︷ ︸
N−k

), k = 0, . . . , N ,

with zero energy, and the ground state degeneracy is thus N + 1. On other hand, in
the BCN case the energy of sk is ϕ(1)δ(sN , s∗) = ϕmaxδ(sN , 3/2), which vanishes for
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k = N (since in this case sN = 1 < 3/2) but equals ϕmax > 0 for 0 6 k 6 N − 1 (since
sN = 2 > 3/2). Hence in the BCN case only the bond vector sN yields the ground state.

7. Critical behavior

In the last section we showed that the models listed in Table 1 are critical for certain
values of the fermionic chemical potential µ. In this section we shall compute the
corresponding central charges by studying the low temperature behavior of the free
energy per spin. Indeed, it is well known [47, 48] that at low temperatures the free
energy per unit length of a (1 + 1)-dimensional CFT with central charge c behaves as

f(T ) ' f(0)− πcT 2

6v (7.1)

(in natural units ~ = kB = 1), where v is the Fermi velocity. The Fermi velocities of the
small momentum and Fermi excitations for all the tractable models were also computed
in the previous section. These velocities are respectively given by

v1 = 1
πx′0(0) , v2 = 1

πx′0(nµ) , (7.2)

where n denotes the number of fermionic degrees of freedom. Note, in particular, that
the latter equation for v2 is still valid in the limiting case µ = ϕmax/n. Note also that,
although Eq. (7.2) was derived for the case ε = ε′ = 1, it is in fact valid for all other
values of the latter parameters.

Consider, for instance, the su(1|1) chain. For µ < 0 we have

|f(T )| = T
∫ 1

0
log(1 + e−β(ϕ(x)+|µ|))dx 6 T

∫ 1

0
log(1 + e−β|µ|)dx

= T log(1 + e−β|µ|) = O(T e−β|µ|).
Likewise, if µ > ϕmax then

f(T ) = −T
∫ 1

0
log(1 + eβ(µ−ϕ(x)))dx =

∫ 1

0
(ϕ(x)− µ)dx− T

∫ 1

0
log(1 + e−β(µ−ϕ(x)))dx

= f0 − µ− T
∫ 1

0
log(1 + e−β(µ−ϕ(x)))dx .

Hence f(0) = f0−µ (in accordance with the result of the previous section; cf. Eq. (6.9)),
and therefore

|f(T )− f(0)| = T
∫ 1

0
log(1 + e−β(µ−ϕ(x)))dx

6 T log(1 + e−β(µ−ϕmax)) = O(T e−β(µ−ϕmax)).
Thus the model is non-critical for µ < 0 and µ > ϕmax, as we had shown in the previous
section by analyzing the low energy excitations above the ground state.

Consider next the range 0 < µ < ϕmax. To begin with, since µ − ϕ(x) > 0 for
0 6 x 6 x0(µ) and µ− ϕ(x) 6 0 for x0(µ) 6 x 6 1 we can write

f(T ) =
∫ x0(µ)

0
(ϕ(x)− µ)dx

− T
∫ x0(µ)

0
log(1 + e−β(µ−ϕ(x)))dx− T

∫ 1

x0(µ)
log(1 + e−β(ϕ(x)−µ))dx .
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It follows that

f(0) =
∫ x0(µ)

0
(ϕ(x)− µ)dx ,

(in agreement with Eq. (6.8)), and hence

f(T )− f(0) = −T
∫ x0(µ)

0
log(1 + e−β(µ−ϕ(x)))dx− T

∫ 1

x0(µ)
log(1 + e−β(ϕ(x)−µ))dx

=: I1 + I2 .

When β →∞, the main contribution to each of the integrals Ik comes from the endpoint
x0(µ), at which the exponents ±β(ϕ(x)− µ) vanish. Performing the change of variable
β(µ− ϕ(x)) = y, i.e., x = x0(µ− Ty), in the first integral we obtain

I1 = −T 2
∫ βµ

0
x′0(µ− Ty) log(1 + e−y) dy .

Since for β →∞ the main contribution to the latter integral comes from the endpoint
y = 0, approximating x′0(µ− Ty) by x′0(µ) and pushing the upper limit to +∞ we have

I1 ' −T 2x′0(µ)
∫ ∞

0
log(1 + e−y) dy = −πT

2

12 x′0(µ) .

