
Random-bond antiferromagnetic Ising model in a field

Jean-Christian Anglès d’Auriac1, ∗ and Ferenc Iglói2, 3, †
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Using combinatorial optimisation techniques we study the critical properties of the two- and
the three-dimensional Ising model with uniformly distributed random antiferromagnetic couplings
(1 ≤ Ji ≤ 2) in the presence of a homogeneous longitudinal field, h, at zero temperature. In finite
systems of linear size, L, we measure the average correlation function, CL(`, h), when the sites are
either on the same sub-lattice, or they belong to different sub-lattices. The phase transition, which
is of first-order in the pure system, turns to mixed order in two dimensions with critical exponents
1/ν ≈ 0.5 and η ≈ 0.7. In three dimensions we obtain 1/ν ≈ 0.7, which is compatible with the value
of the random-field Ising model, but we cannot discriminate between second-order and mixed-order
transitions.

I. INTRODUCTION

Phase transitions in systems with quenched disorder
are not well understood despite intensive research. Ex-
act results in this field are very scarce. In experiments
thermal equilibrium is difficult to reach, which is also
true for several numerical simulations. A paradigmatic
system in this field of research is the random-field Ising
model (RFIM)[1, 2], for which a phase-transition takes
place in three dimensions (d = 3), while in d = 2 the
random field destroys the transition which takes place in
the pure model. The phase transition in the d = 3 RFIM
is governed by a zero temperature fixed point, the prop-
erties of which can be very efficiently studied by com-
binatorial optimisation algorithms[3–6]. In this way the
ground states of the random samples can be exactly cal-
culated and the simulation is performed for large systems
with high statistics.

In a theoretical point of view the perturbative renor-
malization group (PRG) can be carried in all orders of
perturbation theory for the RFIM[7, 8]. It predicts di-
mensional reduction, which means that the critical expo-
nents of the RFIM in d dimensions are the same as the
exponents of the pure Ising model in d − 2 dimensions.
Another prediction of the PRG is that the RFIM and the
disordered antiferromagnetic Ising model in an external
magnetic field (DAFF) are in the same universality class,
which means that critical exponents and other critical pa-
rameters are the same for the two models and they do
not depend on the specific form of disorder. This state-
ment is first formulated for random bonds[9], but it has
afterwards been generalised for dilution[10]. The diluted
version is very important, since it can be connected with
experiments, which has been performed extensively[2].
Regarding the predictions of the PRG, some are false
c.f. the dimensional reduction[11], but some turned to
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be true, regarding universality of the RFIM and the di-
luted antiferromagnetic Ising model in a field.

In this paper we are going to study the critical proper-
ties of the antiferromagnetic Ising model in an external
magnetic field with random couplings at zero tempera-
ture in d = 2 (square lattice) and in d = 3 (simple cubic
lattice). In the pure model in the ground state there is
a first-order transition and at the transition point the
ground state is infinitely degenerate. Switching on disor-
der the degeneracy at the transition point is lifted and the
properties of the transition are expected to be changed.
For the numerical calculations we use very efficient com-
binatorial optimisation algorithms and calculate the ex-
act ground state of large finite samples. We are going to
obtain precise numerical estimates for the critical prop-
erties of the d = 2 model, less extensive simulations will
be performed in d = 3. Regarding previous studies: a
very large number of numerical simulations have been
performed for the RFIM, only a few simulations are de-
voted to the diluted antiferromagnetic Ising model in a
field[12–16] and we are not aware of simulations for the
random-bond antiferromagnetic Ising model in a field. In
this paper we aim to fill this gap.

The rest of the paper is organised in the following way.
The model and the method of investigation is presented
in Sec.II. The numerical results are calculated and anal-
ysed in Sec.III and a discussion is presented in Sec.IV.

II. THE MODEL

Our starting point is the antiferromagnetic Ising model
in a field:

HAF = J
∑
〈i,j〉

σiσj − h
∑
i

σi . (1)

in terms of σi = ±1 at site i and the first sum runs over
nearest neighbours. We consider finite lattices of linear
size L and with periodic boundary conditions (PBC-s).
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The ground state of this pure model is antiferromagnetic
for h < dJ and ferromagnetic for h > dJ . The transition
at hc = dJ is of first order and at this point the ground
state is infinitely degenerate: each spins in one of the
sub-lattices can be either σi = 1 or σi = −1.

