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Although the Gaussian-noise assumption is widely adopted in the study of qubit decoherence, non-Gaussian
noise sources, especially the strong discrete fluctuators, have been detected in many qubits. It remains an impor-
tant task to further understand and mitigate the distinctive decoherence effect of the non-Gaussian noise. Here,
we study the qubit dephasing caused by the non-Gaussian fluctuators, and predict a symmetry-breaking effect that
is unique to the non-Gaussian noise. This broken symmetry results in an experimentally measurable mismatch
between the extremum points of the dephasing rate and qubit frequency, which demands extra carefulness in
characterizing the noise and locating the optimal working point. To further enhance the coherence time at the
sweet spot, we propose to suppress the second-order derivative of the qubit frequency by the Floquet engineering.
Our simulation with a heavy fluxonium shows an order of magnitude improvement of the dephasing time, even
after including the noise introduced by the drive.

Introduction.– Efficient quantum computing relies on high-
coherence qubits and high-fidelity quantum operations [1, 2].
However, further enhancement of the coherence times and gate
fidelities toward full quantumerror correction, one prerequisite
for full-fledged quantum computation [1–4], has been set back
by the decoherence caused by the environmental noise [4–7].
Superconducting qubits, one of the leading qubit platforms,
are especially subjected to the uncontrolled low-frequency en-
vironmental fluctuations [5–31]. For example, the notorious
1/ 𝑓 noise limits the coherence times of many superconducting
qubits [18–31].
This challenge hasmotivated research efforts on identifying,

understanding, and mitigating the contributing noise channels
[5–64]. Theoretically, the noise is usually assumed Gaussian
(sometimesMarkovian), while the realistic noise is more com-
plicated. For example, if strong discrete fluctuators are present
[13–18], the decoherence process of the qubits deviates signif-
icantly from the prediction by assuming only Gaussian noise
[5, 8, 9, 13, 27, 36, 37, 42, 43]. Since the optimization of the
circuit design and control protocols of the superconducting
qubits crucially relies on the appropriate estimation of the de-
coherence rate, it is important to carefully include the realistic
environmental noise in the analysis.
In this Letter, we focus on the qubit dephasing at the sweet

spots, the working points where the qubits reach their max-
imal dephasing time [23, 26, 31, 50, 53, 60, 61, 65]. We
report that the non-Gaussian noise introduces a previously un-
revealed dephasing feature, the Z2 symmetry breaking at the
qubit sweet spot. The breaking is predicted to cause an oth-
erwise unexpected mismatch between the extremum points of
the qubit dephasing rate and its oscillating frequency. Using a
realistic non-Gaussian noise model, the strong two-level fluc-
tuators (TLFs), we theoretically demonstrate such mismatch in
a concrete qubit model, the heavy fluxonium qubit [26]. This
finding provides a simple yet decisive tool to identify the non-
Gaussian component in the noise background [51]. To further
enhance the sweet-spot coherence time limited by such fluc-
tuators (also Gaussian noise), we propose a triple-protection
scheme via the Floquet engineering [46, 47, 66–68], where

the qubit is not only protected from the dc fluctuation to the
second order, but also from ac fluctuation to the first order.

Model.– The system we study is a tunable qubit subjected
to the low-frequency fluctuation. The full Hamiltonian in
consideration is given by 𝐻̂ = 𝐻̂𝑞 (𝜆) + 𝛿𝜉 (𝑡)𝑥, where 𝐻̂𝑞 (𝜆)
denotes the bare qubit Hamiltonian, 𝛿𝜉 (𝑡) is the fluctuations
due to the environmental noise and 𝑥 is the operator that the
fluctuators are coupled to. The qubit is tuned by an external
control parameter 𝜆 according to 𝐻̂𝑞 (𝜆) = 𝐻̂𝑞 (0) + 𝜆𝑥, which
for example corresponds to the flux (charge) control of the
fluxonium qubit (Cooper-pair box) [33, 56]. We assume that
the first-order derivative of this qubit vanishes at 𝜆 = 0, which
is a result of a Z2 symmetry. Specifically, the Hamiltonian
satisfies 𝑅̂𝐻̂𝑞 (0) 𝑅̂† = 𝐻̂𝑞 (0), where 𝑅̂ is a reflection operation
defined by the relation 𝑅̂𝑥𝑅̂† = −𝑥. This symmetry ensures
(𝜕𝜔bare𝑗 /𝜕𝜆) |𝜆=0 = 0, where 𝜔bare𝑗 is the eigenenergy of the
𝑗 th eigenstate of the bare Hamiltonian 𝐻̂𝑞 (𝜆). The external
control is assumed to only modulate the Hamiltonian of the
qubitwhile negligibly affecting the properties of the fluctuation
𝛿𝜉 (𝑡) over the small range of 𝜆 under inspection.
Z2 symmetry and its breaking.–The symmetry we address is

the invariance of the ensemble-averaged qubit density matrix
elements, 𝜌𝑖 𝑗 (𝑡) |𝜆, evaluated in their respective eigenbasis,
under the reflection 𝜆 → −𝜆. Such a symmetry is strictly
preserved if the fluctuation isGaussian, and is generally broken
for non-Gaussian 𝛿𝜉 (𝑡).
To rigorously derive the conclusion above, we first inspect

the relation between the qubit Hamiltonians and eigenstates for
±𝜆. The Hamiltonians are related by 𝐻̂𝑞 (−𝜆) = 𝑅̂𝐻̂𝑞 (𝜆) 𝑅̂†,
and the eigenstates can also be chosen to transform by such
reflection, | 𝑗 (−𝜆)〉 = 𝑅̂ | 𝑗 (𝜆)〉, to avoid unnecessary compli-
cation. However, the interaction Hamiltonian 𝐻̂𝐼 (𝑡) ≡ 𝛿𝜉 (𝑡)𝑥
does not transform similarly, because 𝐻̂𝐼 (𝑡) is independent of
the choices of 𝜆, while a reflection operation on this interac-
tion term flips its sign, i.e., 𝑅̂𝐻̂𝐼 (𝑡) 𝑅̂† = −𝐻̂𝐼 (𝑡). As a result
of this sign flip, we find the following relation between the
propagators:

𝑅̂𝑈̃𝜈
𝐼 (𝑡) |𝜆 𝑅̂† = (−1)𝜈𝑈̃𝜈

𝐼 (𝑡) |−𝜆. (1)
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FIG. 1. A cartoon illustrating how noise breaks the reflection symme-
try of the qubit. Since the fluctuation 𝛿𝜉 (𝑡)we consider is independent
of the control parameters, the noise term 𝐻̂𝐼 (𝑡) will not undergo a
similar reflection (bottom gray curve) as the bare Hamiltonian by the
external operation −𝜆 → 𝜆, which in general breaks the reflection
symmetry. Exceptionally, the Gaussian noise still preserves this sym-
metry because the statistical effect of the Gaussian fluctuator 𝛿𝜉𝐺 (𝑡)
on the qubit is identical to that of −𝛿𝜉𝐺 (𝑡).

Above, 𝑈̃𝜈
𝐼 (𝑡) is the 𝜈th-order term in the Dyson expansion

of the interaction propagator 𝑈̃𝐼 (𝑡) = T exp[−𝑖
∫ 𝑡

0 𝑑𝑡
′𝐻̃𝐼 (𝑡 ′)],

where 𝐻̃𝐼 (𝑡) = 𝑈̂†0 (𝑡)𝐻̂𝐼 (𝑡)𝑈̂0 (𝑡) and 𝑈̂0 (𝑡) ≡ exp[−𝑖𝐻̂𝑞 (𝜆)𝑡].
The propagator 𝑈̃𝐼 (𝑡) is expanded as 𝑈̃𝐼 (𝑡) =

∑
𝜈 𝑈̃

𝜈
𝐼 (𝑡) ac-

cording to the Dyson series, where 𝑈̃𝜈
𝐼 (𝑡) contains a product

of 𝜈 times of 𝐻̃𝐼 (𝑡).
The sign flipping is further carried to the density matrix

elements, which are expanded as

𝜌𝐼 , 𝑗𝑘 (𝑡) |𝜆≡ 〈 𝑗 | 𝜌̃𝐼 (𝑡) |𝑘〉|𝜆= 〈 𝑗 |𝑈̃𝐼 (𝑡) 𝜌̃𝐼 (0)𝑈̃†𝐼 (𝑡) |𝑘〉
���
𝜆

=
∑︁
𝑗′𝑘′𝜈

𝜌𝐼 , 𝑗′𝑘′ (0) Π𝜈
𝑗𝑘← 𝑗′𝑘′ (𝑡) |𝜆. (2)

Here, we define the interaction-picture density matrix 𝜌̃𝐼 (𝑡) =
𝑈̂†0 (𝑡) 𝜌̂(𝑡)𝑈̂0 (𝑡) and the Keldysh projector Π𝜈

𝑗𝑘← 𝑗′𝑘′ (𝑡) |𝜆 ≡∑
𝜈′+𝜈′′=𝜈 〈 𝑗 |𝑈̃𝜈′

𝐼 (𝑡) | 𝑗 ′〉〈𝑘 ′ | 𝑈̃𝜈′′†
𝐼 (𝑡) |𝑘〉|𝜆. Using Eq. (1), one

finds Π𝜈
𝑗𝑘← 𝑗′𝑘′ (𝑡) |𝜆 = (−1)𝜈Π𝜈

𝑗𝑘← 𝑗′𝑘′ (𝑡) |−𝜆, which implies
that 𝜌𝐼 , 𝑗𝑘 (𝑡) |𝜆 and 𝜌𝐼 , 𝑗𝑘 (𝑡) |−𝜆 are unequal in general. One
exception is when all odd projectors are not relevant. The
Gaussian noise ensures this condition due to its vanishing
odd correlation functions, such as 𝛿𝜉𝐺 (𝑡)𝛿𝜉𝐺 (𝑡1)𝛿𝜉𝐺 (0) = 0.
This special property allows us to ignore the complication
of flipping signs, and finally find the invariance relation,
𝜌𝐼 , 𝑗𝑘 (𝑡) |−𝜆 = 𝜌𝐼 , 𝑗𝑘 (𝑡) |𝜆 (the same conclusion in the lab
frame), given the identical initial matrix elements 𝜌𝐼 , 𝑗′𝑘′ (0).
On the other hand, non-Gaussian noise does not in general
preserve this equality. We summarize the discussion of the
symmetry breaking and preserving in FIG. 1.
To theoretically confirm the predicted symmetry breaking,

we adopt a simple yet realistic model, i.e., the strong TLFs
[27, 36, 37]. This model is motivated by both the microscopic
understanding of thematerials used in solid-state qubits [5] and
abundant experimental evidence [13–18]. Therefore, studying
and understanding the dephasing rates by the TLFs also have
realistic values for research on solid-state qubits. To make our

results more broadly applicable, the full fluctuation 𝛿𝜉 (𝑡) here
consists of both theGaussian noise and 𝑁𝑇 strong TLFs, which
specifies 𝛿𝜉 (𝑡) = ∑𝑁𝑇

𝜇=1 𝛿𝜉𝑇𝜇 (𝑡) + 𝛿𝜉𝐺 (𝑡). The TLFs can only
take two values, i.e., ±|𝜉𝑇𝜇 | − 𝜉𝑇𝜇, where |𝜉𝑇𝜇 | describes the
noise magnitude, and 𝜉𝑇𝜇 is used to cancel the time average of
the fluctuator.
The dephasing of a qubit at its sweet spot by the strong

low-frequency noise reaches beyond the description of the
master-equation formalism, which is based on the second-
order approximation [69]. To study the high-order de-
phasing effect, we use the Keldysh diagrammatic technique
[38, 57, 58, 70] to perturbatively calculate the evolution of
qubit density matrix [71]. Our results provide an expression
of the free-induced (Ramsey) evolution of the off-diagonal ma-
trix element 𝜌𝑒𝑔 (𝑡) ≈ 𝜌𝑒𝑔 (0) exp[−𝑖𝜔′𝑞𝑡 − Φ(𝑡)]. Here, the
Lamb-shifted qubit oscillation frequency is approximated by
𝜔′𝑞 ≈ Δ + 𝐷2,𝜆=0

[
𝜆2 +

∫
𝑑𝜔𝑆(𝜔)/2𝜋] /2, where the coeffi-

cient 𝐷2,𝜆=0 ≡ (𝜕2𝜔bare𝑔𝑒 /𝜕𝜆2) |𝜆=0 denotes the second-order
derivative of the bare qubit frequency and Δ is the extremum
qubit bare frequencyΔ ≡ (𝜔bare𝑒 −𝜔bare𝑔 ) |𝜆=0. (Here and below,
we omit the integration limits ±∞ in

∫ ∞
−∞ to save space.) The

dephasing profile Φ(𝑡) can be divided into multiple contribu-
tions Φ(𝑡) ≈ Φ𝐺 (𝑡) +

∑𝑁𝑇

𝜇=1Φ𝑇𝜇 (𝑡) +
∑

𝜐≠𝜐′ Φ𝜐𝜐′ (𝑡), where
Φ𝐺 (𝑡), Φ𝑇𝜇 (𝑡) and Φ𝜐𝜐′ (𝑡) are contributed by the Gaussian
noise, the 𝜇th TLF and mutual effect by two different compo-
nents. Specifically, they are given by

Φ𝐺 (𝑡) =𝐷22,𝜆=0 𝜆2
∫

𝑑𝜔

2𝜋
𝑆𝐺 (𝜔)𝐾𝑅 (𝜔, 𝑡) (3)

+
𝐷22,𝜆=0
2

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝑆𝐺 (𝜔)𝑆𝐺 (𝜔′)𝐾𝑅 (𝜔 + 𝜔′, 𝑡),

Φ𝑇𝜇 (𝑡) =𝐷22,𝜆=0
(
𝜆 − 𝜉𝑇𝜇

)2∫ 𝑑𝜔

2𝜋
𝑆𝑇𝜇 (𝜔)𝐾𝑅 (𝜔, 𝑡),

Φ𝜐𝜐′ (𝑡) =
𝐷22,𝜆=0
2

∬
𝑑𝜔

2𝜋
𝑑𝜔

2𝜋

′
𝑆𝜐 (𝜔)𝑆𝜐′ (𝜔′)𝐾𝑅 (𝜔 + 𝜔′, 𝑡),

where 𝑆𝜐 (𝜔) is the Fourier transformation of the two-point cor-
relation functions, 𝑆𝜐 (𝜔) =

