arXiv:2206.02691v1 [quant-ph] 6 Jun 2022

Fault-tolerant circuit synthesis for universal fault-tolerant

quantum computing

Yongsoo Hwang

Electronics and Telecommunications Research Institute, 34129 Daejeon, Republic of Korea

We present a quantum circuit synthe-
sis algorithm for implementing universal
fault-tolerant quantum computing based
on concatenated codes. To realize fault-
tolerant quantum computing, the fault-
tolerant quantum protocols should be trans-
formed into executable quantum circuits
based on the nearest-neighbor interaction.
Unlike topological codes that are defined
based on local operations fundamentally, for
the concatenated codes, it is possible to
obtain the circuits composed of the local
operations by applying the quantum cir-
cuit synthesis. However, by the existing
quantum circuit synthesis developed for or-
dinary quantum computational algorithms,
the fault-tolerant of the protocol may not
be preserved in the resulting circuit. Be-
sides, we have to consider something more
to implement the quantum circuit of univer-
sal fault-tolerant quantum computing. First,
we have not to propagate quantum errors
on data qubits when selecting a qubit move
path (a sequence of SWAP gates) to sat-
isfy the geometric locality constraint. Sec-
ond, the circuit should be self-contained so
that it is possible to act independently re-
gardless of the situation. Third, for uni-
versal fault-tolerant quantum computing, we
require multiple fault-tolerant quantum cir-
cuits of multiple fault-tolerant quantum pro-
tocols acting on the same input, a logical
data qubit. Last, we need to recall fault-
tolerant protocols such as syndrome measure
and encoder implicitly include classical con-
trol processing conditioned on the measure-
ment outcomes, and therefore have to par-
tition the quantum circuits in time flow to
execute the classical control as the architect

Yongsoo Hwang: yhwang®etri.re.kr

intended. We propose the circuit synthesis
method resolving the requirements and show
how to synthesize the set of universal fault-
tolerant protocols for [[7,1,3]] Steane code
and the syndrome measurement protocol of
[[23,1,7]] Golay code.

1 Introduction

An [[n,k,d]] quantum error-correcting code en-
codes a k-qubit logical quantum information into
n physical (or lower concatenation level) qubits,
and protects the encoded information from at most
|(d — 1)/2]|-qubit arbitrary quantum error, where
d is the code distance of the code. If the num-
ber of arbitrary quantum errors is not more than
|(d—1)/2], it is possible to detect and correct the
quantum errors. Otherwise, the logical information
encoded into the code is broken, and cannot be re-
covered.

A quantum computing protocol acting on an
error-corrected logical qubit is called fault tolerant
if the probability that the logical qubit is corrupted
by quantum noise during running the protocol is
suppressed than that in the non-error-corrected
quantum computing. For that, there should be no
chance that arbitrary quantum errors to propagate
to more than |(d — 1)/2] qubits within the logi-
cal qubit in the protocol. By the way, we need to
say that some physical qubits composing the logical
qubit are more important than others. The qubits
those must not be affected by quantum error to keep
the fault tolerance are the qubits, called as data
qubit, holding quantum data. Therefore, a fault-
tolerant quantum computing is not broken even if
some qubits that do not belong to data qubits are
corrupted by quantum errors. By having a noisy in-
teraction with data qubits, the quantum errors on
the ancilla qubits are propagated to the data qubits,
and the encoded qubit will become corrupted if the

https://quantum-journal.org/?s=Fault-tolerant%20circuit%20synthesis%20for%20universal%20fault-tolerant%20quantum%20computing&reason=title-click
https://quantum-journal.org/?s=Fault-tolerant%20circuit%20synthesis%20for%20universal%20fault-tolerant%20quantum%20computing&reason=title-click
https://orcid.org/0000-0002-1366-4952
mailto:yhwang@etri.re.kr

W) —F——— =
1 ! ‘
lr) — \
[¥1) : : L)
| |
o [
W) — =t —=——2—1
|6%) Ti 777777’77
l91) — \
63) — — o)
. |
N | . |
60) — === —
Figure 1: Transversal gate implementation of a logical
CNOT gate

number of the data qubits where error happened is
greater than |[(d — 1)/2|. Therefore, to retain the
fault tolerance, we have to block the error propaga-
tion over the data qubits within the encoded logical
qubit.

Needless to say, a fault-tolerant quantum com-
puting protocol is designed by keeping in mind the
rule that does not allow interactions that are likely
to be noisy between the data qubits. A transversal
implementation of a logical gate is a typical ap-
proach for the fault tolerance (see Figure 1). How-
ever, the fact that a protocol has fault tolerance
itself does not guarantee that the protocol can be
executed in a fault-tolerant way in practice. A
fault-tolerant protocol should be transformed into
a fault-tolerant quantum circuit that is executable
in the practical situation governed by the geomet-
ric locality constraint. In the transformation, to
resolve the constraint that a quantum computing
device has, all the multi-qubit quantum gates in the
protocol have to be decomposed into a sequence of
the local 2-qubit gates acting on the nearest neigh-
bor qubits. The decomposition can be achieved
by introducing a sequence of quantum state move
(SWAP gates) between distant qubits.

The transformation from the protocol (algo-
rithm) to an executable circuit is called a circuit
synthesis or circuit mapping, and so far a lot of
quantum circuit mapping algorithms have been pro-
posed. Most quantum circuit synthesis algorithms
makes an executable quantum circuit by includ-
ing as least qubit move as possible by exploiting
the qubit connectivity of the quantum device, but
some advanced methods [1, 2] additionally consider
the real performance of the target quantum device

such as the fidelity or the execution time of physical
gates.

Back to the fault-tolerant quantum protocol, to
implement the circuit of the protocol, we have to
consider more than the requirements in the circuit
synthesis for an ordinary quantum algorithm. As
mentioned above, a normal circuit synthesis is de-
signed to resolve the locality constraint by intro-
ducing the qubit move via SWAP gates as little
as possible. For that, the type of quantum infor-
mation a physical qubit holds is out of concern.
If such a circuit synthesis method is applied to a
fault-tolerant quantum protocol, obviously it gen-
erates a quantum circuit including as few SWAP
gates as possible. By the way, the serious problem
here is that the circuit may include SWAP gates
acting on both data qubits. As mentioned before, a
noisy SWAP gate may make both the data qubits
corrupted. Therefore, in the circuit synthesis on a
fault-tolerant quantum protocol, a SWAP gate be-
tween the data qubits should be selected very lim-
itedly.

In addition, there are additional issues to take
into account for the circuit synthesis for univer-
sal fault-tolerant quantum computing. We need
the fault-tolerant circuits for multiple fault-tolerant
quantum protocols, and each circuit has to work
correctly regardless of the situation. Besides, some
fault-tolerant quantum protocols such as syndrome
measurement involve classical operations condi-
tioned on the result of quantum operations. There-
fore, to implement their circuits exactly as de-
signed, we have to clearly specify the turn for the
digital operations in their circuits.

As far as the authors know, nothing has been
proposed for the circuit synthesis algorithm special-
ized for universal fault-tolerant quantum comput-
ing, in particular, based on the concatenated codes.
Only for a few well-known codes, some results ob-
tained manually for studying thresholds have been
reported [3-5]. Those results may be optimal for
the designated target environment, but for another
setting or quantum code, it is not easy to find
fault-tolerant circuits by applying their methodol-
ogy. For this reason, we believe a circuit synthesis
method specialized in fault-tolerant quantum pro-
tocols is required.

In the present work, we propose a fault-tolerant
circuit synthesis algorithm for universal fault-
tolerant quantum computing. As mentioned above,

the algorithm selectively picks SWAP gates accord-
ing to the type of quantum information physical
qubits store when selecting the qubit move path.
We call the qubit move not including (or includ-
ing very limitedly) the SWAP gates acting on the
data qubits as fault-tolerant qubit move. By taking
the fault-tolerant qubit move path, it is possible to
retain the fault-tolerance originating from the pro-
tocol in the resulting circuit. However, the fault-
tolerant qubit move path itself is not enough for
realizing universal fault-tolerant quantum comput-
ing.

As is well known, to realize universal fault-
tolerant quantum computing, we need multiple
fault-tolerant logical gates (H, T, and CNOT), syn-
drome measurement, and encoding protocol. Ac-
cording to a quantum code, a fault-tolerant proto-
col to prepare or distill a special logical ancilla state
is also necessary. That is, we have to obtain the
fault-tolerant circuits of all the above-mentioned
protocols. The most important things for the cir-
cuit mapping over the multiple fault-tolerant pro-
tocols are first most protocols act on the same con-
figuration of a logical qubit, and second, during the
fault-tolerant quantum computing the protocols are
applied repeatedly. Note that the configuration of
a logical qubit indicates the arrangement of phys-
ical data qubits in a logical qubit (please see Fig-
ure 16). For the above considerations, the proposed
algorithm shares the configuration of a logical qubit
for the circuit synthesis over all the protocols and
makes the resulting circuit self-contained so that it
can act independently regardless of the situation.
The details will be discussed in the main body.

Lastly, as mentioned above, to run a fault-
tolerant quantum protocol as designed, we have to
include the execution of classical processing implic-
itly contained in the protocol. For that, we need
implement a single fault-tolerant quantum proto-
col as multiple small fault-tolerant circuits and run
the classical operation between the circuits. In the
present work, we achieve it in two directions. First,
one inserts barrier statements in the protocol and
the circuit synthesis deals with them. The position
where the statements are inserted is, on considering
an ordinary fault-tolerant protocol structure, when
all the ancilla qubits that were prepared within the
protocol are measured. Second, we first partition
the protocol into several sub-protocols and conduct
the circuit synthesis on each sub-protocol individu-

ally, but with sharing information common to them.

The proposed circuit synthesis algorithm is based
on the heuristic circuit mapping algorithm, SABRE
(SWAP-based Bi-directional heuristic search algo-
rithm) [6]. The most important reasons we hire
the algorithm for our purpose are first it is possi-
ble to easily take the type of quantum information
each qubit holds into account to find the qubit move
path, and second, as discussed in the literature, it
works more efficiently than other global optimiza-
tion methods.

The remainder of this paper first briefly describes
SABRE. We then discuss the four requirements
of the circuits for universal fault-tolerant quantum
computing, propose our ideas for them, and de-
scribe how to implement the ideas with SABRE. As
an example, we show the full snapshots of the syn-
drome measurement circuit of [[7, 1, 3]] Steane code
in sequence. We then go into the full set of univer-
sal fault-tolerant quantum circuits based on Steane
code obtained by applying our algorithm. As the
last example, we show the circuit of the syndrome
measurement of [[23,1,7]] Golay code that is well
known as having a high error correction threshold
among the concatenated codes.

2 Review of SABRE

We review the heuristic quantum circuit mapping
algorithm SABRE in the present section. The al-
gorithm generates a quantum circuit believed to
be optimal by iterating the procedure composed of
picking a random qubit initial mapping and finding
the gate sequence based on that mapping as many
times as possible. The standard of the optimality
can be flexibly adopted, the number of quantum
gates, the circuit depth, or anything.

The main procedure of SABRE which is to find
the gate sequence is composed of iterating graph
traversals three times in the alternating directions
(forward, backward and forward again), where the
graph is formed as a directed acyclic graph (DAG)
from a quantum algorithm. For the graph traver-
sals in the forward and backward directions, the
graph also should be made for both directions re-
spectively. Note that a node in DAG includes a
quantum instruction of a quantum gate and qubits
where the gate acts. Figure 2 shows the running
flow of SABRE.

In the graph traversal for the forward (backward)

L> Front Layer |

User Input
——
i i
i i
: ‘ 1
‘ Qubit | Qubit Distance 1
\ Layout Matrix j

\ i
i
: ‘ 1
‘ [Quantum ‘ Directed Acycllc ! .Eg/\gfsr:l
} Algorithm ‘ Graph (DAG) 3 of DAG
i i
i \
i i
i
i
i

Random Initial
Qubit Mapping M

Qubit Qubit
Mapping Mapping
M Backward M” Forward

SABRE 1 Round (SABRE-i)

,,,

Traversal Quantum Circuit (C;)

of DAG

Initial Qubit
Mapping (M;)

Traversal
of DAG

Figure 2: The architecture of SABRE [6]. The user inputs, Qubit Layout and Quantum Algorithm, are common to all the
iterations. Usually, Qubit Layout is provided as a physical qubit coupling graph of a quantum chip and Quantum Algorithm
is given in the QASM format ([7]). Provided Qubit Layout and Quantum Algorithm, how to make Qubit Distance Matrix
and Directed Acyclic Graph are well described in the literature. The algorithm is composed of multiple iteration of SABRE
graph traversals. Each iteration begins by picking an initial qubit layout randomly. After conducting the i-th iteration of

SABRE (SABRE-i), we will have a quantum circuit (C;) and the associated initial qubit mapping table (M,

;). The optimal

quantum circuit and its associated initial qubit mapping will be obtained by comparing all the results.

direction, the algorithm checks whether each node
of the DAG that is generated for the corresponding
traversal is executable with respect to the qubit lay-
out of a given quantum chip, and finds required a
local optimal SWAP quantum gate to make un-
executable node executable. Please note that a
quantum gate is called executable if it acts locally
on the given qubit layout (quantum chip). An op-
timal SWAP gate is selected from the evaluation
of the cost of all the SWAP candidate gates which
are chosen based on the qubits where the above-
mentioned un-executable nodes (gates) act.

The graph traversal is composed of the following
two steps.

1. Find any executable gates in Front Layer

2. Append all the executable gates to the circuit
or Find a SWAP gate if there does not exist
any executable gates

Note that Front Layer (FL) is defined as the set of
root nodes in the DAG.

If a node in FL, node,, is executable, then it is
removed from FL (and DAG) and is appended to
the resulting quantum circuit. In general, the node
has succeeding nodes in DAG, and suppose that a
node nodey is such one. Note that node, belongs
to DAG but not in FL. node, then has preceding
nodes, some of them are already exported to the
circuit and the others are not. If, after exporting
node, to the circuit, none of the preceding nodes of
nodep remain in FL, we pull nodey, from non-FL to
FL.

Otherwise, if none in FL is executable, the algo-
rithm collects several candidate SWAP gates and
selects an optimal one from the cost evaluation.
Then, by moving qubits via the selected SWAP
gates, some gates in FL may become executable
or close to executable one. The qubit mapping sta-
tus is also updated by the SWAP operation. In
the literature, two kinds of the cost function are
defined, but the heart of both is the same as they
evaluate the total qubit move distance to make all
the nodes in FL executable. The graph traversal
is terminated if FL becomes empty, that is, when
all the nodes of DAG are appended to the quantum
circuit.

After each graph traversal is done, the changed
qubit mapping table is passed to the next graph
traversal in general (see Figure 2). Therefore,
the initial qubit mapping and the resulting quan-
tum circuit of the last graph traversal become the
qubit mapping and the quantum circuit of a cur-
rent SABRE round. The performance of a quan-
tum circuit obtained in each round is affected by
the initial qubit mapping chosen randomly. There-
fore, the more iterations, the better performance of
a quantum circuit.

3 Circuit Synthesis for Universal Fault-
Tolerant Quantum Computing
This section raises four requirements for implement-

ing the quantum circuits for universal fault-tolerant
quantum computing. The first is about how to

block the error propagation over the data qubits,
the second is about how to make self-contained
quantum circuits so that they can be executed in-
dependently regardless of situations, and the third
is about how to prepare a whole set of fault-tolerant
quantum circuits for universal quantum computing.
The last one is about how to execute the fault-
tolerant quantum circuits including classical pro-
cessings in practice.

3.1 Fault-tolerant qubit move

Previously, we have mentioned that a protocol has
the fault-tolerance if the number of quantum errors
happened on data qubits is bounded by the capacity
of quantum error correction. In this section, we first
propose an idea to block the error propagation over
the data qubits and then discuss how to implement
the method into SABRE. A logical qubit encoded
by an [[n, k,d]] quantum error-correcting code con-
tains n data qubits. Besides, in practice, several an-
cilla qubits for storing error syndrome and verifying
the specially prepared ancilla state are additionally
needed. Please see the syndrome measurement pro-
tocol in Figure 3. There are 7 data qubits |1)% and
7 syndrome qubits |syndrome’). Even though it is
not explicitly described there, additional qubits are
required to verify the prepared logical states |+)y,
and |0)7, (see Ref. [8]). Therefore, by assuming the
reuse of the ancilla qubits, to run the protocol we
need at least 15 qubits.

Suppose that the qubits [1)? and |syndrome)
are geometrically adjacent. Then, the first CNOT
gate in Figure 3 is executable. Otherwise, to resolve
the locality constraint imposed on the quantum de-
vice, we need to move qubits to make them placed
in the neighbor. What here we need to be careful of
is that all the quantum gates exploited in quantum
computing are noisy! If a quantum error happens
during running a noisy SWAP gate acting on two
data qubits, both the qubits will be corrupted as

Uswap|¥)|¢) = (I + €2) - Uswar|¥)|9)
= o)),

where €9 is an arbitrary 2-qubit error and Ugw ap
is an ideal noiseless SWAP gate. Therefore, in the
circuit synthesis for a fault-tolerant quantum pro-
tocol, we have to avoid or limit introducing SWAP
gates between data qubits for moving the qubits.
Note that for computing algorithms, this is out of
concern.

We now discuss how to choose SWAP gates to
implement an executable circuit and not to spread
quantum errors over data qubits at the same time.
The physical qubits constituting a logical qubit
have their own lifetime within fault-tolerant quan-
tum computing. For example, the data qubits hold
the quantum data for quantum computing, and
therefore their lifetimes are equal to that of the
logical qubit. On the other hand, the syndrome
qubits only work in the non-trivial way for the du-
ration of the ancilla preparation and the syndrome
measurement. Therefore, their lifetimes are the du-
ration of those operations. Then, for the rest, the
quantum state they hold is not critical to quantum
computing, and therefore they can be played as the
communication channel.

We trace the usage status of each qubit within the
fault-tolerant quantum protocol. If a qubit is pre-
pared as a certain quantum state |0) (or |+)), the
usage status of the qubit turns into activated. On
the other hand, its status becomes inactivated if a
qubit is measured. During running a fault-tolerant
protocol, the usage status of a qubit is changed
along the working flow of the protocol. When ac-
tivated status, a qubit holds significant quantum
state for the protocol, but when inactivated it just
stores a kind of garbage information. Please see
Figure 3.

Regarding the usage status, we classify qubits
into data-type qubits and non-data-type qubits. A
data-type qubit is defined as a qubit in the activated
status, and a non-data-type qubit is one in the in-
activated. As mentioned above, a data-type qubit
carries a non-trivial quantum information, but a
non-data-type qubit holds a kind of garbage infor-
mation. Therefore, we have to block or limit SWAP
gate between the data-type qubits in the circuit
synthesis.

