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A MICROSCOPIC DERIVATION OF GIBBS MEASURES FOR

THE 1D FOCUSING CUBIC NONLINEAR SCHRÖDINGER

EQUATION

ANDREW ROUT AND VEDRAN SOHINGER

Abstract. In this paper, we give a microscopic derivation of Gibbs measures
for the focusing cubic nonlinear Schrödinger equation on the one-dimensional
torus from many-body quantum Gibbs states. Since we are not making any
positivity assumptions on the interaction, it is necessary to introduce a trun-
cation of the mass in the classical setting and of the rescaled particle number
in the quantum setting. Our methods are based on a perturbative expansion
of the interaction, similarly as in [17]. Due to the presence of the truncation,
the obtained series have infinite radius of convergence. We treat the case of
bounded, L1 and delta function interaction potentials, without any sign as-
sumptions. Within this framework, we also study time-dependent correlation
functions. This is the first such known result in the focusing regime.

1. Introduction

1.1. Setup. Let h be a Hilbert space with a given Hamiltonian function H ∈
C∞(h) and Poisson bracket {·, ·} : C∞(h) × C∞(h) → C∞(h). The Gibbs measure
associated with the Hamiltonian H and Poisson bracket {·, ·} is formally-defined as
the probability measure on h given by

dPGibbs(ϕ) :=
1

zGibbs
e−H(ϕ) dϕ . (1.1)

Here, dϕ denotes Lebesgue measure on h (which is ill-defined when h is infinite-
dimensional) and zGibbs is the partition function, i.e. the normalisation constant
which makes dPGibbs into a probability measure on h. The problem of the rigorous
construction of measures of type (1.1) was first considered in the constructive quan-
tum field theory literature. For an overview, see the classical works [23, 40, 41, 49]
and the later works [2, 11, 12, 14, 25, 31, 37, 38, 44], as well as the references therein.

When H is not positive-definite, it is sometimes not possible to define (1.1) with
finite normalisation constant zGibbs, as formally one can have

∫
e−H(ϕ) dϕ = ∞.

Instead, one considers a modification of (1.1) given by

dPfGibbs(ϕ) :=
1

zfGibbs

e−H(ϕ) f(‖ϕ‖2h) dϕ , (1.2)

where f is a suitable cut-off function in C∞
c (R), and zfGibbs is a normalisation

constant that makes (1.2) a probability measure on h. In general, when H is not
positive-definite, we say that we are in the focusing (or thermodynamically unstable)
regime.
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2 ANDREW ROUT AND VEDRAN SOHINGER

In this paper, we fix the spatial domain T ≡ T1 ≡ R/Z ≡ [− 1
2 ,

1
2 ) to be the

one-dimensional torus1. We henceforth consider the Hilbert space h := L2(T;C) ≡
L2(T). Let us now define the precise Hamiltonian. We make the following assump-
tion.

Assumption 1.1 (The interaction potential). We consider an interaction potential
which is of one of the following types.

(i) w : T → R is even and belongs to L1(T).
(ii) w = −δ, where δ is the Dirac delta function.

Let us note that, in Assumption 1.1, we do not assume any conditions on the sign
of w or the sign of ŵ (pointwise almost everywhere).

With w as in Assumption 1.1, the Hamiltonian that we consider is given by

H(ϕ) :=

∫
dx
(
|∇ϕ(x)|2 + κ|ϕ(x)|2

)
+

1

2

∫
dx dy |ϕ(x)|2 w(x − y)|ϕ(y)|2 . (1.3)

In (1.3), and throughout the sequel, we fix κ > 0 to be the (negative) chemical
potential and we write

∫
dx :=

∫
T
dx. On the space of fields ϕ : T → C, we consider

a Poisson bracket defined by

{ϕ(x), ϕ(y)} = iδ(x− y), {ϕ(x), ϕ(y)} = {ϕ(x), ϕ(y)} = 0 . (1.4)

We note that, by Assumption 1.1, the Hamiltonian (1.3) is not necessarily
positive-definite. Hence, when studying the associated Gibbs measure, one has
to use the modification given by (1.2), instead of (1.1). This setup was previously
used in [4, 14, 31].

The Hamiltonian equation of motion associated with Hamiltonian (1.3) and Pois-
son bracket (1.4) is the time-dependent nonlocal nonlinear Schrödinger equation
(NLS)

i∂tϕ(x) = (−∆+ κ)ϕ(x) +

∫
dy |ϕ(y)|2 w(x − y)ϕ(x) . (1.5)

Here, we abbreviate the notation ϕ(x) ≡ ϕ(x, t) with ϕ : T× R → C. For w ∈ L1,
as in Assumption 1.1 (i), one usually refers to (1.5) as the Hartree equation. We
will also consider the focusing local cubic NLS

i∂tϕ(x) = (−∆+ κ)ϕ(x) − |ϕ(x)|2ϕ(x) , (1.6)

which corresponds to (1.5) with w = −δ, as in Assumption 1.1 (ii). We refer to2

(1.5) and (1.6) as the focusing cubic nonlinear Schrödinger equation (NLS).
The arguments in [3] show that the focusing cubic NLS (1.5)–(1.6) is globally

well-posed for initial data in h ≡ L2(T). In particular, there exists a well-defined
solution map St that maps any initial data ϕ0 ∈ h to the solution at time t given
by

ϕ(·) ≡ ϕ(·, t) := Stϕ0(·) ∈ h . (1.7)

Moreover, ‖Stϕ0‖h = ‖ϕ0‖h.

1Some of our results generalise to other domains; see Remark 1.7 (3) below. For simplicity, we
work on T1.

2When one has suitable positivity (in other words defocusing) assumptions on w, the analysis
of the problem we are considering for (1.5) has already been done in [17]; see Section 1.5 below
for an overview. Our main interest lies in the case when these assumptions are relaxed, which we
refer to as the focusing regime.
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Given the measure dPfGibbs as in (1.2) and the time evolution as in (1.7), one
can consider the corresponding time-dependent correlation functions. Namely, for
m ∈ N∗, times t1, . . . , tm ∈ R, and functions X1, . . . , Xm ∈ C∞(h), we define

Qf
Gibbs(X

1, . . . , Xm; t1, . . . , tm) :=

∫
dPfGibbs(ϕ)X

1(St1ϕ) · · · Xm(Stmϕ) , (1.8)

which we call the m-particle time-dependent correlation associated with H and
Xj, tj, j = 1, . . . ,m.

The main goal of this paper is to show that one can obtain (1.8) as a mean-field
limit of corresponding many-body quantum objects, which we henceforth refer to
as a microscopic derivation. We do this in two steps.

(i) Step 1: Analysis of the time-independent problem, i.e. when
t1 = · · · = tm = 0.

(ii) Step 2: Analysis of the time-dependent problem. This is the general case.

The precise results are stated in Section 1.4. In Section 1.2, we define the objects
with which we work in the classical setting. In Section 1.3, we define the objects
with which we work in the quantum setting.

1.2. The Classical Problem. The one-particle space on which we work is h =
L2(T). We use the following convention for the scalar product.

〈g1, g2〉h :=

∫
dx g1(x) g2(x) .

We consider the one-body Hamiltonian given by

h := −∆+ κ, (1.9)

where κ > 0 is as in (1.3). This is a positive self-adjoint densely defined operator
on h. We can write h spectrally as

h :=
∑

k∈N

λkuku
∗
k, (1.10)

where
λk := 4π2|k|2 + κ (1.11)

are the eigenvalues of h and
uk := e2πikx (1.12)

are the normalised eigenvalues of h on h. Since we are working on T, we have

Tr(h−1) =
∑

k∈N

1

4π2|k|2 + κ
<∞, (1.13)

where the trace is taken over h.
For each k ∈ N, we define µk to be a standard complex Gaussian measure.

In other words, µk := 1
π e

−|z|2dz, where dz is the Lebesgue measure on C. Let

(CN,G, µ) be the product probability space with

µ :=
⊗

k∈N

µk. (1.14)

We denote elements of the probability space CN by ω = (ωk)k∈N. Let the classical
free field ϕ ≡ ϕω be defined by

ϕ :=
∑

k∈N

ωk√
λk
uk. (1.15)
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Note that (1.13) implies (1.15) converges almost surely in H
1
2−ε(T) for ε > 0

arbitrarily small. Here Hs(T) denotes the L2-based Sobolev space of order s on T

with norm given by

‖g‖Hs(T) :=

(
∑

k∈Z

(1 + |k|)2s|ĝ(k)|2
)1/2

.

We take the following convention for the Fourier transform on L1(T).

ĝ(k) :=

∫
dx g(x)e−2πikx , k ∈ Z . (1.16)

The measure µ satisfies the following Wick theorem; see for example [19, Lemma
2.4] for a self-contained summary.

Proposition 1.2. Let ϕ be as in (1.15). Given g ∈ H− 1
2+ε for ε > 0, we let

ϕ(g) := 〈g, ϕ〉 and ϕ(g) := 〈ϕ, g〉. Furthermore, we let (ϕ)∗(g) denote either ϕ(g)

or ϕ(g). Then, given n ∈ N
∗ and g1, . . . , gn ∈ H− 1

2+ε, we have

Eµ

[
n∏

i=1

(ϕ(gi))
∗i

]
=

∑

Π∈M(n)

∏

(i,j)∈Π

Eµ

[
(ϕ(gi))

∗i (ϕ(gj))
∗j
]
, (1.17)

where the sum is taken over all complete pairings of {1, . . . , n}, and where edges of
Π are denoted by (i, j) with i < j.

We note that, by gauge invariance, for all (i, j) ∈ Π

Eµ [ϕ(gi)ϕ(gj)] = Eµ [ϕ(gi)ϕ(gj)] = 0 .

Therefore, each non-zero factor arising on the right-hand side of (1.17) can be
computed using ∫

dµϕ(g̃)ϕ(g) = 〈g, h−1g̃〉,

for g, g̃ ∈ H− 1
2+ε. Here, the Green function h−1 is the covariance of µ. We note

that, under a suitable pushforward, we can identify µ with a probability measure
on Hs; see e.g. [17, Remark 1.3]. As in [17], we work directly with the measure µ
as above and do not use this identification.

Given p ∈ N∗, the p-particle space h(p) is defined as the symmetric subspace of
h⊗p, i.e. u ∈ h(p) if and only if for any permutation π,

u(xπ(1), . . . , xπ(p)) = u(x1, . . . , xp) .

For ξ a closed linear operator on h(p), we can associate ξ with its Schwartz integral
kernel, which we denote by ξ(x1, . . . , xp; y1, . . . , yp); see [46, Corollary V.4.4]. For
such a ξ and for ϕ as in (1.15), we define the random variable

Θ(ξ) :=

∫
dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp; y1, . . . , yp)

× ϕ(x1) . . . ϕ(xp)ϕ(y1) . . . ϕ(yp) . (1.18)

We denote by L(H) the set of all bounded operators on a Hilbert Space H. If
ξ ∈ L(h(p)), then Θ(ξ) defined in (1.18) is almost surely well-defined, since ϕ ∈ h

almost surely.
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Given w as in Assumption 1.1, we define the classical interaction as

W :=
1

2

∫
dx dy |ϕ(x)|2 w(x − y)|ϕ(y)|2 . (1.19)

The free classical Hamiltonian is given by

H0 := Θ(h) =

∫
dx dy ϕ(x)h(x; y)ϕ(y) . (1.20)

The interacting classical Hamiltonian is given by

H := H0 +W . (1.21)

The mass is defined as

N :=

∫
dx |ϕ(x)|2 . (1.22)

At this stage, we have to introduce the cut-off f that appears in (1.2). We now
state the precise assumptions on f that we use in the sequel.

Assumption 1.3. Throughout the paper, we fix f ∈ C∞
c (R), which is not identi-

cally equal to zero such that 0 ≤ f ≤ 1 and

supp(f) ⊂ [−K,K] , (1.23)

for some K > 0.

All of our estimates depend on K in (1.23), but we do not track this dependence
explicitly.

We define the classical state ρf (·) ≡ ρ(·) by

ρ(X) :=

∫
dµXe−Wf(N )∫
dµ e−Wf(N )

≡ E
P
f
Gibbs

(X) , (1.24)

where X is a random variable. Let the classical partition function z ≡ zfGibbs be
defined as

z :=

∫
dµ e−Wf(N ) . (1.25)

Note that both ρ and z are well defined by Lemma 2.1 and Corollary 2.4 below. We
characterise ρ(·) through its moments. Namely, we define the classical p-particle
correlation function γp ≡ γfp , which acts on h(p) through its kernel

γp(x1, . . . , xp; y1, . . . , yp) := ρ(ϕ(y1) . . . ϕ(yp)ϕ(x1) . . . ϕ(xp)) . (1.26)

1.3. The Quantum Problem. We use the same conventions as in [17, Section
1.4]. For more details and motivation, we refer the reader to the aforementioned
work. In the quantum setting, we work on the bosonic Fock space, which is defined
as

F ≡ F(h) :=
⊕

p∈N

h(p).

Let us denote vectors of F by Ψ = (Ψ(p))p∈N. For g ∈ h, let b∗(g) and b(g) denote
the bosonic creation and annihilation operators, defined respectively as

(b∗(g)Ψ)
(p)

(x1, . . . , xp) :=
1√
p

p∑

i=1

g(xi)Ψ
(p−1)(x1, . . . , xi−1, xi+1, . . . , xp) ,

(b(g)Ψ)
(p)

(x1, . . . , xp) :=
√
p+ 1

∫
dx g(x)Ψ(p+1)(x, x1, . . . , xp) .
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These are closed, densely-defined operators which are each other’s adjoints. The
creation and annihilation operators satisfy the canonical commutation relations,
i.e.

[b(g1), b
∗(g2)] = 〈g1, g2〉h, [b(g1), b(g2)] = [b∗(g1), b

∗(g2)] = 0 , (1.27)

for all g1, g2 ∈ h. Furthermore, we define the rescaled creation and annihilation
operators

ϕ∗
τ (g) := τ−1/2 b∗(g) , ϕτ (g) := τ−1/2 b(g) , (1.28)

for g ∈ h. Here, we think of ϕ∗
τ and ϕτ as operator valued distributions, and we

denote their distribution kernels by ϕ∗
τ (x) and ϕτ (x), respectively. Formally, ϕ∗

τ (x)
and ϕτ (x) correspond to taking g = δx (the Dirac delta function centred at x) in
(1.28). In analogy to (1.15), we call ϕτ the quantum field.