∫
𝑑𝑡 𝜉𝜐 (𝑡)𝜉𝜐 (0)𝑒𝑖𝜔𝑡 (𝜐 = 𝐺,𝑇𝜇

and 𝜇 = 1, 2, · · · , 𝑁𝑇 ), and the sum spectrum is denoted
by 𝑆(𝜔) =

∑
𝜐 𝑆𝜐 (𝜔). These spectra are sampled time-

dependently according to the filter function 𝐾𝑅 (𝜔, 𝑡) ≡
𝑡2sinc2 (𝜔𝑡/2) /2. The symmetry breaking is introduced by
Φ𝑇𝜇 (𝑡), since nonzero 𝜉𝑇𝜇 leads to Φ𝑇𝜇 (𝑡) |𝜆 ≠ Φ𝑇𝜇 (𝑡) |−𝜆.
Meanwhile, up to the leading order, the qubit frequency is still
symmetric after including the Lamb shift, implying an unex-
pected mismatch between the minima of the dephasing rate
and frequency.
In addition to the analytical calculation based on the per-

turbation theory, we further confirm our prediction indepen-
dently with numerical simulation. The method we use to
emulate the qubit evolution subjected to low-frequency fluc-
tuation is the stochastic Schrödinger equation (SSE) [36, 37].
This method averages the ensemble of traces of the qubit evo-
lution according to many realizations of the random fluctu-
ation. We choose the heavy fluxonium qubit as a concrete
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model [56], and generate the fluctuation traces according to
𝛿𝜉 (𝑡) = ∑𝑁𝑇

𝜇=1 𝛿𝜉𝑇𝜇 (𝑡) + 𝛿𝜉𝐺 (𝑡).
In FIG. 2 (a) and (b), we plot the calculated qubit frequencies

and dephasing rates as functions of the control parameter 𝜆 for
𝑁𝑇 = 0 (purely Gaussian) and 1 (non-Gaussian), respectively.
Both the dephasing rates 𝛾2 and the qubit frequency 𝜔′𝑞 are
extracted by fitting the simulated Ramsey measurement using
a simple exponential function over the same time range. (Note
that the dephasing profile is not exactly exponential given the
structured noise we use, but we choose this simplest proto-
col for consistency in comparing the results from different
methods and parameters.) For both cases, we find impressive
agreement between our analytical prediction (dashed lines) and
numerical simulation (squares). In (a), the Gaussian fluctuator
𝛿𝜉𝐺 (𝑡) ensures the Z2 symmetry under the reflection −𝜆→ 𝜆.
In (b), we observe a measurable mismatch between the min-
imum of the dephasing rate and the qubit frequency. For a
more intuitive demonstration of such mismatch, we showcase
two simulated Ramsey signals in FIG. 2 (c), taken at the nu-
merically simulated minima of the dephasing rate (red star)
and qubit frequency (blue star) in (b). Although the red signal
decays slower, it oscillates faster compared to the blue one.
This mismatch demands more carefulness in locating the opti-
mal working point experimentally: the extremum point of the
qubit frequency is not necessarily the qubit dephasing sweet
spot. Based on our simulation, the Ramsey dephasing rates at
the two mismatched minima differ by a factor of 2. Note that
different from the analytical prediction, we also find a shift of
the minimum of the qubit frequency from 𝜆 = 0 for 𝑁𝑇 = 1.
This is attributed to the less accuracy of the perturbation theory
at long times (𝑡 ∼ 0.5 ms). [We find much better agreement if
we fit for the rate over 0 < 𝑡 < 20 𝜇s, as plotted by light pink
circles in (b).]
Farther away from the sweet spot, the dephasing rates

are constantly measured to extract the amplitude of the low-
frequency noise [23, 26, 30, 53], due to its usually dominant
decoherence contribution. In this operating region, the non-
Gaussian fluctuators, for example, the two-level fluctuators,
can also dephase the qubit distinctively from itsGaussian coun-
terpart [36, 37, 40, 42, 43]. Using the theory developed above,
we extend our calculation to this parameter region to reveal
such distinction in detail, especially the different dependence
of the dephasing rate on 𝜆. Because the strong discrete noise
can introduce beatings in the Ramsey signals [36, 37, 40], we
switch to the Echo protocol to extract the dephasing rates. We
plot the calculated results using the analytical (dashed lines)
and numerical methods (squares) in FIG. 2 (d). From the bot-
tom to top, the number of TLFs is varied from 0 to 3 (cyan,
blue, red, purple). For the analytical method, the only differ-
ence from the Ramsey protocol is the replacement of 𝐾𝑅(𝜔, 𝑡)
by 𝐾𝐸(𝜔, 𝑡) ≡ 𝑡2sinc2 (𝜔𝑡/4) sin2 (𝜔𝑡/4)/2 in Eq. (3) [71]. We
find great agreement in the rates obtained by the analytical
(dashed curves) and numerical (squares) methods for 𝑁𝑇 = 0
and in the vicinity of 𝜆 ≈ 0 for nonzero 𝑁𝑇 ’s, but the devia-
tion is prominent for larger |𝜆 | in the non-Gaussian (𝑁𝑇 > 0)
cases. In that regime, the dephasing rate contributed by the

(a)

(b)

(c)

(d)

FIG. 2. Noise-mediated evolutions of a fluxonium qubit. (a) and
(b) show the calculated qubit frequency (purple) and dephasing rates
(black) by the Keldysh perturbation theory (dashed lines) and SSE
(squares and dots) by simulating the Ramsey measurements. In (c),
the red and blue curves are the simulated Ramsey signals at the points
marked by red and blue stars (b), respectively. The black dashed
curves describe the dephasing profile predicted using Eq. (3). We
choose 𝑁𝑇 = 0 for (a) and 𝑁𝑇 = 1 for (b) and (c). (d) plots the fitted
Echo dephasing rates over a wider range of control parameters, where
the dashed curves are from analytical calculation and the squares
from SSE. The number of TLFs 𝑁𝑇 used in this simulation is varied
from 0 to 3 (cyan, blue, red, purple). The solid lines mark the
projected saturation rates by the strong TLFs. The details of the qubit
and noise are given as follows. The qubit Hamiltonian is given by
𝐻̂ ≡ 4𝐸𝐶 𝑛̂2 +𝐸𝐿 [𝜑̂+𝜙ext + 𝛿𝜉 (𝑡)]2/2−𝐸𝐽 cos 𝜑̂, where 𝜑̂ and 𝑛̂ are
the conjugate phase and charge operators. The circuit parameters are
chosen as 𝐸𝐶/2𝜋 = 0.479 GHz, 𝐸𝐿/2𝜋 = 0.132 GHz and 𝐸𝐽 /2𝜋 =
3.395 GHz according to Ref. [26]. The sweet spot we study is located
at 𝜙ext = 𝜋, which gives the choices 𝜆 = 𝜙ext − 𝜋 and 𝑥 ≡ 𝐸𝐿 𝜑̂.
The strong TLFs have a magnitude |𝜉𝑇 |/2𝜋 = 9 × 10−5 and uneven
probability distribution 𝑃−(+) = 0.7(0.3). The Gaussian noise bath
is approximated by 2001 much weaker and independent TLFs with
even probability distributions, which have a 1/𝜅 distribution [45, 62]
for 𝜅 ∈ [1 kHz, 1MHz] to mimic the classical 1/ 𝑓 noise, and yield a
noise magnitude |𝛿𝜉𝐺 (𝑡) |/2𝜋 = 2 × 10−5.
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(a)

(b) (c)

(d)

Undriven

Arb. Unit

Depolarization

FIG. 3. Floquet engineering of the triple sweet spots. (a) plots the
product of the derivatives, i.e., |𝜕𝜀201/𝜕𝜆2 | × |𝜕𝜀01/𝜕𝐴|, as a function
of the drive amplitude 𝐴 and frequency𝜔𝑑 . The two dark curves cor-
respond to the vanishing of the two derivatives, respectively, and the
crossing hosts the triple sweet spot (cyan diamond). (b) and (c) show
the quasi-energy spectra as functions of the dc control parameter 𝜆
and the drive amplitude 𝐴, respectively, to show the flattening of the
spectra visually. The red dashed lines describe the quasi-energies
of the undriven bare fluxonium and the crosses mark the location of
static working points (𝐴 = 0). (d) compares the simulated Ram-
sey measurements between the Floquet engineered triple sweet spot
(cyan) and the static one (red). The dashed cyan curve corresponds to
the scenario where the drive amplitude has a 1% random fluctuation.
The gray solid curves are the simulated Floquet excited state popula-
tion for 1→0 decay (top) and 0→1 excitation (bottom), which we use
to confirm its dominant contribution to the Floquet dephasing.

TLFs saturates [36, 37, 40, 43] and does not further grow with
larger qubit linear dispersion. Using a method based on the
rotating-wave approximation [71], we derive the saturated de-
phasing rates as 𝜅 =

∑
®𝜂 𝜅 ®𝜂𝑃 ®𝜂 , where ®𝜂 is one configuration

of the group of strong TLFs, and 𝜅 ®𝜂 and 𝑃 ®𝜂 are the flipping
rate corresponding to that configuration and the probability
of finding such configuration, respectively. These predicted
saturation rates (solid lines) well capture the behaviors of the
dephasing rates at the far left part of the FIG. 2 (d). There-
fore, if non-Gaussian fluctuators are present, the estimated
noise amplitude will be inconsistent at different 𝜆 if one still
assumes the noise as Gaussian.

Triple protection by Floquet engineering.–Our calculations

suggest the need to explore beyond the first-order protec-
tion from the low-frequency noise at traditional sweet spots.
Specifically, Eq. (3) points out the crucial role of the second-
order derivative 𝐷2,𝜆=0 in limiting the optimal coherence
times, for the presence of both the Gaussian noise and non-
Gaussian TLFs. From the hardware level, it is ideal to design
a qubit with flatter spectrum [33, 34, 48, 53, 64]. However, the
experimental implementation of some of these qubits, espe-
cially the protected qubits which are predicted to possess both
long 𝑇1 and 𝑇2, encounters challenges from the experimen-
tally achievable range of circuit parameters for full protection
[7, 53]. In the following, we present a drive-based protocol that
can suppress the second-order derivative of the qubit, which
can circumvent the limitations from the hardware level.
Different from the dynamical sweet spots studied in [46, 47],

here we fix the dc control parameter at its static sweet spot
(𝜆 = 0), and search for operating points where both 𝜕𝜀01/𝜕𝜆
and 𝜕2𝜀01/𝜕2𝜆 vanish. (Here, 𝜀01 denotes the bare quasi-
energy difference.) In fact, these operating points are not
difficult to find. For example, this derivative vanishes if the
qubit is driven resonantly by 𝐻̂𝑑 (𝑡) = 𝐴 cos(𝜔𝑑𝑡) 𝑥 (choosing
𝜔𝑑 ≈ Δ) at its sweet spot [46], where 𝐴 and𝜔𝑑 denote the drive
amplitude and frequency, respectively. However, as pointed
out in Refs. [47, 49, 50, 59, 63, 72], the fluctuation of the drive
amplitude also causes qubit dephasing. It is therefore useful
to enable protection from the ac noise as well.
The need to protect qubits from both dc and ac noises

motivates us to target operating points with 𝜕𝜀01/𝜕𝜆 = 0,
𝜕2𝜀01/𝜕2𝜆 = 0 and 𝜕𝜀01/𝜕𝐴 = 0, which we call the triple
sweet spots. These operating points are more difficult to
find. For the fluxonium qubit we work with, we do not
find such triple protection with the simple sinusoidal drive.
(We have confirmed this absence numerically over a wide
range of the drive parameters.) However, a slightly more
complex periodic drive solves this problem. For exam-
ple, we find the vanishing of the three derivatives using
𝐻̂𝑑 (𝑡) = 𝐴[cos𝜔𝑑𝑡 + 𝛼 cos(2𝑛 + 1)𝜔𝑑𝑡]𝑥 (𝑛 ∈ N+). (We
choose an odd integer 2𝑛+1 to ensure the vanishing of 𝜕𝜖01/𝜕𝜆
[71].) This driving protocol is similar to those chosen in
Refs. [49, 50], although we are targeting working points with
an extra second-order protection. We show one example of
such sweet spots in FIG. 3 (a), where we choose 𝛼 = 1 and
𝑛 = 1. Beside the position of this sweet spot, we also vi-
sually demonstrate the flattening of the spectrum. In FIG. 3
(b), we plot the quasi-energies of the qubit as a function of
the dc control parameter 𝜆, with the ac drive amplitude 𝐴
fixed at the sweet spot, and the other way around in (c). Both
plots show suppressed variation of the qubit frequency around
the sweet spot. In (b), the variation of the frequency of the
undriven qubit (subtracted by integer multiples of the drive
frequency for comparison) is plotted (red-dashed curve) to
contrast the second-order suppression. Similar sweet spots for
other choices for 𝛼 and 𝑛 have also been found. According
to Eq. (3), this protection protocol should mitigate dephasing
caused by both theGaussian noise and the non-Gaussian TLFs.
To numerically confirm the improvement of coherence
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times, we use the SSE method to simulate the Floquet Ramsey
evolution [47], and compare the dephasing timewith that in the
undriven case in FIG. 3 (d). Still using the noise model 𝛿𝜉 (𝑡)
(𝑁𝑇 = 2 for this simulation), the dephasing time at this triple
protection point (solid cyan curve) is improved by 10 times
compared to that at the static sweet spot (solid red curve).
This is directly related to the suppression of the second-order
derivative [FIG. 3 (b)]. The limiting factor for the coherence
time at this protection point is the depolarization (solid gray
curves) by the noise at the smaller qubit frequency, which
can potentially be further mitigated by optimizing the qubit
parameters and drive shapes. To emulate the low-frequency
drive noise, we further include random fluctuation of the drive
amplitude 𝐴 before each evolution trace in the SSE simula-
tion. Remarkably, we still find 8 times improvement (cyan
dashed curve) for up to 1% fluctuation of the drive amplitude.
This insensitivity is owing to the first-order insensitivity of the
quasi-energy difference to the drive amplitude [FIG. 3 (c)].

Conclusion.–We study the high-order dephasing effect in a
qubit by non-Gaussian fluctuators. Our calculation predicts a
symmetry breaking that is unique to the non-Gaussian noise.
Concretely, we show that the strong TLFs, a popular non-
Gaussian noise model, dramatically change the behavior of the
dephasing rates and cause an unexpected mismatch between
the minima of the dephasing rate and the qubit frequency.
These findings challenge the usually assumed equivalence be-
tween the two minima, call for extra carefulness in locating
the optimal working point, and caution the use of the Gaus-
sian model for noise characterization. Finally, we propose a
triple-protection scheme to suppress both the first-order and
the second-order sensitivity of the qubit energy to these fluc-
tuators, where the qubit is also first-order protected from the
low-frequency drive noise. Our simulation demonstrates an or-
der of magnitude improvement of the dephasing time based on
the parameters of an experimentally realized heavy fluxonium
qubit.

Acknowledgements.– This material is based upon work sup-
ported by the U.S. Department of Energy, Office of Sci-
ence, National Quantum Information Science Research Cen-
ters, Superconducting QuantumMaterials and Systems Center
(SQMS) under contract number DE-AC02-07CH11359. We
thank Jens Koch, David I. Schuster, András Gyenis, Peter
Groszkowski, Wei-Ting Lin, Pranav S. Mundada and Helin
Zhang for constructive discussions.

∗ zhuang@fnal.gov
† szhu26@fnal.gov
[1] D. P. DiVincenzo, The Physical Implementation of Quantum

Computation, Fortschr. Phys. 48, 771 (2000).
[2] J. Preskill, Quantum Computing in the NISQ Era and Beyond,
Quantum 2, 79 (2018).