As mentioned above, it is not that the SWAP
gates between the data-type qubits are never al-
lowed. In general, according to the code distance
d, it is possible to allow the SWAP gates as much
as |(d —1)/4]| times because arbitrary [(d — 1)/2]
errors can be recovered. For example, since a quan-
tum code of d = 5 can correct arbitrary 2-qubit
errors, one-time noisy SWAP gate between data
qubits does not break a logical qubit.

So far, we have discussed the requirement of how

to find the fault-tolerant qubit move by limiting
the SWAP gates between the data-type qubits.

Van)
N\

<

Van)
A%

<

a
A\
T

<

Rz

Fan)
A\

NS e

<

Fan)
N\

)
)
)
) Rx
)
)
)

ah)
A%

4

5

i =
— D @:ﬂ

ah)
A%

Figure 3: Protocol for the syndrome measurement based on steane QEC method [9]. The dotted boxes for the ancilla
qubit |anc’) are its activation periods. The outsides of the boxes are the inactivation periods. In the forward direction
graph traversal, the usage status of each qubit becomes activated by preparation and inactivated by measurement. On the
other hand, in the backward direction, the measurement (preparation) operation makes the status of each qubit activated
(inactivated). In ideal situation, all the ancilla qubits have the same activation period, but in practice due to the locality,
some ancilla qubits have longer activation period than others. Please note that the data qubits [¢/%) are all activated.

Then, it is time to discuss how to implement the
method into SABRE. First of all, we need to recall
of SABRE is composed of three graph traversals
in alternating directions. Previously, we mentioned
that the usage status of a qubit becomes activated
(inactivated) if it is prepared (measured). Such a
rule is based on the normal execution flow of a quan-
tum circuit, that is the forward traversal of DAG. If
a quantum circuit is executed in the reverse direc-
tion then the status change is triggered by the op-
posite operation. That is, in the backward traversal
of DAG, the status is turned into activated (inacti-
vated) by measurement (preparation).

We have mentioned that the original SABRE col-
lects all the possible SWAP gates that act on the
qubits of the nodes in FL, and then picks up the
optimal one from them. But, in the proposed algo-
rithm, we selectively collect the SWAP candidates
to limit the SWAP gates on the data-type qubits.
For that, we first examine the type of the qubits.
There are three kinds of qubit pairs: 1) both non-
data-type qubits, 2) one data-type qubit and one
non-data-type qubit, and 3) both data-type qubits.
The first and second cases, needless to say, can be
collected as the SWAP candidates, but for the third
one, we need to do something described in what fol-

data[6]

data[4] L’\data[o];; data[9] L’\ arget;;

data[12]

Figure 4: Since the data qubit data[0] is surrounded by
data qubits, it can not be moved to another physical qubit
in a fault-tolerant way.

lows.

Suppose that for some reason (which will be dis-
cussed later in detail) we need to move the quan-
tum state a data-type qubit holds to another qubit.
Figure 4 shows that since data[0] is currently sur-
rounded by data-type qubits, the quantum state in
datal0] cannot be moved to T'arget without interac-
tion with one data-type qubit. Figure 5 shows an-
other situation where finding a fault-tolerant move-
ment path may fall in an infinite loop. To relieve
such traffic jams, we need to move other data-type
qubits around data[0] to somewhere beforehand.
We then are able to move data[0] to T'arget with-
out interaction with any data-type qubits. In this
regard, we collect the SWAP gates acting on the

data[6]

data[6]
A

<% data[0] data[9] Target

[
data[0] e -»{__> data[9] Target
.

data[12]

v
data[12]

(a)

(b)

Figure 5: A circuit synthesis falls in an infinite loop when a data qubit surrounded by other data qubits is moved to another
place. All the cells indicate physical qubits. (a) data[0] has only one option for the next move, which is the left cell of
which. (b) The cost function based on the distance between qubits selects the b cell for the next move.

qubits that are positioned next to the data-type
qubit data[0] as SWAP candidates. Figure 6 shows
the effect of this rule.

Previously, we mentioned that the SWAP gate
between both the data-type qubits can be allowed
as much as [(d — 1)/4] times. For that, in the
beginning, we designate the number of maximally
allowed interactions between data-type qubits as
allowable_maz_interaction = |(d — 1)/4|, where
d is the code distance. Then, when collecting the
SWAP candidates we can add a SWAP gate acting
on a pair of both data-type qubits if the number of
the allowed interaction so far is less than the pre-
determined limit. Later, after cost evaluation on
the SWAP candidates, if the SWAP gate acting on
both the data-type qubits is chosen as an optimal
one, we then increment the number of the allowed
interaction by 1.

The quantum circuit generated by the rule we
have mentioned so far includes very limited interac-
tions between data-type qubits. Therefore, a quan-
tum error that happened randomly does not propa-
gate to data qubits beyond the capacity of the quan-
tum error correction. Then, we can say that the
circuit works in the fault-tolerant manner. How-
ever, it is not enough for universal fault-tolerant
quantum computing. In the following subsections,
we raise additional requirements and propose our
solutions for them.

3.2 Self-contained quantum circuit

Suppose that you have a fault-tolerant quantum
circuit and its initial qubit mapping table of the
syndrome measurement protocol by applying the
method described in the previous section. Then,

it is possible to measure the error syndrome by
running the circuit to a logical qubit if the logical
qubit is configured like the initial qubit mapping
table. Otherwise, if the logical qubit is not formed
as the mapping table, the circuit does not work as
intended. Needless to say that the quantum circuit
should be consistent with the initial qubit mapping.

Fault-tolerant quantum computing performs er-
ror correction periodically. Then, does the fault-
tolerant circuit obtained above always work cor-
rectly for the fault-tolerant quantum computing?
Unfortunately, it does not. The circuit works cor-
rectly for one time only, the first time. The reason
is as follows. If a quantum circuit includes SWAP
gates introduced by the circuit synthesis, by exe-
cuting the circuit the qubit mapping will become
different from the initial mapping. Therefore, run-
ning the circuit again on the logical qubit will make
the output different than expected because the ini-
tial mapping for the circuit is not fulfilled. Please
see Figure 7. Please note that SWAP gates orig-
inally included in the protocol itself do not raise
such problems.

Therefore, to make the syndrome measurement
circuit work always correctly throughout the fault-
tolerant quantum computing, after obtaining the
syndrome values we have to move the physical
qubits in the logical qubit back to their initial posi-
tions. In the present work, we call the circuit that
always works correctly regardless of the situation a
self-contained circuit. For that, our algorithm auto-
matically moves the data qubits to the designated
positions after the main body of a fault-tolerant
protocol. Please note that since the lifetimes of the
ancilla qubits are bounded by a protocol, we only
focus on the data qubit (not data-type qubit) for

A
[
<¢-® data[6] o ¥ A data[6]
+
<&+ data[0] data[9] e} & Target data[0] Target
(]
<-{edata[l 2]-—v(1) data[12] | data[9]
*
\
(a) (b)
A
e
<e data[6] *-» data[6]
<o data[0] *{->(Target datal0] Target
<+edata[12] | data[9] &-» data[12] | data[9]
L *
\J \
(c) (d)

Figure 6: By first moving the data-type qubits located around the qubit that has to move to the destination, the traffic
jams shown in Figures 4 and 5 can be relieved and it becomes possible to find a fault-tolerant movement path. (a) Collect
SWAP gates from both the data-type qubit and its neighbor data-type qubits. (b) Based on the cost evaluation, data[9]
is moved to its neighbor cell of the dotted circle. (c) Collect SWAP gates from both the data-type qubit and its neighbor
data-type qubits. (d) Based on the cost evaluation, dataf0] moves toward the destination Target without interaction with

any data-type qubits.

Circuit C Circuit C Circuit C Circuit C
Qubit Mapping red! _ | Qubit Mapping red! _ | Qubit Mapping red! _ | Qubit Mapping reut .
Status Mo . Status M1 . Status M2 . | StatusMs
- Output O, - Output O, - Output O,

Figure 7: The repetitive execution of a quantum circuit including SWAP gates introduced by circuit mapping does not
work as expected because of the qubit mapping problem, (Oy # O1 # O3 = -+).

the self-contained property.

To implement the move operation into SABRE,
we automatically add the instruction “Move datali]
destination[i]” for all the data qubits before gen-
erating DAG (see Figure 2). The first argument
datali] is the name of a data qubit used in the pro-
tocol, and the second argument destination[i] is the
destination of the move. destination[i] can be a
specific physical qubit index or a symbolic value.
However, even if it is provided as a symbolic value
in the beginning it is translated to a specific index
as the circuit mapping proceeds.

We now describe how to deal with the operation
Mowe in the proposed algorithm. SABRE basically
examines whether a quantum instruction in FL is
executable or not based on the geometric locality.

In the case of a CNOT (or SWAP) gate, it deter-
mines as executable if a control qubit is positioned
next to a target qubit. On the other hand, for the
Mowve, we check whether the argument qubit is lo-
cated at the designated position or not. If the Move
is executable, then the algorithm does not do any-
thing after removing it in FL. Note that if a CNOT
gate is executable, then it is exported to the circuit.

In this work, the operation that moves all the
data qubits to the designated position is called
Move-Back because the target position is usually
its initial location. The necessity of the Move-Back
depends on a fault-tolerant protocol. Here we de-
scribe the details of the Move-Back for the syn-
drome measurement protocol, and other protocols
will be discussed in the following section.

In the present work, we assume that after the
syndrome measurement a logical gate acts on a log-
ical qubit without additional operation. For that,
the arrangement of all the component qubits of
a logical qubit after the syndrome measurement
should be the same as the initial one of a logi-
cal qubit. Therefore, after the main body of the
syndrome measurement, a data qubit datali] of a
logical qubit should be moved to its original loca-
tion where it occupies in the logical qubit. Since,
when the circuit synthesis is conducted for the syn-
drome measurement, the specific location of datali
is not determined yet, it is described symbolically
as datali]™* (see Figure 8). In each SABRE iter-
ation, an initial qubit mapping is randomly picked
(see Figure 2), and therefore the initial position of
datali] is determined at that time. Therefore, af-
ter picking a random initial qubit mapping, the in-
struction “Move datal[i] data[i]™"*" is translated to
the instruction including a specific qubit index, for
example “Move data[i] 3”. The circuit mapping al-
gorithm then tries to move datali] from a current
location to the physical qubit of index 3. Figure 9
shows the conceptual transformation of the proto-
col description during the circuit synthesis.

Sometimes, it may happen that the qubits al-
ready arrived at the designated positions may be
moved to other places during treating the move of
other qubits. When such a situation happens, we
insert the Move about the qubit into FL forcibly
and treat it again. Since the Move-Back is usually
conducted at the last in the circuit, such forcible
insertion into FL does not corrupt the logic of the
circuit. If all the data qubits arrive at the target
positions, the Move-Back for all the data qubits is
completed.

We are now able to make a self-contained fault-
tolerant quantum circuit for a single fault-tolerant
quantum protocol. However, it is still not enough
for universal fault-tolerant quantum computing yet.
In the following subsection, we will see that which
should be considered more for universal fault-
tolerant quantum computing.

3.3 Circuits for universal fault-tolerant quantum
computing

The third consideration for universal fault-tolerant
quantum computing is that we need multiple fault-
tolerant quantum computing protocols (and there-
fore circuits), for example, H, T, CNOT, Encoder,

and Measurement in the Z basis (MeasZ). All the
protocols are differently designed for their own pur-
pose but should act on the input having physically
the same qubit arrangement, a logical qubit. For
that, the circuit synthesis of each protocol has to
share the position of data qubits of a logical qubit.
Otherwise, if we focus on optimizing the circuit of
each protocol separately, the initial qubit mapping
for the circuit may be different from others, and
therefore we need to perform the additional qubit
movement conditioned on the situation (the last cir-
cuit and the next circuit).

To make all the circuits share the positions of the
data qubits, we first need to make a reference initial
qubit mapping for the protocols. For that, we first
divide all the protocols into two categories, pivot
protocols and non-pivot protocols, and perform the
circuit mapping on the pivot protocols first. We
then, in the circuit mapping on the non-pivot pro-
tocols, anchor the positions of the data qubits by
following the results of the circuit mapping on pivot
protocols when choosing a random initial mapping.

Then, with which criterion, the protocols can be
categorized? As mentioned above, the circuit of a
pivot protocol is generated from the scratch without
any limitation on the qubit allocation and therefore
it can be highly optimized by the circuit mapping
method itself. But, the circuit of a non-pivot pro-
tocol is limited by the result of the pivot protocol.
In this circumstance, for better performance, it is
reasonable to choose the most frequently executed
protocols as the pivot, and such protocol is, need-
less to say, the syndrome measurement. We there-
fore configure the logical qubit, the arrangement of
physical qubits, from the initial qubit mapping of
the circuit mapping on the syndrome measurement.

We first discuss 1-qubit logical operations: FEn-
coder, MeasZ, and H gate. For the operations that
can be implemented as transversal, the circuit map-
ping is very trivial. Therefore, here we discuss how
to implement the fault-tolerant circuit about En-
coder. Encoder is the operation that makes the
quantum state of a logical qubit, a code block, to
a logical zero state |0)7, or a logical plus state |+)r,
where |+); = (|0); + [1)1)/V2. Before Encoder,
all the component qubits of a logical qubit (or a
code block) are not distinguished and have garbage
quantum states. However, after Encoder, the data
qubits of a logical qubit should be placed as deter-
mined in the circuit synthesis of the syndrome mea-

Figure 8: DAG of 3-qubit code syndrome measurement circuit. The Move instructions for all the data qubits are included

at the last.

[PrepZ anc[0] HCNOT data[0], anc[0]

| Move data[1], data[1]™nit
MeasZ anc[0]
CNOT data[1], anc[0]

PrepZ anc[1]

CNOT data[0], anc[1]

[CNOT dataf2], anc[1]

MeasZ anc[1]]

Move data[0], data[0]"t

Move data[2], data[2]"it

CNOT anc5,anc3

CNOT anc6,anct

CNOT anc4,anc0

CNOT local_ancé,local_anc3
CNOT local_anc5,local_anc1
CNOT local_ancé,local_anc0
CNOT local_anc2,local_anc1
CNOT local_anc4,local_anc3
CNOT local_anc0,ancO

MeasZ anc7 -> bit0
MeasZ anc8 -> bit1
MeasZ anc9 -> bit2
MeasZ anc10 -> bit3
MeasZ anc11 -> bit4
MeasZ anc12 -> bits
MeasZ anc13 -> bité

CNOT anc5,anc3

CNOT ancé,anct

CNOT anc4,anc0

CNOT local_anc6,local_anc3
CNOT local_anc5,local_anc1
CNOT local_anc6,local_anc0
CNOT local_anc2,local_anc1
CNOT local_anc4,local_anc3
CNOT local_anc0,anc0

MeasZ anc7 -> bit0
MeasZ anc8 -> bit1
MeasZ anc9 -> bit2
MeasZ anc10 -> bit3
MeasZ anc11 -> bit4
MeasZ anc12 -> bit5
MeasZ anc13 -> bité

Move data0 data0™™*
Move datal data1™*

Move data6 data6""

CNOT anc5,anc3

CNOT anc6,anct

CNOT anc4,anc0

CNOT local_ancs,local_anc3
CNOT local_anc5,local_anc1
CNOT local_ancs,local_anc0
CNOT local_anc2,local_anc1
CNOT local_anc4,local_anc3
CNOT local_anc0,ancO

MeasZ anc7 -> bit0
MeasZ anc8 -> bit1
MeasZ anc9 -> bit2
MeasZ anc10 -> bit3
MeasZ anc11 -> bit4
MeasZ anc12 -> bit5
MeasZ anc13 -> bit6

Move data0 1
Move datal 13

Move data6 25

(a)

(b)

()

Figure 9: By adding the Move instruction, conceptually the QASM for the protocol is transformed from (a) — (b) — (c)
during the circuit synthesis. (a) An example of a normal QASM, (b) The QASM with Move instruction with the symbolic
representation of the initial position of the data qubits and (c) The QASM with a specific value of the initial position of the
data qubits. As mentioned above, at the beginning of each SABRE iteration, the initial qubit mapping table is randomly
generated. The specific initial position of the data qubits, e.g. as shown in the figure {---, data0"": 1, datal™: 13,
.., data6™: 25, ...} is determined from the qubit mapping table.

surement . See Figure 16 as an example. Therefore,
after the main body of the Encoder, the Move-Back
operation should be performed and the destination
for each data qubit is, as mentioned above, speci-
fied from the configuration of a logical qubit not its
initial position before Encoder.

For 2-qubit logical operations such as CNOT
gate, the present work treats it as a protocol that
acts on a single extended qubit layout. For exam-
ple, suppose that a logical qubit is defined on the 2-
dimensional rectangular qubit layout of size m x n.
We then extend the layout as 2m x n for a verti-
cal extension or m x 2n for a horizontal extension,
and then allocate two logical qubits on it properly.
Please see Figure 10. In doing so, all the physi-
cal operations for the 2-qubit logical operation act
within two logical qubits. On the other hand, for
reference, Ref. [3] uses the qubits outside the two
logical qubits concerned as a communication chan-
nel.

A certain error-correcting code implements a log-
ical T (and S) gate as a 2-qubit gate protocol acting

on a logical data qubit and a magic state (see Fig-
ure 11). In that case, the magic state preparation
protocol (see Figure 13 of Ref. [10]) should be syn-
thesized first and the fault-tolerant circuit of the
T gate then is synthesized on the extended qubit
layout. The layout extension is based on the qubit
mappings of both the logical qubit and the magic
state.

The logical T gate circuit can be synthesized in
terms of two viewpoints, a combination of mul-
tiple basic quantum gates, and a single complex
gate. The first is, as shown in Figure 11, we as-
semble the fault-tolerant circuits of logical CNOT,
MeasZ, and S gates. For this, the magic (data)
qubits of a magic state should be placed at the po-
sitions of the corresponding data qubits of a logical
qubit to perform a logical CNOT gate. That is,
the fault-tolerant circuit of a magic state prepa-
ration should include the Move-Back operation for
the magic qubits with reference to the logical qubit.
For that, the following instruction is required, Move
magicli] destination|i] where destination[i] corre-

10

[1 2 N-1 [1 2 N-1 0 1 2 N-1 N N+1 N+2 2N-1
N N+1 N+2 2N-1 N N+1 N+2 2N-1 2N 2N+1 2N+2 - . 3N-1 3N 3N+1 3N+2 - - 4N-1
2N 2N+1 2N+2 3N-1 2N 2N+1 2N+2 3N-1 aN 4N+1 4N+2 - - 5N-1 5N 5N+1 5N+2 - - 6N-1
y 2MN- | 2MN- (2M-1)N g (2M-1)N | (2M-1)N .
(M-1)N | NM-N+1 | NM-N+2 MN-1 (M-1)N [NM-N+1 | NM-N+2 MN-1 (2M-2N N+t N+2 - - -1 (2M-1)N 1 42 2MN-1
LQ, LQ, LQ4-LQ, (Horizon)
(a) (b)

Figure 10: Example of the qubit layout extension. (a) Two copies of a single logical data block of the size m x n, and
(b) The horizontally extended qubit layout, of the size m X 2n. The qubit layout can be extended in the vertical direction
either. Gray cells indicate the data qubits in the logical qubit block. The physical index of each data qubit should be

relabelled in the extended qubit layout.