As before, let ξ be a closed linear operator on h(p). The lift of ξ to F is defined
by

Θτ (ξ) :=

∫
dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp; y1, . . . , yp)

× ϕ∗
τ (x1) . . . ϕ

∗
τ (xp)ϕτ (y1) . . . ϕτ (yp) . (1.29)

For w ∈ L∞(T) real-valued and even, we define the quantum interaction as3

Wτ :=
1

2
Θτ (W ) =

1

2

∫
dx dy ϕ∗

τ (x)ϕ
∗
τ (y)w(x − y)ϕτ (x)ϕτ (y) . (1.30)

Here W is the two particle operator on h(2) which acts by multiplication by w(x1 −
x2) for w ∈ L∞. We define the free quantum Hamiltonian as

Hτ,0 := Θτ (h) =

∫
dx dy ϕ∗

τ (x)h(x; y)ϕτ (y) , (1.31)

where h is as in (1.9). We define the interacting quantum Hamiltonian as

Hτ := Hτ,0 +Wτ .

We also define the rescaled particle number as

Nτ :=

∫
dxϕ∗

τ (x)ϕτ (x) . (1.32)

On the pth sector of Fock space, Nτ acts as multiplication by p
τ .

The (untruncated) grand canonical ensemble is defined as

Pτ := e−Hτ (1.33)

and the (truncated) quantum state ρfτ (·) ≡ ρτ (·) is defined as

ρτ (A) :=
Tr(APτ f(Nτ ))

Tr(Pτf(Nτ ))
, (1.34)

where the traces are taken over Fock space. Let the quantum partition function
and the free quantum partition function, Zτ ≡ Zfτ , Zτ,0 be defined respectively as

Zτ := Tr(e−Hτ f(Nτ )), Zτ,0 := Tr(e−Hτ,0) . (1.35)

3In principle, we could consider w as in Assumption 1.1 in the quantum setting at the level of
the definition. In practice, we take the interaction potential to be bounded; see Section 1.4 below
for the precise statements.
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With Zτ , Zτ,0 as in (1.35), we define the relative quantum partition function Zτ ≡
Zf
τ by

Zτ :=
Zτ
Zτ,0

. (1.36)

In analogy to (1.26), we characterise the quantum state through its correlation
functions. Namely, for p ∈ N∗, we define the quantum p-particle correlation function
γfτ,p ≡ γτ,p, which acts on h(p) through its kernel

γτ,p(x1, . . . , xp; y1, . . . , yp) := ρτ (ϕ
∗
τ (y1) . . . ϕ

∗
τ (yp)ϕτ (x1) . . . ϕτ (xp)) . (1.37)

Throughout the sequel, for a given quantity Y = ρ,N , H, . . . , we will use the
abbreviation Y# to denote either Yτ or Y .

1.4. Statement of the results. We can now state our main results. In Section
1.4.1, we state the time-independent results. In Section 1.4.2, we state their time-
dependent generalisations. In all of the results, we will consider the limit τ → ∞,
which we interpret as being the mean-field or semiclassical limit, with semiclassical
parameter 1/τ → 0. Physically, this corresponds to taking a high-density limit,
where we let the mass of the bosonic particles or the temperature tend to infinity.
For a precise justification of this terminology and the choice of parameters, we refer
the reader to [19, Section 1.1] for a detailed discussion.

1.4.1. The time-independent problem. The first result that we prove concerns bounded
interaction potentials.

Theorem 1.4 (Convergence for w ∈ L∞(T)). Let w ∈ L∞(T) be real-valued and
even. Given p ∈ N

∗, we recall the quantities γτ,p and γp defined in (1.37) and
(1.26) respectively. We then have

lim
τ→∞

‖γτ,p − γp‖S1(h(p)) = 0 . (1.38)

Moreover, recalling (1.25) and (1.36), we have

lim
τ→∞

Zτ = z . (1.39)

By applying an approximation argument, we prove results for w as in Assumption
1.1. Throughout the sequel, any object with a superscript ε is the corresponding
object defined by taking the interaction potential to be wε, which will be a suitable
bounded approximation of w. In what follows, we always assume that all the ap-
proximating interaction potentials wε are real-valued and even, without mentioning
this explicitly. We can now state the result for L1(T) interaction potentials.

Theorem 1.5 (Convergence for w ∈ L1(T)). Let w be as in Assumption 1.1 (i).
Suppose that (wε) is a sequence of interaction potentials which are in L∞(T) such
that wε → w in L1(T). Then there exists a sequence (ετ ) satisfying ετ → 0 as
τ → ∞ such that for any p ∈ N∗

lim
τ→∞

‖γεττ,p − γp‖S1(h(p)) = 0 (1.40)

and such that

lim
τ→∞

Zετ
τ = z . (1.41)
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Before considering w = −δ as in Assumption 1.1 (ii), we need to define the
sequence more wε precisely. We fix U : R → R to be a continuous even function,
with suppU ⊂ T satisfying

∫

R

dxU(x) =

∫

T

dxU(x) = −1 . (1.42)

For ε ∈ (0, 1), we define

wε :=
1

ε
U

(
[x]

ε

)
, (1.43)

where [x] is defined to be the unique element in (x + Z) ∩ T. In particular, wε ∈
L∞(T) and wε converges to −δ weakly, with respect to continuous functions.

Theorem 1.6 (Convergence for w = −δ). With notation as in (1.43), there exists
a sequence (ετ ) satisfying ετ → 0 as τ → ∞ such that for any p ∈ N∗

lim
τ→∞

‖γεττ,p − γp‖S1(h(p)) = 0 (1.44)

and such that

lim
τ→∞

Zετ
τ = z . (1.45)

Remark 1.7. We make the following observations about Theorems 1.4, 1.5, and
1.6.

(1) For a pointwise almost everywhere non-negative, bounded, even interaction
potential w, Theorem 1.4 holds without the need for a cut-off function
f . This is the content of [17, Theorem 1.8]. Moreover, by working with
the non-normal ordered quantum interaction W ′

τ defined in (B.1), for a
bounded, real-valued, even interaction potential w of positive type (i.e. ŵ
pointwise almost everywhere non-negative), the same proof as [17, Theorem
1.8] again shows that Theorem 1.4 holds without the need for a cut-off
function f . We include the details of the proof of this claim in Appendix
B.1.

(2) We conjecture that the results hold for f a characteristic function of an
interval. The method that we apply in Lemma 3.13 of Section 3.6 requires
suitable smoothness assumptions on f . This is a technical assumption.

(3) For an individual w ∈ L∞, Theorem 1.4 holds with a cut-off function of the

form f(x) = e−cx
2

, for c > 0 sufficiently large depending on ‖w‖L∞ . This
is also proved by working with a non-normal ordered quantum interaction.
The details are given in Appendix B.2. We note this c cannot be chosen
uniformly in the L∞ norm of the interaction potential. So we cannot treat
the unbounded interactions as in Theorems 1.5 and 1.6 using this kind of
truncation.

(4) One could consider the questions from Theorems 1.4 and 1.10 in the non-
periodic setting when the spatial domain is R for the one-body Hamiltonian
h = −∆+ κ+ v, where v : R → [0,∞) is a positive one-body potential such
that h has compact resolvent and Tr h−1 < ∞ holds (as in (1.13)). The
analysis that we present in the periodic setting would carry through to this
case, provided that we know that the time evolution St given in (1.7) is
well-defined on the support of the Gibbs measure. We do not address this
question further in our paper.



DERIVATION OF GIBBS MEASURES FOR THE 1D FOCUSING CUBIC NLS 9

(5) By following the duality arguments in [17, Section 3.3], we can get the
equivalents of equations (1.38), (1.40), and (1.44) in terms of ρτ and ρ. For
more details when w ∈ L∞, see Corollary 3.16, Lemma 4.1, and Lemma
4.2 below. For the time-independent problem, we state the convergence as
above in the trace class. For the time-dependent problem, we need to use
the alternative formulation, which can be seen as a generalisation of the
time-independent analysis. For more details, see Remark 1.13 below.

(6) Our method works for more general interaction potentials. In particular, we
can consider linear combinations of interaction potentials as in Assumption
1.1 (i) and (ii) with the same arguments.

1.4.2. The time-dependent problem. We also prove time-dependent generalisations
of the results in Section 1.4.1. In order to precisely state the results, we first
introduce some notation.

Definition 1.8. Let p ∈ N∗ and ξ ∈ L(h(p)) be given. For t ∈ R, we define the
random variable

ΨtΘ(ξ) :=

∫
dx1 . . . dxp dy1 . . . dyp ξ(x1, . . . , xp; y1 . . . yp)

× Stϕ(x1) . . . Stϕ(xp)Stϕ(xp) . . . Stϕ(yp), (1.46)

where St is the flow map defined in (1.7). This is well defined since ϕ ∈ h almost
surely and St is norm preserving on h.

Definition 1.9. Suppose A : F → F . Define the quantum time evolution of A as

ΨtτA := eitτHτ A e−itτHτ .

We also recall the quantities ρτ and ρ defined as in (1.34) and (1.24) respectively.

Theorem 1.10 (Convergence for w ∈ L∞(T)). Let w be as in Theorem 1.4. Given
m ∈ N∗, pi ∈ N∗, ξi ∈ L(h(pi)), and ti ∈ R, we have

lim
τ→∞

ρτ
(
Ψt1τ Θτ (ξ

1) . . .Ψtmτ Θτ (ξ
m)
)
= ρ

(
Ψt1Θ(ξ1) . . .ΨtmΘ(ξm)

)
.

Theorem 1.11 (Convergence for w ∈ L1(T)). Let w,wε be as in the assumptions
of Theorem 1.5. Then, there exists a sequence (ετ ) satisfying ετ → 0 as τ → ∞
such that, given m ∈ N∗, pi ∈ N∗, ξi ∈ L(h(pi)), and ti ∈ R, we have

lim
τ→∞

ρεττ
(
Ψt1τ Θτ (ξ

1) . . .Ψtmτ Θτ (ξ
m)
)
= ρ

(
Ψt1Θ(ξ1) . . .ΨtmΘ(ξm)

)
.

Theorem 1.12 (Convergence for w = −δ). Let w,wε be as in the assumptions of
Theorem 1.6. Then, there exists a sequence (ετ ) satisfying ετ → 0 as τ → ∞ such
that, given m ∈ N

∗, pi ∈ N
∗, ξi ∈ L(h(pi)), and ti ∈ R, we have

lim
τ→∞

ρεττ
(
Ψt1τ Θτ (ξ

1) . . .Ψtmτ Θτ (ξ
m)
)
= ρ

(
Ψt1Θ(ξ1) . . .ΨtmΘ(ξm)

)
.

Remark 1.13. Theorems 1.10–1.12 can indeed be seen as generalisations of the
results given in Theorems 1.38–1.6 respectively (the latter of which correspond to
setting m = 1 and t1 = 0). Namely, we use Remark 1.7 (3) above and noting that
the proofs show that the convergence is uniform in ‖ξ1‖ ≤ 1.
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1.5. Previously known results. In the context of the NLS, Gibbs measures
(1.1)–(1.2) were relevant to study a substitute for a conservation law at low regu-
larity. Namely, one can show that they are invariant under the flow and that they
are supported on Sobolev spaces of low regularity. Consequently, it is possible to
construct global solutions for random rough initial data. This was first rigorously
obtained in the work of Bourgain [4–6]. Some preliminary results were previously
known by Zhidkov [58]. This is an active area of research in nonlinear dispersive
PDEs. We refer the reader to the expository works [13, 39, 45] for further expla-
nations and background. For more recent developments, we refer the reader to
[8–10,15, 16, 44] and the references therein.

The focusing problem is more challenging. In one dimension, it was addressed
in the earlier works [4, 31]. The one-dimensional problem was revisited recently in
[1, 14, 44]. For recent results on the fractional NLS, see [30].

It also makes sense to consider the higher-dimensional problem, i.e. when the
spatial domain is Td, with d = 2, 3. Here, one needs to renormalise the interaction
by means of Wick ordering. Formally, this refers to replacing (1.19) by

WWick :=
1

2

∫
dx dy

(
|ϕ(x)|2−Eµ[|ϕ(x)|2]

)
w(x−y)

(
|ϕ(y)|2−Eµ[|ϕ(x)|2]

)
, (1.47)

One rigorously constructs (1.47) by means of a frequency truncation, see e.g.
[17, Lemma 1.5] for a pedagogical overview. In this context, the notion of defocus-
ing refers to w being of positive type (i.e. ŵ being pointwise nonnegative almost
everywhere), in which case the quantity (1.47) is formally nonnegative. When this
assumption is relaxed, one needs to consider a truncation in the Gibbs measure,
similarly as in (1.2). Since the L2 norm is almost surely infinite, one needs to
modify (1.2) and consider

dP̃fGibbs(ϕ) :=
1

z̃fGibbs

e−H
Wick(ϕ) f

(
: ‖ϕ‖2h :

)
dϕ . (1.48)

In (1.48), HWick denotes the Hamiltonian obtained by replacing (1.19) by (1.47) in
(1.21). Moreover, : ‖ϕ‖2h : denotes the Wick-ordering of the mass (1.22) formally
given by

: ‖ϕ‖2h :≡
∫
dx
(
|ϕ(x)|2 − Eµ[|ϕ(x)2|]

)
.

Finally, z̃fGibbs denotes a normalisation constant. For precise definitions of these
objects, we refer the reader to [6, (12)]. The invariance of (1.48) under the corre-
sponding (Wick-ordered, focusing) NLS flow was first shown in [6] for w satisfying
appropriate decay conditions on its Fourier coefficients (or under appropriate inte-
grability conditions on w) . It was noted in [12] that, when d = 2, Wick ordering
and truncation as in (1.48) do not yield a well-defined probability measure when
w = −δ. Gibbs measures for the focusing NLS and related models were also studied
in [7, 42, 43, 57].

The first result showing how Gibbs measures for the NLS arise as limits of many-
body quantum Gibbs states was proved by Lewin, Nam, and Rougerie [32]. More
precisely, the authors show that the quantum Gibbs state (as in (1.34), with f = 1,
which we henceforth take throughout this subsection) converges to the classical
Gibbs state (as in (1.24)) in the sense of partition functions and correlation func-
tions as τ → ∞, as in Section 1.4. In [32], the authors studied the full defocusing
problem in one dimension, as well as systems in d = 2, 3 with suitably chosen



DERIVATION OF GIBBS MEASURES FOR THE 1D FOCUSING CUBIC NLS 11

non translation-invariant interactions (which do not require Wick ordering) . Their
method is based on the Gibbs variational principle and the quantum de Finetti the-
orem. The techniques from [32] were later applied to the regime of one-dimensional
sub-harmonic traps in [33].