[3] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-
J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting
Qubits: Current State of Play, Annu. Rev. Condens. Matter

Phys. 11, 369 (2020).
[4] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage,

Trapped-Ion Quantum Computing: Progress and Challenges,
Appl. Phys. Rev. 6, 021314 (2019).

[5] C. Müller, J. H. Cole, and J. Lisenfeld, Towards Understanding
Two-Level-Systems in Amorphous Solids: Insights from Quan-
tum Circuits, Rep. Prog. Phys. 82, 124501 (2019).

[6] C. E. Murray, Material Matters in Superconducting Qubits,
Mater. Sci. Eng. R Rep. 146, 100646 (2021).

[7] A. Gyenis, A. Di Paolo, J. Koch, A. Blais, A. A. Houck, and
D. I. Schuster, Moving beyond the Transmon: Noise-Protected
Superconducting Quantum Circuits , PRX Quantum 2, 030101
(2021).

[8] P. Dutta and P. M. Horn, Low-Frequency Fluctuations in Solids:
1
𝑓 Noise, Rev. Mod. Phys. 53, 497 (1981).

[9] M. B. Weissman, 1𝑓 Noise and Other Slow, Nonexponential
Kinetics in Condensed Matter, Rev. Mod. Phys. 60, 537 (1988).

[10] P. Kumar, S. Sendelbach, M. A. Beck, J. W. Freeland, Z. Wang,
H. Wang, C. C. Yu, R. Q. Wu, D. P. Pappas, and R. McDermott,
Origin and Reduction of 1/ 𝑓 Magnetic Flux Noise in Supercon-
ducting Devices, Phys. Rev. Applied 6, 041001 (2016).

[11] K. Serniak, M. Hays, G. de Lange, S. Diamond, S. Shankar,
L. D. Burkhart, L. Frunzio, M. Houzet, and M. H. Devoret, Hot
Nonequilibrium Quasiparticles in Transmon Qubits, Phys. Rev.
Lett. 121, 157701 (2018).

[12] M. Constantin and C. C. Yu,Microscopic Model of Critical Cur-
rent Noise in Josephson Junctions, Phys. Rev. Lett. 99, 207001
(2007).

[13] S. Schlör, J. Lisenfeld, C. Müller, A. Bilmes, A. Schneider,
D. P. Pappas, A. V. Ustinov, and M. Weides, Correlating Deco-
herence in Transmon Qubits: Low Frequency Noise by Single
Fluctuators, Phys. Rev. Lett. 123, 190502 (2019).

[14] D. Rieger, S. Günzler, M. Spiecker, P. Paluch, P. Winkel,
L. Hahn, J. K. Hohmann, A. Bacher, W. Wernsdorfer, and I. M.
Pop, Gralmonium: Granular Aluminum Nano-Junction Fluxo-
nium Qubit (2022), arXiv:2202.01776.

[15] V. Zaretskey, B. Suri, S. Novikov, F. C. Wellstood, and B. S.
Palmer, Spectroscopy of a Cooper-Pair Box Coupled to a Two-
Level System via Charge and Critical Current, Phys. Rev. B 87,
174522 (2013).

[16] J. Lisenfeld, G. J. Grabovskĳ, C. Müller, J. H. Cole, G. Weiss,
and A. V. Ustinov,Observation of Directly Interacting Coherent
Two-Level Systems in an Amorphous Material, Nat. Commun.
6, 6182 (2015).

[17] J. H. Béjanin, C. T. Earnest, A. S. Sharafeldin, and
M. Mariantoni, Interacting Defects Generate Stochastic Fluc-
tuations in Superconducting Qubits, Phys. Rev. B 104, 094106
(2021).

[18] T. McCourt, C. Neill, K. Lee, C. Quintana, Y. Chen, J. Kellyand,
V. N. Smelyanskiy, M. I. Dykman, A. Korotkov, I. L. Chuang,
and A. G. Petukhov, Learning Noise via Dynamical Decoupling
of Entangled Qubits (2022), arXiv:2201.11173.

[19] R. C. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz,
N. Katz, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang,
A. N. Cleland, and J. M. Martinis, 1/ 𝑓 Flux Noise in Josephson
Phase Qubits, Phys. Rev. Lett. 99, 187006 (2007).

[20] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina,
D. Esteve, and M. H. Devoret,Manipulating the Quantum State
of an Electrical Circuit, Science 296, 886 (2002).

[21] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Coherent Control
of Macroscopic Quantum States in a Single-Cooper-Pair Box,
Nature 398, 786 (1999).

[22] Y. Nakamura, Y. A. Pashkin, T. Yamamoto, and J. S. Tsai,



6

Charge Echo in a Cooper-Pair Box, Phys. Rev. Lett. 88, 047901
(2002).

[23] L. B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N. Grabon,
and V. E. Manucharyan, High-Coherence Fluxonium Qubit,
Phys. Rev. X 9, 041041 (2019).

[24] Y.-H. Lin, L. B. Nguyen, N. Grabon, J. San Miguel, N. Pankra-
tova, and V. E. Manucharyan, Demonstration of Protection of
a Superconducting Qubit from Energy Decay, Phys. Rev. Lett.
120, 150503 (2018).

[25] N. Earnest, S. Chakram, Y. Lu, N. Irons, R. K. Naik, N. Leung,
L. Ocola, D. A. Czaplewski, B. Baker, J. Lawrence, J. Koch,
and D. I. Schuster, Realization of a Λ System with Metastable
States of a Capacitively Shunted Fluxonium, Phys. Rev. Lett.
120, 150504 (2018).

[26] H. Zhang, S. Chakram, T. Roy, N. Earnest, Y. Lu, Z. Huang,
D. K. Weiss, J. Koch, and D. I. Schuster, Universal Fast-Flux
Control of a Coherent, Low-Frequency Qubit, Phys. Rev. X 11,
011010 (2021).

[27] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler, 1/ 𝑓
Noise: Implications for Solid-State Quantum Information, Rev.
Mod. Phys. 86, 361 (2014).

[28] I. Chiorescu, Y. Nakamura, C. J. P.M. Harmans, and J. E.Mooĳ,
Coherent Quantum Dynamics of a Superconducting Flux Qubit,
Science 299, 1869 (2003).

[29] C. M. Quintana, Y. Chen, D. Sank, A. G. Petukhov, T. C.
White, D. Kafri, B. Chiaro, A. Megrant, R. Barends, B. Camp-
bell, Z. Chen, A. Dunsworth, A. G. Fowler, R. Graff, E. Jef-
frey, J. Kelly, E. Lucero, J. Y. Mutus, M. Neeley, C. Neill,
P. J. J. O’Malley, P. Roushan, A. Shabani, V. N. Smelyanskiy,
A. Vainsencher, J. Wenner, H. Neven, and J. M. Martinis, Ob-
servation of Classical-Quantum Crossover of 1/ 𝑓 Flux Noise
and Its Paramagnetic Temperature Dependence, Phys. Rev. Lett.
118, 057702 (2017).

[30] J. Braumüller, L. Ding, A. P. Vepsäläinen, Y. Sung, M. Kjaer-
gaard, T. Menke, R. Winik, D. Kim, B. M. Niedzielski,
A. Melville, J. L. Yoder, C. F. Hirjibehedin, T. P. Orlando,
S. Gustavsson, and W. D. Oliver, Characterizing and Optimiz-
ing Qubit Coherence Based on SQUID Geometry, Phys. Rev.
Applied 13, 054079 (2020).

[31] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears,
D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. We-
ber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and
W. D. Oliver, The Flux Qubit Revisited to Enhance Coherence
and Reproducibility, Nat. Commun. 7, 12964 (2016).

[32] G. Catelani, S. E. Nigg, S. M. Girvin, R. J. Schoelkopf, and L. I.
Glazman, Decoherence of Superconducting Qubits Caused by
Quasiparticle Tunneling, Phys. Rev. B 86, 184514 (2012).

[33] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-Insensitive Qubit Design Derived from the
Cooper Pair Box, Phys. Rev. A 76, 042319 (2007).

[34] P. Groszkowski, A. Di Paolo, A. L. Grimsmo, A. Blais, D. I.
Schuster, A. A. Houck, and J. Koch, Coherence Properties of
the 0-𝜋 Qubit, New J. Phys. 20, 043053 (2018).

[35] J. Schriefl, Y. Makhlin, A. Shnirman, and G. Schön, Decoher-
ence from Ensembles of Two-Level Fluctuators, New J. Phys. 8,
1 (2006).

[36] G. Falci, A. D’Arrigo, A. Mastellone, and E. Paladino, Initial
Decoherence in Solid State Qubits, Phys. Rev. Lett. 94, 167002
(2005).

[37] E. Paladino, L. Faoro, G. Falci, and R. Fazio, Decoherence and
1/f Noise in Josephson Qubits, Phys. Rev. Lett. 88, 228304
(2002).

[38] Y. Makhlin and A. Shnirman, Dephasing of Solid-State Qubits

at Optimal Points, Phys. Rev. Lett. 92, 178301 (2004).
[39] T. Itakura and Y. Tokura, Dephasing due to Background Charge

Fluctuations, Phys. Rev. B 67, 195320 (2003).
[40] J. Bergli, Y. M. Galperin, and B. L. Altshuler, Decoherence in

Qubits Due to Low-Frequency Noise, New J. Phys. 11, 025002
(2009).

[41] M. A. C. Rossi andM. G. A. Paris,Non-Markovian Dynamics of
Single- and Two-Qubit Systems Interacting with Gaussian and
non-Gaussian Fluctuating Transverse Environments, J. Chem.
Phys. 144, 024113 (2016).

[42] J. Bergli, Y. M. Galperin, and B. L. Altshuler, Decoherence of
a Qubit by Non-Gaussian Noise at an Arbitrary Working Point,
Phys. Rev. B 74, 024509 (2006).

[43] Y. M. Galperin, B. L. Altshuler, J. Bergli, and D. V. Shant-
sev, Non-Gaussian Low-Frequency Noise as a Source of Qubit
Decoherence, Phys. Rev. Lett. 96, 097009 (2006).

[44] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve,
F. Chiarello, A. Shnirman, Y.Makhlin, J. Schriefl, andG. Schön,
Decoherence in a Superconducting Quantum Bit Circuit, Phys.
Rev. B 72, 134519 (2005).

[45] X. You, A. A. Clerk, and J. Koch, Positive- and Negative-
Frequency Noise from an Ensemble of Two-Level Fluctuators,
Phys. Rev. Research 3, 013045 (2021).

[46] Z. Huang, P. S. Mundada, A. Gyenis, D. I. Schuster, A. A.
Houck, and J. Koch, Engineering Dynamical Sweet Spots to
Protect Qubits from 1/ 𝑓 Noise, Phys. Rev. Applied 15, 034065
(2021).

[47] P. S. Mundada, A. Gyenis, Z. Huang, J. Koch, and A. A.
Houck, Floquet-Engineered Enhancement of Coherence Times
in a Driven Fluxonium Qubit, Phys. Rev. Applied 14, 054033
(2020).

[48] D. K.Weiss, A. C. Y. Li, D. G. Ferguson, and J. Koch, Spectrum
and Coherence Properties of the Current-Mirror Qubit, Phys.
Rev. B 100, 224507 (2019).

[49] N.Didier,Flux Control of Superconducting Qubits at Dynamical
Sweet Spot (2019), arXiv:1912.09416.

[50] J. A. Valery, S. Chowdhury, G. Jones, and N. Didier, Dynamical
sweet spot engineering via two-tone flux modulation of super-
conducting qubits, PRX Quantum 3, 020337 (2022).

[51] Y. Sung, F. Beaudoin, L. M. Norris, F. Yan, D. K. Kim, J. Y.
Qiu, U. von Lüpke, J. L. Yoder, T. P. Orlando, S. Gustavsson,
L. Viola, and W. D. Oliver, Non-Gaussian Noise Spectroscopy
with a Superconducting Qubit Sensor, Nat. Commun. 10, 3715
(2019).

[52] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi,
G. Fitch, D. G. Cory, Y. Nakamura, J.-S. Tsai, and W. D. Oliver,
Noise Spectroscopy Through Dynamical Decoupling with a Su-
perconducting Flux Qubit, Nat. Phys. 7, 565 (2011).

[53] A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard, X. You,
D. I. Schuster, J. Koch, A. Blais, and A. A. Houck, Experimen-
tal Realization of a Protected Superconducting Circuit Derived
from the 0-𝜋 Qubit, PRX Quantum 2, 010339 (2021).

[54] A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham,
M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon, A. Vraji-
toarea, S. Sussman, G. Cheng, T. Madhavan, H. K. Babla, X. H.
Le, Y. Gang, B. Jäck, A. Gyenis, N. Yao, R. J. Cava, N. P.
de Leon, and A. A. Houck, New Material Platform for Super-
conducting Transmon Qubits with Coherence Times Exceeding
0.3 Milliseconds, Nat. Commun. 12, 1779 (2021).

[55] C.Wang, X. Li, H. Xu, Z. Li, J. Wang, Z. Yang, Z. Mi, X. Liang,
T. Su, C. Yang, G. Wang, W. Wang, Y. Li, M. Chen, C. Li,
K. Linghu, J. Han, Y. Zhang, Y. Feng, Y. Song, T. Ma, J. Zhang,
R. Wang, P. Zhao, W. Liu, G. Xue, Y. Jin, and H. Yu, Towards
Practical Quantum Computers: Transmon Qubit with a Lifetime



7

Approaching 0.5 Milliseconds, npj Quantum Inf. 8, 3 (2022).
[56] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,

Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets,
Science 326, 113 (2009).

[57] Y.-X. Wang and A. A. Clerk, Spectral Characterization of Non-
Gaussian Quantum Noise: Keldysh Approach and Application
to Photon Shot Noise, Phys. Rev. Research 2, 033196 (2020).

[58] Y.Makhlin andA. Shnirman,Dephasing of Qubits by Transverse
Low-Frequency Noise, J. Exp. Theor. Phys. 78, 497 (2003).

[59] S. S. Hong, A. T. Papageorge, P. Sivarajah, G. Crossman, N. Di-
dier, A.M. Polloreno, E.A. Sete, S.W.Turkowski,M. P. da Silva,
and B. R. Johnson,Demonstration of a Parametrically Activated
Entangling Gate Protected from Flux Noise, Phys. Rev. A 101,
012302 (2020).

[60] A. Somoroff, Q. Ficheux, R. A. Mencia, H. Xiong, R. V.
Kuzmin, and V. E. Manucharyan, Millisecond Coherence in
a Superconducting Qubit (2021), arXiv:2103.08578.

[61] K. Kalashnikov, W. T. Hsieh, W. Zhang, W.-S. Lu, P. Kamenov,
A. Di Paolo, A. Blais, M. E. Gershenson, andM. Bell, Bifluxon:
Fluxon-parity-protected superconducting qubit, PRX Quantum
1, 010307 (2020).