) —o Trlv)r

|AL) 4 (

|AL) — Trlv)L
[

L) 4

(b)

Figure 11: Logical T gate protocol that measures the
magic state |A) 1. S gate correction is required conditioned
on the measurement outcome. (a) Protocol that measures
the magic state, and (b) Protocol that measures the logical
data qubit [11].

sponds to the index of the data[i] of the logical qubit
in the extended layout.

On the other hand, the circuit can be synthe-
sized as a single complex gate either. In this case,
unlike the first case, we don’t need to consider the
Move-Back in the magic state preparation because
it is possible to make the circuit based on the map-
ping of magic qubits magic[i] just after the main
body of the preparation protocol. Besides, unlike
the normal CNOT gate including the Move-Back
of both the logical qubits, the magic qubits do not
need to be back to the original position. Therefore,
this synthesis requires fewer qubit movements than
the first synthesis approach. To make a compact
circuit, it is better to take the second approach. In
this regard, we prefer the protocol in (a) of Fig-
ure 11 to (b) of the same figure. The Move-Back
operation of the latter requires more SWAP gates
than the former. Figure 13 shows the comparison
between both approaches. Note that we applied
this approach to the circuit synthesis for the magic

Circuit Mapping of Circuit Mapping of
FT Syndrome FT Magic State
Measurement Distillation Protocol

) l

Initial Qubit Mapping of Initial Qubit Mapping of
Logical Logical
Data Qubit Block Magic State Block

| |
v

Preparation of Extended Qubit Layout
(Relabelling Qubit Index in EQL)

'

Circuit Mapping of FT T-Gate Protocol

'

[FT T-Gate Circuit J

Figure 12: Flow of the circuit synthesis the logical T gate
protocol. After mapping the pivot protocols (syndrome
measurement and state distillation) respectively, it is pos-
sible to determine the extended qubit layout for the logical
T gate protocol.

state preparation.

3.4 Circuit Partitioning

In general, in the circuit synthesis of an ordinary
quantum algorithm, all the operations are placed
as forward as possible to minimize the length of the
circuit. However, to make an effective quantum cir-
cuit of a fault-tolerant protocol, we have to take its
structure into account rather than unconditionally
following the above-mentioned scheme.

A generic fault-tolerant quantum protocol begins
by preparing ancilla qubits as a certain state and
ends with the measurement of the ancilla qubits
and the conditional processing based on the mea-

11

r = —ll—=l
[y ‘ MB ‘LJ TrL) 1
re==T= l N
0
| >Lﬁ,M,SP,HA{BJh€, LMBY, LJ
(a)
[¥) L I MB}{ 5L Trl)r
\ I \
| \
10)2 CLMSPI—O———1 7)),

Figure 13: Comparison of the T circuits according to the
synthesis approach. (a) the combination of basic gates.
(b) single complex gate. Note that MSP and MB are re-
spectively the abbreviations of the protocol of the magic
state preparation and the Move-Back operation.

surement outcomes. In some cases, such a classical
control operation is conducted once at the end of
the protocol, but in other cases, performed mul-
tiple times within a single protocol. In the latter
case, if the quantum circuit after the circuit syn-
thesis has a properly partitioned form on the basis
of the turn of classical processing, a classical con-
troller can execute the protocol easily. Otherwise,
the classical controller continuously needs to check
the current progress of the circuit to find the turn
for the classical control operations. In doing so, it
may make a decision for delaying some quantum
operations for synchronization on the fly. In what
follows, we discuss how to make the quantum cir-
cuit of fault-tolerant quantum protocols partitioned
without losing its logic.

For the circuit partitioning, we propose two tech-
niques in this work. First, one introduces barrier
statement [7] to the protocol and the circuit syn-
thesis treats it. Second, one partitions the protocol
beforehand, and performs the circuit synthesis in-
dividually but with sharing data common to all the
tasks. By the way, since the second method is very
trivial, we skip the detailed explanation here but
will be demonstrated as an example in Section 6.

Suppose that the fault-tolerant protocol de-
scribed in QASM includes the barrier statements at
proper positions. Here, the proper position for the
barrier statement is, on considering the structure
of fault-tolerant quantum protocols, usually when
just after all the ancilla qubits that were prepared
within the protocol are measured. Please see Fig-
ures 3 and 15. Note that for the second method
above we split the entire QASM up on the basis of
the positions instead of inserting the barrier state-

ment.

Before going further, we need to say the follow-
ing. Please remind that for finding a fault-tolerant
qubit move path we trace the qubit usage status
throughout a protocol. In this regard, the time
when the usage status of all the ancilla qubits in
the same category becomes inactivated is the above-
mentioned proper position. Then, even without in-
troducing the barrier statement, it is possible for
the circuit synthesis algorithm to partition the cir-
cuit based on the usage status tracking. But, the
present work does not keep this in mind because it
may happen that the architect of a fault-tolerant
quantum protocol may not want to split the cir-
cuit up. The circuit should work as the architect
expects.

Back to the proposed method, let us say that the
node including the barrier statement comes in FL
after all of its preceding nodes are treated and ex-
ported to the quantum circuit. Please note that
each node in DAG includes a quantum instruction
(see Figure 8). If the barrier node is currently
included in FL, we do not append the succeed-
ing nodes (logically independent with the remain-
ing nodes in FL) of the node just exported to a
quantum circuit to FL, but keep them in a tempo-
rary list. If all the nodes except the barrier node
are treated, that is, there remains only the barrier
node in FL, all the nodes stored in the temporary
list are moved to FL. After that, the barrier node
is removed from FL. By doing so, the circuit can be
logically partitioned. The circuit synthesis basically
cannot do anything for the nodes coming after the
barrier node before processing the barrier. Please
see Figure 14 for the effect of the circuit partition-
ing. In (a) of the figure, both the quantum instruc-
tions belonging to before and after the barrier are
mixed up at one time, but in (b) they are separated.

4 Example : Syndrome Measurement of
[[7,1, 3]] Steane Code

We show the fault-tolerant quantum circuit for the
stabilizer measurement of [[7, 1, 3]] Steane code. We
apply the Steane-EC method that consumes logical
states (|0)r, |+)r) of the code [9, 10, 12] (see Fig-
ure 3). The protocol is composed of the Z-stabilizer
measure and the X-stabilizer measure in serial, and
the Z (X)-stabilizer measure is composed of the
preparation of the logical plus (zero) state, and a

12

time time

— ——
|
barrier barrier
(a) (b)

Figure 14: The effect of the circuit partitioning in the cir-
cuit synthesis for fault-tolerant quantum protocols. (a)
Before the circuit partitioning, two sub-circuits that need
to be separated in time are in mixed in time flow. (b)
Partitioned circuit.

sequence of CNOT gates between data qubits and
the syndrome qubits. For the fault-tolerant prepa-
ration of a logical zero (plus) state, we apply Goto’s
single ancilla qubit verification method [8] rather
than the method comparing two copies of logical
states [10]. In the method, a non-FT logical ancilla
state is examined using a single checkup qubit. If
the verification succeeds, the main body of the syn-
drome measurement begins. Otherwise, the logi-
cal ancilla state should be prepared again. But,
we do not take the repetition caused by the non-
deterministic feature into account throughout the
present work because the purpose of the present
work is to generate a fault-tolerant circuit.

Figure 15 shows the QASM of the protocol which
includes the barrier statements. It is translated to
DAG, and then the circuit synthesis is undergone.
For the 2-dimensional qubit layout of size 5 x 7,
we have obtained a fault-tolerant quantum circuit
of depth 35. Please see Figures 20~ 26. Each fig-
ure shows each part of the circuit: Preparation of
|+)r, CNOT (datali], syndromeli]), Preparation of
|0)r, and CNOT (syndromeli], data[i]). The initial
qubit mapping for the circuit is shown in Figure 16.
Figure 27 shows the text representation of the cir-
cuit in JSON format, which is generated from our
implementation of the circuit synthesis algorithm.

By processing the barrier statement, the entire
circuit is separated into 4 sub-circuits in time flow
even though it is not explicitly displayed there. Be-
sides, by the Move-Back operation, it becomes that
all the data qubits are placed at their initial posi-
tions after all the quantum operations. Please com-
pare Figure 16 with Figure 26 (f).

PrepZ syndrome[0] PrepZ syndrome[0]
PrepZ syndrome[1] PrepZ syndrome[1l]
PrepZ syndrome[2] PrepZ syndrome[2]
PrepZ syndrome[3] PrepZ syndrome[3]
PrepZ syndrome[4] PrepZ syndrome[4]
PrepZ syndrome[5] PrepZ syndrome[5]
PrepZ syndrome[6] PrepZ syndrome[6]
PrepZ checkup[0] PrepZ checkup[0]

H syndrome[0]
H syndrome[4]
H syndrome[5]

H syndrome[1l]
H syndrome[2]
H syndrome[3]

H syndrome[6] CNOT syndrome[l], syndromel[0]
CNOT syndrome[0], syndrome[l] CNOT syndrome[3], syndromel[5]
CNOT syndrome[5], syndrome[3] CNOT syndrome[2], syndrome[6]
CNOT syndrome[6], syndrome[2] CNOT syndrome[l], syndrome[4]
CNOT syndrome[4], syndrome[l] CNOT syndrome[2], syndrome[O0]
CNOT syndrome[0], syndrome[2] CNOT syndrome[3], syndrome[6]
CNOT syndrome[6], syndrome[3] CNOT syndrome[l], syndrome[5]
CNOT syndrome[5], syndrome[l] CNOT syndrome[6], syndrome[4]
CNOT syndrome[4], syndrome[6] CNOT syndrome[0], checkup[0]
CNOT checkup[0], syndrome[0] CNOT syndrome[5], checkup[0]
CNOT checkup[0], syndrome[5] CNOT syndrome[6], checkup[0]
CNOT checkup[0], syndrome[6] MeasZ checkup[0]
MeasZ checkup[0] Barrier
Barrier CNOT syndrome[0], data[0]
CNOT data[0], syndrome[0] CNOT syndrome[1l], data[l]
CNOT data[l], syndrome[1l] CNOT syndrome[2], data[2]
CNOT data([2], syndrome[2] CNOT syndrome[3], datal[3]
CNOT data[3], syndromel[3] CNOT syndrome[4], datal[4]
CNOT data([4], syndrome[4] CNOT syndrome[5], datal[5]
CNOT data([5], syndromel[5] CNOT syndrome[6], datal[6]
CNOT data([6], syndromel[6] H syndrome[0]
MeasZ syndrome[0] H syndrome[1l]
MeasZ syndrome[l] H syndrome[2]
MeasZ syndrome[2] H syndrome[3]
MeasZ syndrome [3] H syndrome[4]
MeasZ syndrome[4] H syndrome[5]
MeasZ syndrome[5] H syndrome[6]
MeasZ syndrome [6] MeasZ syndrome [0]
Barrier MeasZ syndrome[l]

MeasZ syndrome[2]

MeasZ syndrome[3]

MeasZ syndrome[4]

MeasZ syndrome[5]

MeasZ syndrome[6]
Figure 15: QASM of the stabilizer measurement of

[[7,1,3]] Steane code [9, 10, 12]. Note that the decla-
ration of qubits and classical bits are omitted. The Z (X)-
type stabilizer measure is shown in the left (right) column.
From the first line to the line just before the barrier state-
ment the procedure of the logical ancilla state preparation
(of Ref. [8]) is described, and the main procedure of the
syndrome measure is shown thereafter.

5 Fault-Tolerant Circuits of [[7,1,3]]
Steane code FTQC

This section shows how to prepare a full set of fault-
tolerant quantum circuits for [[7, 1, 3]] Steane code-
based fault-tolerant quantum computing. For that,
we first need to determine which protocols are re-
quired and classify them into two categories, the
pivot protocols and the non-pivot protocols. We
then perform the circuit synthesis for the pivot pro-
tocols and apply their results to the circuit synthe-
sis of the non-pivot protocols. Table 1 shows the
protocols necessary for universal quantum comput-
ing divided into two categories.

13

data[5] data[3] syndrome[5] | dummy[5] data[1] data[0] dummy [18]

dummy [13] dummy [10] | syndrome[3] | dummy[6] syndrome[1] | dummy[14] data[2]

dummy [3] dummy [2] syndrome[6] | checkup[@] |syndrome[@]| dummy[17] dummy [15]

data[6] dummy [0] syndrome[2] | dummy[7] dummy [1] syndrome[4] | dummy[19]

dummy [11] dummy [16] dummy [4] dummy [8] dummy [9] dummy [12] data[4]

Figure 16: The initial qubit mapping for the fault-tolerant
circuit of the syndrome measurement which is shown con-
tinuously over Figure 20 ~ 26.

Table 1: Protocols for Steane code based universal FTQC

Type Protocols
Pivot Syndrome Measurement,
Magic State Preparation
Non-Pivot PrepZ (or Encoder), MeasZ,
H T, S CNOT

Before proceeding to the circuit synthesis for the
pivot protocols, let us discuss the qubit layout first.
A qubit layout affects the cost and the performance
of logical qubits, logical gates, and therefore, the
entire quantum computing. Therefore we need to
pay special attention to it. There exists an opti-
mal qubit layout in terms of the circuit size defined
as Fqubit X circuit_depth, as the size of the lay-
out increases the number of qubits is increasing but
the circuit depth may be decreased until the lower
bound. Therefore we need to compare the circuit
sizes over various qubit layouts and select the best
one. We then apply the chosen qubit layout to gen-
erate the set of full fault-tolerant quantum circuits
in the following subsection.

5.1 Optimal Qubit Layout

Over 2-dimensional qubit layouts of size 5 x 6 ~
7x 8, we quantify the size of the fault-tolerant quan-
tum circuit for the syndrome measurement based
on two error correction methods, Shor EC and
Steane EC. For Steane EC [9, 10, 12], we exploit the
fault-tolerant preparation of logical ancilla states
|0)r (and similarly |+)7) of Ref. [8] (see Figure 1
therein). For Shor EC [10, 12, 13], we apply the
fault-tolerant preparation of the length-4 cat state
described in Ref. [10] (see Figure 6 therein). To se-
lect the best qubit layout, we evaluate the circuits in
terms of the circuit size, KQ [14], where circuit size
is defined as circuit depth x Fqubits. We assume
that in this work one ancilla state is generated in
sequence, not multiple states in parallel.

Table 2 shows the circuit sizes of fault-tolerant
syndrome measurements over the qubit layouts by
adopting #gates and circuit depth as the per-
formance evaluation criteria. It is well known
that Shor-EC based protocol requires fewer qubits,
but more quantum gates than Steane-EC based
one [3, 10]. Therefore, for fault tolerance, the lat-
ter is preferred. As shown in the Table, our cir-
cuit synthesis results also show the same tendency.
Based on the Table, we in the following section de-
velop the circuits of fault-tolerant quantum proto-
cols with the qubit layout of size 5 x 7. For ref-
erence, in Ref. [3] the qubit layout of size 6 x 8 is
applied to optimize the threshold than to optimize
the space-time resource in the local setting.

Before going further, we emphasize again that
since our proposed algorithm is heuristic and non-
deterministic, the results the table shows are not
fixed for the layout. They are just the most com-
pact ones we have obtained so far, but there may
exist more optimized circuits.

5.2 Full Set of Fault-Tolerant Quantum Circuits

We are going to perform the circuit mapping for
the protocols listed in Table 1 in the following or-
der. The first is the syndrome measurement and
the magic state preparation in the pivot protocols.
Since the fault-tolerant quantum circuit and the as-
sociated qubit mapping of the syndrome measure-
ment are already described in Section 4, we discuss
the magic state preparation only.

We take the protocol described in Ref. [10] (see
Fig. 13 therein). It is composed of the repetition of
the preparations of ancilla states (logical zero state
and 7-qubit cat state), TXT' measurement and er-
ror detection. Since the ancilla preparations and
error detection include the selection of the next op-
eration conditioned on the measurement outcomes,
we apply the circuit partitioning we have discussed
before. For that, we insert the barrier statements in
the protocol, a total of 10 times. The fault-tolerant
preparations of a logical ancilla and a cat state re-
spectively require a single checkup qubit. There-
fore, by resuing qubits, the protocol is composed of
at least 15 qubits: 7 for data, 7 for ancilla, and 1 for
the verification. Finally, we emphasize that in the
circuit synthesis of the magic state preparation (or
distillation for other code), the final qubit mapping
after the circuit execution is critical to the T gate

14

Table 2: The size of the fault-tolerant circuits about the syndrome measurement over various 2-dimensional qubit layouts.
ideal indicates the static analysis about the the protocol itself. The number in parentheses indicates the number of qubits
of the corresponding qubit layout. Note that the protocols based on Steane-EC and Shor-EC are composed of 15 and 12

qubits.

Method item ideal 5 X6 5X 7 6 X6 5 X8 6x7 6x8 TxX7 7x8

(30) (35) (36) (40) (42) (48) (49) (56)

depth 18 43 35 41 40 41 41 40 38

Steane-EC || #gqtes 83 156 168 162 158 164 165 175 155
KQ 270 | 1,290 | 1,225 | 1,476 | 1,600 | 1,722 | 1,968 | 1,960 | 2,128

depth 44 55 53 54 55 53 55 52 54

Shor-EC || #gates || 144 206 204 199 224 212 212 224 216
KQ 528 | 1,650 | 1,855 | 1,944 | 2,200 | 2,226 | 2,640 | 2,548 | 3,025

CTRL TRGT

TRGT CTRL

CTRL

TRGT

TRGT

CTRL

(a) (b) (c) (d)

Figure 17: The relative arrangement of two logical qubits.

circuit.