In [17], Fröhlich, Knowles, Schlein, and the second author developed an alterna-
tive approach based on a series expansion of the classical and quantum state in terms
of the interaction, combined by a comparison of the explicit terms of the obtained
series, and a Borel resummation. In doing so, they could give an alternative proof
of the one-dimensional result obtained in [32] and consider (Wick-ordered) Gibbs
measures obtained from translation-invariant interaction potentials for d = 2, 3,
under a suitable modification of the quantum Gibbs state. The results for d = 2, 3
in [17] (under the same modification of the quantum Gibbs state) were originally
stated for interaction potentials w ∈ L∞(Td) of positive type. In [18], the results
from [17] were used to study time-dependent correlations for d = 1. Moreover, the
methods from [17] were later extended to w ∈ Lq(Td), d = 2, 3 with optimal q in
[53]. The optimal range of q was observed in [6].

In [34], and in [36], Lewin, Nam, and Rougerie obtained the derivation of the
(Wick-ordered) Gibbs measures obtained from translation-invariant Gibbs measures
when d = 2, 3 without the modification of the quantum Gibbs state from [17]. Their
methods are based on a non-trivial extension of the ideas from [32]. An expository
summary of the results of Lewin, Nam, and Rougerie can be found in [35].

Independently, and simultaneously with [36], Fröhlich, Knowles, Schlein, and the
second author [19] obtained a derivation of the (Wick-ordered) Gibbs measure when
d = 2, 3 based on a functional integral representation, and an infinite-dimensional
saddle-point argument. The fundamental tool for setting up the functional integral
representation in [19] is the Hubbard-Stratonovich transformation. In [19], conver-
gence in the L∞ norm of Wick-ordered correlation functions was shown.

The result of [19] was shown for continuous interaction potentials of positive
type. In recent work [22], the same group of authors obtained the result with
w = δ when d = 2. Here, one takes a limit in which the range of the interaction
potential varies appropriately. The limiting object corresponds to the (complex)
Euclidean Φ4

2 theory. The proof in [22] is based on the combination quantitative
analysis of the infinite-dimensional saddle point argument from [19] and a Nelson-
type estimate for a general nonlocal theory in two dimensions (analogous to [40]) .

Related results were proved for systems on the lattice [21,29,51]. We refer to [20]
for an expository summary of some of the aforementioned results. We emphasise
that all of the results mentioned in this subsection are proved in the defocusing (or
thermodynamically stable) regime. We also refer the interested reader to subsequent
applications of the methods in this paper to the three-body setting [48].

1.6. Main ideas of the proofs. The starting point of our analysis of the time-
independent problem with w ∈ L∞ (i.e. of the proof of Theorem 1.4) is the pertur-
bative expansion of the interaction e−H# in the interaction, similarly as in [17, Sec-
tion 2.2] for the quantum and [17, Section 3.2] for the classical setting. Due to
the presence of the truncation f(N#) in (1.24) and (1.34), the resulting series have
infinite radius of convergence; see Propositions 3.7 and 3.10 below. Thus, we avoid
the need to apply Borel resummation techniques as in [17].

When analysing the remainder term in the quantum setting, we apply the
Feynman-Kac formula and use the truncation property from Assumption 1.3. This
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analysis is possible since we are not Wick-ordering the interaction in one dimen-
sion; see Lemma 3.6. The truncation is likewise crucially used in the analysis of
the classical remainder term; see Lemma 3.9.

When studying the convergence of the explicit terms of the obtained series, we
use complex analytic methods as in [18, Section 3.1] to perform an expansion of
the truncation f(N#) and thus reduce to the study of the problem with a shifted
chemical potential, but without a truncation. It is important that at this step,
where we no longer have the control coming from the truncation, the analysis does
not depend on the sign of the interaction. The details of this step are given in
Lemmas 3.11 and 3.13 below.

The proofs of Theorems 1.5 and 1.6 are based on the application of Theorem 1.4
for appropriate wε and on a diagonal argument. At this step, we have to crucially
use [4, Lemma 3.10], which is recalled in Lemma 2.1 below. Even when we are
working with L1 interaction potentials, it is important that we apply the local
version of this result (instead of Corollary 2.4). For details, see the proof of Lemma
4.1, in particular see steps (4.6)–(4.7).

For the time-dependent problem, we apply a Schwinger-Dyson expansion, simi-
larly as in [18, Sections 3.2–3.3]. For the precise statements, see Lemmas 5.1–5.2
below. Note that, due to the presence of the truncation, we do not need to consider
the large particle number regime as in [18, Section 4] (whose analysis, in turn, re-
lies crucially on the defocusing assumption). With this setup, we can easily deduce
Theorem 1.10 from Theorem 1.4.

In order to prove Theorems 1.11 and 1.12, we need to apply an approximation
argument. In particular, we want to estimate the difference of the flow map of the
NLS with interaction potential w and of the NLS with interaction potential wε. For
the precise statement, see Lemma 5.4 when w ∈ L1 and Lemma 5.6 when w = −δ.
We prove these results by working in Xs,b spaces; see Definition 5.5.

1.7. Organisation of the paper. In Section 2, we set up some more notation and
recall several auxiliary results from analysis and probability theory. Section 3 is
devoted to the analysis of the time-independent problem with bounded interaction
potential. Here, we prove Theorem 1.4. In Section 4, we study the time-independent
problem with unbounded interaction potential and prove Theorems 1.5 and 1.6.
Section 5 is devoted to the time-dependent problem and the proofs of Theorems
1.10–1.12. In Appendix A, we recall the proof of Lemma 2.1, which was originally
given in [4, Lemma 3.10]. In Appendix B, we give a detailed proof of the comments
on the cut-off f given in Remark 1.7 (1) and (2) above.

2. Notation and auxiliary results

2.1. Notation. Throughout the paper, we use C > 0 to denote a generic positive
constant that can change from line to line. If C depends on a finite set of parameters
α1, . . . , αn, we indicate this dependence by writing C(α1, . . . , αn). Sometimes, we
also write a ≤ Cb as a . b. We denote by N = {0, 1, 2, . . . , } the set of nonnegative
integers and by N∗ = {1, 2, 3, . . .} the set of positive integers.

We write 1 to denote the identity operator on a Hilbert space. For a separable
Hilbert space H and q ∈ [1,∞], we define the Schatten space Sq(H) to be the set
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of A ∈ L(H) satisfying ‖A‖Sq(H), where

‖A‖Sq(H) :=

{
(Tr |A|q)1/q if q <∞
sup spec |A| if q = ∞ ,

(2.1)

and |A| =
√
A∗A. We usually omit the argument H where there is no confusion.

We also have the following notation

Bp := {ξ ∈ S2(h(p)) : ‖ξ‖S2(h(p)) ≤ 1} . (2.2)

2.2. Auxiliary Results. We recall several auxiliary results that we use in the
paper.

Gibbs measures for the focusing local NLS. When analysing Gibbs measures for the
focusing cubic NLS with w ∈ L∞(T), it is straightforward to make rigorous sense
of (1.2) due to the presence of the truncation as in Assumption 1.3; see Lemma 3.1
(1) below.

For unbounded potentials, we will need to make use of the following result of
Bourgain, found in [4, Lemma 3.10], whose proof is recalled in Appendix A.

Lemma 2.1. Let (CN,G, µ) be the probability space defined in (1.14). Let c > 0 be
fixed. For ϕ ≡ ϕω, the quantity

ec‖ϕ‖
p
Lpχ{‖ϕ‖L2≤B} (2.3)

is in L1(dµ) for p ∈ [4, 6) for B > 0 arbitrary and p = 6 for B > 0 sufficiently
small (chosen in terms of c).

Remark 2.2. When p = 6, the optimal value of B in Lemma 2.1 was recently
determined in [44, Theorem 1.1 (ii)]. We do not need to use this precise result since
we work with p = 4 in the remainder of the paper.

Remark 2.3. When p = 6, an upper bound for the choice of B is determined by
the constant c > 0. For details, see (A.6) below.

Corollary 2.4. Let (CN,G, µ) be the probability space defined in (1.14), and let
w ∈ L1(T). For ϕ ≡ ϕω,

e−
1
2

∫
dx dy |ϕ(x)|2 w(x−y) |ϕ(y)|2χ{‖ϕ‖L2≤B}

is in L1(dµ) for B > 0 arbitrary.

We note that Corollary 2.4 follows from Lemma 2.1 with p = 4 by the same
argument as estimate (3.2) below.

Hölder’s inequality for Schatten spaces. We have the following version of Hölder’s
inequality for Schatten spaces (2.1), found in [50].

Lemma 2.5 (Hölder’s Inequality). Given p1, p2 ∈ [1,∞] with 1
p1

+ 1
p2

= 1
p and

Aj ∈ Spj (F) we have

‖A1A2‖Sp(F) ≤ ‖A1‖Sp1(F)‖A2‖Sp2(F) .
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The Feynman-Kac Formula. In our analysis, we make use of the Feynman-Kac
formula. To this end, let τ > 0 and let Ωτ denote the space of continuous paths
ω : [0, τ ] → T. Given x, x̃ ∈ T, we let Ωτx,x̃ denote the set of all elements of Ωτ such

that ω(0) = x̃ and ω(τ) = x. Given t > 0, we define

ψt(y) := et∆(y) =
∑

n∈Zd

(4πt)−1/2e−|y−n|2/4t (2.4)

to be the periodic heat kernel on T. For x, x̃ ∈ T, we characterise the Wiener
measure Wτ

x,x̃ on Ωτx,x̃ by its finite-dimensional distribution. Namely for 0 < t1 <
. . . < tn < τ and f : Tn → R continuous
∫

W
τ
x,x̃(dω)f(ω(t1), . . . , ω(tn))

=

∫
dx1 . . . dxn ψ

t1(x1 − x̃)ψt2−t1(x2 − x1) . . .

× ψtn−tn−1(xn − xn−1)ψ
τ−tn(x− xn)f(x1, . . . , xn) .

Then we have the following result, see for example [47, Theorem X.68].

Proposition 2.6 (Feynman-Kac Formula). Let V : T → C be continuous and
bounded below. For t > 0

et(∆−V )(x; x̃) =

∫
W
t
x,x̃(dω)e

−
∫ t
0
ds V (ω(s)) .

3. The time-independent problem with bounded interaction

potential. Proof of Theorem 1.4.

In this section, we study the time-independent problem with bounded interac-
tion potential. In Section 3.1, we state some basic estimates which will be used
throughout the rest of the paper. In Section 3.2, we set up the Duhamel expansion
in the quantum setting. For this expansion, bounds on the explicit term are shown
in Section 3.3 and bounds on the remainder term are shown in Section 3.4. The
analogous expansion in the classical setting is analysed in Section 3.5. In Section
3.5, we prove convergence of the explicit terms. The proof of Theorem 1.4 is given
in Section 3.7.

3.1. Basic Estimates. Let us first note the following bound on the classical in-
teraction.

Lemma 3.1. Suppose that W = 1
2

∫
dx dy |ϕ(x)|2 w(x − y)|ϕ(y)|2 is defined as in

(1.19). The following estimates hold.

(1) For w ∈ L∞(T), we have

|W| ≤ 1

2
‖w‖L∞‖ϕ‖4L2. (3.1)

(2) For w ∈ L1(T), we have

|W| ≤ 1

2
‖w‖L1‖ϕ‖4L4. (3.2)
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Proof. For (1), we note that

|W| = 1

2

∣∣∣∣
∫
dx dy |ϕ(x)|2w(x − y)|ϕ(y)|2

∣∣∣∣

≤ 1

2
‖w‖L∞

∫
dx dy |ϕ(x)|2|ϕ(y)|2 =

1

2
‖w‖L∞‖ϕ‖4L2 .

For (2), we apply Cauchy-Schwarz and Young’s inequality to get (3.2). �

For the remainder of this section, we fix p ∈ N
∗. Unless otherwise specified, we

consider ξ ∈ L(h(p)). Moreover, ‖ · ‖ denotes the operator norm. The following
lemma follows from the definition of Θ(ξ) in (1.18).

Lemma 3.2. We have

|Θ(ξ)| ≤ ‖ϕ‖2ph ‖ξ‖ .

Let us note that with Θτ as in (1.29), we have

Θτ (ξ)
∣∣
h(n) =

{
p!
τp

(
n
p

)
P+

(
ξ ⊗ 1(n−p))P+ if n ≥ p

0 otherwise ,
(3.3)

where 1(q) denotes the identity map on h(q) and P+ is the orthogonal projection
onto the subspace of symmetric tensors. More details of the above equality can be
found in [29, (3.88)]. We also have the quantum analogue of Lemma 3.2, which
follows from (3.3).

Lemma 3.3. For all n ∈ N
∗, we have
∥∥∥Θτ (ξ)

∣∣
h(n)

∥∥∥ ≤
(n
τ

)p
‖ξ‖.

3.2. Duhamel Expansion. Throughout this section, we take w ∈ L∞(T). Note
that with ρτ defined as in (1.34), we have

ρτ (Θτ (ξ)) =
ρ̃τ,1(Θτ (ξ))

ρ̃τ,1(1)
, (3.4)

where

ρ̃τ,ζ(A) :=
1

Zτ,0
Tr
(
Ae−Hτ,0−ζWτ f(Nτ )

)
, (3.5)

and 1 denotes the identity operator on F . Here, we recall the definition (1.35) of
Zτ,0. With notation as above, we define

Aξτ (ζ) := ρ̃τ,ζ(Θτ (ξ)) .

Performing a Duhamel expansion by up to order M ∈ N by iterating the identity

eX+ζY = eX + ζ
∫ 1

0 dt e
(1−t)XY et(X+ζY ) yields the following result.

Lemma 3.4. For M ∈ N, we have Aξτ (ζ) =
∑M−1
m=0 a

ξ
τ,mζ

m +Rξτ,M (ζ), where

aξτ,m :=
(−1)m

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtmΘτ (ξ)e
−(1−t1)Hτ,0 Wτ

× e−(t1−t2)Hτ,0 Wτ e
−(t2−t3)Hτ,0 . . . e−(tm−1−tm)Hτ,0 Wτ e

−tmHτ,0f(Nτ )

)

(3.6)
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and

Rξτ,M (ζ) :=
(−1)MζM

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tM−1

0

dtM Θτ (ξ)e
−(1−t1)Hτ,0 Wτ

× e−(t1−t2)Hτ,0 . . .Wτ e
−(tM−1−tM )Hτ,0 Wτ

× e−tM (Hτ,0+ζWτ )f(Nτ )

)
.