[62] A. Shnirman, G. Schön, I. Martin, and Y. Makhlin, Low- and
High-Frequency Noise from Coherent Two-Level Systems, Phys.
Rev. Lett. 94, 127002 (2005).

[63] N. Didier, E. A. Sete, J. Combes, and M. P. da Silva, ac
Flux Sweet Spots in Parametrically Modulated Superconduct-
ing Qubits, Phys. Rev. Applied 12, 054015 (2019).

[64] J. Q. You, X. Hu, S. Ashhab, and F. Nori, Low-decoherence flux
qubit, Phys. Rev. B 75, 140515 (2007).

[65] Q. Ficheux, L. B. Nguyen, A. Somoroff, H. Xiong, K. N. Nes-
terov, M. G. Vavilov, and V. E. Manucharyan, Fast Logic with
Slow Qubits: Microwave-Activated Controlled-Z Gate on Low-
Frequency Fluxoniums, Phys. Rev. X 11, 021026 (2021).

[66] J. M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J. Hako-
nen, and M. A. Sillanpää,Hybrid Circuit Cavity Quantum Elec-
trodynamics with a Micromechanical Resonator, Nature 494,
211 (2013).

[67] A. Gandon, C. Le Calonnec, R. Shillito, A. Petrescu, and
A. Blais, Engineering, Control, and Longitudinal Readout of
Floquet Qubits, Phys. Rev. Applied 17, 064006 (2022).

[68] A. Di Paolo, C. Leroux, T. M. Hazard, K. Serniak, S. Gustavs-
son, A. Blais, and W. D. Oliver, Extensible Aircuit-QED Ar-
chitecture via Amplitude- and Frequency-Variable Microwaves
(2022), arXiv:2204.08098.

[69] H. Breuer and F. Petruccione, “The Theory of Open Quantum
Systems” (Oxford University Press, New York, 2007).

[70] C. Müller and T. M. Stace,Deriving Lindblad Master Equations
with Keldysh Diagrams: Correlated Gain and Loss in Higher
Order Perturbation Theory, Phys. Rev. A 95, 013847 (2017).

[71] See Supplemental Material at [URL will be inserted by pub-
lisher] for the analytical derivation of the dephasing profile of
the qubit around its sweet spot for the static and driven cases.

[72] I. Cohen, N. Aharon, and A. Retzker, Continuous Dynamical
Decoupling Utilizing Time-Dependent Detuning, Fortschr. Phys.
65, 1600071 (2017).



8

Supplemental Material for “High-Order Qubit Dephasing at Sweet Spots by
Non-Gaussian Fluctuators: Symmetry Breaking and Floquet Protection”

Ziwen Huang, Xinyuan You, Ugur Alyanak, Alexander Romanenko, Anna Grassellino, and Shaojiang Zhu
Superconducting Quantum Materials and Systems Center,

Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA

I. MODEL

A. Qubit

This section provides more details of the qubit and the fluc-
tuators studied in the main text. As a recap of the main text,
the Hamiltonian of the qubit is 𝐻̂𝑞 (𝜆) = 𝐻̂𝑞 (0) + 𝜆𝑥, where
𝜆 is a control parameter of the qubit. The Hamiltonian 𝐻̂𝑞 (0)
satisfies a Z2 symmetry, i.e., 𝑅̂𝐻̂𝑞 (0) 𝑅̂† = 𝐻̂𝑞 (0), where 𝑅̂ is
defined by the transformation 𝑅̂𝑥𝑅̂† = −𝑥. Using this property,
one can prove

(𝜕𝜔bare𝑔𝑒 /𝜕𝜆) |𝜆=0 = 〈𝑒 |𝑥 |𝑒〉|𝜆=0 − 〈𝑔 |𝑥 |𝑔〉|𝜆=0 = 0. (S1)

The last equation holds because the Z2 symmetry renders
〈 𝑗 |𝑥 | 𝑗〉𝜆=0 = −〈 𝑗 |𝑅̂†𝑥𝑅̂ | 𝑗〉𝜆=0 = −〈 𝑗 |𝑥 | 𝑗〉𝜆=0 = 0 for any
non-degenerate eigenstates | 𝑗〉 with eigenenergy 𝜔bare𝑗 of bare
Hamiltonian 𝐻̂𝑞 (𝜆). (We use 𝑗 to index the eigenstates.)
Important for the discussion below, here we evaluate pertur-

batively the matrix elements of 𝑥 for 𝜆 ≈ 0. We find

| 𝑗〉𝜆 = | 𝑗〉𝜆=0 + 𝜆
∑︁
𝑗′≠ 𝑗

(
𝑥 𝑗′ 𝑗

𝜔bare𝑗 − 𝜔bare𝑗′
| 𝑗 ′〉

) �����
𝜆=0

+𝑂 (𝜆2), (S2)

where we define 𝑥 𝑗′ 𝑗 ≡ 〈 𝑗 ′ |𝑥 | 𝑗〉. This equation approximates
𝑥𝑔𝑔 |𝜆 ≈

∑
𝑗≠𝑔 2𝜆[|𝑥𝑔 𝑗 |2/(𝜔bare𝑔 − 𝜔bare𝑗 )] |𝜆=0 as well as 𝑥𝑒𝑒 |𝜆

by switching 𝑒 and 𝑔.

B. Two-level fluctuators

This subsection focuses on the correlation functions of a
single TLF. As a recap of the main text, the TLF 𝛿𝜉𝑇 (𝑡) can
only take two values, ±|𝜉𝑇 | − 𝜉𝑇 , and the probabilities of find-
ing the TLF in these states are 𝑃±. (We omit the subscript 𝜇
that indexes the TLFs, since only one TLF is under investi-
gation.) The coefficient 𝜉𝑇 is set by 𝜉𝑇 = |𝜉𝑇 | (𝑃+ − 𝑃−) to
ensure 𝛿𝜉 (𝑡) = 0. The rate of the downward (upward) flipping
is denoted by 𝜅−(+) . The state probabilities and flipping rates
satisfy 𝜅−𝑃+ = 𝜅+𝑃−. For convenience, we denote the sum
rate by 𝜅 ≡ 𝜅+ + 𝜅−.
To derive the correlation functions, we find it convenient

to first study the equal-amplitude but nonzero-average TLF:
𝜉𝑇 (𝑡) ≡ 𝛿𝜉𝑇 (𝑡) + 𝜉𝑇 . If we can find the correlation functions
of 𝜉𝑇 (𝑡), those of 𝛿𝜉𝑇 (𝑡) can be easily derived. An important
fact for 𝜉𝑇 (𝑡) is that, if we find the TLF 𝜉𝑇 (𝑡) in +|𝜉𝑇 | state at
time 𝑡, then at time 𝑡 + Δ𝑡 (Δ𝑡 > 0), the probability of finding
it still in the same state is 𝑓1 (Δ𝑡) ≡ 𝑃−𝑒−𝜅Δ𝑡 + 𝑃+. Using this

relation, we can derive the multi-time correlation functions
as products of such probabilities based on the formula for
conditional probability:

[
𝜉𝑇 (𝑡)+|𝜉𝑇 |

] [
𝜉𝑇 (𝑡1)+|𝜉𝑇 |

]
· · ·

[
𝜉𝑇 (𝑡𝑛)+|𝜉𝑇 |

] [
𝜉𝑇 (0)+|𝜉𝑇 |

]
= |2𝜉𝑇 |𝑛+1𝑃+ 𝑓1 (𝑡 − 𝑡1) 𝑓1 (𝑡1 − 𝑡2) · · · 𝑓1 (𝑡𝑛 − 0). (S3)

Note that the times shown above are ordered by 𝑡 ≥ 𝑡1 ≥ · · · ≥
𝑡𝑛 ≥ 0. Then, the correlation functions of 𝜉𝑇 (𝑡) and 𝛿𝜉𝑇 (𝑡)
can be obtained to arbitrary orders. Specifically, we show the
results up to the fourth order:

𝛿𝜉𝑇 (𝑡) = 0, (S4)

𝛿𝜉𝑇 (𝑡)𝛿𝜉𝑇 (0) = |2𝜉𝑇 |2𝑃−𝑃+𝑒−𝜅𝑡 ,
𝛿𝜉𝑇 (𝑡)𝛿𝜉𝑇 (𝑡1)𝛿𝜉𝑇 (0) = −|2𝜉𝑇 |3 (𝑃+−𝑃−)𝑃−𝑃+𝑒−𝜅𝑡 ,
𝛿𝜉𝑇 (𝑡)𝛿𝜉𝑇 (𝑡1)𝛿𝜉𝑇 (𝑡2)𝛿𝜉𝑇 (0) = |2𝜉𝑇 |4 (𝑃−𝑃+)2𝑒−𝜅 (𝑡−𝑡1)−𝜅𝑡2

+ |2𝜉𝑇 |4𝑃−𝑃+ (𝑃+−𝑃−)2𝑒−𝜅𝑡 .

Obviously, the three-time correlation function of the TLF is
nonzero in general, while such function of a Gaussian fluctu-
ator is strictly zero.
Although a single TLF shows clear non-Gaussian features,

a sufficiently large number of independent TLFs can be ap-
proximated as Gaussian noise according to the central limit
theorem. Therefore, the Gaussian noise in our numerical sim-
ulation is emulated by 2001 independent weak TLFs. Using
this Gaussian-noise model, we find great agreement between
the numerical simulation and the analytical prediction.

II. KELDYSH FORMALISM

A. General Keldysh discussion

The Keldysh technique is a powerful tool that evaluates the
formal expression of 𝜌̂𝐼 (𝑡) = 𝑈̂†𝐼 (𝑡) 𝜌̂𝐼 (0)𝑈̂𝐼 (𝑡) perturbatively
and diagrammatically. This perturbative treatment starts with
the expansion of 𝑈̃𝐼 (𝑡) ≡ T exp[−𝑖

∫ 𝑡

0 𝑑𝑡
′𝐻̃𝐼 (𝑡 ′)] in powers

of the perturbation Hamiltonian 𝐻̃𝐼 (𝑡) = 𝑈̂†0 (𝑡)𝐻̂𝐼 (𝑡)𝑈̂0 (𝑡),
where the bare propagator is 𝑈̂0 (𝑡) ≡ exp[−𝑖𝐻̂𝑞 (𝜆)𝑡] and the
noise coupling term is 𝐻̂𝐼 (𝑡) = 𝛿𝜉 (𝑡)𝑥. [This specific choice
of 𝑈̂0 (𝑡) is suitable for describing the free-induced (Ramsey)
dephasing of the qubit.] The expansion is 𝑈̃𝐼 (𝑡) =

∑
𝜈 𝑈̃

𝜈
𝐼 (𝑡),
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where the 𝜈th term 𝑈̃𝜈
𝐼 (𝑡) is given by

𝑈̃𝜈
𝐼 (𝑡)=(−𝑖)𝜈

∫ 𝑡

0
𝑑𝑡1𝐻̃𝐼 (𝑡1)

∫ 𝑡1

0
𝐻̃𝐼 (𝑡2)𝑑𝑡2 · · ·

×
∫ 𝑡𝜈−1

0
𝐻̃𝐼 (𝑡𝜈)𝑑𝑡𝜈 . (S5)

It contains a product of 𝜈 times of 𝐻̃𝐼 .
Using Eq. (S5), we expand the density matrix elements as

𝜌𝐼 , 𝑗𝑘 (𝑡) =
∑︁
𝑗′𝑘′𝜈

𝜌𝐼 , 𝑗′𝑘′ (0) Π𝜈
𝑗𝑘← 𝑗′𝑘′ (𝑡), (S6)

where the 𝜈th order Keldysh projector is defined by
Π𝜈

𝑗𝑘← 𝑗′𝑘′ (𝑡) ≡
∑

𝜈′+𝜈′′=𝜈 〈 𝑗 |𝑈̃𝜈′
𝐼 (𝑡) | 𝑗 ′〉〈𝑘 ′ | 𝑈̃𝜈′′†

𝐼 (𝑡) |𝑘〉|. With
no noise coupling, we have Π(0)𝑗𝑘← 𝑗′𝑘′ (𝑡) = 𝛿 𝑗 , 𝑗′𝛿𝑘,𝑘′ , which is
also the zeroth-order term in the expansion (S6). Note that not
all the projectors are important. Because we are interested in
the dephasing of the qubit, which is related to the decay of the
off-diagonal matrix element, we only focus on the projectors
Π𝜈
𝑒𝑔← 𝑗𝑘 (𝑡). To measure the evolution of 𝜌𝐼 ,𝑒𝑔 (𝑡), the qubit is
usually prepared in an equal superposition state |𝑒〉 and |𝑔〉,
which sets 𝜌𝐼 ,𝑒𝑔 (0) = 𝜌𝐼 ,𝑔𝑒 (0) = 𝜌𝐼 ,𝑔𝑔 (0) = 𝜌𝐼 ,𝑒𝑒 (0) = 1/2
and other initial matrix elements zero. This specific protocol
further restricts our attention to projectors with 𝑗 = 𝑒, 𝑔 and
𝑘 = 𝑒, 𝑔.
To extract the noise-mediated qubit frequency and the de-

phasing rate, the quantity we focus on is the exponent of the
evolution−𝑖𝜔′𝑞𝑡−Φ(𝑡) in 𝜌𝑒𝑔 (𝑡) ≈ 𝜌𝑒𝑔 (0) exp[−𝑖𝜔′𝑞𝑡−Φ(𝑡)].
In the literature on Keldysh formalism [1–3], this exponent is
related to the self energy. For the specific measurement proto-
col we describe above, the “self energy” in this paper is defined
as

Σ𝑒𝑔 (𝑡) ≡ ln
[ ∑︁
𝑖, 𝑗=𝑒,𝑔

Π𝑒𝑔←𝑖 𝑗 (𝑡)
]

(S7)

=
∑︁

𝑖, 𝑗=𝑒,𝑔

∑︁
𝜈>0

Π(𝜈)𝑒𝑔←𝑖 𝑗 (𝑡)−
1
2

[ ∑︁
𝑖, 𝑗=𝑒,𝑔

∑︁
𝜈>0

Π(𝜈)𝑒𝑔←𝑖 𝑗 (𝑡)
]2
+ · · ·

To obtain useful expressions for the dephasing profile and qubit
frequency, in the next subsection we introduce a truncation
and approximation protocol to perturbatively evaluate formal
expansion above.

B. Truncation and approximation

In the main text, we mainly focus on the parameter region

𝜆 ∼ |𝛿𝜉 (𝑡) | ≡
[
𝛿𝜉2 (𝑡)

] 1
2 , where we find the mismatch of the

extrema of the qubit frequency and dephasing rate. In this
parameter regime, the quantities 𝛿𝜉 (𝑡) and 𝜆 should be treated
on equal footing in the perturbation theory. To track the order
of the magnitude of the terms we derive in the following, we
add a prefactor 𝜖 before the two small parameters 𝜆 and 𝛿𝜉 (𝑡),
i.e., 𝜆→ 𝜖𝜆 and 𝛿𝜉 (𝑡) → 𝜖𝛿𝜉 (𝑡), and finally set 𝜖 = 1.