Similarly,

I2 = −T 2
∫ β(ϕmax−µ)

0
x′0(µ+ Ty) log(1 + e−y) dy

' −T 2x′0(µ)
∫ ∞

0
log(1 + e−y) dy = −πT

2

12 x′0(µ) .

Combining both results and using Eq. (7.2) for the velocity v2 of the Fermi excitations
(with momentum near the Fermi momentum p0 = πx0(µ)) we finally obtain

f(T )− f(0) ' −πT
2

6 x′0(µ) = −πT
2

6v2
.

Thus the central charge in the critical interval 0 < µ < ϕmax is c2 = 1.
A similar analysis can be applied to the limiting point µ = 0. Indeed, in this case

f(0) = 0 and the main contribution to

f(T ) = −T
∫ 1

0
log(1 + e−βϕ(x))dx

when β → ∞ comes from the lower limit of the integral. Performing the change of
variable βϕ(x) = y, i.e., x = x0(Ty), we have

f(T ) = −T 2
∫ βϕmax

0
x′0(Ty) log(1 + e−y) dy ' −T 2x′0(0)

∫ ∞
0

log(1 + e−y) dy

= −πT
2

12 x′0(0).

From Eq. (7.2) for the Fermi velocity v1 of small momentum excitations we have

f(T ) ' − πT
2

12v1
,
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and hence the central charge is now c1 = 1/2. Likewise, when γ > 1 and µ = ϕmax =
γ − 1/2 the main contribution to the integral

f(T )− f(0) = −T
∫ 1

0
log(1 + e−β(ϕmax−ϕ(x)))dx

only comes from its upper limit (i.e., from Fermi excitations with momentum close to
π). Performing the analogous change of variable β(ϕmax − ϕ(x)) = y we easily obtain

f(T ) ' −π
2T 2

12 x′0(ϕmax) = − πT
2

12v2

so that c2 = 1/2. On the other hand, when γ = 1 and µ = ϕmax = 1/2 we have

ϕmax − ϕ(x) = 1
2 (1− x)2 .

Performing the change of variable ϕmax − ϕ(x) = Ty, i.e., x = 1 −
√

2Ty, we readily
obtain

f(T )− f(0) = −T
3/2
√

2

∫ β/2

0
y−1/2 log(1 + e−y)dy ' −T

3/2
√

2

∫ ∞
0

y−1/2 log(1 + e−y)dy

= −
√
π

2 (
√

2− 1)ζ(3/2)T 3/2 ,

where ζ(z) = ∑∞
n=1 n

−z is Riemann’s zeta function. The T 3/2 growth of the free energy
at low temperature shows that the system is not critical in this case, as anticipated
in the previous section from the existence of excitations of energy O(N−2) above the
ground state energy.

Essentially the same procedure (with a few minor variations) can be applied to
the remaining models listed in Table 1. We summarize the results obtained in Table 2,
presenting the details of the corresponding calculations in Appendix A. To give an

µ < 0 µ = 0 0 < µ <
ϕmax

n
µ = ϕmax

n
(γ > 1) µ >

ϕmax

n

su(1|1) − (1/2,−) (−, 1) (−, 1/2) −
su(0|2) (1,−)
su(1|2) − (1,−) (1, 1) (1, 3/5) (1,−)
su(2|1) (1,−) (3/2,−) (−, 2) (−, 4/5) −
su(2|2) (1,−) (2,−) (1, 2) (1, 1) (1,−)

Table 2. Critical behavior of the (nontrivial) su(m|n) HS chains of BCN type with
m,n 6 2 as a function of the fermionic chemical potential µ. The notation (c1, c2)
is used to indicate that the central charge of the small momentum (resp. Fermi)
excitations is c1 (resp. c2), a horizontal dash (“−”) denoting that the corresponding
excitation is not present. A horizontal dash by itself in a cell means that the model is
gapped. Note that in the case µ = ϕmax/n and γ = 1 all of the models listed above
are gapless but non-critical, with f(T )− f(0) ∼ T 3/2.

idea of the accuracy of the asymptotic approximations of f(T ) obtained in this section
and in the appendix, we show in Fig. 4 a plot comparing the latter function to its low
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Figure 4. Comparison between the free energy density f(T ) (blue line) of the su(1|2)
chain and its low temperature approximation fapp(T ) (dashed red line) for γ = 2 and
different values of µ. The inset corresponds to the case γ = 1, µ = 1/4 for which, as
shown in the appendix, f(T )− f(0) is of order T 3/2 instead of T 2.

temperature approximation fapp(T ) for the su(1|2) chain with γ = 2 and different values
of the parameter µ in each of the four cases in which there is at least a critical low energy
excitation.
Remark 5. It was shown in Ref. [41] that the su(m|n) Polychronakos–Frahm chain of
AN−1 type with zero chemical potential has central charge

c(m,n) =


max(m,n)− 1, mn = 0

m− 1 + n

2 , mn > 0.