We go to the non-pivot protocols. For the 1-
qubit gate, only the circuit synthesis of the encoder
is enough because the other gates can be imple-
mented as the transversal gates, therefore there is
nothing to do to realize a quantum circuit. As men-
tioned several times, we take the protocol for that
consuming a single checkup qubit protocol [8]. Like
the magic state, in the circuit of the encoder, the
final qubit mapping is so important. It should be
the configuration of the logical qubit. In the ini-
tial mapping of the encoder, all the qubits are just
dummy qubits that do not hold any meaningful
quantum state. The syndrome measurement and
the magic state preparation include the encoder for
the preparation of the logical ancilla qubits, but we
don’t apply the results there to the encoder and
vice versa to make an optimized circuit for each
respectively.

For the 2-qubit gates such as CNOT and T, we
have to perform the circuit synthesis over all the
cases of how two qubits are arranged on the logical
qubit layout. Please see Figure 17. However, in the
case of CNOT, all the data qubits in both logical
qubits have to move back to their initial positions
after the operation. Therefore, the circuits for the
layouts (a) and (c) directly can be used for the lay-
outs (b) and (d) by changing only the CNOT direc-

tions. On the other hand, for the T' gate, as men-
tioned before, the Move-Back for the magic state is
not required, and therefore the circuit for the layout
(a) cannot be applied for the case (b). Similarly for
the layouts (c) and (d). Therefore, we conduct the
circuit synthesis of T gate over all four cases, but
only two for CNOT gate. Figures 28 ~ 31 show
all the snapshots of CNOT gate for the qubits ar-
ranged vertically, (ctrl,, trgts), and Figures 32 ~ 38
show all the snapshots of T gate for the qubits ar-
ranged vertically, (data,, magics).

To conclude this section, we list the setting and
the result of the circuit synthesis over all the pro-
tocols shown in Table 1. Please see Table 3. Note
that for the S gate correction in the T gate, we
apply the transversal gate rather than the state in-
jection method like the T gate protocol. For the
fault tolerance, the state injection method is used
but for the purpose of this work, the transversal
gate is enough.

6 [[23,1,7]] Golay Code
[[23,1,7]] Golay code is well known as a high error
correction threshold [10, 15], but it has been rarely
studied how to realize universal fault-tolerant quan-
tum computing with that code. Due to its large
code block (logical qubit), it is a challenging prob-
lem to find fault-tolerant quantum circuits [16, 17].
It is also tricky and time-consuming to find the
circuits with the proposed method. Therefore, in
this work, we apply the divide-and-conquer ap-
proach to find the fault-tolerant quantum circuit
of the syndrome measurement efficiently. That
is, we divide the entire protocol into several sub-
protocols, obtain the fault-tolerant circuit for each

15

Table 3: The static analysis of the fault-tolerant quantum circuits for universal fault-tolerant quantum computing. The
numbers of SWAP gates and Barrier indicate the quantities of those ones introduced in the circuit synthesis. Note that
the quantities of the other gates in the circuit are precisely the same as those included in the protocol. Note that MB

indicates the Move-Back operation.

. Protocol Circuit
Operation
Reference #Qubits | Depth Gates Depth | #SWAP | MB | #Barrier
Syndrome [9, 10] 15 2 CNOT: 36, H: 15, 35 80 o 3
Measurement PrepZ: 16, MeasZ: 16
Encoder (8] 8 8 CNOT: 11, H: 3, 18 31 0 -
PrepZ: 8, MeasZ: 1
Magic State [10] 15 75 CNOT: 113, H: 49, PepZ: 49, 162 393 x 10
Preparation MeasZ: 49, T: 14, TT: 14
h-CNOT Transversal 14 1 CNOT: 7 21 136 O -
v-CNOT Transversal 14 1 CNOT: 7 13 80 O -
h-T (de, mw) | Figure 13 (b) 14 3 CNOT: 7, MeasZ: 7, S: 7 22 96 O 1
h-T (dw, me) | Figure 13 (b) 14 3 CNOT: 7, MeasZ: 7, S: 7 20 104 O 1
v-T (dn, ms) | Figure 13 (b) 14 3 CNOT: 7, MeasZ: 7, S: 7 17 71 O 1
v-T (ds, mn) | Figure 13 (b) 14 3 CNOT: 7, MeasZ: 7, S: 7 24 81 O 1
sub-protocol by applying the proposed algorithm, data[3] data[12] | datalg] | data[16]
and finally combine all the sub-circuits. We hire the datal1] data[18]
protO(.:o¥ of pr(?parlng a logical zero state.of Ref. [16], data[15] | datal20] | detel2z] | data[1] | datas] | data2i]
and divide it into the non-FT preparation stage of
. . . data[13 data[6 data[4 data[9
|0) and the verification stage (see Figures 3 and 4 el o a ©
therein). We then perform the circuit synthesis of datal7] | data[17] data[0]
the former and apply the result to the synthesis of data[14] data[19] | data[2]
the latter. Please note that the fact that the former data[10]

acts in a non-fault-tolerant manner does not indi-
cate that its non-FT circuit is enough for that. By
taking the divide-and-conquer method, the entire
circuit can be naturally partitioned, and classical
control operations can be conducted between the
sub-circuits.

Let us assume that the size of the qubit layout
for the above non-FT preparation circuit is m x n.
Then for the fault-tolerant circuit for the verifica-
tion part, we need an extended qubit layout of size
2m x 2n (see Figure 19). The initial qubit map-
ping is constituted of 4 copies of the final mapping
of the non-FT preparation circuit (see Figure 18).
How to extend qubit layout was discussed in Sec-
tion 3.3. We then apply the circuit synthesis algo-
rithm to find the fault-tolerant circuit functioning
for the verification, and then combine the result-
ing circuit with four copies of the non-FT circuit
for preparing |0)r. We now have a fault-tolerant
circuit for the preparation of a logical zero state.
Since the code is self-dual, the fault-tolerant circuit
for the preparation of |+)7, is almost the same as
the FT circuit for preparing [0)r.

For [[7,1,3]] Steane code FTQC, we determined

Figure 18: Qubit layout of size 7 x 7 for a logical zero
state |0) in [[23,1,7]] Golay code of Ref. [16]. Based on
this layout of 49 qubits, we obtain a fault-tolerant circuit
of the preparation protocol (Figure 4 therein). The cir-
cuit includes 269 SWAP gates to make 57 CNOT gates
executable on the qubit layout without noisy SWAP gates
between data qubits. Empty cells indicate dummy qubits
working as the communication channels.

the configuration of a logical qubit from the circuit
synthesis result of the syndrome measurement pro-
tocol. We applied the Steane-EC method that re-
quires logical states |0)7, and |+), as ancilla states.
For the fault-tolerant preparation of logical states,
we refer to Ref. [8] that is composed of the non-FT
preparation of one logical state and the verification
of it by use of 1 physical qubit. For the Golay code,
we take the same approach, but the difference is
the complexity of the fault-tolerant preparation of
logical states as mentioned above. We can say that
the non-FT preparation of logical states |0); and
|+)r is the dominant part of the syndrome mea-
surement protocol in the Golay code QEC. There-

16

|data)

|[anc)

(b)

Figure 19: Qubit Layouts for [[23, 1, 7]] Golay code. (a) Ex-
tended qubit layout for encoding |0), in the fault-tolerant
manner [16] (see Figure 3 therein). Each cell, shown in
Figure 18, indicates the code block for the corresponding
logical zero state |0); prepared in the non-fault-tolerant
manner. (b) Extended qubit layout for a logical qubit com-
posed of the code blocks of data qubits |data) and logical
ancilla [anc). Each cell is arranged as the code block shown
in Figure 18, but the roles of the qubits in the block differ.

fore, in this work, we determine the configuration
of a logical qubit from the circuit synthesis of the
non-F'T preparation protocol.

As mentioned several times, the fault-tolerant
preparation of the logical states in the Golay code
takes much time and space (qubits). In this work,
we assume logical ancilla states are supplied from
an ancilla factory, not generated at site. Therefore,
with the 2-dimensional qubit layout of size 14 x 7,
we define a logical qubit made of the 23 data qubits,
the 23 ancilla qubits for a logical ancilla state, and
some dummy qubits for the communication chan-
nel. We leave a detailed method about how to sup-
ply the logical ancilla states practically as future
work.

The code distance of the Golay code is 7 and
therefore it is possible to correct arbitrary 3-qubit
errors. Therefore, as mentioned above, it is pos-
sible to allow a one-time noisy SWAP gate be-
tween data-type qubits during the syndrome mea-
surement, |(7 —1)/4] = 1. Please note that in the
fault-tolerant preparation of logical ancilla states,
we do not permit any noisy SWAP gate between
the data-type qubits. Table 4 describes the pro-
cedure and the static data of the circuit synthesis
of the fault-tolerant preparation of the logical zero
states and the syndrome measurement.

7 Discussion

We leave some comments for the readers who are
going to implement our algorithm or develop new
ones.

The circuit synthesis for an ordinary quantum al-

gorithm always succeeds in finding a quantum cir-
cuit if the size of a quantum chip (qubit layout) is
not less than the number of qubits in the quantum
algorithm. According to a target case (quantum
algorithm, qubit connectivity, and an initial qubit
mapping), the quality of the resulting circuit or the
efficiency of the synthesis procedure may be very
poor, but nothing makes the circuit mapping im-
possible fundamentally.

On the other hand, for a fault-tolerant quantum
protocol, the situation differs because in the circuit
the qubits have to move in a fault-tolerant manner.
If the size of a target quantum chip equals to or is
bigger modestly than the number of qubits in the
fault-tolerant protocol, the circuit synthesis may
fail to find a fault-tolerant circuit. Particularly,
the proposed algorithm tries to find a fault-tolerant
quantum circuit based on a randomly picked ini-
tial qubit mapping, such a phenomenon that a cir-
cuit algorithm cannot generate a fault-tolerant cir-
cuit happens more frequently when the size of the
quantum chip is not greater remarkably. In our im-
plementation, we apply the time limit for SABRE
traversal, the amount of which is proportional to
the size of the protocol. If the SABRE iteration
is not completed within the time limit, we forcibly
turn off the current SABRE iteration and begin the
next iteration.

In the present work, we have not discussed a
lower bound on the size of a quantum chip for
an n-qubit fault-tolerant quantum protocol. Find-
ing such a bound theoretically is combinatorially
extremely challenging. It depends on the initial
qubit mapping, the property of a quantum protocol
(highly parallel or serial), the shape of the qubit
layout, and so on. For the purpose of reference,
we have observed that for the Steane-EC based
syndrome measurement protocol the proposed al-
gorithm succeeds in finding a fault-tolerant quan-
tum circuit acting on the qubit layout of 4x5, but
of longer depth 72. Since the protocol itself is de-
signed as using 15 qubits, the minimum require-
ment for the fault-tolerant communication may not
be so large but at cost of the circuit depth.

The proposed algorithm continuously selects a
locally optimal SWAP gate. In that case, even
though a selected SWAP gate was evaluated as op-
timal at a cost evaluation at the time, it may not
play a significant role in the resulting circuit finally.
For example, it may happen that occasionally con-

17

Table 4: Process and static analysis for the circuit synthesis of [[23,1,7]] Golay code. The entire circuit synthesis is
undergone in sequence: 1) Non-FT preparation of |0)1, (|+)), 2) Verification and 3) Syndrome Measurement. Note that
Move-Back* is a partial move-back operation for the data qubits in [0)1, not for all. Note that the value in parentheses in
Circuit Depth indicates the circuit depth at the protocol level without the locality effect of the qubit layout. The circuit

depth includes the physical preparation of |0).

Protocol

)z (I+)z)

Non-FT preparation of

Verification Syndrome Measurement

Qubit Mapping

Minit — -+ = MLq

Mrg — -+ = Mrg
(Move-Back*)

Mig — -+ —= Mg
(Move-Back)

Size of Qubit Layout mXxn 2m x 2n 2m X n (or m x 2n)
Allowable Noisy SWAP 0 0 1
between Data Qubits
Circuit Depth (Ideal Depth) 51 (9) 21 (4) 11 (5)
SWAP 269 296 50

secutive SWAP gates for a pair of qubits are in-
volved in the circuit. In this work, even though
we have not represented it explicitly, we deal with
the problem in two stages. First, during the cir-
cuit mapping, if a selected SWAP gate at the cur-
rent cost evaluation is the same as the previous
one, then we reject the selection and take a ran-
dom one. Please note that here the selected SWAP
gate should work on a pair of a data-type qubit
and a non-data-type qubit in general. Otherwise,
we refuse to take it. Second, after each SABRE it-
eration, as post-processing for the resulting circuit,
we cancel out the quantum instructions repeated
consecutively on the same qubits.

We now discuss future works caused by our re-
port. This works defines the qubit configuration
of a logical qubit from the circuit synthesis of the
syndrome measurement, and then obtain compact
fault-tolerant quantum circuits based on that con-
figuration. For the 2-qubit gates, we have consid-
ered all the possible relative arrangements of logical
qubits. As shown in Table 3, the sizes of the circuits
are different according to the arrangement. This
is because both the layout for a logical qubit and
the arrangement of physical qubits in the logical
qubit are not symmetric. Even though an individ-
ual quantum circuit is optimized in terms of the cir-
cuit depth, operating universal fault-tolerant quan-
tum computing may be tricky because according to
the qubit arrangement CNOT (T') gate works dif-
ferently. In this regard, we need to consider how
to operate universal fault-tolerant quantum com-
puting efficiently with the quantum circuits of non-
uniform performance.

8 Conclusion

We summarize the present work. To date, vari-
ous concatenated quantum codes and their fault-
tolerant protocols have been proposed theoretically,
but their realization in the local setting has been
rarely discussed. Only for a few well-known codes,
their fault-tolerant circuits obtained by hand works
have been reported. Those results or methodologies
can not be directly applied to different qubit layouts
or concatenated quantum codes.

In the present work, to automate the fault-
tolerant quantum circuit synthesis, we raised four
requirements, presented our approaches for them,
and described how to implement them with the ex-
isting heuristic quantum circuit mapping algorithm.
As aresult, it is now possible to obtain a set of fault-
tolerant quantum circuits for an arbitrary concate-
nated quantum code by running the algorithm.

The proposed algorithm does not work determin-
istically, and therefore the presented static analysis
data about the circuits are not fixed for the proto-
col and the qubit layout. To get the most optimized
circuits, we need to iterate the synthesis (SABRE)
rounds as much as possible.

Acknowledgements

This work was partly supported by Institute for In-
formation & communications Technology Promo-
tion (IITP) grant funded by the Korea govern-
ment (MSIT) (No. 2019-0-00003, Research and
Development of Core technologies for Program-

ming, Running, Implementing and Validating of
Fault-Tolerant Quantum Computing System) and
the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT)
(No. NRF-2019M3E4A1080146).

References

[1]

Prakash Murali, Jonathan M Baker, Ali
Javadi-Abhari, Frederic T Chong, and Mar-
garet Martonosi. Noise-Adaptive Com-
piler Mappings for Noisy Intermediate-Scale
Quantum Computers. Proceedings of the
Twenty-Fourth International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems, pages 1015—
1029, 2019. ISBN 9781450362405. DOI:
10.1145/3297858.3304075.

Swamit S Tannu and Moinuddin K Qureshi.
Not All Qubits Are Created Equal: A Case
for Variability-Aware Policies for NISQ-Era
Quantum Computers. Proceedings of the
Twenty-Fourth International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems, pages 987—
999, 2019. ISBN 9781450362405. DOI:
10.1145/3297858.3304007.

Krysta M Svore, David P DiVincenzo, and
Barbara M Terhal. Noise Threshold for a
Fault-Tolerant Two-Dimensional Lattice Ar-
chitecture. Quantum Information and Com-
putation, 7(4):297-318, 04 2007.

Ching-Yi Lai, Gerardo Paz, Martin Suchara,
and Todd A Brun.
Analysis of Knill’s Postselection Scheme in a
Two-Dimensional Architecture. Quantum In-
formation & Computation, 14(9&10):807-822,
03 2018.

Federico M Spedalieri and Vwani P Roychowd-
hury. Latency in local, two-dimensional, fault-
tolerant quantum computing. Quantum Infor-
mation & Computation, 9(7):666-682, 03 2019.
Gushu Li, Yufei Ding, and Yuan Xie. Tack-
ling the Qubit Mapping Problem for NISQ-
Era Quantum Devices. Proceedings of the
Twenty-Fourth International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems, pages 1001—
1014, 2019. ISBN 9781450362405. DOI:
10.1145/3297858.3304023.

Performance and Error

[7]

[10]

[11]

[12]

[14]

[17]

Andrew W Cross, Lev S Bishop,
John A Smolin, and Jay M Gam-
betta. Open Quantum Assembly Lan-
guage. https://arziv.org/abs/1707.03429,
pages 1 — 24, 07 2017. URL https:

//arxiv.org/abs/1707.03429.

Hayato Goto. Minimizing resource overheads
for fault-tolerant preparation of encoded states
of the Steane code. Scientific Reports, 5:1 — 7,
01 2016. DOI: doi: 10.1038/srep19578.

A. M. Steane. Active Stabilization, Quantum
Computation, and Quantum State Synthesis.
Physical Review Letters, 78(11):2252-2255, 03
1997. ISSN 0031-9007. DOI: 10.1103/phys-
revlett.78.2252.

Panos Aliferis, Daniel Gottesman, and John
Preskill. Quantum accuracy threshold for con-
catenated distance-3 codes. Quantum Infor-
mation & Computation, 6(2):97-165, 10 2018.
Xinlan Zhou, Debbie W Leung, and Isaac L
Chuang. Methodology for quantum logic gate
construction. Physical Review A, 62(5):385, 10
2000. DOI: 10.1103/physreva.62.052316.
Yaakov S Weinstein. Syndrome measurement
order for the [[7,1,3]] quantum error correction
code. Quantum Information Processing, 15(3):
1263 — 1271, 07 2015. DOI: 10.1007/s11128-
015-1068-z.

Peter W Shor. Fault-Tolerant Quantum Com-
putation. FOCS Proceedings of the th Annual
Symposium on Foundations of Computer Sci-
ence, page 56, 07 1996.

Andrew M Steane. Overhead and noise thresh-
old of fault-tolerant quantum error correction.
Physical Review A, 68(4):R2493 — 19, 10 2003.
DOTI: 10.1103/physreva.68.042322.

Andrew W Cross, David P. Divincenzo, and
Barbara M. Terhal. A comparative code study
for quantum fault tolerance. Quantum Infor-
mation and Computation, 9(7&8):541-572, 7
2009.