We also define

A := {t ∈ R
m : 0 < tm < tm−1 . . . < t1 < 1} . (3.7)

3.3. Bounds on the explicit terms. Throughout the following proofs, we will
use without mention that for any function g : C → C, g(Nτ ) commutes with all
operators on F that commute with Nτ , which is clear from the definition of g(Nτ ).
Namely, g(Nτ ) acts on the nth sector of Fock space as multiplication by g(n/τ).

In particular, all of the operators appearing in the integrands of aξτ,m and Rξτ,M
commute with g(Nτ ).

Lemma 3.5. For m ∈ N, we have

∣∣aξτ,m
∣∣ ≤ Kp‖ξ‖

(
K2‖w‖L∞

)m

2mm!
. (3.8)

Proof. Lemma 2.5 implies

∣∣aξτ,m
∣∣ ≤ 1

Zτ,0

∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtm

∥∥∥Θτ (ξ)f
1

m+1 (Nτ )
∥∥∥
S∞

×
∥∥∥e−(1−t1)Hτ,0

∥∥∥
S

1
1−t1

∥∥∥Wτf
1

m+1 (Nτ )
∥∥∥
S∞

∥∥∥e−(t1−t2)Hτ,0

∥∥∥
S

1
t1−t2

× . . .
∥∥∥Wτf

1
m+1 (Nτ )

∥∥∥
S∞

∥∥e−tmHτ,0
∥∥
S

1
tm

. (3.9)

Since e−sHτ,0 is a positive operator for s ∈ [0, 1], we have ‖e−sHτ,0‖S1/s = (Zτ,0)
s
.

So it follows from (3.9) that

∣∣aξτ,m
∣∣ ≤ Zτ,0

Zτ,0

1

m!

∥∥∥Θτ (ξ)f
1

m+1 (Nτ )
∥∥∥
S∞

∥∥∥Wτf
1

m+1 (Nτ )
∥∥∥
m

S∞
. (3.10)

From Lemma 3.3, for fixed n we have
∥∥∥Θτ (ξ)f

1
m+1 (Nτ )

∣∣
h(n)

∥∥∥
S∞

≤
(n
τ

)p ∣∣∣f
1

m+1

(n
τ

)∣∣∣ ‖ξ‖ ≤ Kp‖ξ‖, (3.11)

where the final inequality follows from Assumption 1.3. It follows from (3.11) that,
when viewed as an operator on F∥∥∥Θτ (ξ)f

1
m+1 (Nτ )

∥∥∥
S∞

≤ Kp‖ξ‖. (3.12)

To bound
∥∥∥Wτf

1
m+1 (Nτ )

∥∥∥
S∞

we note that Wτ acts on h(n) as multiplication by

1

τ2

∑

1≤i<j≤n
w(xi − xj) . (3.13)

In particular, arguing as in (3.12), it follows that
∥∥∥Wτf

1
m+1 (Nτ )

∥∥∥
S∞

≤ 1

2
K2‖w‖L∞ . (3.14)

Combining (3.10) with (3.12) and (3.14), we have (3.8). �
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3.4. Bounds on the remainder term. The following bound holds on the re-
mainder term.

Lemma 3.6. Let M ∈ N, and t ∈ A (as in (3.7)) be given. Define

Rξ
τ,M (t, ζ) := Θτ (ξ)e

−(1−t1)Hτ,0 Wτ e
−(t1−t2)Hτ,0 . . .

×Wτ e
−(tM−1−tM )Hτ,0 Wτ e

−tM (Hτ,0+ζWτ )f(Nτ ) .

Then for any ζ ∈ C,

1

Zτ,0

∣∣∣Tr
(
Rξ
τ,M (t, ζ)

)∣∣∣ ≤ e|Re(ζ)|K2‖w‖L∞
Kp‖ξ‖

(
K2‖w‖L∞

)M

2M
. (3.15)

Proof. Define

S(t) := Θτ (ξ)e
−(1−t1)Hτ,0Wτe

−(t1−t2)Hτ,0 . . .Wτ e
−(tM−1−tM )Hτ,0Wτ .

Then

Tr
(
Rξ
τ,M (t, ζ)

)
=
∑

n≥0

Tr
([

S(t)f 1
2 (Nτ )

] [
e−tM(Hτ,0+ζWτ )f

1
2 (Nτ )

])(n)
, (3.16)

where the trace on the left hand side of (3.16) is taken over Fock space, whereas
on the right hand side for each term it is taken over the nth sector of Fock space.
For n ∈ N , we have

Tr
([

S(t)f 1
2 (Nτ )

] [
e−tM(Hτ,0+ζWτ )f

1
2 (Nτ )

])(n)

=

∫

Tn

dx

∫

Tn

dy
(
S(t)f 1

2 (Nτ )
)(n)

(y;x)
(
e−tM (Hτ,0+ζWτ )f

1
2 (Nτ )

)(n)
(x;y) .

We now rewrite
(
e−tM(Hτ,0+ζWτ )f

1
2 (Nτ )

)(n)
(x;y) using Proposition 2.6.

(
e−tM(Hτ,0+ζWτ )f

1
2 (Nτ )

)(n)

(x;y)

=

∫
W
tM
x,y(dω)e−

κn
τ tM e−

∫ tM
0 ds ζ( 1

τ2

∑
1≤i<j≤n wij(ω(s)))f

1
2

(n
τ

)
,

where Wt
x,y(dω) :=

∏n
i=1 W

t
xi,yi(dωi). Here we used that

(Wτ )
(n) (u;v) =

1

τ2

∑

1≤i<j≤n
w(ui − uj)

n∏

k=1

δ(uk − vk)

and defined wij(u) := w(ui − uj) for u = (u1, . . . , un) ∈ Tn. Then
∣∣∣∣
(
e−tM(Hτ,0+ζWτ )f

1
2 (Nτ )

)(n)
(x;y)

∣∣∣∣

≤
∫

W
tM
x,y(dω)e−

κn
τ tM

∣∣e−
∫ tM
0 ds ζ( 1

τ2

∑
1≤i<j≤n wij(ω(s))) × f

1
2

(n
τ

) ∣∣

≤ sup
ω

∣∣∣e−
∫ tM
0 ds ζ( 1

τ2

∑
1≤i<j≤n wij(ω(s)))f

1
2

(n
τ

)∣∣∣
(
e−tMHτ,0

)(n)
(x;y), (3.17)

where we have used Proposition 2.6 in the second line. We have

sup
ω

∣∣∣e−
∫ tM
0 ds ζ( 1

τ2

∑
1≤i<j≤n wij(ω(s)))f

1
2

(n
τ

)∣∣∣ ≤ e|Re(ζ)|tM(n
τ )

2‖w‖L∞

∣∣∣f 1
2

(n
τ

)∣∣∣ .
(3.18)
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It follows from (3.18) that

sup
ω

∣∣∣e−
∫ tM
0 ds ζ( 1

τ2

∑
1≤i<j≤n wij(ω(s)))f

1
2

(n
τ

)∣∣∣ ≤ e|Re(ζ)|K2‖w‖L∞ . (3.19)

Combining (3.17) with (3.19) and the triangle inequality, we have shown
∣∣∣∣
(
e−tM(Hτ,0+ζWτ )f

1
2 (Nτ )

)(n)
(x;y)

∣∣∣∣ ≤ e|Re(ζ)|K2‖w‖L∞
(
e−tMHτ,0

)(n)
(x;y) .

(3.20)
Combining (3.16) with (3.20), it follows that

∣∣Tr
(
Rξ(t, ζ)

) ∣∣ ≤ e|Re(ζ)|K2‖w‖L∞Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tM−1

0

dtM Θτ (ξ̃)

× e−(1−t1)Hτ,0 W̃τe
−(t1−t2)Hτ,0W̃τe

−(t2−t3)Hτ,0 . . . W̃τe
−tMHτ,0f

1
2 (Nτ )

)
,

where ξ̃ is the operator with kernel |ξ| and

W̃τ :=
1

2

∫
dx dy ϕ∗

τ (x)ϕ
∗
τ (y)|w(x − y)|ϕτ (x)ϕτ (y) . (3.21)

Then (3.15) follows by arguing as in the proof of Lemma 3.5. �

Integrating (3.15) in the variables t ∈ A, as defined in (3.7), implies

∣∣∣Rξτ,M (ζ)
∣∣∣ ≤ e|Re(ζ)|K2‖w‖L∞

Kp‖ξ‖
(
K2‖w‖L∞

)M

2MM !
|ζ|M . (3.22)

We note that this converges to 0 as M → ∞ for any fixed ζ ∈ C. Moreover,
since the radius of convergence of aξτ,m is infinite by Lemma 3.5, we conclude the
following proposition.

Proposition 3.7. The function Aξτ (ζ) =
∑∞
m=0 a

ξ
τ,mζ

m is analytic on C.

3.5. The classical setting. We now analyse the analogous expansion in the clas-
sical setting. Let us note that

ρ(Θ(ξ)) =
ρ̃1(Θ(ξ))

ρ̃1(1)
, (3.23)

where

ρ̃ζ(X) :=

∫
dµXe−ζWf(N ) . (3.24)

Define

Aξ(ζ) := ρ̃ζ(Θ(ξ)) .

Then, for M ∈ N

Aξ(ζ) =

M−1∑

m=0

aξmζ
m +RξM (ζ) ,

where

aξm :=
(−1)m

m!

∫
dµΘ(ξ)Wmf(N ) (3.25)

RξM (ζ) =
(−1)MζM

M !

∫
dµΘ(ξ)WMf(N )e−ζ̃W for some ζ̃ ∈ [0, ζ]. (3.26)
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Lemma 3.8. For each m ∈ N, we have

∣∣aξm
∣∣ ≤ Kp‖ξ‖

(
K2‖w‖L∞

)m

2mm!
(3.27)

Proof. We have

∣∣aξm
∣∣ ≤ 1

m!

∫
dµ
∣∣∣Θ(ξ)f

1
m+1 (N )

∣∣∣
∣∣∣Wf

1
m+1 (N )

∣∣∣
m

. (3.28)

From Lemma 3.2 and Assumption 1.3, we have
∣∣∣Θ(ξ)f

1
m+1 (N )

∣∣∣ ≤
∥∥∥f 1

m+1

∥∥∥
L∞

Kp‖ξ‖. (3.29)

Moreover, Lemma 3.1 (1) and Assumption 1.3 imply
∣∣∣Wf

1
m+1 (N )

∣∣∣ ≤ 1

2
‖w‖L∞

∥∥∥f 1
m+1

∥∥∥
L∞

K2. (3.30)

Recalling ‖f‖L∞ ≤ 1, (3.27) follows from (3.28) combined with (3.29) and (3.30).
�

Note that Lemma 3.1 implies that
∣∣∣e−ζ̃Wf

1
M+2 (N )

∣∣∣ ≤ e
1
2 |Re(ζ)|K2‖w‖L∞

for ζ̃ ∈ [0, ζ]. Applying the same arguments as the proof of Lemma 3.8, we have
the following lemma.

Lemma 3.9. For any M ∈ N, we have

∣∣∣RξM (ζ)
∣∣∣ ≤ e

1
2 |Re(ζ)|K2‖w‖L∞

Kp‖ξ‖
(
K2‖w‖L∞

)M

M ! 2M
|ζ|M . (3.31)

Like in the quantum case, for each ζ ∈ C, RξM (ζ) converges to 0 as M → ∞ and

aξm has infinite radius of convergence, so we have the following result.

Proposition 3.10. The function Aξ(ζ) =
∑∞

m=0 a
ξ
mζ

m is analytic in C.

3.6. Convergence of the Explicit Terms. When analysing the convergence of
the explicit terms, we argue similarly as in [18, Section 3.1] and rewrite f(N#) as
an integral of the form

f(N#) =

∫

C

dζ
ψ(ζ)

N# − ζ
, (3.32)

for suitable ψ ∈ C∞
c (C). For the precise setup, see (3.47)–(3.48) below. Using

(3.32), we use that
1

N# − ζ
=

∫ ∞

0

dν e−ν(N#−ζ) , (3.33)

for Re ζ < 0, which leads us to analyse analogues of (3.6) and (3.25) without the
truncation f(N ) and with chemical potential shifted by ν > 0. More precisely,
we note the following boundedness and convergence result. We recall that in this
section, we are considering w ∈ L∞.

Lemma 3.11. Fix ν > 0. We recall Bp given by (2.2) and consider ξ ∈ Cp, where
Cp := Bp ∪ {1p} . (3.34)
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Let

bξ,ντ,m :=
(−1)m

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtmΘτ (ξ)e
−(1−t1)(Hτ,0+νNτ )

×Wτe
−(t1−t2)(Hτ,0+νNτ )Wτe

−(t2−t3)(Hτ,0+νNτ ) . . .

× e−(tm−1−tm)(Hτ,0+νNτ )Wτe
−tm(Hτ,0+νNτ )

)

bξ,νm :=
(−1)m

m!

∫
dµΘ(ξ)Wme−νN .

Then, the following results hold

(1)
∣∣∣bξ,ν#,m

∣∣∣ ≤ C(m, p, ν).

(2) bξ,ντ,m → bξ,νm as τ → ∞ uniformly in ξ ∈ Cp.
Proof. Let us first consider the case when ξ ∈ Bp. We define

hν := h+ ν =
∑

k∈N

(λk + ν)uku
∗
k .

Then the deformed classical state defined by

ρ̃ν0(X) :=

∫
dµXe−νN∫
dµ e−νN

(3.35)

satisfies a Wick theorem with Green function given by Gν := 1
hν . This follows

directly from Proposition 1.2, since all we have done is shift the chemical potential
by ν.

Moreover, the deformed quasi-free state defined by

ρ̃ντ,0(A) :=
Tr
(
A e−Hτ,0−νNτ

)

Tr (e−Hτ,0−νNτ )
(3.36)

satisfies a quantum Wick theorem similar to [17, Lemma B.1] with quantum Green
function Gτ = 1

τ(eh/τ−1)
replaced by

Gντ :=
1

τ(ehν/τ − 1)
.