The same formula is actually valid for the su(m|n) HS chain of AN−1 type, as follows
from the relation between the partition function of these chains uncovered in Ref. [8].
Our results, summarized in Table 2, show that this formula still holds for the open
counterparts of the HS chain studied in this work.

8. Thermodynamics

The thermodynamic functions of the models studied in the previous section can be
computed in closed form using Eqs. (2.10)-(2.12) and (5.5) together with the explicit
formulas for the Perron–Frobenius eigenvalue λ1(x) listed in Table 1. For instance, for
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the su(1|1) model we easily obtain

n
(1|1)
F =

∫ 1

0

dx
1 + eβ(ϕ(x)−µ) , (8.1)

u(1|1) =
∫ 1

0

ϕ(x)− µ
1 + eβ(ϕ(x)−µ) dx , (8.2)

c
(1|1)
V = β2

4

∫ 1

0
(ϕ(x)− µ)2 sech2

(
β

2 (ϕ(x)− µ)
)

dx , (8.3)

s(1|1) =
∫ 1

0

{
log
[
2 cosh

(
β

2 (ϕ(x)− µ)
)]
− β

2 (ϕ(x)− µ) tanh
(
β

2 (ϕ(x)− µ)
)}

dx , (8.4)

∆(1|1)
F = 1

4

∫ 1

0
sech2

(
β

2 (ϕ(x)− µ)
)

dx . (8.5)

It can be shown that these expressions have the same form as their analogues for the
su(1|1) HS chain of type AN−1 [25], the only difference being that in the latter model
ϕ(x) is proportional to (x/2)(1−x/2). In particular, the su(1|1) BCN chain with γ = 1
is thermodynamically equivalent to its (suitably normalized) AN−1 counterpart. The
thermodynamic functions of the su(0|2) chain can also be obtained from Eqs (8.1)-(8.5),
taking µ = 0 and replacing ϕ by ϕ/2. Similarly, since the su(2|2) chain is (in the
thermodynamic limit) to the direct sum of two su(0|2) chains with chemical potentials
0 and µ, its energy, specific heat and entropy (per spin) can also be easily expressed
as sums of the corresponding su(1|1) functions (8.2)-(8.4) with ϕ replaced by ϕ/2. For
instance,

u(2|2) =
∫ 1

0

ϕ(x)/2
1 + eβϕ(x)/2 dx+

∫ 1

0

ϕ(x)/2− µ
1 + eβ(ϕ(x)/2−µ) dx .

On the other hand, for the fermion density and its variance we have the simpler formulas

n
(2|2)
F =

∫ 1

0

dx
1 + eβ(ϕ(x)/2−µ) , ∆(2|2)

F = 1
4

∫ 1

0
sech2

(
β

2

(
ϕ(x)

2 − µ
))

dx .

The expressions of the thermodynamic functions of the su(1|2) and su(2|1) chains are
more cumbersome, and will not be presented here, with the only exception of the fermion
densities:

n
(1|2)
F = 1−

∫ 1

0

dx√
1 + 4e−β(ϕ(x)−µ)(1 + eβµ)

, n
(2|1)
F =

∫ 1

0

dx√
1 + 4eβ(ϕ(x)−µ)(1 + e−βµ)

.

Note that for critical values of the chemical potential µ the low temperature
behavior of the thermodynamic functions can be easily determined differentiating the
asymptotic expression for f(T ) obtained in the previous section and in the appendix.
Indeed, for these values of µ we can write

f(T ) = f(0)− κT 2 + o(T 2) , (8.6)

with

κ = π

6

(
c1

v1
+ c2

v2

)
= π2

6 (c1x
′
0(0) + c2x

′
0(nµ)) = π2

6

(
c1

γ
+ c2√

γ2 − 2nµ

)
, (8.7)
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where it is understood that ci should be taken as 0 if its corresponding low energy
excitations are not critical. We then have

u = f(0) + κT 2 + o(T 2) , cV = s = 2κT + o(T ) .
The behavior of the fermion density nF and variance ∆F can be computed in the
same way when µ lies in the interior of one of the critical regions in Table 2. Indeed,
differentiating Eq. (8.6)-(8.7) with respect to the chemical potential µ we obtain

nF (T ) = − ∂

∂µ
f(0) + ∂κ

∂µ
T 2 + o(T 2) .