Adam Paetzick and Benjamin W Reichardt.
Fault-Tolerant Ancilla Preparation and Noise
Threshold Lower Bounds for the 23-Qubit Go-
lay Code. Quantum Information and Compu-
tation, 12(11&12):1034-1080, 07 2012.
Yi-Cong Zheng, Ching-Yi Lai, and Todd A.
Brun. Efficient preparation of large-block-code
ancilla states for fault-tolerant quantum com-
putation. Physical Review A, 97(3):032331,

19

https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1145/3297858.3304023
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://doi.org/doi: 10.1038/srep19578
https://doi.org/10.1103/physrevlett.78.2252
https://doi.org/10.1103/physrevlett.78.2252
https://doi.org/10.1103/physreva.62.052316
https://doi.org/10.1007/s11128-015-1068-z
https://doi.org/10.1007/s11128-015-1068-z
https://doi.org/10.1103/physreva.68.042322

2018. ISSN 2469-9926. DOI: 10.1103/phys- reva.97.032331.

20

https://doi.org/10.1103/physreva.97.032331
https://doi.org/10.1103/physreva.97.032331

- - N >
datal[5] datal3] syndrome [5]! dummy [5] datal[1] datal[o] dummy [18]
dummy [13] dummy [10] Q;y;Jr;;\é[;i\ dummy [6] dummy [14] datal[2]
dummy [3] dummy [2] dummy [17] dummy [15] v
> -—o---s N
datal6] dummy [0] dummy [7] dummy [1] (syndrome[4]: dummy [19]
>
dummy [11] dummy [16] dummy [4] dummy [8] dummy [9] dummy [12] datal4]
(a) Step 1
iiiiiiiiii >
datal[5] datal[3] 'syndrome [5]! dummy [5] datal[1] dummy [18] datal[o]
dummy [13] dummy [10] syndrome [3] dummy [6] syndrome[1] dummy [14] dummy [15]
dummy [3] dummy [2] (s;r;d’rio;\ei[iﬁill checkup[0] %;;Jr@@%{?@} dummy [17] datal[2] 1
dummy [0] datal6] syndrome[2] dummy [7] dummy [1] dummy [19] v
>
dummy [11] dummy [16] dummy [4] dummy [8] dummy [9] datal4] dummy [12]
(b) Step 2
datal[5] datal[3] syndrome[S]? dummy [5] dummy [18] data[1] datale]
dummy [13] dummy [10] syndrome[B]é dummy [6] syndrome[1]$ dummy [14] dummy [15]
dummy [3] dummy [2] syndrome[ﬁ]? checkup[0] syndrome [0] . dummy [17] 1‘ dummy [19]
dummy [0] datal6] syndrome[Z]éa dummy [7] dummy [1] syndrome[4]¢ datal[2]
dummy [11] dummy [16] dummy [4] dummy [8] datal4] dummy [9] dummy [12]
(c) Step 3
datal5] datal3] syndrome[5] dummy [5] dummy [18] datal1] datal[0]
>
dummy [13] dummy [10] syndrome[3]$ dummy [6] syndrome[1] dummy [14] dummy [15]
dummy [3] dummy [2] syndrome[G]‘ checkup[0] syndrome[ﬂ]T syndrome [4] dummy [19]
> A
dummy [0] datal6] syndrome [2] dummy [7] dummy [1] dummy [17] datal2]
dummy [11] dummy [16] dummy [4] dummy [8] datal4] dummy [9] dummy [12]
(d) Step 4
datal[5] datal[3] syndrome[5] dummy [5] dummy [18] datal[1] datal[0]
>
dummy [13] dummy [10] syndrome [3] dummy [6] dummy [14] syndrome[l]éﬁ dummy [15]
dummy [3] dummy [2] syndrome[G]T checkup[0] dummy [1] syndrome[4]$ dummy [19]
v &re
dummy [0] datal6] dummy [7] syndrome[2] syndrome [0] dummy [17] datal2]
dummy [11] dummy [16] dummy [4] dummy [8] datal[4] dummy [9] dummy [12]
(e) Step 5
datal[5] datal[3] 4 syndrome[S]T dummy [5] dummy [18] datal[1] datal[o]
A A >
dummy [13] syndrome [3] dummy [10] dummy [6] dummy [14] syndrome[1] dummy [15]
dummy [3] dummy [2] dummy [7] checkup[0] dummy [1] 1 syndrome [4] 1 dummy [19]
dummy [0] datal6] syndrome [6] syndrome[ZlT syndrome[B]‘L dummy [17] v datal[2]
dummy [11] dummy [16] dummy [4] dummy [8] v datal4] dummy [9] dummy [12]
(f) Step 6

Figure 20: The first part of the fault-tolerant quantum circuit of stabilizer measurement of [[7, 1, 3]] Steane code: Fault-
tolerant preparation of the logical state |[+);. Note that the rectangles, rounded rectangles, hexagons and bi-directed
arrow respectively indicate H, PrepZ, MeasZ and SWAP gates.

21

datal[5] datal3] dummy [10] dummy [5] dummy [18] datal[1] datal[0]
>
syndrome [3] dummy [13] syndrome [5] dummy [6] syndrome[1] dummy [14] dummy [15]
-~
dummy [3] dummy [2] dummy [7] checkup[0] syndrome [0] dummy [17] dummy [19]
>
dummy [0] datal6] syndrome [6] dummy [8] dummy [1] syndrome [4] datal[2]
dummy [11] dummy [16] dummy [4] syndrome[2] datal[4] dummy [9] dummy [12]
(a) Step 7
datal[5] datal[3] dummy [10] dummy [5] dummy [18] datal[1] datal[o]
D
syndrome [3] dummy [13] syndrome [5] syndrome[1] dummy [6] dummy [14] dummy [15]
>
dummy [3] dummy [2] dummy [7] checkup[0] syndrome [0] dummy [17] dummy [19]
>
dummy [0] datal6] syndrome [6] dummy [8] syndrome [4] dummy [1] datal2]
dummy [11] dummy [16] dummy [4] syndrome[2] datal4] dummy [9] dummy [12]
(b) Step 8
datal[5] datal[3] dummy [10] dummy [5] dummy [18] data[1] datale]
syndrome[3] dummy [13] syndrome[5]$ syndrome[1] dummy [6] dummy [14] dummy [15]
dummy [3] dummy [2] checkup[@] . dummy [7] syndrome [0] dummy [17] dummy [19]
Sre
dummy [0] datal6] syndrome[6] syndrome[4] dummy [8] dummy [1] datal[2]
dummy [11] dummy [16] dummy [4] syndrome [2] datal4] dummy [9] dummy [12]
(c) Step 9
datal5] datal3] dummy [10] dummy [5] dummy [18] datal1] datal[0]
syndrome [3] dummy [13] syndrome[5] syndrome[1] dummy [6] dummy [14] dummy [15]
dummy [3] dummy [2] checkup[0] . dummy [7] syndrome[0] dummy [17] dummy [19]
dummy [0] datal6] syndrome[ﬁ]éa syndrome [4] dummy [8] dummy [1] datal2]
dummy [11] dummy [16] dummy [4] syndrome [2] datal4] dummy [9] dummy [12]
(d) Step 10
datal[5] datal[3] dummy [10] dummy [5] dummy [18] datal[1] datal[0]
syndrome [3] dummy [13] syndrome [5] syndrome[1] dummy [6] dummy [14] dummy [15]
dummy [3] dummy [2] i&‘;‘f@’}!éi: dummy [7] syndrome [0] dummy [17] dummy [19]
dummy [0] datal6] syndrome [6] syndrome [4] dummy [8] dummy [1] datal2]
dummy [11] dummy [16] dummy [4] syndrome[2] datal[4] dummy [9] dummy [12]
(e) Step 11
datal[5] datal[3] dummy [10] dummy [5] dummy [18] datal[1] datal[o]
syndrome [3] dummy [13] syndrome [5] syndrome[1] dummy [6] dummy [14] dummy [15]
dummy [3] dummy [2] <:c/hie;k7u7pi[é]:: dummy [7] syndrome [0] dummy [17] dummy [19]
dummy [0] datal6] syndrome [6] syndrome [4] dummy [8] dummy [1] datal[2]
dummy [11] dummy [16] dummy [4] syndrome[2] datal4] dummy [9] dummy [12]

(f) Step 12 (Barrier)

Figure 21: (Continued from Figure 20) The first part of the fault-tolerant quantum circuit of stabilizer measurement of
[[7,1,3]] Steane code: Fault-tolerant preparation of the logical state |+)1. Note that the rectangles, rounded rectangles,
hexagons and bi-directed arrow respectively indicate H, PrepZ, MeasZ and SWAP gates.

22

<>
datal[5] datal3] ’ dummy [10] dummy [5] dummy [18] datal[1] datal[0] 4
syndrome [3] dummy [13] v syndrome [5] syndrome[1] dummy [6] dummy [14] dummy [15] v
>
dummy [3] dummy [2] checkup[0] dummy [7] syndrome [0] dummy [17] dummy [19]
o
dummy [0] datal6] syndrome [6] syndrome [4] dummy [8] 4 dummy [1] datal2] $
dummy [11] dummy [16] dummy [4] syndrome[2] datal[4] v dummy [9] dummy [12] v
(a) Step 13
<>
datal5] <7 dummy[13] dummy [10] dummy [5] datal[1] dummy [18] dummy [15]
e >
syndrome [3] datal[3] syndrome [5] syndrome[1] dummy [6] dummy [14] datalo]
dummy [3] dummy [2] checkup[0] dummy [7] dummy [17] syndrome [0] dummy [19]
PR o
dummy [0] datal6] <§yndrome[6)> | syndrome([4] datal[4] dummy [1] dummy [12]
>
dummy [11] dummy [16] dummy [4] syndrome[2] dummy [8] dummy [9] datal2]
(b) Step 14
>
dummy [13] datal5] dummy [10] datal[1] . dummy [5] dummy [18] dummy [15]
<§jr;d7r;r;|e;[\3]> datal[3] syndrome[5] syndrome[l]é dummy [6] datal[0] . dummy [14]
dummy [3] dummy [2] checkup[@] dummy [7] dummy [17] syndrome[@]é dummy [19]
dummy [0] datal6] syndrome[6] <§\);r;d7r;r;u;[\4]> datal[4] dummy [1] dummy [12]
<>
dummy [11] dummy [16] dummy [4] dummy [8] syndrome [2] dummy [9] datal[2]
(c) Step 15
dummy [13] dummy [10] datal5] . datal1] dummy [5] dummy [18] dummy [15]
syndrome [3] datal3] syndrome[S]éa <§\);r;d7r;r;1e7[\1]> dummy [6] datal0] dummy [14]
dummy [3] dummy [2] checkup[0] dummy [7] dummy [17] dummy [19]
dummy [0] datal6] syndrome [6] syndrome [4] datal[4] dummy [1] dummy [12]
Do
dummy [11] dummy [16] dummy [4] dummy [8] dummy [9] syndrome [2] datal[2]
(d) Step 16
dummy [13] dummy [10] datal[5] datal[1] dummy [5] dummy [18] dummy [15]
syndrome [3] datal3] <§);nid7r;r;|e7[\5]: syndrome[1] dummy [61 datale] dummy [14]
dummy [3] dummy [2] checkup[0] dummy [7] dummy [17] syndrome [0] dummy [19]
dummy [0] datal6] syndrome [6] syndrome [4] datal4] dummy [1] dummy [12]
dummy [11] dummy [16] dummy [4] dummy [8] dummy [9] <si§nid7r;r;\e7[\2]: datal2]

(e) Step 17 (Barrier)

Figure 22: The second part of the fault-tolerant quantum circuit of stabilizer measurement of [[7,1,3]] Steane code:
Transversal CNOT between data qubits and syndrome qubits. Note that the rectangles, rounded rectangles, hexagons
and bi-directed arrow respectively indicate H, PrepZ, MeasZ and SWAP gates.

23

>
dummy [13] dummy [10] datal[5] datal[1] dummy [5] dummy [18] dummy [15]
’\s‘yad:rgyrie:[%]:‘ datal3] 4 dummy [6] datale] dummy [14]
dummy [3] dummy [2] dummy [17] dummy [19]
<>
dummy [0] datal6] datal4] dummy [12] 4
dummy [11] dummy [16] dummy [4] dummy [8] dummy [9] datal2] v
(a) Step 18
dummy [13] datal[5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
iiiiiiiiii > S,
;syndrome[3]; dummy [2] syndrome [5] }syndrome[l]; dummy [6] datalo] dummy [14]
<>
dummy [3] datal[3] checkup[@] dummy [7] dummy [17] syndrome [0] dummy [19]
datal6] 4 dummy [0] syndrome[ﬁ]T syndrome [4] dummy [1] datal[4] datal[2]
dummy [11] v dummy [16] dummy [4] v dummy [8] dummy [9] %ii&f@@%{?@; dummy [12]
(b) Step 19
dummy [13] datal5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
oD
syndrome[3] syndrome[5] dummy [2] syndrome[1] 1 dummy [6] datal[0] dummy [14]
dummy [3] datal3] checkup[@] dummy [7] ¢ syndrome [0] dummy [17] dummy [19]
dummy [11] dummy [0] dummy [4] syndrome[4] dummy [1] datal4] datal[2]
<> «>
datal[6] dummy [16] syndrome [6] dummy [8] dummy [9] syndrome[2] dummy [12]
(c) Step 20
dummy [13] datal5] dummy [10] datal1] dummy [5] dummy [18] dummy [15]
<>
syndrome [3] syndrome[5] dummy [2] dummy [7] dummy [6] datal0] dummy [14]
>)
dummy [3] datal3] checkup[0] syndrome[1] syndrome[0] dummy [17] dummy [19]
dummy [11] dummy [0] dummy [4] syndrome [4] dummy [1] datal4] 4 datal[2]
e v
datal6] dummy [16] dummy [8] syndrome[6] syndrome [2] dummy [9] dummy [12]
(d) Step 21
dummy [13] datal[5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] syndrome [5] dummy [7] dummy [6] datal0] dummy [14]
syndrome[3]T datal3] checkup[0] syndrome[l]’ syndrome[ﬂ]T dummy [17] dummy [19]
dummy [11] v dummy [0] dummy [4] syndrome[4]éa dummy [1] v dummy [9] datal[2]
>
datal6] dummy [16] dummy [8] syndrome[6] syndrome[2] datal[4] dummy [12]
(e) Step 22
dummy [13] datal[5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] syndrome [5] dummy [7] 4 dummy [6] datal@] dummy [14]
dummy [11] datal[3] checkup[0] syndrnme[l]‘l/ dummy [1] dummy [17] dummy [19]
> >
syndrome [3] dummy [0] dummy [4] syndrome [4] syndrome[0]$ dummy [9] datal[2]
> .
datal6] dummy [16] syndrome[6] dummy [8] syndrome[2] datal4] dummy [12]
(f) Step 23

Figure 23: The third part of the fault-tolerant quantum circuit of stabilizer measurement of [[7, 1, 3]] Steane code: Fault-
tolerant preparation of the logical state |0) .. Note that the rectangles, rounded rectangles, hexagons and bi-directed arrow
respectively indicate H, PrepZ, MeasZ and SWAP gates.

24

dummy [13] datal[5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
bre
dummy [3] dummy [2] syndrome [5] syndrome[1] dummy [6] datal0] dummy [14]
“>
dummy [11] datal3] checkup [0] dummy [7] dummy [1] 1 dummy [17] dummy [19]
dummy [0] syndrome[3]$ syndrome [4] 1 dummy [4] :;yndrome[la]‘L dummy [9] datal2]
datal6] syndrome[ﬁ]q; dummy [16] v dummy [8] syndrome[2] datal[4] dummy [12]
(a) Step 24
dummy [13] datal[5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] syndrome [5] syndrome[1] dummy [6] datalo] dummy [14]
S+e
dummy [11] datal[3] dummy [7] checkup[0] syndrome [0] dummy [17] dummy [19]
dummy [0] syndrome [3] dummy [16] dummy [4] dummy [1] dummy [9] datal[2]
oD
datal6] syndrome[6] syndrome [4] dummy [8] syndrome[2] datal4] dummy [12]
(b) Step 25
dummy [13] datal5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] syndrome[5] syndrome[1] dummy [6] datal[0] dummy [14]
>
dummy [11] datal3] dummy [7] checkup[0] syndrome [0] dummy [17] dummy [19]
dummy [0] syndrome[3] dummy [16] dummy [4] dummy [1] dummy [9] datal[2]
<>
datal[6] syndrome[6] syndrome [4] dummy [8] syndrome [2] datal4] dummy [12]
(c) Step 26
dummy [13] datal5] dummy [10] datal1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] syndrome[5] . syndrome[1] dummy [6] datal0] dummy [14]
dummy [11] datal3] checkup[0] ® dummy [7] syndrome[0] dummy [17] dummy [19]
dummy [0] syndrome[3] dummy [16] dummy [4] dummy [1] dummy [9] datal[2]
>
data(6] syndrome [6] dummy [8] syndrome [4] syndrome [2] datal4] dummy [12]
(d) Step 27
dummy [13] datal[5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] syndrome [5] syndrome[1] dummy [6] datal0] dummy [14]
dummy [11] datal3] checkup[0] 4 dummy [7] syndrome [0] dummy [17] dummy [19]
dummy [0] syndrome [3] dummy [16] v dummy [4] dummy [1] dummy [9] datal[2]
datal6] dummy [8] syndrome [6] syndrome[4] syndrome[2] datal[4] dummy [12]
(e) Step 28
dummy [13] datal[5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] syndrome [5] syndrome[1] dummy [6] datale] dummy [14]
dummy [11] datal[3] dummy [16] dummy [7] syndrome [0] dummy [17] dummy [19]
dummy [0] syndrome[3] checkup [0] ® dummy [4] dummy [1] dummy [9] datal[2]
datal6] dummy [8] syndrome[ﬁ]‘ syndrome[4] syndrome[2] datal4] dummy [12]
(f) Step 29

Figure 24: (Continued from Figure 23) The third part of the fault-tolerant quantum circuit of stabilizer measurement of
[[7,1,3]] Steane code: Fault-tolerant preparation of the logical state |0);. Note that the rectangles, rounded rectangles,
hexagons and bi-directed arrow respectively indicate H, PrepZ, MeasZ and SWAP gates.

25

dummy [13] datal[5] dummy [10] datal[1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] syndrome [5] syndrome[1] dummy [6] datal0] dummy [14]
dummy [11] datal3] dummy [16] dummy [7] syndrome [0] dummy [17] dummy [19]
dummy [0] syndrome [3] <ic}1iecil{u}ai[é]:> dummy [4] dummy [1] dummy [9] datal[2]
datal6] dummy [8] syndrome[6] syndrome[4] syndrome[2] datal[4] dummy [12]

(a) Step 30 (Barrier)

Figure 25: (Continued from Figure 24) The third part of the fault-tolerant quantum circuit of stabilizer measurement of
[[7,1,3]] Steane code: Fault-tolerant preparation of the logical state |0),. Note that the rectangles, rounded rectangles,
hexagons and bi-directed arrow respectively indicate H, PrepZ, MeasZ and SWAP gates.