In particular, we have that ‖Gν#‖S2 ≤ ‖G#‖S2 <∞. Let us define

b̃ξ,ντ,m :=
(−1)m

Tr (e−Hτ,0−νNτ )
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtmΘτ (ξ)e
−(1−t1)(Hτ,0+νNτ )

×Wτe
−(t1−t2)(Hτ,0+νNτ )Wτe

−(t2−t3)(Hτ,0+νNτ ) . . .

×e−(tm−1−tm)(Hτ,0+νNτ )Wτe
−tm(Hτ,0+νNτ )

)

and

b̃ξ,νm :=
1

m!

(−1)m∫
dµ e−νN

∫
dµΘ(ξ)Wme−νN .

Noting that noting that the arguments in [17, Sections 2.3–2.6] concerning ex-
plicit terms do not use any positivity properties of w, we hence obtain that the
following properties hold.

(1’)
∣∣∣b̃ξ,ν#,m

∣∣∣ ≤ C(m, p, ν).
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(2’) b̃ξ,ντ,m → b̃ξ,νm as τ → ∞ uniformly in ξ ∈ Bp.
More precisely, (1′) and (2′) correspond to the 1 dimensional versions4 of [17, Corol-
lary 2.21, Proposition 2.26] proved in [17, Section 4.1], as well as [17, Lemma 3.1].

When ξ ∈ Bp, we deduce the claim from (1’) and (2’) by noting that by [18,
Lemma 3.4], we have

lim
τ→∞

Tr
(
A e−Hτ,0−νNτ

)

Tr (A e−Hτ,0)
=

∫
dµ e−νN .

It remains to consider the case when ξ = 1p is the identity operator on h(p). We
then have

ξ(x1, . . . , xp; y1, . . . , yp) =

p∏

j=1

δ(xj − yj) . (3.37)

Since ρ̃τ,0 satisfies the quantum Wick theorem, we can argue analogously as in
[17, Section 4.2] to get the required bounds and convergence as before. We omit
the details. �

We also need the following result.

Lemma 3.12. Let A : F → F and g ∈ L∞(R). Then |Tr(A g(Nτ ))| ≤ ‖g‖L∞ Tr(Â),

where Â(n) has kernel
∣∣A(n)(x; y)

∣∣.
Proof. For an operator A : F → F , we define A(n) := P (n)AP (n), where P (n) is
the projection of an operator on Fock space to the nth component of Fock space.
We also define Â := ⊕n≥0Â(n). We have

|Tr(A g(Nτ ))| =

∣∣∣∣∣∣

∑

n≥0

∫

Tn

dxA(n)(x;x)g
(n
τ

)
∣∣∣∣∣∣

≤ sup
n≥0

{∣∣∣g
(n
τ

)∣∣∣
}∑

n≥0

∫

Tn

dx |A(n)(x;x)|

≤ ‖g‖L∞Tr(Â) .

�

Lemma 3.13. We recall the definitions (3.6) and (3.25). For each m ∈ N, we
have

lim
τ→∞

aξτ,m = aξm (3.38)

uniformly in ξ ∈ Cp, defined in (3.34).

Proof. For ζ ∈ C\[0,∞), we define

αξτ,m(ζ) :=
1

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtmΘτ (ξ)e
−(1−t1)Hτ,0Wτe

−(t1−t2)Hτ,0

×Wτ . . . e
−(tm−1−tm)Hτ,0Wτe

−tmHτ,0
1

Nτ − ζ

)

and

αξm(ζ) :=
1

m!

∫
dµΘ(ξ)Wm 1

N − ζ
. (3.39)

4Throughout the paper, when referring to [17, Corollary 2.21, Proposition 2.26], we mean these
1 dimensional versions.
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We prove that αξτ,m and αξm are analytic in ζ ∈ C\[0,∞). We first deal with αξm.
Note that

∣∣αξm(ζ)
∣∣ ≤ 1

m!

∫
dµ |Θ(ξ)Wm|

∣∣∣∣
1

N − ζ

∣∣∣∣ .

Using Lemma 3.2, Lemma 3.1 (1), and that
∫
dµ ‖ϕ‖2ph ≤ C(p) by Remark 3.14, we

have

|αξm(ζ)| ≤ C(m, p)

max{−Re ζ, |Im ζ|} . (3.40)

Arguing similarly to (3.40), it follows that

1

m!

∫
dµ |Θ(ξ)Wm|

∣∣∣∣∣
1

(N − ζ)
2

∣∣∣∣∣ ≤
C(m, p)

max{−Re ζ, |Im ζ|}2 ,

so by the dominated convergence theorem, we can differentiate under the integral
sign in (3.39) and conclude that αξm is analytic in C\[0,∞).

To show αξτ,m is analytic in C\[0,∞), we first note that 1
Nτ−ζ acts as multi-

plication by 1
(n/τ)−ζ on the nth sector of Fock space. By using Lemma 3.12 we

get

|ατ,m(ζ)| ≤
1

Zτ,0
Tr

([∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtmΘτ (ξ)e
−(1−t1)Hτ,0Wτe

−(t1−t2)Hτ,0

×Wτ . . . e
−(tm−1−tm)Hτ,0Wτe

−tmHτ,0

]
̂
)

1

max{−Re ζ, |Im ζ|}

≤ 1

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtmΘτ (ξ̃)e
−(1−t1)Hτ,0W̃τe

−(t1−t2)Hτ,0

× W̃τ . . . e
−(tm−1−tm)Hτ,0W̃τe

−tmHτ,0

)
1

max{−Re ζ, |Im ζ|} ,

where we recall ξ̃ is the operator with kernel |ξ|, and W̃τ is as in (3.21). Applying
[17, Corollary 2.21], we have

|αξτ,m(ζ)| ≤ C(m, p)

max{−Re ζ, |Im ζ|} . (3.41)

Define

h(≤p) :=
p⊕

n=0

h(n) , (3.42)

and

P (≤p) : F → h(≤p)

as the orthogonal projection. Define

ατ,m,n(ζ) :=
1

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtm P
(≤n)Θτ (ξ) e

−(1−t1)Hτ,0 Wτ

× e−(t1−t2)Hτ,0 Wτ . . . e
−(tm−1−tm)Hτ,0 Wτe

−tmHτ,0
1

Nτ − ζ

)
.

Since P (≤n) commutes with Θτ (ξ), Hτ,0, and Wτ , it follows that ατ,m,n is analytic
in C\[0,∞). By construction we have limn→∞ ατ,m,n(ζ) = ατ,m(ζ) for all ζ ∈
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C\[0,∞) and by the same argument as (3.41), we have

|αξτ,m,n(ζ)| ≤
C(m, p)

max{−Re ζ, |Im ζ|} . (3.43)

The pointwise convergence, (3.43) and the dominated convergence theorem imply
that

lim
n→∞

∫

∂T

dζ ατ,m,n(ζ) =

∫

∂T

dζ ατ,m(ζ)

for any triangle T contained in C\[0,∞). Morera’s theorem implies that ατ,m is
analytic in C\[0,∞).

We now prove that αξτ,m(ζ) → αξm(ζ) as τ → ∞ for all ζ ∈ C\[0,∞). First, for
Re ζ < 0, we recall (3.33). Therefore,

∣∣αξτ,m(ζ)− αξm(ζ)
∣∣ =

∣∣∣∣
1

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtmΘτ (ξ)e
−(1−t1)Hτ,0Wτ

× e−(t1−t2)Hτ,0Wτ . . . e
−(tm−1−tm)Hτ,0Wτe

−tmHτ,0
1

Nτ − ζ

)

− 1

m!

∫
dµWm 1

N − ζ

∣∣∣∣

≤
∫ ∞

0

dζ eνζ
∣∣∣∣

1

Zτ,0
Tr

(∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tm−1

0

dtmΘτ (ξ)e
−(1−t1)(Hτ,0+νNτ )

×Wτe
−(t1−t2)(Hτ,0+νNτ )Wτ . . . e

−(tm−1−tm)(Hτ,0+νNτ )Wτ

× e−tm(Hτ,0+νNτ )

)
− 1

m!

∫
dµ e−νNWm

∣∣∣∣ , (3.44)

where we have used part (1) of Lemma 3.11 and Re ζ < 0 to apply Fubini’s theorem.
Lemma 3.11, (3.44), and the dominated convergence theorem give

lim
τ→∞

αξτ,m(ζ) = αξm(ζ) (3.45)

uniformly in ξ ∈ Cp for Re ζ < 0.
We define βξτ,m := αξτ,m − αξm. We follow the argument in [18, Proposition 3.3]

to prove

lim
τ→∞

sup
ξ∈Cp

|βξτ,m(ζ)| = 0 for all ζ ∈ C\[0,∞) . (3.46)

From the analyticity of αξ#,m on C\[0,∞), (3.40) and (3.41), and (3.45), we know

that βξτ,m satisfy the following properties.

(1) βξτ,m is analytic on C\[0,∞).

(2) limτ→∞ supξ∈Cp
|βξτ,m(ζ)| = 0 for all Re ζ < 0.

(3) supξ∈Cp
|βξτ,m(ζ)| ≤ C(m,p)

|Im ζ| for all ζ ∈ C\[0,∞).

Given ε > 0, define

Dε := {ζ : Im ζ > ε}
and

Tε := {ζ0 ∈ Dε : lim
τ→∞

sup
ξ∈Cp

∣∣∂nζ βξτ,m(ζ0) = 0
∣∣ for all n ∈ N .

So Tε is the set of points in Dε at which all ζ-derivatives of βξτ,m converge to 0
as τ → ∞ uniformly in ξ ∈ Cp. Using properties (1)–(3) of β, Cauchy’s integral
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formula, and the dominated convergence theorem, we have Dε∩{ζ : Re ζ < 0} ⊂ Tε.
In particular, Tε is not empty.

So to prove (3.46) on Dε, it suffices to show that Tε = Dε. Since Dε is connected,
the latter claim follows from showing that Tε is both open and closed in Dε. We
first show that Tε is open in Dε. Given ζ0 ∈ Tε, note that Bε/2(ζ0) ⊂ Dε/2. So

by property (3),
∣∣βζτ,m

∣∣ ≤ C(ε) on Bε/2(ζ0). Analyticity and Cauchy’s integral

formula imply that the Taylor series of βξτ,m at ζ0 converges on Bε/2(ζ0). So we can
differentiate term by term and use the dominated convergence theorem and ζ0 ∈ Tε
to get that Bδ(ζ0) ⊂ Tε for δ ∈ (0, ε/2) sufficiently small such that Bδ(ζ0) ⊂ Dε.
So Tε is open in Dε.

To show that Tε is closed in Dε, let (ζn) be a sequence in Tε which converges to
some ζ ∈ Dε. Since ζ ∈ Dε which is open, there is ε′ ∈ (0, ε/2) such that Bε′(ζ) ⊂
Dε. Since (ζn) → ζ, for n sufficiently large, ζ ∈ Bε′/2(ζn). Since Bε′/2(ζn) ⊂
Bε′(ζ) ⊂ Dε, the argument that Tε is open in Dε implies that Bε′/2(ζn) ⊂ Tε. In
particular, ζ ∈ Tε, so Tε is closed in Dε. By symmetry, the same argument shows

that (3.46) holds on D̃ε := {ζ : Im ζ < −ε}. Then (3.46) holds on C\[0,∞) by
letting ε→ 0 and recalling that (3.46) holds for ζ < 0 by property (2) above.

Applying the Helffer-Sjöstrand formula and arguing as in [18, (3.29)-(3.33)], we
can find ψ ∈ C∞

c (C) satisfying

|ψ(ζ)| ≤ C|Im ζ| (3.47)

such that

f(N#) =

∫

C

dζ
ψ(ζ)

N# − ζ
. (3.48)

Then (3.40), (3.41), (3.47), and ψ ∈ C∞
c (C) imply that

|αξ#,m(ζ)ψ(ζ)| ≤ F (ζ) (3.49)

for some F ∈ L1(C). By (3.49), we can use Fubini’s theorem to write

|aξτ,m − aξm| ≤
∫

C

|ψ(ζ)|
∣∣αξτ,m(ζ) − αξm(ζ)

∣∣ .

Using βξτ,m → 0 as τ → ∞ almost everywhere in C uniformly in ξ and (3.49), the
dominated convergence theorem implies (3.38). �

Remark 3.14. In the proof of Lemma 3.13, we used that
∫
dµ ‖ϕ‖2ph ≤ C(p) <∞.

To see this, recall (1.15) implies

∫
dµ ‖ϕ‖2ph = Eω

[(
∑

n∈N

|ωn|2
λn

)p]

= Eω

[
∑

ni∈N

ωn1ωn1 . . . ωnpωnp

λn1 . . . λnp

]

≤ C(p)

(
∑

n

1

λn

)p
≤ C(p) <∞ .

The final line follows from Proposition 1.2.
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3.7. Convergence of correlation functions. Proof of Theorem 1.4. We
recall the class Cp, defined in (3.34). The following convergence result holds.

Lemma 3.15. Aξτ (ζ) → Aξ(ζ) as τ → ∞ uniformly in ξ ∈ Cp.

Proof. Since Aξ# are analytic in C, for all ζ ∈ C

sup
ξ∈Cp

∣∣Aξτ (ζ) −Aξ(ζ)
∣∣ ≤

∑

m

sup
ξ∈Cp

∣∣aξτ,m − aξm
∣∣ |ζ|m → 0

as τ → ∞. Here we have used Lemma 3.13, Lemma 3.5, and the dominated
convergence theorem. We also recall the notation (2.2). �

Recalling (3.4) and (3.23) and taking ζ = 1, we have the following result.

Corollary 3.16. ρτ (Θτ (ξ)) → ρ(Θ(ξ)) as τ → ∞ uniformly in ξ ∈ Cp.
Before proceeding to the proof of Theorem 1.4, we first need to prove the follow-

ing technical lemma.

Lemma 3.17. Recalling (1.26) and (1.37), we have γ#,p ≥ 0 in the sense of
operators.