Under this ordering scheme, the real and imaginary parts of
Σ𝑒𝑔 (𝑡) are found to be of different orders, i.e.,

Re{Σ𝑒𝑔 (𝑡)} ∼ 𝑂 (𝜖4), Im{Σ𝑒𝑔 (𝑡)} ∼ 𝑂 (𝜖2).

Beyond the leading orders, we can certainly use (S7) to include
higher-order contributions, but we find it difficult to cast the
high-order terms into simple expressions with clear physical
meaning. Therefore, we will approximate the real and imagi-
nary parts of Σ𝑒𝑔 (𝑡) only to their respective leading order in 𝜖 ,
which we find sufficient to capture the quantitative behaviors
of the qubit frequency and dephasing rate around the sweet
spot. Because of this approximation scheme, we only need
to keep the Keldysh expansion Π𝜈

𝑒𝑔←𝑖 𝑗 (𝑡) up to 𝜈 = 4, and
only require imaginary parts up to 𝜈 = 2. This approximation
scheme is nicknamed as “𝜖R4I2”, convenient for referencing
below. Using the assumption of the low-frequency noise, we
can further neglect the contributions from Π𝑒𝑔←𝑖 𝑗 (𝑡) for 𝑖 ≠ 𝑒
or 𝑗 ≠ 𝑔 in this approximation scheme – their contributions
are oscillatory and do not grow with time. This further focus
our attention on Π𝑒𝑔←𝑒𝑔 (𝑡).

C. Two-point Keldysh diagrams

In this and the following subsections, we expand the pro-
jectors according to Eq. (S5) for the concrete noise model
considered in the main text. Each subsection addresses one
specific type of diagrams. We start with the two-point ones
due to the vanishing of 𝛿𝜉𝑇 (𝑡). There are in total four such di-
agrams. Two of them are shown in FIG. S1 (A) and (B), while
the remaining can be obtained by flipping the dots between the
upper and lower branches.
To help readers better follow our derivation, we next show

calculation details of (A) for example. The two-point diagram,
FIG. S1 (A), corresponds to the integral

(A)=(−𝑖) (𝑖)𝜖2
∫ 𝑡

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2〈𝑒 |𝑥(𝑡2) |𝑒〉〈𝑔 |𝑥(𝑡1) |𝑔〉𝛿𝜉 (𝑡1)𝛿𝜉 (𝑡2)

=𝜖2
∫ 𝑡

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2𝑥𝑒𝑒𝑥𝑔𝑔𝛿𝜉 (𝑡1)𝛿𝜉 (𝑡2)

=𝜖2
∫ 𝑡

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2𝑥𝑒𝑒𝑥𝑔𝑔

∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)𝑒−𝑖𝜔 (𝑡1−𝑡2)

=𝜖2𝑥𝑒𝑒𝑥𝑔𝑔

∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔) [𝐾𝑅 (𝜔, 𝑡)+𝑖𝐾𝐼 (𝜔, 𝑡)] . (S8)

Above, 𝛿𝜉 (𝑡) = 𝛿𝜉𝐺 (𝑡) +
∑

𝜇 𝛿𝜉𝑇𝜇 (𝑡) is the full fluctuator,
whose two-point spectrum is 𝑆(𝜔) ≡ 𝑆𝐺 (𝜔) +

∑
𝜇 𝑆𝜇 (𝜔).

The filter functions 𝐾𝑅 (𝜔, 𝑡) and 𝐾 𝐼 (𝜔, 𝑡) are real and imag-
inary parts of the integral

∫ 𝑡

0 𝑑𝑡1
∫ 𝑡1
0 𝑑𝑡2𝑒

−𝑖𝜔 (𝑡1−𝑡2) , which
are derived as 𝐾𝑅 (𝜔, 𝑡) ≡ 𝑡2sinc2 (𝜔𝑡/2) /2 and 𝐾 𝐼 (𝜔, 𝑡) ≡
−(𝑡/𝜔) [1 − sinc(𝜔𝑡)]. The rotated operator 𝑥(𝑡) is given by

𝑥(𝑡) ≡ 𝑈̂†0 (𝑡)𝑥𝑈̂0 (𝑡) =
∑︁

𝑥 𝑗 𝑗′ | 𝑗〉〈 𝑗 ′ |𝑒𝑖 (𝜔 𝑗−𝜔 𝑗′ )𝑡 . (S9)
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|e〉

|e〉

|e〉

FIG. S1. Keldysh diagrams for Π𝜈=2,3,4
𝑒𝑔←𝑒𝑔 (𝑡) that are relevant under the 𝜖R4I2 approximation scheme. The black dashed lines represent the

correlation functions of the full fluctuation 𝛿𝜉 (𝑡), while the blue and pink lines represent those of the Gaussian fluctuator, 𝛿𝜉𝐺 (𝑡), and a single
TLF, 𝛿𝜉𝑇𝜇 (𝑡).

Following the same procedure, (B) gives us

(B) = (−𝑖)2𝜖2 |𝑥𝑒 𝑗 |2
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)

× [𝐾𝑅 (𝜔+𝜔 𝑗−𝜔𝑒, 𝑡)+𝑖𝐾𝐼 (𝜔+𝜔 𝑗−𝜔𝑒, 𝑡)] . (S10)

(In this and following expressions, we will drop the superscript
“bare” to save space). Note that at this order, it is unnecessary
to differentiate between the Gaussian and non-Gaussian noise.
To further simplify the expressions, we next approximate the
exact results in Eqs. (S8) and (S10). These approximations are
based on the structures of both the filter functions 𝐾𝑅,𝐼 (𝜔, 𝑡)
and the noise spectrum 𝑆(𝜔). First, the spectrum 𝑆(𝜔) as-
sumed in this study is symmetric (due to the classical nature
of the noise) and is concentrated around 𝜔 = 0, as shown
in FIG. S2 (black-dashed curves). Such structured spectrum
motivates us to assume that at any non-zero qubit transition
frequency𝜔 = 𝜔 𝑗 −𝜔 𝑗′ ( 𝑗 ≠ 𝑗 ′), the noise power 𝑆(𝜔) is neg-
ligible. Second, we are interested in the timescale that is much
longer than the qubit oscillation period, i.e., 𝑡 � 2𝜋/(𝜔 𝑗−𝜔 𝑗′)
( 𝑗 ≠ 𝑗 ′). In this way, the widths of the filter functions aremuch
smaller than the qubit frequencies, and any filter function cen-
tered at a nonzero qubit transition frequency negligibly sample
the low-frequency part of the noise spectrum (see FIG. S2).
With these assumptions, we first simplify the real parts

of these diagrams. The most important approximations are
made for (B) with 𝑗 ≠ 𝑒. The real-valued contribution
from high frequencies is negligible due to the assumption
of low-frequency noise. (For the Floquet case discussed
later, such contribution is potentially more important due to
the smaller quasi-energy difference.) After neglecting it, the
magnitude of the real part of such diagram is approximately

∼ 𝜖2 |𝑥𝑒 𝑗 |2
∫
𝑑𝜔𝑆(𝜔)/(2𝜋𝜔2𝑗𝑒), which does not grow with

time and is negligible if the noise amplitude is sufficiently
weak. After dropping such contributions, the sum of the re-
maining real-valued terms from (A) and (B) and their flipped
diagrams is approximated by

−Φ(2) (𝑡) ≈ − 𝜖2 (𝑥𝑒𝑒 − 𝑥𝑔𝑔)2
∫ ∞

−∞

𝑑𝜔

2𝜋
𝐾𝑅 (𝜔, 𝑡)𝑆(𝜔)

= − 𝜖2𝐷21,𝜆
∫ ∞

−∞

𝑑𝜔

2𝜋
𝐾𝑅 (𝜔, 𝑡)𝑆(𝜔)

≈ − 𝜖4𝐷22,0𝜆2
∫ ∞

−∞

𝑑𝜔

2𝜋
𝐾𝑅 (𝜔, 𝑡)𝑆(𝜔), (S11)

where we have used

𝐷1,𝜆 ≡
𝜕𝜔bare𝑔𝑒

𝜕𝜆
= 𝑥𝑒𝑒 − 𝑥𝑔𝑔 (S12)

and 𝐷1,𝜆 ≈ 𝐷2,𝜆=0𝜆. Eq. (S11) is reminiscent of those derived
using the Bloch-Redfield theory [4, 5], which describes how
the dephasing of the qubit is related to the first-order derivative.
Note that in Eq. (S11) we add the prefactor 𝜖2 to track the order
of the small parameter 𝜆. This term is of the order 𝑂 (𝜖4), and
grows with 𝑡 according to the expression of 𝐾𝑅 (𝜔, 𝑡). For
example, if 𝑆(𝜔) can be treated flat within the width of the
filter function, Φ(2) (𝑡) grows linearly with 𝑡, while for 1/ 𝑓
noise, such growth is approximately ∼ 𝑡2 [5].
We next turn to the imaginary parts of (A) and (B). Con-

trary to 𝐾𝑅 (𝜔, 𝑡), the function 𝐾 𝐼 (𝜔, 𝑡) is an odd function
in the frequency domain. The symmetric spectrum of the
classical noise then guarantees the vanishing of the integral∫ ∞
−∞ (𝑑𝜔/2𝜋)𝑆(𝜔)𝐾 𝐼 (𝜔, 𝑡). Therefore, the imaginary terms
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FIG. S2. Filter functions 𝐾𝑅 (𝜔 − 𝜔𝑔𝑒, 𝑡) and 𝐾 𝐼 (𝜔 − 𝜔𝑔𝑒, 𝑡), and
the noise spectrum 𝑆(𝜔). We choose 𝑡 = 1 𝜇s for this plot, and the
𝜔𝑔𝑒/2𝜋 ≈ 14 MHz. The peak widths of the filter functions are given
by ∼ 2𝜋/𝑡. As time grows, the filter functions will turn narrower.

we collect are from the diagrams with 𝑗 ≠ 𝑒 in (B). Using the
assumption of the low-frequency noise again, we only focus
on the integration over 𝜔 ≈ 0, which allows us to approximate
𝐾 𝐼 (𝜔 + 𝜔 𝑗 − 𝜔𝑒) ≈ −𝑡/(𝜔 𝑗 − 𝜔𝑒). This step simplifies the
expression of the imaginary part by

−𝑖𝛿𝜔 (2) 𝑡 ≈− 𝑖𝜖2
∫ ∞

−∞

𝑑𝜔

2𝜋

[∑︁
𝑗≠𝑔

|𝑥𝑒 𝑗 |2𝐾 𝐼 (𝜔+𝜔 𝑗−𝜔𝑒)𝑆(𝜔)

+
∑︁
𝑗′≠𝑒
|𝑥𝑔 𝑗′ |2𝐾 𝐼 (𝜔+𝜔𝑔−𝜔 𝑗′)𝑆(𝜔)

]

≈−𝑖𝑡𝜖2
[∑︁
𝑗≠𝑒

|𝑥𝑒 𝑗 |2
𝜔𝑒−𝜔 𝑗

−
∑︁
𝑗′≠𝑔

|𝑥𝑔 𝑗′ |2
𝜔𝑔−𝜔 𝑗

] ∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)

≈ − 𝑖𝑡
2
𝜖2𝐷2,𝜆=0

∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔). (S13)

Above, we have used the relation

𝐷2,𝜆 ≡
𝜕2𝜔bare𝑔𝑒

𝜕𝜆2
= 2

[∑︁
𝑗≠𝑒

|𝑥𝑒 𝑗 |2
𝜔𝑒−𝜔 𝑗

−
∑︁
𝑗′≠𝑔

|𝑥𝑔 𝑗′ |2
𝜔𝑔−𝜔 𝑗′

]
. (S14)

Eq. (S13) is related to the Lamb shift caused by the fluctua-
tor 𝛿𝜉 (𝑡). To summarize, the two-point diagrams contribute
Π(2)𝑒𝑔←𝑒𝑔 (𝑡) = −Φ(2) (𝑡) − 𝑖𝛿𝜔 (2) 𝑡 to the full projector, where
Φ(2) (𝑡) is of the order 𝜖4 and 𝛿𝜔 (2) is of the order 𝜖2.

D. Three-point Keldysh diagrams

Different from in Refs. [2, 3, 6], it is necessary to calcu-
late diagrams with odd interaction points due to the non-zero
odd-time correlation functions. This subsection focuses on
these diagrams. According to the 𝜖R4I2 scheme described in
Sec.II.B and the expansion Eq. (S7), we only need to focus on
real parts of these diagrams.
The relevant diagrams are FIG. S1 (C)-(E). Again, we show

the calculation details of one of them. The diagram (C) corre-

sponds to the integral

(C) = (−𝑖) (𝑖)2𝜖3
∫ 𝑡

0
𝑑𝑡1

∫ 𝑡1

0
𝑑𝑡2

∫ 𝑡2

0
𝑑𝑡3𝑥𝑒𝑒 |𝑥𝑔 𝑗 |2

× 𝛿𝜉 (𝑡1)𝛿𝜉 (𝑡2)𝛿𝜉 (𝑡3)𝑒𝑖 (𝜔 𝑗−𝜔𝑔)𝑡2+𝑖 (𝜔𝑔−𝜔 𝑗)𝑡3 . (S15)

In general, we need the information of the bispectrum as-
sociated with the correlation 𝛿𝜉 (𝑡1)𝛿𝜉 (𝑡2)𝛿𝜉 (𝑡3) to proceed
with the calculation [1]. Fortunately, the three-time correla-
tion functions of the TLFs, shown in Eq. (S4), have a simple
structure. As one can check using Eq. (S3), the three-time
correlation function of one TLF can be expressed as

𝛿𝜉𝑇 (𝑡1)𝛿𝜉𝑇 (𝑡2)𝛿𝜉𝑇 (𝑡3) = −2𝜉𝑇 𝑆𝑇 (𝑡1 − 𝑡3) (S16)

= −2𝜉𝑇
∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝑇 (𝜔)𝑒−𝑖𝜔 (𝑡1−𝑡3) .

Since the Gaussian noise does not contribute odd-time corre-
lation functions, the full correlation 𝛿𝜉 (𝑡1)𝛿𝜉 (𝑡2)𝛿𝜉 (𝑡3) is just
the sum of all TLF contributions. In the following, we will
first focus on one TLF’s contribution.
For a single TLF, we insert Eq. (S16) into Eq. (S15). The

result is more concisely expressed by a Laplace transform:

L{(C)}(𝑠) = −𝑖𝜖3𝑥𝑒𝑒 |𝑥𝑔 𝑗 |2
∫ ∞

−∞

𝑑𝜔

2𝜋
2𝜉𝑇 𝑆𝑇 (𝜔)

× 1
𝑠2

1
𝑠 + 𝑖𝜔

1
𝑠 − 𝑖(𝜔 𝑗−𝜔𝑔−𝜔) . (S17)

Note that we are not interested in diagrams with 𝑗 = 𝑔 because
their leading order is 𝑂 (𝜖6). Then for 𝑗 ≠ 𝑔, the last line of
the expression above is approximated by

L−1
{
1
𝑠2

1
𝑠 + 𝑖𝜔

1
𝑠 − 𝑖(𝜔 𝑗 − 𝜔𝑔 − 𝜔)

}
(𝑡) (S18)

=
𝑖𝐾𝑅 (𝜔, 𝑡)
𝜔 𝑗 − 𝜔𝑔

− 𝑖𝐾
𝑅 (𝜔 − 𝜔 𝑗 + 𝜔𝑒, 𝑡)

𝜔 𝑗 − 𝜔𝑔
.