Since, by Eq. (8.7),
∂κ

∂µ
= nπ2c2

6 (γ2 − 2nµ)−3/2 ,

it follows that

nF (T )− nF (0) = nπ2c2

6 (γ2 − 2nµ)−3/2T 2 + o(T 2) .

Thus when µ lies in the interior of a critical region the fermion density nF (T ) is always
increasing for sufficiently low T . In particular, if nF (0) > limT→∞ nF (T ) = n/(m + n)
then the fermion density must have (at least) one local maximum at a positive
temperature. Likewise, differentiating the previous equation with respect to µ and
using Eq. (6.24) we obtain

∆F (T ) = T
∂

∂µ
nF (T ) = nT√

γ2 − 2nµ
χ[0,ϕmax/n] + n2π2c2T

3

2(γ2 − 2nµ)5/2 + o(T 3) ,

where χS denotes the characteristic function of the set S.
As an example, we have presented in Fig. 5 the plots of the thermodynamic

functions discussed above for γ = 2 and chemical potential µ = 5/8+, which lies
inside the critical region (0, ϕmax/n) = (0, 3/(2n)) both for n = 1 and n = 2. These
plots are in agreement with the low-temperature behavior of the latter functions we
have just determined. In general, the behavior of the thermodynamic functions of
the HS chains of BCN type studied in this paper is similar to that of their AN−1

counterparts [24, 25]. In particular, for 0 < µ < ϕmax/n the specific heat features the
Schottky peak characteristic of two-level systems like, e.g., the one-dimensional Ising
model [39]. On the other hand, when the intervals (−∞, 0) or (ϕmax/2,∞) are critical
(i.e., respectively for m = 2, n 6= 0 and n = 2, m 6= 0), our numerical calculations show
that the specific heat develops an additional low-temperature peak for sufficiently large
|µ| (cf. Fig. 6). Note that this behavior is characteristic of three-level systems [49], and
has been experimentally observed in many low-dimensional quantum ferrimagnets [50].
As remarked by Mussardo [39], this is probably related to the fact that in the models
under study the partition function can be obtained from an (m+n)-dimensional transfer
matrix. Note, however, that in our case the situation is less clear that in the example
of the one-dimensional Ising model discussed by the latter author, since (for mn 6= 0)
the transfer matrix is singular.
+ For comparison purposes, we have subtracted µ = 5/8 from the free energy per spin and the energy
density of the su(0|2) chain.
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Figure 5. Thermodynamic functions for the (nontrivial) su(m|n) chains of BCN type
with m,n 6 2 with γ = 2 and µ = 5/8.

9. Conclusions and outlook

In this paper we have analyzed the thermodynamics and the critical behavior of the open
(BCN -type) supersymmetric Haldane–Shastry chain with a general chemical potential
term. As pointed out in the Introduction, while the thermodynamic and criticality
properties of the HS chain of AN−1 type and its rational/hyperbolic counterparts have
been studied in great detail, to the best of our knowledge an analogous study for
the HS chain of BCN type had yet to be undertaken. The key idea for deriving
the thermodynamic functions of the latter chain is to generalize the description of its
spectrum in terms of supersymmetric BCN -type motifs developed in Ref. [38] to allow
for a chemical potential term, and to use this expression to represent the chain’s partition
function as the trace of a product of suitable site-dependent transfer matrices. Passing
to the thermodynamic limit, we obtain a simple expression for the thermodynamic free
energy per spin in terms of the Perron–Frobenius eigenvalue of the continuum limit of the
transfer matrix. This eigenvalue can be computed in closed form for up to two bosonic or
fermionic degrees of freedom, thus yielding an explicit expression for the thermodynamic
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Figure 6. Top: specific heat per spin vs temperature T for the su(1|2) (left) and
su(2|2) (right) chains with γ = 2 and several values of µ. Bottom: analogous 3D plots
for µ in the range [−5, 5]. For the su(1|2) (resp. su(2|2)) chain the specific heat per
spin features a double Schottky peak when µ (resp. |µ|) is large enough.

functions in these cases. In general, the behavior of these functions resembles that of
their AN−1 counterparts. An interesting new feature we have identified is the existence
of a double Schottky peak (characteristic of certain three-level systems) in the specific
heat for certain values of the chemical potential.