For computational reasons it is convenient to per-
form a gauge transformation σi → (−1)

∑
k ikσi, with

i = {i1, i2, . . . , id}. For a hypercubic lattice with PBC
and even L we obtain a ferromagnet in an alternating
magnetic field:

HAF = −J
∑
〈i,j〉

σiσj − h
∑
i

(−1)
∑

k ikσi . (2)

Next step we consider disorder in the system. In the
literature one generally considers random site dilution,
which amounts to replace the spin variable σi by σiεi,
where the εi are independent random numbers: εi = 0
(εi = 1), with probability p (1− p). Instead we consider
here the model with random couplings:

HRAFF = −
∑
〈i,j〉

Jijσiσj − h
∑
i

(−1)
∑

k ikσi . (3)

and the Jij couplings are taken independently from the
box-like distribution:

π(J) =

{
(∆J)−1 for J0 < J ≤ J0 + ∆J ,

0 otherwise.
(4)

In the limit ∆J → 0 we have the pure system. In the
following we argue, that the phase-diagram of the ran-
dom system can be different, if the smallest coupling is
Jmin = J0 > 0 or Jmin = J0 = 0. Indeed, the ground
state is strictly AFM ordered, if h < 2dJmin and for
h > 2dJmin excitations destroy (locally) the AFM order.
In our numerical work we shall investigate the region with
J0 > 0 and keep J0 = ∆J = 1.

In the plane of temperature (T ) and field (h) the
schematic phase-diagram of the RAFF is shown in Fig.1,
which in d = 3 contains a ferromagnetic and a paramag-
netic phase. With zero field, h = 0, the phase diagram
has a random-bond Ising fixed point, in which the crit-
ical exponents[17] are different from their values in the
pure model in d = 3. For finite field, according to PRG
arguments, the transition is controlled by the fixed point
of the random-field Ising model. Finally, there is a zero-
temperature fixed point, the properties of which will be
studied in this paper. In d = 2 the critical exponents
at the zero-field fixed point are the same as for the pure
Ising model, however with logarithmic corrections[18]. In
d = 2 the ferromagnetic phase for T > 0, h > 0 is ex-
pected to be absent, which follows from the PRG results.
In this paper, we focus on calculating the critical prop-
erties of the RAFF at the zero-temperature fixed point.

III. RESULTS AT ZERO TEMPERATURE

At zero temperature the ground state of finite samples
has been calculated exactly by a very efficient combinato-

FIG. 1. (Color online) Schematic phase-diagram of the RAFF
in d = 3. In the zero field fixed point (blue) the critical ex-
ponents are those of the random-bond Ising model. For finite
value of the field the transition is expected to be controlled
by the fixed point of the random-field Ising model (green) ac-
cording to the prediction of the perturbative renormalization
group. In d = 2 the ferromagnetic phase for T > 0, h > 0 is
expected to be absent. The properties of the model at the zero
temperature (red) fixed point are the subject of this paper.

rial optimisation algorithm. The problem is turned into
the so-called max-flow problem [19]: all the sites of the
first sub-lattice are linked to an extra site (the source)
by a bond weighted by h, while the sites of the other
sub-lattice are linked to another extra site (the sink) also
weighted by h. The bond between two original sites i and
j are weighted by Jij . Then the min cut separating the
source from the sink realizes one of the possibly many
ground states. These min cut is found via the max flow
algorithm using the Goldberg and Tarjan algorithm [20].

We calculated average correlation functions:

CL(`) = 〈σiσi+`〉 , (5)

with ` = {`1, `2, . . . , `d} and 〈. . . 〉 denotes average in the
ground state of a given sample, which amounts to averag-
ing for all spin-pairs having a distance |`|, and · · · stands
for the average over quenched disorder. We concentrate
on the behavior of CL(`) for the largest separations and

calculate CL(`
(↑↓)
max) ≡ C

(↑↓)
L , when the sites are on dif-

ferent sub-lattices, `
(↑↓)
max = {L/2 − 1, L/2, . . . , L/2} and

CL(`
(↑↑)
max) ≡ C

(↑↑)
L , when the sites belong to the same

sub-lattice, `
(↑↑)
max = {L/2, L/2, . . . , L/2}.
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A. Square lattice

For the square lattice we considered finite lattices of
linear size: L = 16, 32, 64, 128, 256, 512 and 1024 and
the number of realizations varied between 10000, for the
smaller sizes and 500, for the larger ones. We have cal-

culated the average correlation functions C
(↑↓)
L (h) and

C
(↑↓)
L (h), which are shown in Fig.2. For relatively smaller
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FIG. 2. (Color online) Average correlation functions, C
(↑↑)
L (h)