The second term contributes negligibly due to the structures
of 𝐾𝑅 (𝜔 − 𝜔 𝑗 + 𝜔𝑔, 𝑡) and 𝑆𝑇 (𝜔) as presented in FIG. S2,
therefore we can focus only on the first one.
We can calculate (D) and (E) following similar procedures.

Again, wewill neglect diagramswith 𝑗 = 𝑔 in (D) and 𝑗 = 𝑗 ′ =
𝑒 in (E) according to the 𝜖4 approximation. On the other hand,
(E) with 𝑗 ≠ 𝑒 and 𝑗 ′ ≠ 𝑒 does not contribute significantly to
the real part, so we will also omit the evaluation of this case.
To summarize, we find

Re{(C) | 𝑗≠𝑔}≈−
𝜖3𝑥𝑒𝑒 |𝑥𝑔 𝑗 |2
(𝜔𝑔 − 𝜔 𝑗 )

∫
𝑑𝜔

2𝜋
2𝜉𝑇 𝐾𝑅 (𝜔, 𝑡)𝑆𝑇 (𝜔),

Re{(D) | 𝑗≠𝑒} ≈ −
𝜖3𝑥𝑔𝑔 |𝑥𝑒 𝑗 |2
(𝜔𝑒 − 𝜔 𝑗 )

∫
𝑑𝜔

2𝜋
2𝜉𝑇 𝐾𝑅 (𝜔, 𝑡)𝑆𝑇 (𝜔),

Re{(E) | 𝑗=𝑒, 𝑗′≠𝑒}≈
𝜖3𝑥𝑒𝑒 |𝑥𝑒 𝑗′ |2
(𝜔𝑒 − 𝜔 𝑗′)

∫
𝑑𝜔

2𝜋
2𝜉𝑇 𝐾𝑅 (𝜔, 𝑡)𝑆𝑇 (𝜔).

Re{(E) | 𝑗≠𝑒, 𝑗′=𝑒}≈
𝜖3𝑥𝑒𝑒 |𝑥𝑒 𝑗 |2
(𝜔𝑒 − 𝜔 𝑗 )

∫
𝑑𝜔

2𝜋
2𝜉𝑇 𝐾𝑅 (𝜔, 𝑡)𝑆𝑇 (𝜔).

(S19)
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Finally, using Eqs. (S12) and (S14), we summarize (C)-(E)
and their flipped diagrams as

−Φ(3)(𝑡) ≈𝜖3𝐷1,𝜆𝐷2,𝜆
∑︁
𝜇

∫
𝑑𝜔

2𝜋
2𝜉𝑇𝜇𝐾𝑅 (𝜔, 𝑡)𝑆𝑇𝜇 (𝜔),

≈𝜖4𝐷22,𝜆=0
∑︁
𝜇

(2𝜆𝜉𝑇𝜇)
∫
𝑑𝜔

2𝜋
𝐾𝑅 (𝜔, 𝑡)𝑆𝑇𝜇 (𝜔).

(S20)

The three-point diagrams contribute Re{Π(3)𝑒𝑔←𝑒𝑔 (𝑡)} ≈
−Φ(3) (𝑡) to the projector up to 𝜖4.

E. Four-point Keldysh diagrams

The calculation of the four-point diagrams is more compli-
cated than the previous cases, because here both Gaussian and
non-Gaussian noise contribute. Some diagrams only involve
one of them, while the others involve both. The four-time cor-
relation functions of these two types of fluctuators can both be
derived from the two-time ones, but through different relations.
Specifically, they are respectively expanded by

𝛿𝜉𝐺(𝑡)𝛿𝜉𝐺(𝑡1)𝛿𝜉𝐺(𝑡2)𝛿𝜉𝐺(0) = 𝛿𝜉𝐺(𝑡)𝛿𝜉𝐺(𝑡1) 𝛿𝜉𝐺(𝑡2)𝛿𝜉𝐺(0)
+𝛿𝜉𝐺(𝑡)𝛿𝜉𝐺(𝑡2) 𝛿𝜉𝐺(𝑡1)𝛿𝜉𝐺(0)
+𝛿𝜉𝐺(𝑡)𝛿𝜉𝐺(0) 𝛿𝜉𝐺(𝑡1)𝛿𝜉𝐺(𝑡2),

𝛿𝜉𝑇 (𝑡)𝛿𝜉𝑇 (𝑡1)𝛿𝜉𝑇 (𝑡2)𝛿𝜉𝑇 (0) =𝛿𝜉𝑇 (𝑡)𝛿𝜉𝑇 (𝑡1) 𝛿𝜉𝑇 (𝑡2)𝛿𝜉𝑇 (0)

+
(
2𝜉𝑇

)2
𝛿𝜉𝑇 (𝑡)𝛿𝜉𝑇 (0).

(S21)

In the following, we will carefully address such distinction,
and outline the results of various types of combinations.
As discussed in Ref. [6], certain diagrams should not appear

in the self energy due to the cancellation by the products of
aforementioned diagrams, according toEq. (S7). Wefirst focus
on these redundant ones, which are called the disconnected
diagrams, e.g., (F) and (G). Without showing more details, we
list the results of these integrals below

Re{(F) 𝑗≠𝑔, 𝑗′≠𝑒}≈
𝜖4𝑡2 |𝑥𝑒 𝑗′ |2 |𝑥𝑔 𝑗 |2

2(𝜔𝑒−𝜔 𝑗′) (𝜔𝑔−𝜔 𝑗 )
×

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝑆(𝜔)𝑆(𝜔′),

Re{(G) 𝑗≠𝑒, 𝑗′≠𝑒}≈
−𝜖4𝑡2 |𝑥𝑒 𝑗′ |2 |𝑥𝑒 𝑗 |2
2(𝜔𝑒−𝜔 𝑗′) (𝜔𝑒−𝜔 𝑗 )
×

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝑆(𝜔)𝑆(𝜔′). (S22)

These diagrams will be cancelled by the products of two-point
ones. For example, one can check Re{(G)} ≈ [𝑖 Im{(B)}]2/2.
Therefore, according to Eq. (S7), Re{(G)} should not con-
tribute to the self energy. The same conclusion holds for (F)
as well as their flipped diagrams.

On the contrary, FIG. S1 (H)-(M) are connected and con-
tribute to the self energy under our approximation scheme.
Among them, (H) and (I) correspond to the contributions by a
single TLF. They are evaluated as

Re{(H) 𝑗≠𝑒, 𝑗′≠𝑔}≈
𝜖4 |𝑥𝑒 𝑗 |2 |𝑥𝑔 𝑗′ |2

(𝜔𝑒−𝜔 𝑗 ) (𝜔𝑔−𝜔 𝑗′)
×

∫
𝑑𝜔

2𝜋
(2𝜉𝑇 )2𝐾𝑅 (𝜔, 𝑡)𝑆𝑇 (𝜔)

Re{(I) 𝑗≠𝑒, 𝑗′≠𝑒}≈
−𝜖4 |𝑥𝑒 𝑗 |2 |𝑥𝑒 𝑗′ |2
(𝜔𝑒−𝜔 𝑗′) (𝜔𝑒−𝜔 𝑗 )
×

∫
𝑑𝜔

2𝜋
(2𝜉𝑇 )2𝐾𝑅 (𝜔, 𝑡)𝑆𝑇 (𝜔). (S23)

Differently, FIG. S1 (J)-(M) can describe both the mutual
contribution by a Gaussian fluctuator-TLF pair or a TLF-TLF
pair and the contribution by the Gaussian noise itself. In the
Gaussian fluctuator-TLF case, the four diagrams are evaluated
as

Re{(J) 𝑗≠𝑒, 𝑗′≠𝑔} ≈
𝜖4 |𝑥𝑒 𝑗 |2 |𝑥𝑔 𝑗′ |2

(𝜔𝑒−𝜔 𝑗 ) (𝜔𝑔−𝜔 𝑗′)
×

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝐾𝑅 (𝜔 + 𝜔′, 𝑡)𝑆𝑇𝜇 (𝜔)𝑆𝐺 (𝜔′)

Re{(K) 𝑗≠𝑒, 𝑗′≠𝑔}≈Re{(J) 𝑗≠𝑒, 𝑗′≠𝑔}

Re{(L) 𝑗≠𝑒, 𝑗′≠𝑔}≈
−𝜖4 |𝑥𝑒 𝑗 |2 |𝑥𝑒 𝑗′ |2
(𝜔𝑒−𝜔 𝑗′) (𝜔𝑒−𝜔 𝑗 )
×

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝐾𝑅 (𝜔 + 𝜔′, 𝑡)𝑆𝑇𝜇 (𝜔)𝑆𝐺 (𝜔′),

Re{(M) 𝑗≠𝑒, 𝑗′≠𝑔}≈Re{(L) 𝑗≠𝑒, 𝑗′≠𝑔}. (S24)

These expressions correspond to themutual decoherence terms
contributed by the Gaussian fluctuator 𝛿𝜉𝐺 (𝑡) and the 𝜇th
TLF 𝛿𝜉𝑇𝜇 (𝑡). The TLF-TLF contribution can be obtained
by replacing 𝑆𝐺 (𝜔′) by the noise spectrum of another TLF
𝑆𝑇𝜇′ (𝜔′), while the pure Gaussian contribution is obtained by
replacing 𝑆𝑇𝜇 (𝜔) by 𝑆𝐺 (𝜔).
Finally, using Eq. (S14) again, we can summarize all real-

valued contributions from four-point diagrams up to 𝜖4 as

−Φ(4)(𝑡) ≈−𝜖4𝐷22,𝜆=0
∑︁
𝜇

𝜉
2
𝑇𝜇

∫
𝑑𝜔

2𝜋
𝐾𝑅 (𝜔, 𝑡)𝑆𝜇 (𝜔) (S25)

−𝜖4
𝐷22,𝜆=0
2

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝐾𝑅 (𝜔 + 𝜔′, 𝑡)𝑆𝐺 (𝜔)𝑆𝐺 (𝜔′)

−𝜖4
𝐷22,𝜆=0
2

∑︁
𝜇≠𝜇′

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝐾𝑅 (𝜔 + 𝜔′, 𝑡)𝑆𝑇𝜇 (𝜔)𝑆𝑇𝜇′ (𝜔′)

−𝜖4𝐷22,𝜆=0
∑︁
𝜇

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝐾𝑅 (𝜔 + 𝜔′, 𝑡)𝑆𝐺 (𝜔)𝑆𝑇𝜇 (𝜔′).

Again, its order is 𝜖4.
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F. Summary

After adding the terms from Sec. II.C-E, we finally find
the leading-order expressions of Re{Σ𝑒𝑔 (𝑡)} = −Φ(𝑡) and
Im{Σ𝑒𝑔 (𝑡)} = −𝛿𝜔𝐿𝑆 as

𝛿𝜔𝐿𝑆 ≈
𝐷2,𝜆=0
2

∫
𝑑𝜔

2𝜋
𝑆(𝜔). (S26)

Φ(𝑡) ≈𝐷22,𝜆=0𝜆2
∫
𝑑𝜔

2𝜋
𝐾𝑅 (𝜔, 𝑡)𝑆𝐺 (𝜔) (S27)

+
𝐷22,𝜆=0
2

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝐾𝑅 (𝜔 + 𝜔′, 𝑡)𝑆𝐺 (𝜔)𝑆𝐺 (𝜔′)

+𝐷22,𝜆=0
∑︁
𝜇

(𝜆 − 𝜉𝑇𝜇)2
∫
𝑑𝜔

2𝜋
𝐾𝑅 (𝜔, 𝑡)𝑆𝜇 (𝜔)

+
𝐷22,𝜆=0
2

∑︁
𝜇≠𝜇′

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝐾𝑅 (𝜔 + 𝜔′, 𝑡)𝑆𝑇𝜇 (𝜔)𝑆𝑇𝜇′ (𝜔′)

+𝐷22,𝜆=0
∑︁
𝜇

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝐾𝑅 (𝜔 + 𝜔′, 𝑡)𝑆𝐺 (𝜔)𝑆𝑇𝜇 (𝜔′).

G. Generalization to the Floquet dephasing

The expressions derived above can be generalized to de-
scribe the qubit dephasing under a periodic drive. In the
following, we will outline such generalization and predict the
Floquet dephasing profile using the Keldysh method.
Compared to the diagrams for static (Ramsey) dephasing,

those in this driven case have two major differences. First, the
qubit is prepared in a superposition of the two computational
Floquet states, rather than its bare eigenstates. Second, due to
the inclusion of the periodic drive, the bare propagator 𝑈̂0 (𝑡)
is

𝑈̂0 (𝑡) =
∑︁
𝑘

𝑒−𝑖 𝜀𝑘 𝑡 |𝑤𝑘 (𝑡)〉〈𝑤𝑘 (0) |, (S28)

where |𝑤𝑘 (𝑡)〉 is the 𝑘th independent Floquet state, and 𝜀𝑘 is
its quasi-energy. As a result, the rotated operator in Eq. (S9)
is replaced by

𝑥(𝑡) =
∑︁
𝑘,𝑘′
〈𝑤𝑘 (𝑡) |𝑥 |𝑤𝑘′ (𝑡)〉𝑒𝑖 (𝜀𝑘−𝜀𝑘′ )𝑡 |𝑤𝑘 (0)〉〈𝑤𝑘′ (0) |

=
∑︁

𝑘,𝑘′,𝑛∈Z
𝑥𝑘𝑘′,𝑛𝑒

𝑖 (𝜀𝑘−𝜀𝑘′−𝑛𝜔𝑑)𝑡 |𝑤𝑘′ (0)〉〈𝑤𝑘 (0) |, (S29)

where 𝜔𝑑 = 2𝜋/𝑇𝑑 denotes drive frequency, and 𝑥𝑘𝑘′,𝑛 is the
𝑘th Fourier coefficient of the time-dependent matrix element

defined by

𝑥𝑘𝑘′,𝑛 ≡ 1
𝑇𝑑

∫ 𝑇𝑑

0
𝑑𝑡〈𝑤𝑘 (𝑡) |𝑥 |𝑤𝑘′ (𝑡)〉𝑒𝑖𝑛𝜔𝑑 𝑡 . (S30)

Note that the expansion Eq. (S29) is analogous to Eq. (S9),
except that there is an additional index 𝑛 to enumerate. The
analogy allows us to use the Keldysh diagrams in FIG. S1 to
perturbatively calculate the Floquet dephasing profile. Useful
for this calculation, here the matrix elements are related to the
derivatives by