We have also addressed in this paper the study of the criticality properties of the
su(m|n) supersymmetric HS chain of BCN -type for m,n 6 2. To this end, we have first
determined the ground state of these models for all values of the fermionic chemical
potential using the motif-based description of the spectrum. In particular, we have
shown that due to the distinctive property of the BCN -type motifs the ground state is
at most doubly degenerate in all cases, in contrast with the AN−1 case. We have then
studied the low energy excitations above the ground state featuring a linear energy-
quasimomentum relation, thus identifying the critical regions in chemical potential
space and the corresponding Fermi velocities. In fact, for certain values of the chemical
potential we have found that there can be two types of critical low-energy excitations,
associated with changes in either end of the ground state bond vector. The second
part of our analysis relies on deriving the low-temperature behavior of the free energy
per spin with the help of the explicit formula found in this paper for m,n 6 2. More
precisely, we have ascertained the characteristic T 2 growth of the free energy in the
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critical regions, and have determined the corresponding central charge by computing
the T → 0 limit of (f(T ) − f(0))/T 2. In this way we have completely characterized
the critical behavior of the models under study for all values of the fermionic chemical
potential.

The main tools used in this work, namely the motif-based description of the
spectrum and the explicit computation of the free energy per spin via the transfer
matrix method, could in principle be used to analyze the thermodynamics and critical
behavior of other chains of Haldane–Shastry type related to the BCN root system. To
begin with, for the BCN -type supersymmetric Polychronakos–Frahm chain [28, 32] a
description of the spectrum in terms of branched motifs has been recently found for
zero chemical potential [37]. This description, when suitably generalized to allow for
a chemical potential term, could be the basis for a study similar to the present one.
Another model for which there is already a motif-based description of the spectrum
(again for zero chemical potential) [51] is the (non-supersymmetric) BCN Simons–
Altshuler chain [26,52], recently studied in Ref. [53] in connection with matrix product
states from boundary CFTs. The situation is less clear for HS-type spin chains associated
to the BN and DN root systems [34–36], where it is not yet known how to express the
spectrum in terms of suitable motifs. On the other hand, our method can still be applied
to HS-like chains not directly related to any root system when there is a motif-based
description of the spectrum. This is the case, for instance, for the su(m) chain recently
introduced in Ref. [54] when m is even.
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Appendix A. Computation of the central charges for the su(0|2), su(1|2),
su(2|1) and su(2|2) chains

In this appendix we will provide the details of the evaluation of the central charges of
the su(0|2), su(1|2), su(2|1) and su(2|2) chains, that were omitted from Section 7 for
the sake of conciseness.

1. su(0|2)
From Eq. (5.8) we have

f(T ) = f0 − T
∫ 1

0
log(1 + e−βϕ(x)/2)dx .

Thus f(0) = f0, and performing the change of variable βϕ(x)/2 = y we obtain

f(T )− f(0) = −2T 2
∫ βϕmax/2

0
x′0(2Ty) log(1 + e−y)dy
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' −2T 2x′0(0)
∫ ∞

0
log(1 + e−y)dy = −π

2T 2

6 x′0(0) = −πT
2

6v1
,

where (as in what follows) we have used Eq. (7.2) for the Fermi velocity of the small
momentum excitations. Hence (as we knew from the analysis of Section 6) this model
possesses only small momentum excitations, with central charge c1 = 1.
2. su(1|2)
In the half-line µ < 0 we have

f(T ) = −T
∫ 1

0
log
(
1 + O(e−β|µ|)

)
dx = O(T e−β|µ|),

and thus the system is gapped. Likewise, for µ = 0

f(T ) = −T
∫ 1

0
log

1
2 + e−βϕ(x) +

√
1
4 + 2e−βϕ(x)

 dx

= −T 2
∫ βϕmax

0
x′0(Ty) log

1
2 + e−y +

√
1
4 + 2e−y

 dy

' −T 2x′0(0)
∫ ∞

0
log

1
2 + e−y +

√
1
4 + 2e−y

 dy = −πT
2

6v1
,

Hence in this case there are only small momentum excitations, whose central charge is
again c1 = 1.