26

dummy [13] datal[5] dummy [10] 4 data[1] dummy [5] dummy [18] dummy [15]

¢
A Py >
dummy [3] dummy [2] syndrome[5] syndrome[1] dummy [6] datal0] dummy [14]
dummy [11] datal3] ® dummy [16] dummy [7] syndrome [0] dummy [17] dummy [19]
dummy [0] syndrome[3]‘ checkup[0] dummy [4] dummy [1] 4 dummy [9] datal2]
> v
datal6] dummy [8] syndrome [6] syndrome [4] syndrome [2] datal[4] dummy [12]
(a) Step 31
e >
dummy [13] datal5] syndrome [5] datal[1] dummy [5] dummy [18] dummy [15]
dummy [3] dummy [2] 4 dummy [10] }Vs;lr;d’ricrhé[ilili datal0] ® dummy [6] dummy [14]
dummy [11] datal[3] v dummy [16] dummy [7] syndrume[@]‘ dummy [17] dummy [19]
—————————— <>
dummy [@] \syndrome [3]! checkup[0] dummy [4] syndrome [2] dummy [9] datal[2]
The <>
datal6] syndrome [6] dummy [8]1 syndrome [4] dummy [1] datal4] dummy [12]
(b) Step 32
G [- \
dummy [13] datal5] \syndrome[5]! dummy [5] datal[1] dummy [18] dummy [15]
P ke N >
dummy [3] datal[3] dummy [10] <gyndrome [1)> datale] dummy [6] dummy [14]
dummy [11] dummy [2] dummy [16] dummy [7] %irldirérirl%[i@i]i} dummy [17] dummy [19]
1O
dummy [0] checkup[0] dummy [4] dummy [9] syndrome[2] datal[2]
oD
datal6] dummy [8] dummy [1] syndrome [4] datal[4] dummy [12]
(c) Step 33
datal[5] dummy [13] 1 <éy/n7d7r;r;e7[\5]> dummy [5] datal1] dummy [18] 1 dummy [15]
dummy [3] datal[3] v dummy [10] syndrome[1] dummy [6] datalo] v dummy [14]
dummy [11] dummy [2] dummy [16] dummy [7] dummy [17] dummy [19] 4
datal6] syndrome [3] checkup[0] dummy [4] @ii&é@%@} datal[2] v
PPRERk < >
dummy [0] <gyndrome 6]: dummy [8] dummy [1] datal[4] dummy [12]
(d) Step 34
datal5] datal3] syndrome [5] dummy [5] datal1] datalo] dummy [15]
dummy [3] dummy [13] dummy [10] syndrome[1] dummy [6] dummy [18] dummy [14] 1
dummy [11] dummy [2] dummy [16] dummy [7] syndrome [0] dummy [17] datal[2] v
datal6] syndrome [3] checkup[0] dummy [4] dummy [9] <i);ndrome[\2]> dummy [19]
dummy [0] syndrome [6] dummy [8] dummy [1] <s:);nid7r;$e7 11]: dummy [12] datal[4]
(e) Step 35
data[5] data[3] syndrome[5] dummy [5] data[1] data[0] dummy [15]
dummy [3] dummy [13] dummy [10] syndrome [1] dummy [6] dummy [18] data[2]
dummy [11] dummy [2] dummy [16] dummy [7] syndrome [0] dummy [17] dummy [14]
data[6] syndrome [3] checkup[0] dummy [4] dummy [9] syndrome[2] dummy [19]
dummy [0] syndrome [6] dummy [8] dummy [1] syndrome [4] dummy [12] data[4]

(f) Final Qubit Mapping

Figure 26: The fourth part of the fault-tolerant quantum circuit of stabilizer measurement of [[7,1,3]] Steane code:
Transversal CNOT between data qubits and syndrome qubits. By the Move-Back operations, the data qubits after all
the quantum operations are placed in their initial positions (see Figure 16). Note that the rectangles, rounded rectangles,
hexagons and bi-directed arrow respectively indicate H, PrepZ, MeasZ and SWAP gates.

27

"circuit" : {
"e" : ["Prepz 18", "PrepZz 11", "PrepZ 23", "PrepZ 9", "PrepZ 26", "Prepz 2",
"PrepZ 16", "Prepz 17", "SWAP 20,13", "SWAP 6,5", "SWAP 22,21","SWAP 33,34"],
"1" : ["H 18", "H 26", "H 2", "H 16", "SWAP 27,20", "SWAP 5,4", "SWAP 32,33"],
"2" : ["CNOT 18,11", "“CNOT 2,9", "CNOT 16,23", "SWAP 19,26"],
"3" : ["CNOT 16,9", "SWAP 24,23", "SWAP 12,11", "SWAP 25,18"],
"4" : ["CNOT 19,12", "“CNOT 25,24", "SWAP 8,9", "SWAP 23,16"],
"5 : ["SWAP 18,25", "SWAP 11,12", "SWAP 26,19", "SWAP 31,24", "SWAP 9,2", "SWAP 7,8"l,
"6" : ["CNOT 17,18", "SWAP 25,26", "SWAP 10,11"],
"7 : ["CNOT 9,10", "SWAP 16,17", "SWAP 24,25"1,
"g" : ["CNOT 16,9", "CNOT 24,23"],
"o" i ["CNOT 16,23"1,
"1e" : ["H 16"],
"11" : ["MeasZ 16", "Barrier"],
"12" : ["CNOT 22,23", "SWAP 13,6", "SWAP 8,1", "SWAP 4,5", "SWAP 25,32", "SWAP 34,27", "SWAP 19,18"],
"13" : ["MeasZ 23", "CNOT 8,7", "SWAP 12,13", "SWAP 1,0", "CNOT 25,24", "SWAP 3,4", "SWAP 32,31"1,
"14" : ["MeasZ 7", "SWAP 2,1", "“MeasZ 24", "CNOT 3,10", "CNOT 12,19", "SWAP 33,32"],
"15" : ["CNOT 2,9", "MeasZ 10", "Measz 19", "CNOT 34,33"],
"16" : ["MeasZ 9", "MeasZ 33", "Barrier"l,
"17" : ["PrepZ 19", "PrepZ 10", "PrepZ 33", "PrepZ 7", "PrepZ 24", "PrepZ 9", "PrepZ 23", "PrepZ 16",
"SWAP 15,8", "SWAP 27,34", "SWAP 1,2", "SWAP 26,25", "SWAP 21,22"],
"18" : ["H 10", "H 33", "H 7", "SWAP 18,19", "SWAP 8,9", "SWAP 30,23", "SWAP 28,21"1],
"19" : ["SWAP 17,10", "CNOT 7,8", "SWAP 32,33", "SWAP 31,30"],
"20" : ["CNOT 17,18", "SWAP 9,8", "CNOT 32,31", "SWAP 14,7", "SWAP 33,26"1,
"21" : ["CNOT 17,24", "SWAP 25,18", "SWAP 30,31", "SWAP 21,14"],
"22" ¢ ["SWAP 10,17", "CNOT 32,25", "SWAP 23,24", "SWAP 29,30", "SWAP 22,21"],
"23" : ["CNOT 10,9", "SWAP 18,25", "SWAP 17,16", "CNOT 22,29", '"SWAP 30,23"],
"24" : ["CNOT 18,17", "CNOT 29,30"],
"25" : ["SWAP 16,17", "SWAP 31,30"],
"26" : ["CNOT 9,16", "SWAP 30,29"1,
"27" ¢ ["SWAP 23,16"],
"28" : ["CNOT 30,23"],
"29" : ["MeasZ 23", "Barrier"],
"3¢" : ["CNOT 10,3", "CNOT 22,15", "SWAP 11,12", "SWAP 2,9", "SWAP 25,32", "SWAP 29,30",
"SWAP 20,13"],
“31" : ["H 10", "H 22", "CNOT 18,11", "CNOT 2,1", "CNOT 29,28", "SWAP 26,25",
"SWAP 32,31", "SWAP 4,3", "SWAP 6,13", "SWAP 8,15"],
"32" : ["MeasZ 10", "MeasZz 22", "H 18", "H 2", "H 29", "CNOT 26,27", "CNOT 32,33",
"SWAP 12,11", "“SWAP ©0,1", "SWAP 21,28"],
"33" : ["MeasZ 18", 'MeasZ 2", "H 26", "H 32", 'MeasZ 29",
"SWAP 5,12", "SWAP 34,33", "SWAP 20,27", "SWAP 1,8"],
"34" : ["MeasZ 26", 'MeasZ 32", "SWAP 13,20"],
+
"final_mapping" : {"data@" : 5, "datal" : 4, "data2" : 13, "data3" : 1, "datas4" : 34,
"data5" : 0, "data6" : 21},
"initial_mapping" : {"data@" : 5, "datal" : 4, "data2" : 13, "data3" : 1, "data4" : 34,
""data5" : @, "datab" : 21,
"syndrome@" : 18, '"syndromel" : 11, 'syndrome2" : 23, "syndrome3" : 9,
"syndrome4" : 26, 'syndrome5" : 2, "syndrome6" : 16}

Figure 27: The JSON format representation of the fault-tolerant quantum circuit shown in Figures 20 ~ 26.

28

LQ1-data[5] LQl-data[3] |LQl-syndrome[5]| LQ1-dummy[5] LQl-data[1] LQ1-data[0@] LQ1-dummy [18]

LQ1-dummy[13] | LQ1-dummy[1@] |LQ1-syndrome[3]| LQ1-dummy([6] |LQ1-syndrome[1]| LQ1-dummy[14] LQl-data[2]

LQ1-dummy [3] LQ1-dummy [2] |LQ1-syndrome[6]|LQ1-checkup[@] |LQ1-syndrome[@]| LQ1-dummy[17] | LQ1-dummy[15]

LQ1-data[6] LQ1-dummy [@] |LQl-syndrome[2]| LQ1l-dummy[7] LQ1-dummy[1] [LQ1-syndrome[4]| LQ1-dummy[19]

LQ1-dummy [11] | LQ1-dummy[16] | LQ1-dummy[4] LQ1-dummy [8] LQ1-dummy[9] | LQ1-dummy[12] LQ1-data[4]

LQ2-data[5] LQ2-data[3] |LQ2-syndrome[5]| LQ2-dummy[5] LQ2-data[1] LQ2-data[0] LQ2-dummy [18]

LQ2-dummy [13] | LQ2-dummy [10] |LQ2-syndrome[3]| LQ2-dummy[6] [LQ2-syndrome[1]| LQ2-dummy[14] LQ2-data[2]

LQ2-dummy [3] LQ2-dummy [2] |LQ2-syndrome[6]|LQ2-checkup[@] |LQ2-syndrome [0]| LQ2-dummy[17] | LQ2-dummy[15]

LQ2-data[6] LQ2-dummy [@] |LQ2-syndrome[2]1| LQ2-dummy[7] LQ2-dummy [1] |LQ2-syndrome[4]| LQ2-dummy[19]

LQ2-dummy [11] | LQ2-dummy [16] LQ2-dummy [4] LQ2-dummy [8] LQ2-dummy [9] LQ2-dummy [12] LQ2-data[4]

(a) Initial Mapping based on Vertically Extended Layout

LQ1-dummy [13] LOl—durmny[w]1 LQ1-syndrome [5]| LQ1-dummy[5] Lol—syndrome[111 Ll)l—dummy[lzl]1 LQ1-dummy [18]

12 v

LQ1-data[5] LQ1-data[3] " |LQl-syndrome[3]| LQ1-dummy[6] LQ1-datal1] LQ1-data[@] LQl*dummy[15]1\

<>
pal

LQ1-dummy [3] LQ1-dummy [2] |LQ1l-syndrome[6]|LQ1-checkup[@] |LQ1-syndrome[@]| LQ1-dummy[17] LQ1-data[2] v

LQ1-data[6] LQ1-dummy [@] [LQl-syndrome([2]| LQ1-dummy[7] LQ1-dummy [1] |LQ1-syndrome[4]| LQ1-dummy[19]

LQ2-data[5] 2 LQ2-data[3] LQ1-dummy [4] LQ1-dummy [8] LQ2-data[1] 2 LQ2-datal[@] 1 LQZ—dummy[lB]T
v y v

LQ1-dummy [111" | LQ1-dummy [16]" |LQ2-syndrome[5]| LQ2-dummy[5]1 LOl—dummy[Q]l/ LQ1-dummy [12] LQ1-datal4]

>

LQ2-dummy [13] | LQ2-dummy [1@] |LQ2-syndrome[3]| LQ2-dummy[6]1 |LQ2-syndrome[1]| LQ2-dummy[14] LQ2-datal[2]

LOZ—data[G]T LQ2-dummy [2] |LQ2-syndrome [6]|LQ2-checkup[@] |LQ2-syndrome [0]| LQ2-dummy[17] | LQ2-dummy[15]

LQZ—dummy[3]¢/ LQ2-dummy [0] |LQ2-syndrome[2]| LQ2-dummy[7] LQ2-dummy [1] |LQ2-syndrome[4]| LQ2-datal4]

1

LQ2-dummy [11] | LQ2-dummy [16] LQ2-dummy [4] LQ2-dummy [8] LQ2-dummy [9] LQ2-dummy [12] | LQ2-dummy [19]‘1
(b) Step 1

LQ1-dummy [13] | LQ1-dummy[10] |LQ1-syndrome[5]| LQl-dummy[5] |LQl-syndrome[1]| LQ1-dummy[14] LOlfdummylls]T

LQ1-dummy [3] LQ1-dummy [2] [LQ1-syndrome[3]| LQ1-dummy[6] |LQ1-syndrome [0% LQ1-dummy [17]T LQ1-dummy [18]¢/

<>

v v

LQl-data[5] LQ1-data[3] v LQ1-syndrome[6] | LQ1-checkup[0] LQ1-data[1] LQ1-data[@] LQ1-dummy [19]

t

LQ1-data[6] LQ2-data[3] LQ1l-syndrome[2]| LQ1-dummy[7] LQ2-data[1] L()Zfdata[alft LOlfdatalzlll

<>
N

LQ2-data[5] LQ1-dummy [0] LQ1-dummy [4] LQ1-dummy [8] LQl—dummy[l]\L LOl—syndromeM\lI LQ2-dummy [18]

1

=3 >
LQ1-dummy [11] |LQ2-syndrome [LQ1-dummy [16] LQ2-dummy [5] LQ1-dummy [9] LQ1-data[4] LQ1-dummy [12]

o

1

LQ2-data[6] LQ2-dummy [1@0] [LQ2-syndrome[3]| LQ2-dummy[6] [LQ2-syndrome[1]| LQ2-dummy[14] LQ2-data[2]

i

LQZ—dummy[13]¢/ LQ2-dummy [2] |LQ2-syndrome[6]| LQ2-checkup[@] |LQ2-syndrome [0]| LQ2-dummy[17] LQ2-data[4] 2

LQ2-dummy [3] LQ2-dummy [@] |LQ2-syndrome[2]1| LQ2-dummy[7] LQ2-dummy [1] (LQ2-syndrome [4] LOZ—dummy[lS]J/

LQ2-dummy [11] | LQ2-dummy [16] LQ2-dummy [4] LQ2-dummy [8] LQ2-dummy [9] LQ2-dummy [12] | LQ2-dummy[19]

(c) Step 2

LQ1-dummy [3] LQ1-dummy [10] |LQ1-syndrome[5]| LQl-dummy[5] [LQl-syndrome[1]| LQ1-dummy[14] | LQl-dummy[15]

t

LQl—dummy[lZ]* LQ1-dummy [2] |LQ1-syndrome[3]| LQ1-dummy[6] |LQ1-syndrome[@]| LQ1-dummy[17] L(Jl—dununy[lgl1

LQ1-data[5] LQ1-data[3] ’ LQ1-syndrome[6] | LQ1-checkup[0] LDl—data[l]* LOl—data[B]? L(Jl—dmmy[la]¢

LQ1-data[6] LQ2-data[3] 6 LQ1-syndrome[2]| LQ1-dummy[7] LQ2-datal[1] o LQ2-data[@] o LQ2-dummy [18]

?

>
LQ1-dummy [0] LQ2-data[5] LQ1-dummy [4] LQ1-dummy [8] LQ1-dummy[1] (LQ1-syndrome[4] Lt)l—da‘ca[Z]¢

LQ2-data[6] TLQZfsyndrume[S] LQ1-dummy [16] LQ2-dummy [5] LQ1-dummy [9] Lozfdummy[m]1 LQ2-data[2] 2

v v

LQ1-dummy [11]" | LQ2-dummy [1@] |LQ2-syndrome[3]| LQ2-dummy([6] |LQ2-syndrome[1]| LQl-data([4] LQl—dummy[lz]¢

LQ2-dummy [3] LQ2-dummy [2] |LQ2-syndrome [6]|LQ2-checkup[@] |LQ2-syndrome [@]| LQ2-dummy[17] LQ2-data[4]

t

LQZ—dummy[13]¢ LQ2-dummy [@] |LQ2-syndrome[2]1| LQ2-dummy[7] LQ2-dummy [1] |LQ2-syndrome[4] LQZ—dummy[lQ]1

LQ2-dummy [11] | LQ2-dummy [16] LQ2-dummy [4] LQ2-dummy [8] LQ2-dummy [9] LQ2-dummy [12] Ll)z—dummy[lsl¢

(d) Step 3

Figure 28: Logical CNOT gate operations for qubits arranged vertically. (a) The vertically extended qubit layout of logical
qubits, LQ1 and LQ2. Note that the bi-directed arrow indicates SWAP gate.

29

LQ1-dummy [3]

LQ1-dummy [10]

LQ1-syndrome[5]

LQ1-dummy [5]

LQ1-syndrome [1]

LQ1-dummy [14]

LQ1-dummy [15]

LQ1-dummy [13]

LQ1-datal[3]

?

LQ1-syndrome [3]

LQ1-dummy [6]

Lo1-datal1]
?

LQ1-datal0]

1t

LQ1-dummy [19]

LQ1-datal[5]

LQ1-dummy [2] v

LQ1-syndrome[6]

LQ1-checkup[@]

LQ1-syndrome [0*

LQ1-dummy [17]\1(

LQ1-dummy [18]

LQ1-dummy [0]

LQ2-datal[3]

LQ1-syndrome[2]

LQ1-dummy [7]

LQ1-dummy [1]

t

LQ2-datal0]

LQ2-dummy [18]

<>

LQ1-datal[6]

LQ2-datal[5]

LQ1-dummy [4]

LQ1-dummy [8]

LQ2-data[1] v

LQ2-dummy [14]

i

LQ1-datal2]
?