(upper curves) and C
(↑↓)
L (h) (lower curves) as a function of

the field, h, calculated on finite square lattices. Results of
the one spin-flip approximation are shown by full lines. The
dashed lines illustrate the expected limiting behaviour in the
vicinity of the transition point in the thermodynamic limit,
see in Eq.(7).

values of h < 5, the numerical curves are very close to
one another and their values practically agree with those
calculated within the one spin-flip approximation. Hav-
ing a closer look to the curves one can see, that in this

region for a fixed h, C
(↑↑)
L (h) and C

(↑↓)
L (h) monotonously

increase with L. If the value of h is increased further,
the curves for different lengths start to cross each other,

e.g. C
(↑↓)
2L (h) = C

(↑↓)
L (h) at h = h∗(L). Generally h∗(L)

decreases with increasing L, but converge rapidly to a
limiting value: limL→∞ h∗(L) = h∗. This limiting value

of h∗ looks identical for C
(↑↓)
L (h), too. After passing the

crossing points the order of the the curves for different
values of L reverses, and their values start to decrease
rapidly and exceed a minimum. The value at the min-
imum tends towards zero in the large L limit. In Fig.3
we enlarge the sloping part of the curves. As can be seen
in the figure, the finite size curves run over an inflection
point at h = h̃(L), at which point we draw a tangential
straight line described by the equation: y = C ′×(h−h0).

Here

C ′ = C ′(L) =
dC

dh

∣∣∣∣
h̃(L)

(6)

is the slope and h0 = h0(L) is the crossing point with
the horizontal axis, which can be used as a finite-size
transition parameter. By inspection we notice a power-
law variation: C ′(L) ∼ Lε, with ε ≈ 0.5, see in the inset
of Fig.3.
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FIG. 3. (Color online) C
(↑↑)
L (h) at the decreasing parts and

their slope at the inflexion points are indicated by straight
dashed lines. The crossing point of a straight line with
the horizontal axis defines the finite-size transition param-
eter h0(L). From right to left L = 32, 64, 128, 256, 512 and
1024. In the inset the slopes of the curves at the inflexion
point are plotted versus L in a double logarithmic scale. The
slope of the dashed straight line is ε = 1/2.

Consequently in the thermodynamical limit the slope
of the curve diverges and at the same time the extension
of the critical region, ∆h(L) ∼ h0(L) − hc, with hc =
limL→∞ h0(L) being the transition point, shrinks to zero.
According to the inset of Fig.4 this relation is also in a
power-low form: ∆h(L) ∼ L−ω, with ω ≈ 0.5. Using
the corresponding scaling combination, (h− hc)L0.5, the
finite-size correlation functions can be put approximately
to a master curve, as shown in the main panel of Fig.4.

In a finite system at the critical point the correlation
length, ξ, is limited by the linear size of the system,
ξ ∼ L, and the extension of the critical region scales as
∆(h) ∼ ξ−1/ν . Hence the correlation length critical ex-
ponent in our case is ν = 1/ω ≈ 2. In the thermodynami-
cal limit the two limiting transition points become equal:

h∗ = hc and at the transition point C
(↑↑)
L (h), as well as

C
(↑↓)
L (h) has a jump, from a finite value at h → h∗ to

zero at h → hc. At the right side of the transition point
for h > hc the transition is continuous, which is mani-

fested by the fact that the value of the minima of C
(↑↑)
L (h)
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FIG. 4. (Color online) The average correlation function,

C
(↑↑)
L (h), close to the transition point as the function of the

scaling variable (h − hc)L
1/2, with hc = 5.102 estimated in

the inset. (L = 128 +, L = 256 +, L = 512 +, L = 1024
+, L = 2056 +.)In left the inset the finite-size transition pa-
rameter h0(L), as defined in Fig.3 is plotted as function of
L−ω, for different values of ω = 0.6, 0.55, 0.5, 0.45 and 0.4,
from top to bottom. The best asymptotic form is obtained
with ω ≈ 0.5, leading to an estimate for hc, used in the main
panel. Right inset: finite-size scaling of the minimum value of

C
(↑↑)
L (hmin) in log-log plot. The slope of the dashed straight

line is 2x ≈ 0.7.

goes to zero as a power-law: C
(↑↑)
L (hmin) ∼ L−2x. This

is checked in the right inset of Fig.4 and an estimate
2x ≈ 0.7 is obtained.