Consider next the interval 0 < µ < ϕmax/2. We can then write

f(T ) = 1
2

∫ x0(2µ)

0
(ϕ(x)− 2µ)dx− T

∫ x0(2µ)

0
log λ̂1(x)dx− T

∫ 1

x0(2µ)
log λ1(x)dx ,

with

λ̂1 := eβ(ϕ/2−µ)λ1 = e−βϕ/2 + 1
2 e−β(µ−ϕ/2) +

√
1 + e−βµ + 1

4 e−β(2µ−ϕ) .

Since the exponents in the expressions for λ̂1(x) and λ1(x) are non-positive respectively
in the intervals [0, x0(2µ)] and [x0(2µ), 1] we have

f(0) = 1
2

∫ x0(2µ)

0
(ϕ(x)− 2µ)dx (A.1)

(in agreement with the result of the previous section), and therefore

f(T )− f(0) = T
∫ x0(2µ)

0
log λ̂1(x)dx− T

∫ 1

x0(2µ)
log λ1(x)dx =: I1 + I2 . (A.2)

The integral I2 is dealt with in much the same fashion as similar integrals in the previous
cases. More precisely, since the main contribution to the latter integral comes from its
lower limit, where several of its exponents vanish, performing the change of variable
β(ϕ/2− µ) = y, or equivalently x = x0(2(µ+ Ty)), we easily obtain

I2 = −2T 2
∫ β(ϕmax−2µ)

0
x′0(2(µ+ Ty)) log

1
2 + e−(y+βµ) +

√
1
4 + e−y + e−(y+βµ)

 dy

' −2T 2x′0(2µ)
∫ ∞

0
log
1

2 +
√

1
4 + e−y

 dy = −π
2T 2

15 x′0(2µ) .
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On the other hand, as the main contribution to the integral I1 comes from both
integration limits, it is convenient to split this integral as

I1 = −T
∫ x0(µ)

0
log λ̂1(x)dx− T

∫ x0(2µ)

x0(µ)
log λ̂1(x)dx := I11 + I12 .

Since the main contribution to I11 (resp. I12) comes only from its lower (resp. higher)
limit we readily obtain

I11 = −2T 2
∫ βµ/2

0
x′0(2Ty) log

e−y + e−(βµ−y) +
√

1 + e−βµ + 1
4e−2(βµ−y)

 dy

' −2T 2x′0(0)
∫ ∞

0
log(1 + e−y)dy = −π

2T 2

6 x′0(0) , (A.3)

I12 = −2T 2
∫ βµ/2

0
x′0(2(µ− Ty)) log

1
2e−y + e−(βµ−y) +

√
1 + e−βµ + 1

4e−2y

 dy

' −2T 2x′0(2µ)
∫ ∞

0
log
1

2e−y +
√

1 + 1
4e−2y

 dy = −π
2T 2

10 x′0(2µ) . (A.4)

Putting everything together and using the expressions (7.2) for the Fermi velocities of
the small momentum and Fermi excitations we finally obtain:

f(T )− f(0) ' −πT
2

6v1
− πT 2

6v2
.

We thus see that both types of excitations have central charge c1 = c2 = 1.
In the limiting case µ = ϕmax/2, i.e., x0(2µ) = 1, the integral I2 in Eq. (A.2)

reduces to zero, while the upper limit in the integrals I11 and I12 becomes 1. If γ > 1
then x′0(2µ) = x′0(ϕmax) = 1/ϕ′(1) is finite, and hence Eqs. (A.3)-(A.4) remain valid.
We thus obtain

f(T )− f(0) ' −π
2T 2

6 x′0(0)− πT 2

10 x′0(1) = −πT
2

6v1
− 3

5
πT 2

6v2
,

where f(0) = f0/2 − µ = (f0 − ϕmax)/2 (cf. Eq. (A.1)). Hence in this case the central
charges of the small momentum and Fermi excitations are respectively c1 = 1 and
c2 = 3/5. On the other hand, when γ = 1 and µ = ϕmax/2 = 1/4 Eq. (A.3) still holds,
while Eq. (A.4) should be replaced by

I12 = −T 3/2
∫ β/8

0
y−1/2 log

1
2e−y + e−(β/4−y) +

√
1 + e−β/4 + 1

4e−2y

 dy

' −T 3/2
∫ ∞

0
y−1/2 log

1
2e−y +

√
1 + 1

4e−2y

 dy = −0.866562 · · ·T 3/2 .