Proof. For η ∈ h(p), define the orthogonal projection Πη(·) := 〈η, ·〉η. Let us first
note that

〈η, γ#,pη〉h(p) = ρ#(Θ#(Πη)) . (3.50)

In the quantum setting, we use (1.37) and linearity to compute

〈η, γτ,pη〉h(p) =

∫
dx1 · · · dxp dy1 · · · dyp η(x1, . . . , xp) η(y1, . . . , yp)

× ρτ
(
ϕ∗
τ (y1) · · ·ϕ∗

τ (yp)ϕτ (x1) · · ·ϕτ (xp)
)

= ρτ

(∫
dx1 · · · dxp dy1 · · · dyp η(x1, . . . , xp) η(y1, . . . , yp)

× ϕ∗
τ (y1) · · ·ϕ∗

τ (yp)ϕτ (x1) · · ·ϕτ (xp)
)
. (3.51)

By (1.29) and the definition of Πη we deduce that that the expression in (3.51)
equals ρτ (Θτ (Πη)), thus showing (3.50) in the quantum setting. Similarly in the
classical setting, we use (1.26) and (1.18) to compute

〈η, γpη〉h(p) = ρ

(∫
dx1 · · · dxp dy1 · · · dyp η(x1, . . . , xp) η(y1, . . . , yp)

× ϕ(y1) · · ·ϕ(yp)ϕ(x1) · · ·ϕ(xp)
)

= ρ(Θ(Πη)) ,

as was claimed.
We now show that the expression on the right-hand side of (3.50) is non-negative.

Let us first show this in the quantum setting. By (1.29), we note that Θτ (Πη) is a
positive operator. Furthermore f(Nτ ) is a positive operator which commutes with
Θτ (Πη). In particular, their composition is a positive operator. Recalling (1.33),
we know that

A 7→ Tr(APτ )
Tr(Pτ )



26 ANDREW ROUT AND VEDRAN SOHINGER

is a quantum state. In particular, when applied to positive operators it is nonneg-
ative, so we obtain that

Tr(Θτ (Πη)f(Nτ )Pτ )

Tr(Pτ )
≥ 0 . (3.52)

Since Pτ and f(Nτ ) commute, by using (3.52), and recalling (1.33) as well as
Assumption 1.3, it follows that

ρτ (Θτ (Πη)) =
Tr(Θτ (Πη)f(Nτ )Pτ )

Tr(Pτf(Nτ ))
≥ 0 . (3.53)

We deduce the claim in the quantum setting from (3.50) and (3.53).
In the classical setting, we use (1.18) to write

ρ(Θ(Πη)) = ρ

(∫
dx1 · · · dxp dy1 · · · dypη(x1, . . . , xp) η(y1, . . . , yp)

× ϕ(x1) · · ·ϕ(xp)ϕ(y1) · · ·ϕ(yp)
)

= ρ

(∣∣∣∣
∫
dx1 · · · dxpη(x1, . . . , xp)ϕ(x1) · · ·ϕ(xp)

∣∣∣∣
2)

≥ 0 . (3.54)

For the last inequality in (3.54), we recalled (1.24). We deduce the claim in the
classical setting from (3.50) and (3.54). �

Remark 3.18. By following the same duality argument as [18, Proposition 3.3
(ii)], we can deduce from Lemma 3.17 that Corollary 3.16 holds for all ξ ∈ L(h(p)).

To prove Theorem 1.4, we argue similarly as in [17, Sections 4.2-4.3], and use
the following result.

Lemma 3.19. Let p ∈ N∗ be fixed. Suppose that for all τ > 0, γτ,p ∈ S1(h(p))

are positive and that γp ∈ S1(h(p)) is positive (both in the sense of operators).
Furthermore, suppose that

lim
τ→∞

‖γτ,p − γp‖S2(h(p)) = 0 , lim
τ→∞

Tr γτ,p = Tr γp. (3.55)

Then limτ→∞ ‖γτ,p − γp‖S1(h(p)) = 0.

The result of Lemma 3.19 is based on [50, Lemma 2.20], and proved in this form
in [17, Lemma 4.10]. We refer the reader to the latter reference for the details of
the proof.

Proof of Theorem 1.4. We first prove (1.38). Let p ∈ N
∗ be given. We verify the

conditions of Lemma 3.19. Using the fact that S2(h(p)) ∼= S2(h(p))∗ and recalling
(2.2), we have

‖γτ,p − γp‖S2(h(p)) = sup
ξ∈Bp

|Tr (γτ,p ξ − γp ξ)| = sup
ξ∈Bp

|ρτ (Θτ (ξ))− ρ(Θ(ξ))| → 0

(3.56)
as τ → ∞ by Corollary 3.16. For the second equality in (3.56), we used the identity

Tr(γ#,p ξ) = ρ#(Θ#(ξ)) , (3.57)

for all ξ ∈ L(h(p)). One directly verifies (3.57) from (1.29), (1.34), (1.37) in the
quantum setting, and from (1.18), (1.24), (1.26) in the classical setting.
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Setting ξ = 1 in (3.57), we obtain that

Tr γ#,p = ρ#(Θ#(1)) . (3.58)

Corollary 3.16 and (3.58) hence imply that

lim
τ→∞

Tr γτ,p = Tr γp. (3.59)

We now deduce (1.38) from Lemma 3.17, (3.56), (3.59), and Lemma 3.19.
The proof of (1.39) is similar. Namely we start from (3.5) with A = 1 and repeat

the previous argument (in which we formally set p = 0). We note that in this case,
we do not need to use Lemma 3.19 above. �

4. The time-independent problem with unbounded interaction

potentials. Proofs of Theorems 1.5 and 1.6.

In this section, we analyse the time-dependent problem for general w as in As-
sumption 1.1. In particular, we no longer assume that w is bounded, as in Section
3. In Section 4.1, we consider w satisfying Assumption 1.1 (i) and prove Theorem
1.5. In Section 4.2, we consider w satisfying Assumption 1.1 (ii) and prove Theorem
1.6. As before, we fix p ∈ N∗ throughout the section.

4.1. L1 interaction potentials. Proof of Theorem 1.5. We first consider the
case where w satisfies Assumption 1.1 (i), i.e. when it is taken to be an even and real-
valued function in L1(T). To do this, we approximate w with bounded potentials
wε, which are even and real-valued. For instance, we can take wε := wχ{|w|≤1/ε}.
We then use the results of the previous section combined with a diagonal argument.

Let us first note the following result.

Lemma 4.1. Let w be as in Assumption 1.1 (i), and suppose wε ∈ L∞ is a sequence
of even, real-valued interaction potentials satisfying wε → w in L1(T) as ε → 0.
Then there exists a sequence (ετ ) converging to 0 as τ → ∞ such that for all p ∈ N∗

lim
τ→∞

ρεττ (Θτ (ξ)) = ρ (Θ (ξ)) , (4.1)

uniformly in ξ ∈ Cp. We recall that Cp is given by (3.34).

Proof. Using a standard diagonal argument, it suffices to prove that for each fixed
ε > 0

lim
τ→∞

ρετ (Θτ (ξ)) → ρε (Θ (ξ)) (4.2)

uniformly in ξ ∈ Cp, and
lim
ε→0

ρε (Θ (ξ)) → ρ (Θ (ξ)) (4.3)

uniformly in ξ ∈ Cp. The convergence in (4.2) holds by Corollary 3.16 because
wε ∈ L∞(T). To show (4.3), we first note that by Lemma 3.1 (2) and the Sobolev
embedding theorem

|Wε −W| . ‖wε − w‖L1‖ϕ‖4
H

1
2
−
. (4.4)

Since ϕ ∈ H
1
2− almost surely, it follows that

lim
ε→0

Wε = W (4.5)

almost surely. Continuity of the exponential implies that

lim
ε→0

e−Wε

= e−W



28 ANDREW ROUT AND VEDRAN SOHINGER

almost surely. By Lemma 3.1 (2), we have

|W| ≤ 1

2
‖w‖L1‖ϕ‖4L4 ,

and for ε sufficiently small

|Wε| ≤ 1

2
‖wε‖L1‖ϕ‖4L4 ≤ ‖w‖L1‖ϕ‖4L4 .

It follows that ∣∣∣e−Wε − e−W
∣∣∣ ≤ 2e‖w‖L1‖ϕ‖4

L4 . (4.6)

By Lemma 2.1 and Assumption 1.3, we know that

e‖w‖L1‖ϕ‖4
L4f

1
2 (N ) ∈ L1(dµ) . (4.7)

By Lemma 3.2, we have that

Θ(ξ)f
1
2 (N ) ∈ L∞(dµ) . (4.8)

Using (4.6)–(4.8) and the dominated convergence theorem, it follows that

lim
ε→0

∫
dµ |Θ(ξ)|

∣∣∣e−Wε − e−W
∣∣∣ f(N ) = 0 . (4.9)

The same argument implies

lim
ε→0

zε = z . (4.10)

Noting that

ρε (Θ (ξ))− ρ (Θ (ξ)) =
1

z

∫
dµΘ(ξ)f(N )

( z
zε
e−Wε − e−W

)
,

(4.3) follows from (4.9) and (4.10). �

We can now prove Theorem 1.5.

Proof of Theorem 1.5. We deduce (1.40) from Lemma 4.1 by arguing analogously
as in the proof of (1.38). The proof of (1.41) is similar to that of (1.40). Instead
of (4.2), we use

lim
τ→∞

Zε
τ = zε ,

for fixed ε > 0, which follows from (1.39). Instead of (4.3), we use (4.10). �

4.2. The Delta Function. Proof of Theorem 1.6. We now deal with the case
w = −δ. Let us first recall the definition (1.43) of wε. Let us note that since U
is even, it is not necessary to take U to be non-positive, since we can argue as
in [18, (5.33)] using |U | (note that in [18], one writes w̃ for U). In what follows,
we again denote objects corresponding to the interaction potential wε by using a
superscript ε. Again, by following Section 3.7, to prove Theorem 1.6, it suffices to
prove the following proposition.

Lemma 4.2. Let w := −δ, and let wε be defined as in (1.43). Then there is a
sequence (ετ ) satisfying ετ converging to 0 as τ → ∞ such that

lim
τ→∞

ρεττ (Θτ (ξ)) = ρ (Θ(ξ)) , (4.11)

uniformly in ξ ∈ Cp, where Cp is given by (3.34).
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Proof. As in the proof of Lemma 4.1, it suffices to prove for fixed ε that

lim
τ→∞

ρετ (Θτ (ξ)) → ρε (Θ (ξ)) , (4.12)

uniformly in ξ ∈ Cp, and
lim
ε→0

ρε (Θ (ξ)) → ρ (Θ (ξ)) (4.13)

uniformly in ξ ∈ Cp. Since wε ∈ L∞(T), (4.12) follows from Lemma 4.1. To prove
(4.13), we note that Lemma 3.1 (2) now implies

|W| ≤ 1

2
‖U‖L1‖ϕ‖4L4 ,

|Wε| ≤ 1

2
‖U‖L1‖ϕ‖4L4 . (4.14)

Since
∫
dxU = −1 and U is even,

Wε −W =
1

2

∫
dx dy wε(x− y)

(
|ϕ(x)|2|ϕ(y)|2 − |ϕ(x)|4

)
.

So

|Wε −W| ≤ 1

2

∫
dx dy |wε(x− y)||ϕ(x)|2|ϕ(x) − ϕ(y)| (|ϕ(x)| + |ϕ(y)|) . (4.15)

We can then follow the argument in [18, (5.49) in the proof of Theorem 1.6.] to
conclude that

Wε → W . (4.16)

We omit the details. Arguing as in the proof of Lemma 4.1, we obtain (4.13),
and thus (4.11). We emphasise that, in order to apply the dominated convergence
theorem as in the proof of Lemma 4.1, it is important that the upper bound (4.14)
is uniform in ε. �

Proof of Theorem 1.6. We obtain (1.44) by arguing analogously as for (1.40). Here,
instead of Lemma 4.1, we use Lemma 4.2. The proof of (1.45) is analogous to that
of (1.41). �

5. The time-dependent problem

In this section, we consider the time-dependent problem. The analysis for
bounded w and the proof of Theorem 1.10 are given in Section 5.1. The case
when w is unbounded is analysed in Section 5.2. Here, we prove Theorems 1.11
and 1.12. Throughout the section, we fix p ∈ N∗ and ξ ∈ L(h(p)). In particular, we
have the following two lemmas.

5.1. Bounded interaction potentials. Proof of Theorem 1.10. In order to
deal with bounded interaction potentials, we recall the Schwinger-Dyson expansion
outlined in [18, Sections 3.2 and 3.3].

Lemma 5.1. Given K > 0, ε > 0, and t ∈ R, there exists L = L(K, ε, t, ‖ξ‖, p) ∈ N,
a finite sequence (el)Ll=0, with e

l = el(ξ, t) ∈ L(h(p)) and τ0 = τ0(K, ε, t, ‖ξ‖) > 0
such that ∥∥∥∥∥∥

(
ΨtτΘτ (ξ)−

L∑

l=0

Θτ (e
l)

)∣∣∣∣∣
h(≤Kτ)

∥∥∥∥∥∥
< ε ,

for all τ ≥ τ0. Here we recall the definition of h(≤p) from (3.42).
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In other words, for large τ and restricted numbers of particles, we can approxi-
mate the evolution of the lift of an arbitrary operator with finitely many unevolved
lifts. We also have the corresponding classical result.

Lemma 5.2. Given K > 0, ε > 0, and t ∈ R, then there exist L = L(K, ε, t, ‖ξ‖, p) ∈
N, τ0 = τ0(K, ε, t, ‖ξ‖) > 0 both possibly larger than in Lemma 5.1, and for the same
choice of el = el(ξ, t) as in Lemma 5.1, we have

∣∣∣∣∣

(
ΨtΘ(ξ)−

L∑

l=0

Θ(el)

)
χ{N≤K}

∣∣∣∣∣ < ε ,

for all τ ≥ τ0.

We note that the proofs of Lemmas 5.1 and 5.2, respectively [18, Lemmas 3.9
and 3.12], do not use the sign of the interaction potential, so still hold in our case.
The proofs of both results also require a compactly supported cut-off function,

demonstrating the cut-off function of the form f(x) = e−cx
2

discussed in Remark
1.7 (3) would not suffice here.

Proof of Theorem 1.10. By using Theorem 1.4, Lemmas 5.1–5.2, and following the
proof of [18, Proposition 2.1], we obtain Theorem 1.10. �

Remark 5.3. Recalling the proof of [18, Proposition 2.1], it follows that the con-
vergence in Theorem 1.10 is uniform on the set of parameters

w ∈ L∞, m ∈ N, ti ∈ R, pi ∈ N
∗, ξi ∈ L(h(pi)); i = 1, . . . ,m ,

satisfying

max
{
‖w‖L∞ ,m, |t1|, . . . , |tm|, p1, . . . , pm, ‖ξ1‖, . . . , ‖ξm‖

}
≤M ,

for any fixed choice of M > 0.