If we consider the behaviour of the correlation func-
tions in the thermodynamic limit, then for h < hc we
have C(↑↑)(h) = C(↑↓)(h) and at h = hc there is a finite
jump to zero. At the other side of the transition point
h > hc we have C(↑↑)(h) = −C(↑↓)(h) and close to the
transition point the variation is of a power-law form:

C(↑↑)(h) ∼ (h− hc)2β , h > hc , (7)

with β = xν. With our previous estimates we have 2β ≈
1.4 and we illustrate such type of a behavior in Fig.2.

We can thus conclude that the transition of the RAFF
in d = 2 and in zero temperature is of mixed order.
Mixed-order transitions can be observed in a variety of
models[21], also the RAFF in d = 1 has a mixed-order
transition[22].

B. Cubic lattice

For the cubic lattice we used finite systems of linear size
L = 8, 16, 24, 32 and 42 with periodic boundary condition
and the number of samples was at least 1000 even for the
largest systems. We calculated the average correlation

functions, C
(↑↑)
L (h) and C

(↑↓)
L (h) which are shown in Fig.5

for different sizes. Comparing the position of the curves

FIG. 5. (Color online) Average correlation functions C
(↑↑)
L (h)

(upper curves) and C
(↑↓)
L (h) (lower curves) for different sizes

for the cubic lattice. If mixed-order transition takes place
the dashed lines indicate the possible behaviour of the curves

in the thermodynamic limit. Inset: slope of C
(↑↓)
L (h) at the

crossing point with the x-axis as a function of the linear size
of the cubic lattice, L, in a log-log plot. The slope of the
dashed line is ε ≈ 0.7.

it is seen that (for a given L) C
(↑↓)
L (h) is considerably

shifted down from C
(↑↑)
L (h). This is different from the

d = 2 case, when the limiting positions of C
(↑↑)
L (h) and

C
(↑↓)
L (h) in the thermodynamic limit looks identical, see

in Fig.2. Considering the relative positions of the finite-

size curves, (separably for C
(↑↓)
L (h) and C

(↑↓)
L (h)), these

are similar to the d = 2 case. For h < 8.5 these are very
close to each other, but at the same time the correlations
are larger for larger L-s. Increasing the value of h the
correlation curves for different sizes cross each other, and
these crossing points seem to approach a limiting value h∗

for large values of L. This limiting crossing point seems

to be the same for both C
(↑↑)
L (h) and C

(↑↓)
L (h). Passing

the crossing point, for h > h∗ the curves start to decrease
rapidly in an approximately linear form and the slope of
these linear parts increases with L. By inspection the
slopes of the curves for a given L are close to each other

for C
(↑↑)
L (h) and for C

(↑↓)
L (h).

In the following let us concentrate on the fast varying

behaviour of C
(↑↓)
L (h) and let us define a finite-size tran-

sition parameter with the position of the crossing point
of the curve with the x-axis, which is denoted by h0(L).
The slope of the curves at h0(L) is denoted by C ′(L),
which are plotted as a function of L in Fig.?? in a log-
log scale.

According to this figure the slopes have a power-law
size-dependence: C ′(L) ∼ Lε, with ε ≈ 0.7. Assuming
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that this behaviour remains valid even at the thermody-
namic limit, then the slope at a true transition point,
defined as hc = limL→∞ h0(L), will be infinite. Next we
have to decide about the behaviour of the correlations
at the transition point. One possibility, that there is a
finite jump, like in d = 2, and the transition is of mixed
order. In this case we have the relation: 1/ν = ε ≈ 0.7.
In this case for h > hc the correlation functions are ex-
pected to follow a power-law dependence, like in Eq.(7).
Since the jump in finite systems is relatively small, one
can expect that this jump vanishes in the thermodynamic
limit and the transition is of second order, however with a
very small value of the magnetisation exponent, β. This
scenario would fit to the prediction of the PRG, that
the critical properties of the RAFF are the same as that
of the RFIM, for the latter the critical exponents being
1/ν ≈ 0.7 and β ≈ 0. With our limited finite-size date
we cannot discriminate between these two possibilities
for the type of the phase transition in the system.