Thus in this case the Fermi excitations (involving changes in the last components of
the ground state bond vector) are not critical, as anticipated in the previous section,
whereas the small momentum excitations have central charge c1 = 1.
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Finally, when µ > ϕmax/2 proceeding as above we have

f(T ) = −T
∫ 1

0
log

(
e−β(ϕ(x)/2−µ)λ̂1(x)

)
dx = f0

2 − µ− T
∫ 1

0
log λ̂1(x) dx

= f(0)− T
∫ 1

0
log λ̂1(x) dx .

The main contribution to the last integral comes only from its lower limit, i.e., from
small momentum excitations, so that setting βϕ(x) = 2y we obtain
f(T )− f(0)

= −2T 2
∫ βϕmax/2

0
x′0(2Ty) log

e−y + 1
2 e−(βµ−y) +

√
1 + e−βµ + 1

4 e−2(βµ−y)

dy

' −2T 2x′0(0)
∫ ∞

0
log(1 + e−y)dy = −π

2T 2

6 x′0(0) = −πT6v1
.

Hence there in this case there are only small momentum excitations, with central charge
c1 = 1.
3. su(2|1)
To begin with, when µ < 0 setting βϕ(x) = 2µ in the integral for f(T ) we obtain
f(T )− f(0)

= −2T 2
∫ βϕmax/2

0
x′0(2Ty) log

1 + 1
2 e−(β|µ|+2y) +

√
e−2y + e−(β|µ|+2y) + 1

4 e−2(β|µ|+2y)

dy

' −2T 2x′0(0)
∫ ∞

0
log(1 + e−y) dy = −π

2T 2

6 x′0(0) = −πT
2

6v1
,

Hence in this case only the small momentum excitations are present, with central charge
c1 = 1. When µ = 0, a similar calculation shows that

f(T )− f(0) = −T 2
∫ βϕmax

0
x′0(Ty) log

1 + 1
2 e−y +

√
2e−y + 1

4 e−2y

dy

' −T 2x′0(0)
∫ ∞

0
log
1 + 1

2 e−y +
√

2e−y + 1
4 e−2y

 dy

= −π
2T 2

4 x′0(0) = −πT
2

4v ,

so that there are only small momentum excitations with central charge c1 = 3/2.
Consider next the interval 0 < µ < ϕmax. We then have

f(T ) =
∫ x0(µ)

0
(ϕ(x)− µ)dx− T

∫ x0(µ)

0
log λ̂1(x)dx− T

∫ 1

x0(µ)
log λ1(x)dx ,

where now

λ̂1 := eβ(ϕ−µ)λ1 = 1
2 + e−β(µ−ϕ) +

√
1
4 + e−β(µ−ϕ) + e−β(2µ−ϕ) .

Since λ̂1(x) → 0 as β → ∞ when 0 < x < x0(µ), whereas λ1(x) → 0 as β → ∞ when
x0(µ) < x < 1, we conclude that

f(0) =
∫ x0(µ)

0
(ϕ(x)− µ)dx , (A.5)
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and hence

f(T )− f(0) = T
∫ x0(µ)

0
log λ̂1(x)dx− T

∫ 1

x0(µ)
log λ1(x)dx =: I1 + I2 . (A.6)

Proceeding as above and using Eq. (6.13) for the velocity of the Fermi excitations (with
momentum near p0 = πx0(µ)) we have

I1 = −T 2
∫ βµ

0
x′0(µ− Ty) log

1
2 + e−y +

√
1
4 + e−y + e−(βµ+y)

 dy

' −T 2x′0(µ)
∫ ∞

0
log
1

2 + e−y +
√

1
4 + e−y

 dy = −2π2T 2

15 x′0(µ) = −2πT 2

15v2
,

I2 = −T 2
∫ β(ϕmax−µ)

0
x′0(µ+ Ty) log

1 + 1
2e−y +

√
1
4e−2y + e−y + e−(βµ+y)

 dy

' −T 2x′0(µ)
∫ ∞

0
log
1 + 1

2e−y +
√

1
4e−2y + e−y

 dy = −π
2T 2

5 x′0(µ) = −πT
2

5v2
.