𝐷𝐹
1,𝜆 ≡

𝜕𝜀01
𝜕𝜆

= 𝑥11,0 − 𝑥00,0,

𝐷𝐹
2,𝜆 ≡

𝜕𝜀201
𝜕𝜆2

= 2

[ ∑︁
𝑘≠1,𝑛∈Z

|𝑥1𝑘,𝑛 |2
𝜀1 − 𝜀𝑘 − 𝑛𝜔𝑑

−
∑︁

𝑘′≠0,𝑛′∈Z

|𝑥0𝑘′,𝑛′ |2
𝜀0 − 𝜀𝑘′ − 𝑛′𝜔𝑑

]
. (S31)

Before proceeding with the approximations, we notice one
important difference in the Floquet calculation – the vanishing
of 𝐷𝐹

1,𝜆=0 is not guaranteed for a general periodic drive. Such
vanishing is the basis of the protection scheme introduced in
the main text, which we must ensure. Fortunately, we prove
that, this condition is satisfied if we choose 𝐻𝑑 (𝑡) = 𝑓 (𝑡)𝑥
and set 𝑓 (𝑡 + 𝑇/2) = − 𝑓 (𝑡). [The protocol used in the main
text for the triple protection clearly satisfies this condition.]
This vanishing is again related to the Z2 symmetry of the
qubit Hamiltonian. In detail, the drive we choose ensures that
noise-free Hamiltonian at 𝜆 = 0, 𝐻̂𝑞,𝑑 (0, 𝑡) = 𝐻̂𝑞 (0) + 𝐻̂𝑑 (𝑡),
satisfies

𝑅̂𝐻̂𝑞,𝑑 (0, 𝑡) 𝑅̂† = 𝐻̂𝑞,𝑑

(
0, 𝑡 + 𝑇

2

)
. (S32)

Again, if there is no degeneracy in the quasi-energy spec-
trum, the Floquet states must preserve a certain parity, i.e.,
𝑅̂ |𝑤𝑘 (𝑡)〉 = ±|𝑤𝑘 (𝑡 + 𝑇/2)〉. Then using the definition (S30)
and the relation 𝑅̂𝑥𝑅̂† = −𝑥, one can find 𝑥𝑘𝑘,0 |𝜆=0 = 0, which
further leads to 𝐷𝐹

1,𝜆=0 = 0 according to Eq. (S31).
After ensuring 𝐷𝐹

1,𝜆=0 = 0, we can follow a similar per-
turbative calculation in the previous sections to derive the
Floquet dephasing profile. Conveniently, if the quasi-energy
differences are sufficiently large, the profile can be obtained
by replacing 𝐷2,𝜆=0 by 𝐷𝐹

2,𝜆=0 in Eq. (S27). In the main text,
the Floquet mitigation protocol improves the dephasing time
of a static qubit by 10 times, which is limited by the non-
negligible Floquet depolarization rather than pure dephasing
[7]. Such limitation goes beyond the approximation made
above by neglecting the contribution from noise at qubit fre-
quency, because this frequency (quasi-energy difference) is
reduced at the triple protection point. In this way, the qubit is
more susceptible to depolarization. However, such limitation
can be potentially lifted by engineering larger 𝜀01 at the triple
protection point through optimizing the qubit parameters and
driving protocols.
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III. ADIABATIC APPROXIMATION AND ECHO DEPHASING PROFILE

In this section, we derive the qubit dephasing profile using a different method, which is based on the adiabatic approximation
[5]. The purpose of this derivation is twofold. First, we want to check whether the intuitive picture, which assumes that the
noise only shifts the qubit frequency, reproduces the rigorously derived results in Eq. (S26) and (S27). Second, we can derive
an expression of the dephasing profile by the Echo protocol around the qubit sweet spot, which is difficult to obtain using the
Keldysh expansion.
Under the adiabatic approximation, the qubit dephasing profile is approximated by exp[−K(𝑡)], where the kernel is expressed

as

K(𝑡) = ln

exp

(
−𝑖

∫ 𝑡

0
𝜒(𝑡 ′)

∑︁
𝜈

𝐷𝜈,𝜆

𝜈!
𝛿𝜉𝜈 (𝑡 ′)

)
. (S33)

Above, 𝜒(𝑡 ′) describes the external control pulses specific to different measurement protocols. For a Ramsey measurement, we
take the control function to be 𝜒𝑅 (𝑡 ′) = 1, while in the Echo case, we set it by 𝜒𝐸 (𝑡) = 1 for 0 < 𝑡 ′ < 𝑡/2 and 𝜒𝐸 (𝑡 ′) = −1 for
𝑡/2 < 𝑡 ′ < 𝑡. Similar to the previous section, we will expand Eq. (S33) to 𝛿𝜉4 (𝑡). The terms that contain 𝜈 times of 𝛿𝜉 (𝑡) are
collected into K (𝜈) (𝑡), which is given by

K (2) (𝑡) = −
𝐷21,𝜆
2

∬ 𝑡

0
𝑑𝑡1𝑑𝑡2𝜒(𝑡1)𝜒(𝑡2)𝛿𝜉 (𝑡1)𝛿𝜉 (𝑡2) (S34)

− 𝑖 𝐷2,𝜆
2

∫ 𝑡

0
𝑑𝑡1𝜒(𝑡1)𝛿𝜉2 (𝑡1), (S35)

K (3) (𝑡) = − 𝑖
𝐷31,𝜆
6

∭ 𝑡

0
𝑑𝑡1𝑑𝑡2𝑑𝑡3𝜒(𝑡1)𝜒(𝑡2)𝜒(𝑡3)𝛿𝜉 (𝑡1)𝛿𝜉 (𝑡2)𝛿𝜉 (𝑡3)

− 𝐷1,𝜆𝐷2,𝜆
2

∬ 𝑡

0
𝑑𝑡1𝑑𝑡2𝜒(𝑡1)𝜒(𝑡2)𝛿𝜉 (𝑡1)𝛿𝜉2 (𝑡2) (S36)

− 𝑖 𝐷3,𝜆
6

∫ 𝑡

0
𝑑𝑡1𝜒(𝑡1)𝛿𝜉3 (𝑡1),

K (4) (𝑡) =
𝐷41,𝜆
24

⨌ 𝑡

0
𝑑𝑡1𝑑𝑡2𝑑𝑡3𝑑𝑡4𝜒(𝑡1)𝜒(𝑡2)𝜒(𝑡3)𝜒(𝑡4)𝛿𝜉 (𝑡1)𝛿𝜉 (𝑡2)𝛿𝜉 (𝑡3)𝛿𝜉 (𝑡4)

− 𝐷1,𝜆𝐷3,𝜆
6

⨌ 𝑡

0
𝑑𝑡1𝑑𝑡2𝜒(𝑡1)𝜒(𝑡2)𝛿𝜉 (𝑡1)𝛿𝜉3 (𝑡2)

−
𝐷22,𝜆
8

∬ 𝑡

0
𝑑𝑡1𝑑𝑡2𝜒(𝑡1)𝜒(𝑡2)𝛿𝜉2 (𝑡1)𝛿𝜉2 (𝑡2) − 12 [K

(2) (𝑡)]2 (S37)

− 𝑖 𝐷4,𝜆
24

∫ 𝑡

0
𝑑𝑡1𝜒(𝑡1)𝛿𝜉4 (𝑡1).

We provide several key points in proceeding with the derivation. First, some correlation functions are Fourier transformed by

𝛿𝜉2 (𝑡1) =
∫
𝑑𝜔

2𝜋
𝑆(𝜔), 𝛿𝜉 (𝑡1)𝜉 (𝑡2) =

∫
𝑑𝜔

2𝜋
𝑆(𝜔)𝑒−𝑖𝜔 (𝑡1−𝑡2) , 𝛿𝜉 (𝑡1)𝛿𝜉2 (𝑡2) =

∑︁
𝜇

(−2𝜉𝑇 )
∫
𝑑𝜔

2𝜋
𝑆𝑇𝜇 (𝜔)𝑒−𝑖𝜔 (𝑡1−𝑡2) ,

𝛿𝜉2 (𝑡1)𝛿𝜉2 (𝑡2) =
[∫

𝑑𝜔

2𝜋
𝑆(𝜔)

]2
+ 2

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝑆𝐺 (𝜔)𝑆𝐺 (𝜔′)𝑒−𝑖 (𝜔+𝜔′) (𝑡1−𝑡2) +

∑︁
𝜇

(2𝜉𝑇 )2
∫
𝑑𝜔

2𝜋
𝑆𝑇𝜇 (𝜔)𝑒−𝑖𝜔 (𝑡1−𝑡2)

+ 4
∑︁
𝜇

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝑆𝐺 (𝜔)𝑆𝑇𝜇 (𝜔′)𝑒−𝑖 (𝜔+𝜔′) (𝑡1−𝑡2) + 2

∑︁
𝜇≠𝜇′

∬
𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝑆𝑇𝜇 (𝜔)𝑆𝑇𝜇′ (𝜔′)𝑒−𝑖 (𝜔+𝜔′) (𝑡1−𝑡2) . (S38)

Second, for the Ramsey case, the integral 𝐼 (𝜔, 𝑡) =
∫ 𝑡

0 𝑑𝑡1
∫ 𝑡

0 𝑑𝑡2𝜒(𝑡1)𝜒(𝑡2)𝑒−𝑖𝜔 (𝑡1−𝑡2) gives us the filter function 2𝐾𝑅 (𝜔, 𝑡) by
setting 𝜒(𝑡) = 𝜒𝑅 (𝑡). Using these expressions, if we still truncate the expressions according to the 𝜖R4I2 scheme, we can recover
Eq. (S26) and (S27). [Note that only the terms that survive this approximation scheme are numbered.]
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For the Echo protocol, the filter function is replaced by
𝐼 (𝜔, 𝑡) = 2𝐾𝐸 (𝜔, 𝑡) considering the choice 𝜒(𝑡) = 𝜒𝐸 (𝑡).
[As a reminder, we define 𝐾𝑅 (𝜔, 𝑡) ≡ 𝑡2sinc2 (𝜔𝑡/2)/2, and
𝐾𝐸 (𝜔, 𝑡) ≡ 𝑡2sinc2 (𝜔𝑡/4)sin2 (𝜔𝑡/4)/2.] Conveniently, the
imaginary parts up to 𝜖4 in this Echo case vanish due to the in-
troduction of 𝜒𝐸 (𝑡). Therefore, from thismethod, the Echo de-
phasing profile is obtained by replacing 𝐾𝑅 (𝜔, 𝑡) by 𝐾𝐸 (𝜔, 𝑡)
in Eq. (S27). We note that, although the basis of this derivation
is less rigorous than the Keldysh formalism, the expression we
obtain here well fits the Echo dephasing rates for 𝜆 ≈ 0.

IV. DEPHASING RATE IN THE TLF BEATING REGIME

In this section, we study the dephasing rates of the qubit for
𝜆 � |𝛿𝜉 (𝑡) |, where the TLF has entered the beating regime [8].
(We will define this regime later.) In this regime, we find that
the dephasing rates extracted from the calculated dephasing
profile (S27) do not agree with the numerical simulation. To
analytically capture the dephasing rate in this regime, we need
to study the qubit evolution non-perturbatively.
The dephasing rate in this regime can be obtained using

an intuitive picture. In this picture, the first-order fluctuation
of the qubit frequency overwhelms that of the second order,
i.e., |𝐷1,𝜆 | |𝛿𝜉 (𝑡) | � |𝐷2,𝜆 | |𝛿𝜉 (𝑡) |2/2, therefore the qubit fre-
quency is approximated by𝜔𝑔𝑒 (𝑡) ≈ 𝜔bare𝑔𝑒 |𝜆+𝐷1,𝜆𝛿𝜉 (𝑡) under
the adiabatic approximation. To simplify the problem, here
we neglect the much weaker dephasing contribution from the
Gaussian noise and only focus on the 𝑁𝑇 strong TLFs. We
denote the probability of finding 𝜇th TLF at ±|𝜉𝑇𝜇 | − 𝜉𝑇𝜇 by
𝑃𝜇,± (𝜇 = 1, 2, · · · , 𝑁𝑇 ), and the flipping rates at these con-
figurations by 𝜅𝜇,∓ = 𝑃𝜇,∓𝜅𝜇, where 𝜅𝜇 is the sum flipping
rate of the 𝜇th TLF. The configuration of the strong TLFs is
denoted as a vector ®𝜂 = [𝜂1, 𝜂2, · · · , 𝜂𝑁𝑇 ] (𝜂𝜇 = ±), whose
corresponding probability is 𝑃 ®𝜂 = Π𝜇𝑃𝜂𝜇 . The inverse of the
characteristic time for one flip to take place from this configu-
ration is 𝜅 ®𝜂 =

∑
𝜇 𝜅𝜇,−𝜂𝜇 .

The dephasing rate is estimated by the following intuition. If
we only focus on one TLF, it takes the time∼ 1/𝜅𝜇 for this TLF
to flip back and forth, which means the phase shift introduced
between the two adjacent flips is ∼ 2Δ𝜔𝑇𝜇/𝜅. Here, the fre-
quency difference is approximated by 2Δ𝜔𝑇𝜇 ≈ 2|𝐷1,𝜆 | |𝜉𝑇𝜇 |.
If this phase shift is much larger than 2𝜋, the phase coherence
should be completely destroyed after this process. Therefore,
in this regime, the qubit dephasing time is determined by the
flipping rate of the TLF, which also means that the qubit de-
phasing rate will not further grow with increasing Δ𝜔𝑇 [8].
For a specific TLF configuration ®𝜂, if this intuition still holds,
the phase coherence time is given by (𝜅 ®𝜂)−1. Then, if we con-
sider all possible configurations, the average flipping rate of
the TLFs sets the qubit dephasing rate by 𝜅 =

∑
®𝜂 𝜅 ®𝜂𝑃 ®𝜂 . In the

simplest case, if we assume identical probability 𝑃𝜇,± = 0.5
and 𝜅𝜇 = 𝜅, the dephasing rate is reduced to 𝜅 = 𝑁𝑇 𝜅/2.
A more rigorously justification is made via the master equa-

tion method. Except for the correlation functions, we can also
conveniently describe the flipping dynamics of TLFs by the
jump operators in the master equation, if we promote the TLFs
to quantum degrees of freedom. One can check that, this

method yields identical correlation functions as in Eq. (S3)
using the quantum regression theorem [9]. For simplicity, we
truncate the qubit degree of freedom to only two levels for a
minimal model. The full qubit-TLFs Hamiltonian is given by

𝐻̂𝑞TLF =
𝜔𝑞

2
𝜎̂𝑧 +

∑︁
𝜇

Δ𝜔𝑇𝜇

2
(𝜏𝑧𝜇 − 〈𝜏𝑧𝜇〉)𝜎̂𝑧 , (S39)

where 𝜎̂𝑧 and 𝜏𝑧𝜇 are the Pauli 𝑧 operators for the qubit and
the 𝜇th TLF, respectively, and 〈𝜏𝑧𝜇〉 = (𝑃+,𝜇 −𝑃−,𝜇) is the ex-
pectation of 𝜏𝑧𝜇 given the probability distribution introduced
previously. Since the TLFs we address are classical, in the
Hamiltonian above we have not included the bare TLF Hamil-
tonians, and the interaction between the qubit and TLFs is
longitudinal such that the qubit and TLFs do not exchange
excitations. Note that the later assumption is only reasonable
for the regime |𝐷1,𝜆 | |𝛿𝜉 (𝑡) | � |𝐷2,𝜆 | |𝛿𝜉 (𝑡) |2/2 interested in
this section. Close to the sweet spot, the transverse coupling
cannot be neglected. Including the flipping dynamics of the
TLFs, the master equation is given by