IV. DISCUSSION

In this paper we considered the antiferromagnetic Ising
model with random couplings and in the presence of a ho-
mogeneous field and studied the properties of the phase
transition at zero temperature. Using very efficient nu-
merical algorithms we calculated exact ground states of
finite hypercubic lattices in d = 2 and d = 3 for a large set
of random samples. We have calculated average spin-spin
correlation functions and studied their properties, when
the two sites are at the same sub-lattice or the sites be-
long to different sub-lattices. The phase transition in the
non-random system is of first order and the ground state
at the transition point being infinitely degenerate with
a finite entropy per site. Due to disorder, this degen-
eracy is lifted and the transition turns to mixed-order
in d = 2. The critical exponents are 1/ν ≈ 0.5 and
η = 2x ≈ 0.7, which represents a new random universal-
ity class. In d = 3 we could not decide between mixed-
order or second-order transition due to our limited finite-
size results. The second-order scenario would fit to the
prediction of the PRG theory, having critical exponents
1/ν ≈ 0.5 and β ≈ 0.

An interesting question, what happens with the tran-
sition at finite temperature. According to the prediction
of the PRG the critical properties of the RAFF should
be the same as that of the RFIM. In this way in d = 2
there should be no ordered phase, while in d = 3 the
critical exponents should be the same as for the RFIM,
both at T = 0 and for T > 0. For the diluted Ising anti-
ferromagnet in a field this scenario has been numerically
confirmed in d = 3[16], while the case d = 2 has not yet
been studied.

Another way to complete our model is to introduce
(random) transverse fields into the problem. This ques-
tion has been studied in d = 1 and reentrant critical
behaviour is observed around the RAFF fixed point[22].

Similar type of reentrant phase transitions are expected
to take place in higher dimensions, too.

APPENDIX: CORRELATIONS IN THE ONE
SPIN-FLIP APPROXIMATION

Here we consider the square lattice, the considerations
are straightforward to generalise for the cubic lattice. Let
us consider the ferromagnetic phase with h < 4 and start
to increase the staggered longitudinal field over h = 4.
Here we consider such processes, when single ↑ spins
are flipped in one of the sub-lattices. The ferromagnetic
ground state will then change locally at such a site, where
the strength of the field exceeds the sum of the four local
couplings:

4∑
j=1

Jij < h . (8)

At this point the originally ↑ spin will turn to ↓. The
probability distribution, P4(x)dx of the sum of four ran-
dom couplings: x = J1 + J2 + J3 + J4 is given by the
convolution:

P4(x) =

∫
dJ1

∫
dJ2

∫
dJ3π1(J1)π1(J2)π1(J3)

× π1(x− J1 − J2 − J3) , (9)

and can be calculated by the box-distribution in Eq.(4)
(with J0 = ∆J = 1):

P4(x) =
1

12

[
|8− x|3 − 4|7− x|3 + 6|6− x|3

− 4|5− x|3 + |4− x|3
]
. (10)

This is non-zero for 4 < x < 8, and in the range 4 < x < 6
is given by:

P4(x) =


1

6
(x− 4)3, 4 < x < 5

1

6
(x− 4)3 − 2

3
(x− 5)3, 5 < x < 6

(11)

and symmetric for x = 6.
The integrated density, µ4(x) in this range behaves as:

µ4(x) =

∫ x

4

P4(x′)dx′

=


1

24
(x− 4)4, 4 < x < 5

1

24
(x− 4)4 − 1

6
(x− 5)4, 5 < x < 6 .

(12)

The average number of flipped ↑ spins at a field h is given
by:

nfl = µ4(h)
L2

2
=

1

48
(h− 4)4L2, 4 < h < 5 , (13)
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and the average correlation function between two sites
having a distance L/2− 1:

C
(↑↑)
L (h) = 〈σz1σzL/2〉 =

L2/2− 2nfl
L2/2

=


1− 1

12
(h− 4)4, 4 < h < 5

1− 1

12
(h− 4)4 +

1

3
(h− 5)4, 5 < h < 6 .

(14)

It has the symmetry: C
(↑↑)
L (h) = −C(↑↑)

L (12− h).
The average correlation function between two sites at

a distance L/2 is given by:

C
(↑↓)
L (h) = 〈σzL/2σ

z
L〉 =

L2/2 + (1− 2µ4(h))
2
L2/2

L2

=



1

2

[
1 +

(
1− 1

12
(h− 4)4

)2
]
, 4 < h < 5

1

2

[
1 +

(
1− 1

12
(h− 4)4 +

1

3
(h− 5)4

)2
]
, 5 < h < 6 .

(15)
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