LQ2-data[6]

LQ2-syndrome[5]

LQ1-dummy [16]

LQ2-dummy [5]

LQ1-dummy [9]

LQ1-syndrome [4*

LQ2-data[2] ®

LQ1-dummy [11]

LQ2-dummy [10]

LQ2-syndrome [3]

LQ2-dummy [6]

LQ2-syndrome [1]

LQ1-data[4]

LQ2-data[4]

LQ2-dummy [3]

LQ2-dummy [2]

LQ2-syndrome [6]

LQ2-checkup[@]

LQ2-syndrome [0]

LQ2-dummy [17]

“>

LQ1-dummy [12]

LQ2-dummy [13]

LQ2-dummy [0]

LQ2-syndrome [2]

LQ2-dummy [7]

LQ2-dummy [1]

LQ2-syndrome [4]

LQ2-dummy [19]

LQ2-dummy [11]

LQ2-dummy [16]

LQ2-dummy [4]

LQ2-dummy [8]

LQ2-dummy [9]

LQ2-dummy [12]

LQ2-dummy [15]

(a) Step 4

LQ1-dummy [3]

LQ1-datal[3]

4 LQ1-syndrome [5]

LQ1-dummy [5]

Lo1-datal1]
1

LQ1-datal0]
?

LQ1-dummy [15]

LQ1-dummy [13]

LQ1-dummy [10]¢

LQ1-syndrome [3]

LQ1-dummy [6]

LQ1-syndrome [1%

v

LQ1-dummy [14]

LQ1-dummy [19]

LQ1-dummy [0]

1

LQ2-datal[3]

?

LQ1-syndrome[6]

LQ1-checkup[@]

LQ1-syndrome [0]

LQ1~dummy [17]

LQ1~-dummy [18]

LQ1-data[5] v

LQ1-dummy [2] v

LQ1-syndrome [2]

LQ1-dummy [7]

LQ1-dummy [1]

LQ2-dummy [14]
1

LQ1-data[2]

LQ1-datal[6]
*

LQ2-datal[5]

LQ1-dummy [4]

LQ1-dummy [8]

LQ1-dummy [9]

t

v

LQ2-datal0]

LQ2-dummy [18]

LQ2-data[6] ®

LQ2-syndrome[5]

LQ1-dummy [16]

LQ2-dummy [5]

LQ2-data[1] v

LQ1-syndrome[4]

t
v

LQ2-data[2]

LQ1-dummy [11]

LQ2-dummy [10]

LQ2-syndrome [3]

LQ2-dummy [6]

LQ2-syndrome [1]

-
LQ1-datal4]

B
LQ2-datal[4]

LQ2-dummy [3]

LQ2-dummy [2]

LQ2-syndrome [6]

LQ2-checkup [@]

LQ2-syndrome [0]

LQ2-dummy [17]

LQ1-dummy [12]

LQ2-dummy [13]

LQ2-dummy [0]

LQ2-syndrome [2]

LQ2-dummy [7]

LQ2-dummy [1]

LQ2-syndrome [4]

LQ2-dummy [19]

LQ2-dummy [11]

LQ2-dummy [16]

LQ2-dummy [4]

LQ2-dummy [8]

LQ2-dummy [9]

LQ2-dummy [12]

LQ2-dummy [15]

(b) Step 5

LQ1-dummy [3]

LQ1-data[3]

LQ1-syndrome[5]

LQ1-dummy [5]

LQ1-data[1]

LQ1-datal@]

LQ1-dummy [15]

LQ1-dummy [13]

LQ1-dummy [10]

LQ1-syndrome[3]

LQ1-dummy [6]

LQ1-syndrome [1]

LQ1-dummy [14]

LQ1-dummy [19]

LQ1-dummy [0]

LQ2-data[3]

LQ1-syndrome [6]

LQ1-checkup[@]

LQ1-syndrome [0]

LQ1-dummy [17]

LQ1-data[2]

LQ1-data[5]

LQ2-data[5]

?

LQ1-syndrome [2]

LQ1-dummy [7]

LQ1-dummy [1]

LQ2-dummy [14]

>

LQ1-dummy [18]

LQ1-data[6]

LQ1-dummy [2] v

LQ1-dummy [4]

LQ1-dummy [8]

LQ1-dummy [9]

LQ1-syndrome [4%

LQ2-dummy [18]

Lo1-dummy [11]
1

LQ2-syndrome[5]

LQ1-dummy [16]

LQ2-dummy [5]

LQ2-datal[1]

y

LQ2-datal0]

LQ2-datal2]

LQ2-data[6] v

LQ2-dummy [10]

LQ2-syndrome [3]

LQ2-dummy [6]

LQ2-syndrome [1]

LQ1-datal4]

LQ1~-dummy [12]

1

LQ2-dummy [3]

LQ2-dummy [2]

LQ2-syndrome [6]

LQ2-checkup[@]

LQ2-syndrome [0]

LQ2-dummy [17]

LQ2-data[4] v

LQ2-dummy [13]

LQ2-dummy [0]

LQ2-syndrome [2]

LQ2-dummy [7]

LQ2-dummy [1]

LQ2-syndrome[4]

LQ2-dummy [19]

LQ2-dummy [11]

LQ2-dummy [16]

LQ2-dummy [4]

LQ2-dummy [8]

LQ2-dummy [9]

LQ2-dummy [12]

LQ2-dummy [15]

(c) Step 6

LQ1-dummy [3]

LQ1-data[3]

LQ1-syndrome[5]

LQ1-dummy [5]

LQ1-datal[1]

LQ1-datale]

LQ1-dummy [15]

LQ1-dummy [13]

LQ1-dummy [10]

LQ1-syndrome [3]

LQ1-dummy [6]

LQ1-syndrome [1]

LQ1-dummy [14]

LQ1-data[2]
1

LQ1-dummy [0]

LQ2-data[3]

LQ1-syndrome [6]

LQ1-checkup [0]

LQ1-syndrome [0]

LQ1-dummy [17]

LQ1-dummy [19]¢

P
LQ1-data[5]

LQ2-data[5]

LQ1-syndrome[2]

LQ1-dummy [7]

LQ1-dummy [1]

LQ2-dummy [14]

LQ1-dummy [18]

LQ1-data[6]

LQ2-syndrome [54

LQ1-dummy [4]

LQ1-dummy [8]

LQ1-dummy [9]

LQ1-syndrome[4]

LQ2-dummy [18]

LQ1-dummy [11]

LQ1-dummy [2] v

LQ1-dummy [16]

LQ2-dummy [5]

LQ2-data[1]

LQ2-datal0]

LQ1-dummy [12]
1

LQ2-dummy [3]

t

LQ2-dummy [10]

LQ2-syndrome [3]

LQ2-dummy [6]

LQ2-syndrome [1]

LQ1-datal4]

v

LQ2-datal[2]

v

LQ2-datal[6]

LQ2-dummy [2]

LQ2-syndrome [6]

LQ2-checkup[@]

LQ2-syndrome [0]

LQ2-dummy [17]

LQ2-dummy [19]

1

LQ2-dummy [13]

LQ2-dummy [0]

LQ2-syndrome[2]

LQ2-dummy [7]

LQ2-dummy [1]

LQ2-syndrome [4]

LQ2-datal[4] v

LQ2-dummy [11]

LQ2-dummy [16]

LQ2-dummy [4]

LQ2-dummy [8]

LQ2-dummy [9]

LQ2-dummy [12]

LQ2-dummy [15]

(d) Step 7

Figure 29: (Continued from Figure 28) Logical CNOT gate operations for qubits
bi-directed arrow indicates SWAP gate.

arranged vertically. Note that the

30

LQ1-dummy [3] LQ1-data[3] |LQl-syndrome[5]| LQ1-dummy[5] LQ1-data[1] LQ1-data[@] LQ1-dummy [15]

LQ1-dummy [13] | LQ1-dummy[1@] |LQ1-syndrome[3]| LQ1-dummy[6] |LQl-syndrome[1]| LQ1-dummy[14] LQ1-datal[2]

LQ1-data[5] 2 LQ2-data[3] (LQl-syndrome[6]|LQ1-checkup[@] |LQ1-syndrome[0]| LQ1-dummy[17] | LQ1-dummy[19]

LQ1-dummy [0] J/ LQ2-synd rome[S% LQ1-syndrome[2]| LQ1-dummy([7] LQ1-dummy [1] LQ2-dummy [14] | LQ1-dummy[18]

LQ1-datal[6] LOZ—data[5]¢ LQ1-dummy [4] LQ1-dummy [8] LQ1-dummy [9] |LQ1-syndrome[4]| LQ1-dummy[12]

i

LQ1-dummy [11] L()Z—dulrlmy[lell1 LQ1-dummy [16] LQ2-dummy [5] LQ2-data[1] LQ2-data[e] LOZ—dummy[lE]\L

LQ2-dummy [3] LOl—dummy[2]¢LQZ—Syndrome[S] LQ2-dummy [6] |LQ2-syndrome[1]| LQ1-datal4] LQ2-data[2]

LQ2-dummy [13] LQ2-dummy [2] [LQ2-syndrome[6]| LQ2-checkup[@] |LQ2-syndrome [@]| LQ2-dummy[17] | LQ2-dummy[19]

>

LQ2-data[6] LQ2-dummy [@] |LQ2-syndrome[2]| LQ2-dummy[7] LQ2-dummy [1] (LQ2-syndrome[4]| LQ2-dummy[15]

i

LQ2-dummy [11] | LQ2-dummy[16] | LQ2-dummy [4] LQ2-dummy [8] LQ2-dummy [9] | LQ2-dummy[12] LQ2-data[4] v

(a) Step 8

LQ1-dummy [3] LQl-data[3] |LQl-syndrome[5]| LQ1l-dummy[5] LQ1-data[1] LQ1-data[@] LQ1-dummy [15]

LQ1-data[5] LQ1-dummy [10] |LQl-syndrome[3]| LQl-dummy[6] [LQl-syndrome[1]| LQ1-dummy[14] LQ1-data[2]

LQl—dummy[13]¢ LQ2-synd rome[S% LQ1-syndrome[6] | LQ1-checkup[@] |LQ1-syndrome [@]| LQ1-dummy[17] | LQ1-dummy[19]

LQ1-datal[6] LQ2-datal3] v LQ1-syndrome[2]| LQl-dummy[7] LQ1-dummy [1] | LQ2-dummy[14] | LQ1-dummy[18]

<>

<>
LQ1-dummy [0] LQ2-data[5] LQ1-dummy [4] LQ1-dummy [8] LQ1-dummy [9] LQ1-dummy [12] [LQ1-syndrome[4]

>
LQ2-dummy [10] | LQ1-dummy[11] | LQ1-dummy[16] LQ2-dummy [5] LQ2-data[1] LQ2-data[e] LQ2-dummy [18]

LQ2-dummy [3] LQ1-dummy [2] |LQ2-syndrome[3]1| LQ2-dummy[6] |LQ2-syndrome[1]| LQl-datal4] LQ2-data[2]

LQ2-dummy [13] LQ2-dummy [2] |LQ2-syndrome[6]|LQ2-checkup[@] |LQ2-syndrome [0]| LQ2-dummy[17] | LQ2-dummy[19]

LQ2-data[6] LQ2-dummy [0] [LQ2-syndrome[2]| LQ2-dummy[7] LQ2-dummy [1] |LQ2-syndrome[4]| LQ2-dummy[15]

LQ2-dummy [11] | LQ2-dummy [16] LQ2-dummy [4] LQ2-dummy [8] LQ2-dummy [9] LQ2-dummy [12] LQ2-data[4]

(b) Step 9

LOl*data[SIT LQ1-data[3] |LQl-syndrome[5]| LQ1l-dummy[5] LQ1-data[1] LQ1-datal@] LQ1-dummy [15]

LQl—dummy[E]* LQ1-dummy [10] |LQ1-syndrome[3]| LQl-dummy[6] [LQl-syndrome[1]| LQ1-dummy[14] LQ1-data[2]

LQ1-dummy [13] |LQ2-syndrome[5]|LQ1-syndrome[6]|LQ1-checkup[@] [LQ1-syndrome[@]| LQ1-dummy[17] | LQ1l-dummy[19]

LQ1-data[6] LQ2-data[3] |LQl-syndrome[2]| LQ1-dummy[7] LQ1-dummy [1] LQ2-dummy [14] | LQ1-dummy[18]

LQ1-dummy [0] LQ1-dummy [11] LQ1-dummy [4] LQ1-dummy [8] LQ1-dummy [9] LQ2-data[@] 1 LQ1-syndrome[4]

>

LQ2-dummy [10] LQ2-datal[5] LQ1-dummy [16] | LQ2-dummy[5] LQ2-datal[1] LOl—dummy[12]¢ LQ2-dummy [18]

LQ2-dummy [3] LQ1-dummy [2] |LQ2-syndrome[3]1| LQ2-dummy[6] |LQ2-syndrome[1]| LQl-datal4] LQ2-data[2]

LQ2-dummy [13] LQ2-dummy [2] |LQ2-syndrome [6]|LQ2-checkup[@] |LQ2-syndrome [0]| LQ2-dummy[17] | LQ2-dummy[19]

LQ2-data[6] LQ2-dummy [@] |LQ2-syndrome[2]1| LQ2-dummy[7] LQ2-dummy [1] (LQ2-syndrome[4]| LQ2-dummy[15]

LQ2-dummy [11] | LQ2-dummy [16] LQ2-dummy [4] LQ2-dummy [8] LQ2-dummy [9] LQ2-dummy [12] LQ2-datal4]

(c) Step 10

LQ1-data[5] LQ1-data[3] |LQl-syndrome[5]| LQ1-dummy[5] LQ1-datal[1] LQ1-datal@] LQ1-dummy [15]

LQ1-dummy [3] LQ1-dummy [10] |LQ1-syndrome[3]| LQl-dummy[6] [LQ1l-syndrome[1]| LQ1-dummy[14] LQ1-data[2]

LQ1-dummy [13] |LQ2-syndrome[5]|LQ1-syndrome [6]| LQ1-checkup[@] [LQ1-syndrome[0]| LQ1-dummy[17] | LQl-dummy[19]

LQ1-data[6] LQ1-dummy [11], |LQ1-syndrome[2]| LQ1-dummy([7] LQ1-dummy [1] | LQ2-dummy[14] | LQ1-dummy[18]

>

LQ1-dummy [0] LQ2-data[3] LQ1-dummy [4] LQ1-dummy [8] LQ1-dummy [9] LQ2-data[@] |LQ1-syndrome[4]

>
LQ2-data[5] LQ2-dummy [10] | LQ1-dummy[16] LQ2-dummy [5] LQ2-data[1] L()l—data[ll]T LQ2-dummy [18]

LQ2-dummy [3] LQ1-dummy [2] |LQ2-syndrome[3]| LQ2-dummy[6] |LQ2-syndrome[1] LQl—dummy[lZ]\L LQ2-data[2]

LQ2-dummy [13] LQ2-dummy [2] |LQ2-syndrome[6]| LQ2-checkup[@] |LQ2-syndrome [0]| LQ2-dummy[17] | LQ2-dummy[19]

LQ2-data[6] LQ2-dummy [@] |LQ2-syndrome[2]1| LQ2-dummy[7] LQ2-dummy [1] [LQ2-syndrome[4]| LQ2-dummy[15]

LQ2-dummy [11] | LQ2-dummy[16] | LQ2-dummy [4] LQ2-dummy [8] LQ2-dummy [9] | LQ2-dummy[12] LQ2-data[4]

(d) Step 11

Figure 30: (Continued from Figure 29) Logical CNOT gate operations for qubits arranged vertically. Note that the
bi-directed arrow indicates SWAP gate.

31

LQ1-datal[5]

LQ1-datal3]

LQ1-syndrome[5]

LQ1-dummy [5]

LQ1-data[1]

LQ1-datal0]

LQ1-dummy [15]

LQ1-dummy [3]

LQ1-dummy [10]

LQ1-syndrome [3]

LQ1-dummy [6]

LQ1-syndrome [1]

LQ1-dummy [14]

LQ1-data[2]

LQ1-dummy [13]

LQ2-syndrome[5]

LQ1-syndrome[6]

LQ1-checkup[@]

LQ1-syndrome [@]

LQ1-dummy [17]

LQ1-dummy [19]

LQ1-datal[6]

LQ1-dummy [11]

LQ1-syndrome[2]

LQ1-dummy [7]

LQ1-dummy [1]

LQ2-dummy [14]

LQ1-dummy [18]

LQ1-dummy [0]

LQ2-dummy [10]

1

LQ1-dummy [4]

LQ1-dummy [8]

LQ1-dummy [9]

LQ2-datal0]

LQ1-syndrome [4]

LQ2-data[5]

LQ2-datal[3] v

LQ1-dummy [16]

LQ2-dummy [5]

LQ2-datal[1]

=
LQ2-dummy [18]

>
LQ1-data[4]

LQ2-dummy [3]

LQ1-dummy [2]

LQ2-syndrome [3]

LQ2-dummy [6]

LQ2-syndrome [1]

LQ1-dummy [12]

LQ2-data[2]

LQ2-dummy [13]

LQ2-dummy [2]

LQ2-syndrome [6]

LQ2-checkup[@]

LQ2-syndrome [0]

LQ2-dummy [17]

LQ2-dummy [19]

LQ2-data[6]

LQ2-dummy [0]

LQ2-syndrome [2]

LQ2-dummy [7]

LQ2-dummy [1]

LQ2-syndrome [4]

LQ2-dummy [15]

LQ2-dummy [11]

LQ2-dummy [16]

LQ2-dummy [4]

LQ2-dummy [8]

LQ2-dummy [9]

LQ2-dummy [12]

LQ2-data[4]

(a) Step 12

LQ1-data[5]

LQ1-datal[3]

LQ1-syndrome[5]

LQ1-dummy [5]

LQ1-data[1]

LQ1-datal0]

LQ1-dummy [15]

LQ1-dummy [3]

LQ1-dummy [10]

LQ1-syndrome[3]

LQ1-dummy [6]

LQ1-syndrome [1]

LQ1-dummy [14]

LQ1-data[2]

LQ1-dummy [13]

LQ2-syndrome[5]

LQ1-syndrome[6]

LQ1-checkup[@]

LQ1-syndrome [0]

LQ1-dummy [17]

LQ1~-dummy [19]

LQ1-datal[6]

LQ1-dummy [11]

LQ1-syndrome[2]

LQ1-dummy [7]

LQ1-dummy [1]

LQ2-dummy [14]

LQ1-dummy [18]

LQ1-dummy [0]

LQ2-dummy [10]

LQ1-dummy [4]

LQ1-dummy [8]

LQ1-dummy [9]

LQ2-dummy [18]

LQ1-datal[4]

1t

LQ2-data[5]

LQ2-datal[3]

LQ1-dummy [16]

LQ2-dummy [5]

LQ2-data[1]

<«

LQ2-datal0]

LQ1-syndrome [4*

LQ2-dummy [3]

LQ1-dummy [2]

LQ2-syndrome [3]

LQ2-dummy [6]

LQ2-syndrome [1]

LQ1-dummy [12]

LQ2-data[2]

LQ2-dummy [13]

LQ2-dummy [2]

LQ2-syndrome [6]

LQ2-checkup [@]

LQ2-syndrome [0]

LQ2-dummy [17]

LQ2-dummy [19]

LQ2-data[6]

LQ2-dummy [0]

LQ2-syndrome [2]

LQ2-dummy [7]

LQ2-dummy [1]

LQ2-syndrome[4]

LQ2-dummy [15]

LQ2-dummy [11]

LQ2-dummy [16]

LQ2-dummy [4]

LQ2-dummy [8]

LQ2-dummy [9]

LQ2-dummy [12]

LQ2-data[4]

(b) Step 13 (Final Qubit Mapping)

Figure 31: (Continued from Figure 30) Logical CNOT gate operations for qubits arranged vertically. By the /\/loye—Back
operations, the data qubits after all the quantum operations are placed in their initial positions (compare (b) and Figure 28
(a)). Note that the bi-directed arrow indicates SWAP gate.