5.2. Unbounded interaction potentials. Proofs of Theorems 1.11 and

1.12. Before proceeding, we need to prove a technical result concerning the flow of
the NLS.

Lemma 5.4. Let w ∈ L1(T) and s ≥ 3
8 be given, and suppose ϕ ∈ Hs. Consider

the Cauchy problem on T given by
{
i∂tu+ (∆− κ)u =

(
w ∗ |u|2

)
u

u0 = ϕ.
(5.1)

In addition, given ε > 0 and letting wε ∈ L∞ be a sequence satisfying wε → w in
L1, we consider {

i∂tu
ε + (∆− κ)uε =

(
wε ∗ |uε|2

)
uε

uε0 = ϕ.
(5.2)

Since s > 3/8 ≥ 0, the flow map defined in (1.7) is globally well defined. Denote
by u and uε the solutions of (5.1) and (5.2) respectively. Then for T > 0

lim
ε→0

‖u− uε‖L∞
[−T,T ]

h = 0.

We need to recall the dispersive Sobolev Xs,b spaces.
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Definition 5.5. Given f : T× R → C and s, b ∈ R we define

‖f‖Xs,b :=
∥∥∥(1 + |2πk|)s

(
1 + |η + 2πk2|

)b
f̃
∥∥∥
L2

ηℓ
2
k

,

where

f̃(k, η) :=

∫ ∞

−∞
dt

∫

T

dx f(x, t)e−2πikx−2πiηt

denotes the spacetime Fourier transform of f .

In the following, we always take b = 1
2 + ν, for ν > 0 small.

Proof of Lemma 5.4. We recall the details of proof of [18, Proposition 5.1]. Firstly,
we can take κ = 0 by considering ũ := eiκtu. So, we construct global mild solutions
to (5.1) and (5.2) in the following way.

Let ζ, ψ : R → R be smooth functions with

ζ(t) =

{
1 if |t| ≤ 1

0 if |t| > 2.
(5.3)

ψ(t) =

{
1 if |t| ≤ 2

0 if |t| > 4.
(5.4)

We also define ζδ(t) := ζ(t/δ) and ψδ(t) := ψ(t/δ). We consider

(Lv)(·, t) := ζδ(t)e
it∆ϕ0 − iζδ(t)

∫ t

0

dt′ ei(t−t
′)∆
(
w ∗ |vδ|2

)
vδ(t

′), (5.5)

(Lεv)(·, t) := ζδ(t)e
it∆ϕ0 − iζδ(t)

∫ t

0

dt′ ei(t−t
′)∆
(
wε ∗ |vδ|2

)
vδ(t

′), (5.6)

where vδ(x, t) := ψδ(t)v(x, t). By proving L and Lε are both contractions on
appropriate function spaces for δ > 0 sufficiently small, we are able to find local
mild solutions to (5.1) and (5.2). The arguments used to prove (5.5) and (5.6) are
contractions in [18, Proposition 5.1] still hold if we can show that

∥∥(w ∗ |vδ|2
)
vδ
∥∥
X0,b−1 . ‖w‖L1‖vδ‖3X0,b . (5.7)

To show (5.7), we define Vδ as the function satisfying Ṽδ = |ṽδ|. Note that by
construction, ‖Vδ‖X0,b = ‖vδ‖X0,b . Then
∣∣ ((w ∗ |vδ|2

)
vδ
)
˜(k, η)

∣∣

≤ ‖ŵ‖ℓ∞
∫
dk1 dk2 dk3 dη1 dη2 dη3 |ṽδ(k1, η1)||ṽδ(−k2,−η2)||ṽδ(k3, η3)|

× δ(k1 + k2 + k3 − k)δ(η1 + η2 + η3 − η)

= ‖ŵ‖ℓ∞
(
|Vδ|2Vδ

)
˜(k, η) ≤ ‖w‖L1

(
|Vδ|2Vδ

)
˜(k, η) .

To prove (5.7), it remains to show
∥∥|Vδ|2V

∥∥
X0,b−1 . ‖Vδ‖3X0,b = ‖vδ‖X0,b . (5.8)

To show (5.8) we argue as in [52, (2.147)-(2.153)], where similar bounds are proved
for the quintic case, and use a duality argument. Choose c : Z × R → C such that∑
k

∫
dη |c(k, η)|2 = 1. We consider

I :=
∑

k

∫
dη
(
1 + |η + k2|

)b−1 (|Vδ|2Vδ
)
˜(k, η) c(k, η) .
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We have

|I| ≤
∑

k

∑

k1+k2+k3=k

∫

η1+η2+η3=η

dη1 dη2 dη3 dη
|c(k, η)|

(1 + |η + k2|)1−b

× |ṽδ(k1, η1)||ṽδ(−k2,−η2)||ṽδ(k3, η3)|.
Define

F (x, t) :=
∑

k

∫
dη

|c(k, η)|
(1 + |η + k2|)1−b

e2πikx+2πitη ,

G(x, t) :=
∑

k

∫
dη |ṽδ(k, η)|e2πikx+2πitη .

Parseval’s identity implies

I .

∫ ∫
dx dt FGGG =

∣∣∣∣
∫ ∫

dx dt FGGG

∣∣∣∣
≤ ‖F‖L4

t,x
‖G‖3L4

t,x
. (5.9)

Since b > 3/8, we have the estimate ‖φ‖L4
t,x

. ‖φ‖X0,b (see [3, Proposition 2.6],

[24, Lemma 2.1 (i)], and [55, Proposition 2.13]). So

‖F‖L4
t,x

. ‖F‖X0,3/8 ≤ ‖F‖X0,b−1 = ‖c‖ℓ2kL2
η
= 1 . (5.10)

Moreover

‖G‖L4
t,x

. ‖vδ‖X0,3/8 . δθ‖vδ‖X0,b , (5.11)

where θ > 0. Here the final inequality follows from [18, Lemma 5.3 (iv)]. Combining
(5.9) with (5.10) and (5.11) yields (5.8).

So, for a time of existence δ that depends only on the L2 norm of the initial
data, we are able to construct local mild solutions, v(n) and vε(n) on [nδ, (n+ 1)δ].

We then piece these solutions together to create mild solutions u and uε to (5.1)
and (5.2) respectively. Using v and vε to denote v(0) and v

ε
(0) respectively, we have

‖u− uε‖L∞
[0,δ]

L2
x
=‖v − vε‖L∞

[0,δ]
L2

x

≤
∥∥∥∥ζδ(t)

∫ t

0

dt′ ei(t−t
′)∆
[
(w − wε) ∗ |vδ(t′)|2

]
vδ(t

′)

∥∥∥∥
X0,b

+

∥∥∥∥ζδ(t)
∫ t

0

dt′ ei(t−t
′)∆
[
wε ∗

(
|vδ(t′)|2 − |vεδ(t′)|2

)]
vδ(t

′)

∥∥∥∥
X0,b

+

∥∥∥∥ζδ(t)
∫ t

0

dt′ ei(t−t
′)∆
[
wε ∗ |vεδ(t′)|2

]
(vδ(t

′)− vεδ(t
′))

∥∥∥∥
X0,b

.

(5.12)

For the first term of (5.12), we have
∥∥∥∥ζδ(t)

∫ t

0

dt′ ei(t−t
′)∆
[
(w − wε) ∗ |vδ(t′)|2

]
vδ(t

′)

∥∥∥∥
X0,b

≤Cδ
1−2b

2

∥∥[(w − wε) ∗ |vδ|2
]
vδ
∥∥
X0,b−1 ,

where the δ
1−2b

2 comes from the estimates for local Xs,b spaces proved in [27] and
[28]. For a summary of these localXs,b spaces, we direct the reader to [18, Appendix
A].
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Arguing as in (5.7), we have
∥∥[(w − wε) ∗ |vδ|2

]
vδ
∥∥
X0,b−1 ≤ ‖w − wε‖L1‖vδ‖3X0,b → 0.

The bound on the second term in (5.12) follows by the same argument as in the
proof of [18, Proposition 5.1], although we note that since ‖wε‖L1 is only bounded
rather than equal to 1, we may get a larger constant times a positive power of ε,
which is not a problem. The third term in (5.12) then follows for the same reasons
combined with [18, Proposition 5.1].

Following the remainder of the argument from [18, Proposition 5.1] and noting
that there we gain no negative powers of ε, we have

‖u− uε‖L∞
[0,T ]

h → 0 .

The corresponding negative time estimates follow from an analogous argument. �

We also have the corresponding result for the focusing local NLS.

Lemma 5.6. Let s ≥ 3
8 be given, and suppose ϕ ∈ Hs(T). Consider the Cauchy

problem on T given by
{
i∂tu+ (∆− κ)u = −|u|2u
u0 = ϕ .

(5.13)

In addition, given ε > 0, let wε be as in (1.43). We consider
{
i∂tu

ε + (∆− κ)uε =
(
wε ∗ |uε|2

)
uε

uε0 = ϕ .
(5.14)

Since s > 3/8 ≥ 0, the flow map defined in (1.7) is globally well defined. Denote
by u and uε the solutions of (5.13) and (5.14) respectively. Then for T > 0

lim
ε→0

‖u− uε‖L∞
[−T,T ]

h = 0 .

Proof. We can follow exactly the proof of [18, Proposition 5.1], recalling (1.42), and
noting that the function wε defined in (1.43) is even and to deduce

∣∣|vδ(x)|2 − (wε ∗ |vδ|2)(x)
∣∣ ≤

∫
dy |wε(x− y)| |vδ(x) − vδ(y)|(|vδ(x)|+ |vδ(y)|) ,

similarly as in [18, (5.27)]. We also have the same point about ‖wε‖L1 not necessar-
ily equal to 1 as in the proof of Lemma 5.4, which does not affect the argument. �

Before proving Theorem 1.11, we recall the following diagonalisation result,
proved in [18, Lemma 5.5].

Proposition 5.7. Let (Zk)k∈N be an increasing sequence of sets in the sense that
Zk ⊂ Zk+1. Let us define Z := ∪k∈NZk. For ε, τ > 0, suppose that g, gε, gετ : Z → C

are functions with the following properties.

(1) For each fixed k ∈ N and ε > 0, limτ→∞ gετ (ζ) = gε(ζ) uniformly in ζ ∈ Zk.
(2) For each fixed k ∈ N, limε→0 g

ε(ζ) = g(ζ) uniformly in ζ ∈ Zk.

Then there is a sequence (ετ ) such that limτ→∞ ετ = 0 and

lim
τ→∞

gεττ (ζ) = g(ζ)

for any ζ ∈ Z.
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Proof of Theorem 1.11. Throughout this proof we use Xε or X to denote an object
defined using wε or w respectively. Define

Z := {(m, ti, pi, ξi) : m ∈ N, ti ∈ R, pi ∈ N
∗, ξi ∈ L(h(pi))} (5.15)

Zk := {(m, ti, pi, ξi) : m ≤ k, |ti| ≤ k, pi ∈ N
∗ , pi ≤ k, ‖ξi‖ ≤ k}, (5.16)

where in (5.15)–(5.16), we take i ∈ {1, . . . ,m}. Let us also define

gε#(ζ) := ρε#

(
Ψt1,ε# (Θ#(ξ

1)) · · ·Ψtm,ε# (Θ#(ξ
m))
)
, (5.17)

g(ζ) := ρ
(
Ψt1(Θ(ξ1)) · · ·Ψtm(Θ(ξm))

)
. (5.18)

By Theorem 1.10, Remark 5.3, and Proposition 5.7, we note that it suffices to show
that for fixed k ∈ N, we have

lim
ε→0

ρε
(
Ψt1,εΘ(ξ1) . . .Ψtm,εΘ(ξm)

)
= ρ

(
Ψt1Θ(ξ1) . . .ΨtmΘ(ξm)

)
, (5.19)

uniformly in Zk. Using (4.5)–(4.8) and the dominated convergence theorem, we
have

lim
ε→0

ρ̃ε1(1) = ρ̃1(1). (5.20)

Here we recalled the definition of ρ̃ζ(·) from (3.24). By (3.23) and (5.20), we note
that (5.19) follows if we prove that

lim
ε→0

ρ̃ε1
(
Ψt1,εΘ(ξ1) . . .Ψtm,εΘ(ξm)

)
= ρ̃1

(
Ψt1Θ(ξ1) . . .ΨtmΘ(ξm)

)
(5.21)

uniformly in Zk.
Let St and S

ε
t denote the flow maps for (5.1) and (5.2) respectively. Let ϕ0 ∈

H
1
2− ⊂ h be the classical free field defined in (1.15). Recalling (1.18), it follows

that for ξ ∈ L(h(k)), we have

Ψt,εΘ(ξ) =
〈
(Sεtϕ0)

⊗k , ξ (Sεtϕ0)
⊗k

〉
h⊗k

, ΨtΘ(ξ) =
〈
(Stϕ0)

⊗k , ξ (Stϕ0)
⊗k

〉
h⊗k

.

(5.22)
We apply Lemma 5.4 in (5.22) to deduce that

(Sεtϕ0)
⊗k → (Stϕ0)

⊗k (5.23)

almost surely in h⊗k as ε→ 0. Moreover, since ξ ∈ L(h(k)), we deduce from (5.23)
that

lim
ε→0

Ψt,εΘ(ξ) = ΨtΘ(ξ), (5.24)

almost surely.
By (4.5) and (5.24), we have

lim
ε→0

Ψt1,εΘ(ξ1) . . .Ψtm,εΘ(ξm)e−Wε

= Ψt1Θ(ξ1) . . .ΨtmΘ(ξm)e−W , (5.25)

almost surely. Using conservation of mass for (5.1)–(5.2), as well as Lemma 3.1 (2)
and Lemma 3.2, we have

∣∣∣Ψt1,εΘ(ξ1) . . .Ψtm,εΘ(ξm)e−Wε

f (N )
∣∣∣ ≤

m∏

j=1

‖ξj‖‖ϕ0‖2pjh e
1
2‖wε‖L1‖ϕ0‖4

L4f(N ),

∣∣Ψt1Θ(ξ1) . . .ΨtmΘ(ξm)e−Wf (N )
∣∣ ≤

m∏

j=1

‖ξj‖‖ϕ0‖2pjh e
1
2‖w‖L1‖ϕ0‖4

L4f(N ).