Adding up the asymptotic approximations for the integrals I1,2 we obtain

f(T )− f(0) = −πT
2

3v2
,

which implies that in this case there are only Fermi excitations having central charge
c2 = 2. When µ = ϕmax and γ > 1 the contribution from the integral I2 vanishes, while
that of the integral I1 remains unchanged (with µ = ϕmax) since x′0(ϕmax) is finite. We
thus have

f(T )− f(0) ' −2πT 2

15v2
,

so that the central charge of the Fermi excitations is now c2 = 4/5. On the
other hand, when γ = 1 and µ = ϕmax = 1/2 performing the change of variable
β(µ − ϕ) = β(1/2 − ϕ) = β/2(1 − x)2 = y, or equivalently x = 1 −

√
2Ty, in the

integral I1 we obtain

f(T )− f(0) = −T
3/2
√

2

∫ β/2

0
y−1/2 log

1
2 + e−y +

√
1
4 + e−y + e−(β/2+y)

 dy

' −T
3/2
√

2

∫ ∞
0

y−1/2 log
1

2 + e−y +
√

1
4 + e−y

 dy = −1.44084 · · ·T 3/2 .

Thus the system is gapless but not critical in this case, confirming again the results
of the previous section based on the existence of excitations with ∆E proportional to
(∆p)2. Finally, if µ > ϕmax we have

f(T ) =
∫ 1

0
(ϕ(x)− µ)dx− T

∫ 1

0
log λ̂1(x) dx = f0 − µ− T

∫ 1

0
log
(
1 + O(e−β(µ−ϕmax))

)
dx

= f0 − µ−O(T e−β(µ−ϕmax)) .

Hence the system is now gapped, with energy gap µ− ϕmax.
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4. su(2|2)
As shown in the su(0|2) case, at low temperatures the first integral in Eq. (5.9)

behaves as

−T
∫ 1

0
log(1 + e−βϕ(x)/2) dx ' −π

2T 2

6 x′0(0) .

The behavior of the second integral in Eq. (5.9) can also be inferred from the analysis
in Section 7. More precisely, for µ < 0 we obtain

I2 := −T
∫ 1

0
log(1 + e−β(ϕ(x)/2−µ))dx = O(T e−β|µ|) ,

while for µ > ϕmax/2

I2 −
f0

2 + µ = −T
∫ 1

0
log(1 + e−β(µ−ϕ(x)/2))dx = O(T e−β(µ−ϕmax/2)) .

On the other hand, in the interval 0 < µ < ϕmax/2 we have

I2 −
1
2

∫ x0(2µ)

0
(ϕ(x)− 2µ)dx = − T

∫ x0(2µ)

0
log(1 + e−β(µ−ϕ(x)/2))dx

− T
∫ 1

x0(2µ)
log(1 + e−β(ϕ(x)/2−µ))dx ' −π

2T 2

3 x′0(2µ) ,

where each integral contributes half of the latter value. In the limiting case µ = 0 the
integral I2 reduces to the first integral dealt with above, while for µ = ϕmax/2 we have

I2 −
f0

2 + µ = −T
∫ 1

0
log(1 + e−β(µ−ϕ(x)/2))dx '


−πT

2

6 x′0(ϕmax), γ > 1

−
√
π

2 (2−
√

2)ζ(3/2)T 3/2, γ = 1.

Putting all of the above together, and taking into account Eqs. (6.22)-(6.23) for the
Fermi velocities of the small momentum and Fermi excitations in this case, we conclude
that

f(T )− f(0) '



−πT
2

6v1
, µ < 0

−πT
2

3v1
, µ = 0

−πT
2

6v1
− πT 2

3v2
, 0 < µ < ϕmax/2

−πT
2

6v1
−
√
π

2 (2−
√

2)ζ(3/2)T 3/2, µ = ϕmax/2 and γ = 1

−πT
2

6v1
− πT 2

6v2
, µ = ϕmax/2 and γ > 1

−πT
2

6v1
, µ > ϕmax/2

Thus the central charge of the small momentum excitations is 1 for µ 6= 0 and to 2 for
µ = 0, while the Fermi excitations have central charge c2 = 2 for 0 < µ < ϕmax/2 and
c2 = 1 for µ = ϕmax/2 and γ > 1.
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