𝑑𝜌̂𝑞TLF (𝑡)
𝑑𝑡

= − 𝑖[𝐻̂𝑞TLF, 𝜌̂𝑞TLF (𝑡)]

+
∑︁
𝜇

[
𝜅𝜇,+D[𝜏𝜇,+] 𝜌̂𝑞TLF (𝑡)

+ 𝜅𝜇,−D[𝜏𝜇,−] 𝜌̂𝑞TLF (𝑡)
]
, (S40)

where the jump operator is defined by D[𝐿̂] 𝜌̂ ≡ 𝐿̂ 𝜌̂ 𝐿̂† −
( 𝐿̂† 𝐿̂ 𝜌̂+ 𝜌̂ 𝐿̂† 𝐿̂)/2 and 𝜏𝜇,+(−) is the raising (lowering) operator
for the 𝜇th TLF.
The quantity that we are interested in is the partial density

matrix of the qubit 𝜌̂𝑞 (𝑡) ≡ TrTLF{ 𝜌̂𝑞TLF (𝑡)} rather than the
full matrix 𝜌̂𝑞TLF (𝑡). Before we proceed with the derivation of
the evolution of 𝜌̂𝑞 (𝑡), it is important to first specify the initial
states of the qubit-TLFs system. Since the TLFs serve as
classical noise in this model, there should be no entanglement
between the qubit and the TLFs at 𝑡 = 0, and the TLFs are in
its equilibrium state. Therefore, the full system is initiated as

𝜌̂𝑞TLF (0) = 𝜌̂𝑞 (0) ⊗
∑︁
®𝜂
𝑃 ®𝜂 | ®𝜂〉〈®𝜂 |, (S41)

where | ®𝜂〉 is the state of the TLFs in configuration ®𝜂. Using
Eq. (S40), one can prove that the density matrix can keep the
form

𝜌̂𝑞TLF (𝑡) =
∑︁
®𝜂
𝜌̂𝑞, ®𝜂 (𝑡) ⊗ 𝑃 ®𝜂 | ®𝜂〉〈®𝜂 | (S42)

for any 𝑡 > 0, where the partial density matrix satisfies
Tr𝑞{ 𝜌̂𝑞, ®𝜂 (𝑡)} = 1. The proof is based on the assumption of
the longitudinal coupling, which does not affect the population
in the TLF and qubit states, and the relation satisfied by the
upward and downward flipping rates, 𝜅𝜇,+𝑃𝜇,− = 𝜅𝜇,+𝑃𝜇,+.
This form allows us to express the qubit density matrix by

𝜌̂𝑞 (𝑡) =
∑︁
®𝜂
𝑃 ®𝜂 𝜌̂𝑞, ®𝜂 (𝑡). (S43)
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Eq. (S40) can be further simplified by rotation of 𝜌̂𝑞TLF (𝑡)
according to

𝜌̃𝑞TLF (𝑡) = 𝑈̂†𝑞TLF (𝑡) 𝜌̂𝑞TLF (𝑡)𝑈̂𝑞TLF (𝑡), (S44)

where the propagator is given by 𝑈̂𝑞TLF (𝑡) = exp[−𝑖𝐻̂𝑞TLF 𝑡].
Using Eq. (S42), the rotated density matrix is expanded by

𝜌̃𝑞TLF (𝑡) =
∑︁
®𝜂
𝑈̂†
𝑞, ®𝜂 (𝑡) 𝜌̂𝑞, ®𝜂 (𝑡)𝑈̂𝑞, ®𝜂 (𝑡) ⊗ 𝑃 ®𝜂 | ®𝜂〉〈®𝜂 |, (S45)

where we define the partial ®𝜂-dependent unitary 𝑈̂𝑞, ®𝜂 (𝑡) ≡
exp[−𝑖(𝜔𝑞 + Δ𝜔 ®𝜂)𝜎̂𝑧 𝑡/2] and Δ𝜔 ®𝜂 ≡

∑
𝜇 Δ𝜔𝑇𝜇 〈®𝜂 |𝜏𝑧𝜇 −

〈𝜏𝑧𝜇〉| ®𝜂〉. The evolution of the rotated partial density matrix
𝜌̃𝑞 (𝑡) ≡ TrTLF{ 𝜌̃𝑞TLF (𝑡)} is governed by

𝑑𝜌̃𝑞TLF (𝑡)
𝑑𝑡

=
∑︁
𝜇

[
𝜅𝜇,+D[𝜏𝜇,+ (𝑡)] 𝜌̃𝑞TLF (𝑡)

+ 𝜅𝜇,−D[𝜏𝜇,− (𝑡)] 𝜌̃𝑞TLF (𝑡)
]
, (S46)

where the jump operators are also rotated by the unitary
𝑈̂𝑞TLF (𝑡). For example, the raising operator of the 𝜇th TLF is
rotated by

𝜏𝜇,+ (𝑡) = 𝑈̂†𝑞TLF (𝑡)𝜏𝜇,+𝑈̂𝑞TLF (𝑡) (S47)

= |+𝜇〉〈−𝜇 | ⊗ 1̂′𝜇TLF ⊗ |𝑒〉〈𝑒 | exp(𝑖Δ𝜔𝑇𝜇𝑡)
+ |+𝜇〉〈−𝜇 | ⊗ 1̂′𝜇TLF ⊗ |𝑔〉〈𝑔 | exp(−𝑖Δ𝜔𝑇𝜇𝑡),

where 1̂′𝜇TLF is the identity operator of the partial Hilbert space
for the degrees of freedom of the TLFs with the 𝜇th TLF
excluded.

Asymptotic solution.–The expansion (S47) allows us to sim-
plify the master equation (S46) by neglecting fast-rotating
terms. Using Eq. (S47), we can expand the jump term
D[𝜏𝜇,+ (𝑡)] 𝜌̃𝑞TLF (𝑡) into terms with different oscillating fre-
quencies. If the strong TLFs are in their beating regime
Δ𝜔𝑇𝜇 �

∑
𝜇 𝜅𝜇, the oscillatory terms can all be regarded

as fast rotating and can therefore be neglected (rotating-wave
approximation). This leads to the much simplified jump term

D[𝜏𝜇,+ (𝑡)] 𝜌̃𝑞TLF (𝑡)
≈D[𝜏𝑒,𝜇,+] 𝜌̃𝑞TLF (𝑡) + D[𝜏𝑔,𝜇,+] 𝜌̃𝑞TLF (𝑡), (S48)

where we define 𝜏𝑒 (𝑔) ,𝜇,+ ≡ |+𝜇〉〈−𝜇 | ⊗ 1′𝜇TLF ⊗ |𝑒(𝑔)〉〈𝑒(𝑔) |.
The partial trace of the approximated jump term gives us

TrTLF{D[𝜏𝜇,+ (𝑡)] 𝜌̃𝑞TLF (𝑡)}
≈ (D[|𝑒〉〈𝑒 |] + D[|𝑔〉〈𝑔 |])

∑︁
®𝜂 |𝜂𝜇=−

𝑃 ®𝜂 𝜌̃𝑞, ®𝜂 (𝑡), (S49)

where the ®𝜂-dependent partial density matrix is 𝜌̃𝑞, ®𝜂 (𝑡) =

𝑈̂†
𝑞, ®𝜂 (𝑡) 𝜌̂𝑞, ®𝜂 (𝑡)𝑈̂𝑞, ®𝜂 (𝑡). The operation D[|𝑒(𝑔)〉〈𝑒(𝑔) |] in
Eq. (S49) does not affect the qubit population [diagonal matrix
elements of 𝜌̃𝑞 (𝑡)], but exponentially reduces the magnitude
of the off-diagonal matrix elements. As a result, we find

𝜌̃𝑞,𝑒𝑔 (𝑡) ≈ 𝜌̃𝑞,𝑒𝑔 (0)
∑︁
®𝜂
𝑃 ®𝜂 exp(−𝜅 ®𝜂𝑡). (S50)

The lab-frame density matrix elements can be obtained by the
reverse transformation of Eq. (S44), which only multiplies a ®𝜂-
dependent oscillatory factor to the exponential decay function
on the right-hand side of Eq. (S50). In the short-time limit
(𝜅 ®𝜂𝑡 � 1), the effective dephasing rate is then approximated
by 𝜅 =

∑
®𝜂 𝜅 ®𝜂𝑃 ®𝜂 , which confirms the expression obtained

previously.
The results given above are derived for the Ramsey mea-

surement. However, we check that including the Echo pulse
in the qubit Hamiltonian does not affect the conclusion of the
dephasing rate in the beating limit [8, 10]. In this parame-
ter regime, it is expected that one random flip of the strong
TLFs already occurs during the qubit coherence time, which
impedes the refocusing of the phase of the qubit.

Exact solution.– The asymptotic solution obtained above
gives the saturation dephasing rates and clearly explains the
beating behavior in the qubit oscillation. Meanwhile, an exact
analytical solution for the density matrix of this longitudinally
coupled qubit-TLFs model is also possible [8, 11].
The derivation of the solution presented below follows the

aforementioned references, although the framework used to
describe this problem is not exactly the same. Also, we do not
take the simplification of even probability distribution [12].
For the ODE (S46), we propose a solution of 𝜌̃𝑒𝑔,TLF (𝑡) ≡
〈𝑒 | 𝜌̃𝑞TLF (𝑡) |𝑔〉 as

𝜌̃𝑒𝑔,TLF (𝑡)= 𝜌𝑞,𝑒𝑔 (0)Π𝜇⊗
[
ℎ𝜇+(𝑡) |+𝜇〉〈+𝜇 |+ℎ𝜇−(𝑡) |−𝜇〉〈−𝜇 |

]
,

(S51)

whose initial condition is set by (S41) as ℎ𝜇± (0) = 𝑃𝜇,±. For
this solution to satisfy Eq. (S46), the coefficients should satisfy
the following differential equation:

𝑑ℎ𝜇± (𝑡)
𝑑𝑡

= −𝜅𝜇,∓ℎ𝜇± (𝑡) + 𝜅𝜇,±ℎ𝜇∓ (𝑡)𝑒±2𝑖Δ𝜔𝑇𝜇 𝑡 . (S52)

Note that the rotatingwave approximationwe havemade above
is equivalent to neglecting the second term on the right-hand
side. This approximation directly leads to the asymptotic so-
lution in Eq. (S50). For the exact solution, we do not omit
any term. Then to remove the time dependence in Eq. (S52),
we find it convenient to instead investigate the evolution of
ℎ′𝜇,± (𝑡) = ℎ𝜇,± (𝑡)𝑒±𝑖Δ𝜔𝑇𝜇 𝑡 , which satisfy

𝑑

𝑑𝑡

[
ℎ′𝜇,+ (𝑡)
ℎ′𝜇,− (𝑡)

]
=

[−𝑖Δ𝜔𝑇𝜇 − 𝜅𝜇,− 𝜅𝜇,+
𝜅𝜇,− 𝑖Δ𝜔𝑇𝜇 − 𝜅𝜇,+

] [
ℎ′𝜇,+ (𝑡)
ℎ′𝜇,− (𝑡)

]
.

(S53)

This differential equation set can be solved conveniently after
diagonalizing the 2×2 matrix, if the determinant 𝑆 ≡ (𝜅2𝜇 −
4Δ𝜔2𝑇𝜇 − 4𝑖Δ𝜅𝜇Δ𝜔𝑇𝜇) 12 is not zero (Δ𝜅𝜇 is the difference in
decay rates Δ𝜅𝜇 ≡ 𝜅𝜇,+ − 𝜅𝜇,−). We first focus on the scenario
with nonzero 𝑆, where the two eigenvalues are

Ω𝜇,± =
1
2
(−𝜅𝜇 ± 𝑆), (S54)

and the corresponding eigenvectors (not normalized) are

v± =
[
Δ𝜅 − 2𝑖Δ𝜔𝑇𝜇 ± 𝑆

𝜅 − Δ𝜅 , 1

]T
, (S55)
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The solutions for ℎ′𝜇,± (𝑡) are then obtained by matching the
initial condition. Toward this goal, it is convenient to first find
the inverse of V = [v+, v−], which is

V−1 = 1
2𝑆

[
𝜅 − Δ𝜅 −Δ𝜅 + 2𝑖Δ𝜔𝑇𝜇 + 𝑆
Δ𝜅 − 𝜅 Δ𝜅 − 2𝑖Δ𝜔𝑇𝜇 + 𝑆

]
. (S56)

The initial population of v± is denoted by p = V−1P, where
P = [𝑃𝜇,+, 𝑃𝜇,−]T. Using these notations, we express the
solutions as

ℎ′𝜇+ (𝑡) = (V−1P)+ (V)++𝑒Ω𝜇,+𝑡 + (V−1P)− (V)+−𝑒Ω𝜇,−𝑡 ,

ℎ′𝜇− (𝑡) = (V−1P)− (V)−−𝑒Ω𝜇,−𝑡 + (V−1P)+ (V)−+𝑒Ω𝜇,+𝑡 .

(S57)

The exact solutions presented above are complicated. If we
only consider TLFs with even probability distribution (Δ𝜅𝜇 =

0, 𝑃𝜇,± = 1/2), these solutions are simplified as

ℎ′𝜇+ (𝑡) =
1
4𝑆

[
(𝑆 − 2𝑖Δ𝜔𝑇𝜇 + 𝜅𝜇)𝑒

1
2 (−𝜅𝜇+𝑆)𝑡

+ (𝑆 + 2𝑖Δ𝜔𝑇𝜇 − 𝜅𝜇)𝑒
1
2 (−𝜅𝜇−𝑆)𝑡

]
,

ℎ′𝜇− (𝑡) =
1
4𝑆

[
(𝑆 − 2𝑖Δ𝜔𝑇𝜇 − 𝜅𝜇)𝑒

1
2 (−𝜅𝜇−𝑆)𝑡

+ (𝑆 + 2𝑖Δ𝜔𝑇𝜇 + 𝜅𝜇)𝑒
1
2 (−𝜅𝜇+𝑆)𝑡

]
, (S58)

which reproduce the results in Refs. [8, 11] after tracing the
TLF degrees of the freedom.
The special case with 𝑆 = 0, which is equivalent to Δ𝜅𝜇 = 0

and 𝜅𝜇 = 2|Δ𝜔𝑇𝜇 |, gives a critical solution

ℎ′𝜇± (𝑡) =
[1
4
(1 ∓ 𝑖)𝜅𝜇𝑡 + 12

]
𝑒−𝜅𝜇𝑡/2. (S59)

This solution can also be obtained by taking the limit 𝑆→0 in
Eq. (S58).
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