32

LQ1-data[5] LQ1-data[3] dummy [16] dummy [50] LQ1-data[1l] LQ1-data[0@] dummy [39]
dummy [22] dummy [37] dummy [21] dummy [45] dummy [11] dummy [35] LQ1-data[2]
dummy [10] dummy [25] dummy [43] dummy [49] dummy [19] dummy [28] dummy [32]

LQl-data[6] dummy [51] dummy [33] dummy [18] dummy [41] dummy [53] dummy [26]
dummy [0] dummy [42] dummy [29] dummy [15] dummy [38] dummy [34] LQ1-data[4]
dummy [31] LQ2-magic[4] dummy [9] dummy [14] dummy [5] dummy [47] dummy [13]

LQ2-magic[3] dummy [20] dummy [24] dummy [55] LQ2-magic[6] dummy [46] LQ2-magic[2]
dummy [30] LQ2-magic[1] dummy [40] dummy [17] dummy [52] dummy [1] dummy [48]
dummy [3] dummy [361 dummy [2] dummy [6] dummy [8] dummy [271 LQ2-magic[0]
dummy [4] dummy [23] LQ2-magic[5] dummy [7] dummy [54] dummy [12] dummy [44]

(a) Initial Mapping based on Vertically Extended Layout,
(datan, magics)

LOl—data[S]T LOl—data[Ci]T dummy [16] dummy [50] LQl—data[l]T LOl—data[O]T dummy [39]
v v v v
dummy [22] dummy [37] dummy [21] dummy [45] dummy [11] dummy [35] LOl—data[Z]T
dummy [10] dummy [25] dummy [43] dummy [49] dummy [19] dummy [28] dummy [32] v
LQ1-datal6] dummy [51] dummy [33] dummy [18] dummy [41] dummy [53] dummy [26]
>
dummy [0] dummy [42] ’ dummy [29] dummy [15] dummy [38] dummy [34] LQ1-data[4]
dummy [31] 1 LQmeagic[4]l/ dummy [9] dummy [14] dummy [5] 1 dummy [47] dummy [13] 1
LQ2-magic [BIJ/ dummy [20] 4 dummy [24] dummy [55] LQ2-magic [6]‘1/ dummy [46] LQ2-magic [ZIJ/
dummy [30] LOZ—magic[l]l/ dummy [40] dummy [17] dummy [52] dummy [1] dummy [48] 1
dummy [3] dummy [36] dummy [2] T dummy [6] dummy [8] dummy [27] LQZ—magic[B]‘L
dummy [4] dummy [23] LQZ—magic[S]l/ dummy [7] dummy [54] dummy [12] dummy [44]
(b) Step 1
dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
LQl-datal[5] LQl-datal3] dummy [21] dummy [45] LQ1l-data[1] LQl-datal@] dummy [32]
I e
dummy [10] dummy [25] dummy [43] dummy [49] dummy [19] dummy [28] LQl—data[Z]T
LQ1-data[6] dummy [51] dummy [33] dummy [18] dummy [41] dummy [53] dummy [26] v
>
dummy [0] 1‘ LQ2-magic[4] dummy [29] dummy [15] dummy [38] 1‘ LQ1l-datal4] dummy [34] 1‘
LQ2-magic [31‘1/ dummy [42] 4 dummy [9] dummy [14] LQ2-magic [6]‘1/ dummy [47] LQ2-magic [ZIJ/
dummy [31] LOZ—magic[l]L dummy [24] dummy [55] dummy [5] dummy [46] dummy [13] 1
dummy [30] dummy [20] dummy [40] 1 dummy [17] dummy [52] dummy [1] LQ2-magic [B]J/
dummy [3] dummy [361 LOZ—magic[S]J/ dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(c) Step 2

Figure 32: The first part of logical T gate operations for qubits arranged vertically: Trasversal CNOT between data
qubits data[i] and magic qubits magic[i] and MeasZ on magic qubits. (a) The vertically extended qubit layout of logical
qubits: data qubits in the north direction and magic qubits in the south direction. Note that the rectangles, hexagons and
bi-directed arrow respectively indicate S, PrepZ, MeasZ and SWAP gates.

33

dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]

dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [28] dummy [32]
LQ1-datal5] LQl—data[3]T dummy [43] dummy [49] LQ1-datal1] L()l—data[@]1 dummy [26]
LQl-data[6] dummy [51] v dummy [33] dummy [18] dummy [41] 1 dummy [53] v LOl—data[Z]?

> J 2
LQ2-magic[3] dummy [29] 1 LQ2-magic[4] dummy [15] LQ2-magic[6] LQ1-datal4] LQ2-magic[2]

dummy [0] LQZ—magic[l]‘L dummy [9] dummy [14] dummy [38] dummy [47] dummy [34] 1

dummy [31] dummy [42] dummy [24] 4 dummy [55] dummy [5] dummy [46] LOZ—magic[0]¢

dummy [30] dummy [20] LoZ—magic[SIJ/ dummy [17] dummy [52] dummy [1] dummy [13]

dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]

dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]

(a) Step 3
dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [28] dummy [32]
<>
LQ1-datal5] dummy [511 dummy [43] dummy [49] LQ1-datal1] dummy [53] dummy [26] 1
> A
LQ1-datal[6] LQ1-datal[3] dummy [33] dummy [18] LQ2-magic[6] | LQl-data[o] LQ1-datal[2]

«> «> P N
LQ2-magic[3] | LQ2-magic[1] dummy [15] LQ2-magic[4] dummy [41] LQ1-data[4] ’LQZ—magic[/l]’

dummy [0] dummy [29] dummy [9] 4 dummy [14] dummy [38] dummy [47] LQ2-magic[0]
dummy [31] dummy [42] LQZ—magic[S]‘L dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(b) Step 4
dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [281 dummy [32]
>
dummy [51] LQ1-datal[5] dummy [43] dummy [49] LQl—data[l]T dummy [53] LQ1-datal[2]
> J >
LQ1-datal6] LQl—data[3]T dummy [33] LQ2-magic[6] dummy [18] LQ1-datal@] dummy [26]
A > Se
LQ2-magic[3] dummy [15] LQ2-magic[1] dummy [41] LQ2-magic[4] | LQl-data[4] | LQ2-magic [Z]T
dummy [0] dummy [29] LQ2-magic[5] dummy [14] dummy [38] dummy [47] LQ2-magic [BIJ/
dummy [31] dummy [42] dummy [9] dummy [55]1 dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]

(c) Step 5

Figure 33: (Continued from Figure 32) The first part of logical T gate operations for qubits arranged vertically: Trasversal
CNOT between data qubits data[i] and magic qubits magic[i] and MeasZ on magic qubits. Note that the rectangles,
hexagons and bi-directed arrow respectively indicate S, PrepZ, MeasZ and SWAP gates.

34

dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [28] dummy [32]
dummy [51] dummy [43] LQ1-datal(5] dummy [49] dummy [18] dummy [53] LQl-datal2]
>
LQ1-datal6] dummy [15] LQ2-magic[6] dummy [33] 4 LQ1-datal[1] dummy [26] LOl—data[@]?
LOZ—magic[3]e}*L01—data[3] dummy [41] 1 Ll)Z—magic[l]‘L ﬂ‘)%’_j],;?’}%[}’]/ LQ1-datal4] LOZ—magic[D]é;
dummy [0] dummy [29] LQ2-magic [S]J/ dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(a) Step 6
dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [28] dummy [32]
dummy [51] dummy [43] LQ1-datal[5] dummy [49] dummy [18] dummy [53] LQ1-datal2]
dummy [15] LQl—data[G]FﬂiOZ—magic[G] LQZ—magic[l]Q}*Lm—data[l] dummy [26] LQ1l-data[@]
LQZ—nlag 717{[73/1,‘ LQl-data[3] | LQ2-magic[5] | dummy[33] | LQ2-magic[4] | LQl-datal4] 1/(2/2:—7;17;971':;7[/6:[’
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(b) Step 7
dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [281 dummy [32]
dummy [51] dummy [43] LQ1-datal[5] dummy [49] dummy [18] dummy [53] LQ1-datal[2]
dumny[15] | Lol-datal6] | 1Q2-nagicl8l | 1Q2-nagic(il | Loi-datal1] | dumyl2s] | Lo1-datalo]
LQ2-magic[3] LQl-datal3] LQ2-magic[5] dummy [33] LQ2-magic[4] LQl-datal4] LQ2-magic[0]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55]1 dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(c) Step 8

Figure 34: (Continued from Figure 33) The first part of logical T gate operations for qubits arranged vertically: Trasversal
CNOT between data qubits data[i] and magic qubits magic[i] and MeasZ on magic qubits. Note that the rectangles,
hexagons and bi-directed arrow respectively indicate S, PrepZ, MeasZ and SWAP gates.

35

dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [28] dummy [32]
dummy [51] dummy [43] LQ1-datal(5] dummy [49] dummy [18] dummy [53] LQl-datal2]
dummy [15] LQ1-datal6] LOZ—magic[G]T LQ2-magic[1] | LQl-data[1] dummy [26] LQ1-datal0]
LQ2-magic[3] LQ1-datal3] LQ2-magic [5]‘1/ dummy [33] LQ2-magic[4] LQ1-datal4] LQ2-magic[@]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(a) Step 9
dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [28] dummy [32]
dummy [51] dummy [43] LOl*data[SI? dummy [49] dummy [18] dummy [53] LQ1-datal2]
dummy [15] LQ1-datal[6] LOZ—magic[S]éa LQ2-magic[1] | LQl-data[1] dummy [26] LQ1-datal0]
LQ2-magic[3] LQ1-datal[3] LQ2-magic[6] dummy [33] LQ2-magic[4] LQ1-data[4] LQ2-magic[@]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(b) Step 10

dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [281 dummy [32]
dummy [51] dummy [43] LQ1-datal[5] dummy [49] dummy [18] dummy [53] LQ1-datal[2]
dummy [15] LQ1-datal6] 1{(2,2\—_7;?—?%%[;1/ LQ2-magic[1] | LQ1l-datal[1] dummy [26] LQ1-data[0]
LQ2-magic[3] LQl-datal3] LQ2-magic[6] dummy [33] LQ2-magic[4] LQl-datal4] LQ2-magic[0]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55]1 dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]

(c) Step 11 (Barrier)

Figure 35: (Continued from Figure 34) The first part of logical T gate operations for qubits arranged vertically: Trasversal
CNOT between data qubits data[i] and magic qubits magic[i] and MeasZ on magic qubits. Note that the rectangles,
hexagons and bi-directed arrow respectively indicate S, PrepZ, MeasZ and SWAP gates.

36

dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] dummy [45] dummy [19] dummy [28] dummy [32]
dummy [51] dummy [43] dummy [49] dummy [18] dummy [53]

dummy [15] LQ2-magic[5] | LQ2-magic[1] dummy [26]

LQ2-magic[3] LQ2-magic[6] dummy [33] LQ2-magic[4] LQ2-magic[@]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]

(a) Step 12 (S-correction)
dummy [22] dummy [37] dummy [16] dummy [50] dummy [11] dummy [35] dummy [39]
dummy [10] dummy [25] dummy [21] 1 dummy [45] dummy [19] dummy [28] dummy [32] 1
dummy [51] dummy [43] LQ1-datal[5] v dummy [49] dummy [18] 1 dummy [53] LQ1-datal2] v
dummy [15] (__)Lol—data[6] LQ2-magic[5] | LQ2-magic[1] LQl—data[l]‘L dummy [26] LQ1l-data[@]

LQ2-magic[3] LQ1-datal[3] LQ2-magic[6] dummy [33] LQ2-magic[4] LQl-data [4](__I).02—magic [o]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]

(b) Step 13
dummy [22] dummy [37] dummy [16] ’T dummy [50] dummy [11] dummy [35] dummy [39] 1‘
dummy [10] dummy [25] L()lfdata[Sl‘L dummy [45] dummy [19] 1 dummy [281 LOlfdata[ZIJ/
dummy [51] dummy [43] dummy [21] dummy [49] LQl—data[l]J/ dummy [53] dummy [32] 1

LQ1-datal6] dummy [15] 4 LQ2-magic[5] | LQ2-magic[1] dummy [18] dummy [26] LQl—data[O]‘L

LQ2-magic[3] LQl-datal3] v LQ2-magic[6] dummy [33] LQ2-magic[4] | LQ2-magic[0@] LQ1l-datal4]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55]1 dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]

(c) Step 14

Figure 36: The second part logical T gate operations for qubits arranged vertically: Logical S gate correction and Move-
Back. Please compare the final mapping with the initial mapping (Figure 32 (a)). The positions of the data qubits are
the same in both mappings, but the magic qubits are not. Note that the rectangles, hexagons and bi-directed arrow
respectively indicate S, PrepZ, MeasZ and SWAP gates.

37

dummy [22] dummy [37] (__)L()l—data[S] dummy [50] dummy [11] 4 dummy [35] (__)L!Jl—datalzl
dummy [10] dummy [25] dummy [16] dummy [45] LQl—data[l]‘L dummy [28] dummy [39] 4
dummy [51] dummy [43] 1 dummy [21] dummy [49] dummy [19] dummy [53] L(Jl—data[la]‘L
LQ1-datal6] LQ1-datal[3] v LQ2-magic[5] | LQ2-magic[1] dummy [18] dummy [26] dummy [32]
LQ2-magic[3] dummy [15] LQ2-magic[6] dummy [33] LQ2-magic[4] | LQ2-magic[0@] LQ1-datal4]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(a) Step 15
dummy [22] (__)Lol—data[5] dummy [37] dummy [50] LQ1-data[1] LOl—data[Z]T dummy [35] 1
dummy [10] dummy [25] 1‘ dummy [16] dummy [45] dummy [11] dummy [28] v Ll)l—data[e]‘L
dummy [51] LOlfdata[E!]‘L dummy [21] dummy [49] dummy [19] dummy [53] dummy [39]
LQl-datal[6] dummy [43] LQ2-magic[5] | LQ2-magic[1] dummy [18] dummy [26] dummy [32]
LQ2-magic[3] dummy [15] LQ2-magic[6] dummy [33] LQ2-magic[4] | LQ2-magic[0@] LQ1-datal4]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(b) Step 16
>
LQl-datal[5] dummy [22] 1 dummy [37] dummy [50] LQ1l-data[1] dummy [28] LQ1l-datal@]
dummy [10] LQ1-datal3] v dummy [16] dummy [45] dummy [11] LQl-data [2](__) dummy [35]
dummy [51] dummy [25] dummy [21] dummy [49] dummy [19] dummy [53] dummy [39]
LQ1-datal6] dummy [43] LQ2-magic[5] | LQ2-magic[1] dummy [18] dummy [26] dummy [32]
LQ2-magic[3] dummy [15] LQ2-magic[6] dummy [33] LQ2-magic[4] | LQ2-magic[@] | LQl-datal[4]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55]1 dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [36] dummy [40] dummy [6] dummy [8] dummy [27] dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]
(c) Step 17

Figure 37: (Continued from Figure 36) The second part logical T gate operations for qubits arranged vertically: Logical S
gate correction and Move-Back. Note that the rectangles, hexagons and bi-directed arrow respectively indicate S, PrepZ,
MeasZ and SWAP gates.

38

LQ1-data[5] LQ1-data[3] dummy [37] dummy [50] LQl-data[1] LQ1-data[@] dummy [28]
dummy [10] dummy [22] dummy [16] dummy [45] dummy [11] dummy [35] LQ1-data[2]
dummy [51] dummy [25] dummy [21] dummy [49] dummy [19] dummy [53] dummy [39]

LQl-data[6] dummy [43] LQ2-magic[5] | LQ2-magic[1] dummy [18] dummy [26] dummy [32]

LQ2-magic[3] dummy [15] LQ2-magic[6] dummy [33] LQ2-magic[4] | LQ2-magic[@] | LQl-data[4]
dummy [0] dummy [29] dummy [41] dummy [14] dummy [38] dummy [47] LQ2-magic[2]
dummy [31] dummy [42] dummy [9] dummy [55] dummy [5] dummy [46] dummy [34]
dummy [30] dummy [20] dummy [24] dummy [17] dummy [52] dummy [1] dummy [13]
dummy [3] dummy [361 dummy [40] dummy [6] dummy [8] dummy [271 dummy [48]
dummy [4] dummy [23] dummy [2] dummy [7] dummy [54] dummy [12] dummy [44]

(a) Final Mapping

Figure 38: (Continued from Figure 37) The second part of logical T gate operations for qubits arranged vertically: Logical
S gate correction and Move-Back. Please compare the final mapping with the initial mapping (Figure 32 (a)). The
positions of the data qubits are the same in both mappings, but the magic qubits are not. Note that the rectangles,
hexagons and bi-directed arrow respectively indicate S, PrepZ, MeasZ and SWAP gates.

39

	1 Introduction
	2 Review of SABRE
	3 Circuit Synthesis for Universal Fault-Tolerant Quantum Computing
	3.1 Fault-tolerant qubit move
	3.2 Self-contained quantum circuit
	3.3 Circuits for universal fault-tolerant quantum computing
	3.4 Circuit Partitioning

	4 Example : Syndrome Measurement of [[7,1,3]] Steane Code
	5 Fault-Tolerant Circuits of [[7, 1, 3]] Steane code FTQC
	5.1 Optimal Qubit Layout
	5.2 Full Set of Fault-Tolerant Quantum Circuits

	6 [[23,1,7]] Golay Code
	7 Discussion
	8 Conclusion
	 Acknowledgements
	 References