(5.26)
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Using Lemma 2.1 and Assumption 1.3, both of the bounding functions in (5.26) are
L1(dµ). Furthermore, by construction of wε, the quantity ‖wε‖L1 is bounded uni-
formly in ε. Therefore, the first function is in L1(dµ) uniformly in ε. Consequently,
we deduce (5.21) follows from (5.25), (5.26), and the dominated convergence theo-
rem. The claim now follows. �

Proof of Theorem 1.12. We argue analogously as in the proof of Theorem 1.11,
with the same definitions of Z,Zk, g

ε
τ , g

ε, g as in (5.15)–(5.18) above, except that
now wε is chosen as in (1.43). We recall that again ‖wε‖L1 is bounded uniformly
in ε. The proof is analogous to that of Theorem 1.11. The only difference is that
instead of (4.5) and Lemma 5.4, we use their local analogues (4.16) and Lemma 5.6
respectively. �

Appendix A. Proof of Lemma 2.1

In this appendix, we prove Lemma 2.1, which was originally proved in [4, Lemma
3.10]. For the convenience of the reader, we present the full details of the proof in
a self-contained way. For an alternative summary, see also [44, Section 2]. Before
proceeding with the proof, we recall in Section A.1 several auxiliary results con-
cerning Fourier multipliers in the periodic setting and concentration inequalities. In
Section A.2, we recall the notion of an norming set, which we use to prove duality
results in Lp spaces. The proof of Lemma 2.1 is given in Section A.3.

A.1. Auxiliary Results. We will need the following result about Fourier multipli-
ers on the torus, the full statement and proof of which can be found in full generality
in [54, VII, Theorem 3.8]. We recall our convention (1.16) for the Fourier transform.

Lemma A.1 (Mikhlin Multiplier Theorem in the periodic setting). Let p ∈ [1,∞]
and T ∈ (Lp(R), Lp(R)) be a Fourier multiplier operator. Let û be the multiplier
corresponding to T and suppose that û is continuous at every point of Z. For k ∈ Z,
let λ(k) := û(k). Then there is a unique periodised lattice operator T̃ defined by

T̃ f(x) ∼
∑

k∈Z

λ(k)f̂ (k)e2πikx

such that T̃ ∈ (Lp(T), Lp(T)) and ‖T̃‖Lp→Lp ≤ ‖T ‖Lp→Lp .

We also recall the definition of a sub-gaussian random variable.

Definition A.2. Let (Ω,A,P) be a probability space. We say a random variable
X is sub-gaussian if there exist constants C, v > 0 such that for all t > 0 we have

P(|X | > t) ≤ Ce−vt
2

.

We will use the following inequality about sub-gaussian random variables. For a
proof, see [56, Proposition 5.10].

Lemma A.3 (Hoeffding’s Inequality). Suppose that X1, . . . , XN are all indepen-
dent, centred sub-gaussian random variables. Let Q := maxi ‖Xi‖ψ2 for

‖X‖ψ2 := sup
p≥1

p−1/2(E|X |p)1/p

and let a ∈ RN . Then, for any t > 0, we have

P

[∣∣∣∣∣

N∑

i=1

aiXi

∣∣∣∣∣ > t

]
. exp

(
− ct2

Q2‖a‖2ℓ2

)
.
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A.2. Norming Sets. To prove Lemma 2.1, we need the following result about
duality in Lp spaces. We emphasise that this is a known result, but whose proof
we could not find in the literature, so we write out the proof for the convenience of
the reader.

Lemma A.4. Suppose that M ⊂ Z has cardinality m, and let

S := SpanC
{
e2πikx : k ∈ M

}
.

Then there is some subset Ξ of the unit sphere of Lp
′

satisfying the following prop-
erties.

(1) maxϕ∈Ξ |〈g, ϕ〉| ≥ 1
2‖g‖Lp for all g ∈ S.

(2) log |Ξ| ≤ Cm for some universal constant C > 0.

Remark. This result can be extended to finite dimensional subsets of normed
vector spaces, but we do not need the result in full generality.

A.2.1. Norming sets and ε-nets. Before proceeding, we introduce several notions
in Banach spaces.

Definition A.5. LetX be a Banach space, Y ⊂ X a linear subspace, and θ ∈ (0, 1].
We denote by X∗ the (continuous) dual space of X . We say that a set F ⊂ X∗ is
θ-norming over Y if

sup
g∈F\{0}

g(y)

‖g‖ ≥ θ‖y‖

for all y ∈ Y .

Definition A.6. Let X be a Banach space. Given x ∈ X and ε > 0, we write
Bε(x) = {y ∈ X : ‖x− y‖ < ε} for the ball in X of radius ε around x. Let Y ⊂ X
be a subset of X . Given ε > 0, we call Nε ⊂ Y an ε-net of Y if Y ⊂ ⋃x∈Nε

Bε(x).

We write SX := {x ∈ X : ‖x‖ = 1} for the unit sphere of X .
We want to relate norming sets to ε-nets. To do this, we take inspiration from

the following result, the proof of which comes from [26, Section 17.2.4, Theorem 1].

Lemma A.7. Suppose X is a Banach space, Y ⊂ X is a linear subspace, and
G ⊂ SX∗ a set that is 1-norming over Y . Let ε ∈ (0, 1), and suppose that Nε is an
ε-net on the unit sphere of Y . For each element x ∈ Nε, fix a functional gx ∈ G
such that gx(x) > 1− ε (which we can do since Nε ⊂ SY and G is 1-norming over
Y ). Then the set F = {gx}x∈Nε is θ-norming over SY for θ = 1− 2ε.

Proof. Let y ∈ SY . By definition, there is some xy ∈ Nε satisfying ‖y − xy‖ < ε.
Then, by definition of F , linearity, the definition of xy , and G ⊂ SX∗ , we have

sup
g∈F

|g(y)| = sup
x∈Nε

|gx(y)| ≥ |gxy(y)| = |gxy (xy)− gxy(y − xy)|

> 1− ε− ‖y − xy‖ > 1− 2ε = θ .

�

A.2.2. Conclusion of the proof of Lemma A.4. We begin by bounding the size of
an ε-net of Cm. For M ⊂ Z with |M| = m, we consider the following norm on Cm

|||(a)k∈M||| :=
∥∥∥∥∥
∑

k∈M
ake

2πikx

∥∥∥∥∥
Lp′

.
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We define Σ := {(ak)k∈M : |||a||| = 1}. Notice that since Cm is finite dimensional,
the unit ball with respect to any norm is compact. Let Nε be a maximal subset of
Σ satisfying the property

x, y ∈ Nε, x 6= y =⇒ |||x− y||| > ε . (A.1)

In other words, any subset of Σ strictly containing Nε fails to have property (A.1).
Such a set exists and is finite by the compactness of Σ. Any such set must be an ε-
net of Σ by maximality. We have the following bound, whose proof is an adaptation
of [56, Lemma 5.2].

Lemma A.8. For Nε ⊂ Σ maximal satisfying (A.1), we have

|Nε| ≤
(
1 +

2

ε

)m
=: Cmε .

Proof. The result follows from a volume bound. Since Nε is ε-separated, it follows
that {Bε/2(x)}x∈Nε are pairwise disjoint. Moreover, since x ∈ Σ, it follows from
the triangle inequality that all such balls lie inside the ball of radius 1+ε/2 centred
at the origin. So

vol[Bε/2(x)] · |Nε| ≤ vol[B1+ε/2(0)]. (A.2)

We also have the following identity

vol
[
cB1(0)

]
= vol

[{
(cak)k∈M :

∥∥∥
∑

k∈M
ake

2πikx
∥∥∥
Lp′

≤ 1

}]

= cm vol[B1(0)] .

Combining this with (A.2) (and using translation invariance), we have

|Nε| ≤
(
1 + ε/2

ε/2

)m
=

(
1 +

2

ε

)m
.

�

We are now able to prove Lemma A.4.

Proof of Lemma A.4. We let Ξ := N1/4 ⊂ Σ be obtained by setting ε = 1
4 in the

construction above. Let g =
∑

k∈M ake
2πikx. By duality, there is some ψ ∈ Σ with

|〈g, ψ〉| ≥ 3
4‖g‖Lp. Moreover, since N1/4 is a 1

4 net of Σ, we can find ϕ ∈ N1/4 ≡ Ξ

with ‖ψ − ϕ‖Lp′ ≤ 1
4 . Hence, it follows that |〈g, ψ − ϕ〉| ≤ 1

2‖g‖Lp. Therefore, we
obtain

1

2
‖g‖Lp ≤ |〈g, ψ〉| − |〈g, ψ − ϕ〉| ≤ |〈g, ψ〉 − 〈g, ψ − ϕ〉| = |〈g, ϕ〉| , (A.3)

where in the second step above, we used the reverse triangle inequality. The result
follows from (A.3) and Lemma A.8. �

A.3. Proof of Lemma 2.1. We now prove Lemma 2.1, which was originally proved
in [4, Lemma 3.10]. For the convenience of the reader, we present the full details of
the proof in a self-contained way. Throughout, (CN,G, µ) is the probability space
defined in (1.14) above.
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Proof of Lemma 2.1. We show the following bound for large λ.

µ



∥∥∥∥∥
∑

k∈Z

ωk√
λk
e2πikx

∥∥∥∥∥
Lp

> λ,

(
∑

k∈Z

|ωk|2
λk

)1/2

≤ B


 . exp(−cM1+2/p

0 λ2), (A.4)

where

M0 ∼
(
λ

B

) 1
1/2−1/p

. (A.5)

Let us assume (A.4) and we show that it implies the claim. We write

F :=

∥∥∥∥∥
∑

k∈Z

ωk√
λk
e2πikx

∥∥∥∥∥

p

Lp

χ(∑
k∈Z

|ωk|2

λk

)1/2
≤B

G := e
2
p ‖

∑
k∈Z

ωk√
λk
e2πikx‖p

Lp
χ(∑

k∈Z

|ωk|2

λk

)1/2

≤B
.

Then

‖G‖L1 =

∫

y>0

dy y µ (|G| > y)

≤
∫

y>1

dy y µ (|G| > y) + 1,

where the inequality follows because µ is a probability measure. Now defining

y := exp
(

2
pλ

p
)
, we have

‖G‖L1 ≤
∫

λ>0

dλ 2λp−1e
2
pλ

p

µ (|F | > λ) + 1

.

∫

λ>0

dλ exp

(
2

p
λp − cB

−2p+4
p−2 λ

4p
p−2

)
λp−1 + 1. (A.6)

Since p < 4p
p−2 for p ∈ [4, 6) for ‖G‖L1 to be finite, B can be arbitrary. We have

p = 4p
p−2 for p = 6, so in this case we have to take B sufficiently small.

We now prove (A.4). Throughout, M is a dyadic integer and |k| ∼ M means
3M
4 ≤ |k| < 3M

2 . We make use of the following inequality.
∥∥∥∥∥∥

∑

|k|∼M
ake

2πikx

∥∥∥∥∥∥
Lp

.M1/2−1/p

∥∥∥∥∥∥

∑

|k|∼M
ake

2πikx

∥∥∥∥∥∥
L2

. (A.7)

For p = 2, (A.7) is trivial, and for p = ∞, it follows from Cauchy-Schwarz and
Plancherel’s theorem. We then use the Riesz-Thorin interpolation theorem to de-
duce (A.7) for all p ∈ (2,∞).

With M0 as in (A.5), we consider a sequence (σM )M>M0 of positive numbers
with ∑

M>M0

σM = δ , (A.8)

with δ > 0 sufficiently small to be determined later.
Consider ω ∈ Ω such that∥∥∥∥∥

∑

k∈Z

ωk√
λk
e2πikx

∥∥∥∥∥
Lp

> λ,

(
∑

k∈Z

|ωk|2
λk

)
≤ B . (A.9)
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With ω as in (A.9), we show that there is some M >M0 such that

∥∥∥∥∥∥

∑

|k|∼M
ωke

2πikx

∥∥∥∥∥∥
Lp

> σMMλ . (A.10)

We argue by contradiction. First, we note that for ω as in (A.9), we have

∑

M≤M0

∥∥∥∥∥∥

∑

|k|∼M

ωk√
λk
e2πikx

∥∥∥∥∥∥
Lp

.M
1/2−1/p
0

(
∑

k∈Z

|ωk|2
λk

)1/2

. λ . (A.11)

We used (A.7), Plancherel’s theorem, and summed a geometric sequence for the first
inequality in (A.11). For the second inequality in (A.11), we used the L2 bound in
(A.9), and (A.5). By taking the implied constant in (A.5) to be sufficiently small,
let us note that the proof of (A.11) implies

∑

M≤M0

∥∥∥∥∥∥

∑

|k|∼M

ωk√
λk
e2πikx

∥∥∥∥∥∥
Lp

≤ λ

2
. (A.12)

We henceforth work with such a small implied constant in (A.5).
Suppose that (A.10) did not hold for any M > M0. Then it would follow that,

for an appropriate choice of δ in (A.8), we would have

∑

M>M0

∥∥∥∥∥∥

∑

|k|∼M

ωk√
λk
e2πikx

∥∥∥∥∥∥
Lp

≤ λ

2
. (A.13)

We note that (A.13) combined with (A.11) would give us a contradiction with the
first inequality in (A.9). Let us explain how we have obtained (A.13). First we note

∥∥∥∥∥∥

∑

|k|∼M

ωk√
λk
e2πikx

∥∥∥∥∥∥
Lp

≤ C

M

∥∥∥∥∥∥

∑

|k|∼M
ωke

2πikx

∥∥∥∥∥∥
Lp

, (A.14)

which we justify as follows. Let Φ : R → C be a smooth, compactly supported
function which is equal to 1 on 1/2 ≤ |ξ| ≤ 2 and zero for |ξ| ≤ 1/4 and |ξ| ≥ 4.
Consider the function

ΨM (ξ) :=
1√

4π2|ξ|2
M2 + κ

M2

Φ

(
ξ

M

)
. (A.15)

Since

Φ̃(ξ) :=
1√

4π2|ξ|2 + (κ/M2)
Φ(ξ)

has bounded derivatives of all order (with bound depending on κ), the same holds

for ΨM = Φ̃(ξ/M) given by (A.15) above. Hence, the Mikhlin multiplier theorem

(on R) implies that the map TM defined by (TMf )̂ (ξ) := ΨM (ξ)f̂(ξ) is bounded
as a map on Lp(R). Applying the support properties of Φ and using Lemma A.1,
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we obtain

M

∥∥∥∥∥∥

∑

|k|∼M

ωk√
λk
e2πikx

∥∥∥∥∥∥
Lp

=M

∥∥∥∥∥∥

∑

|k|∼M
ΦM (k)

ωk√
λk
e2πikx

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥

∑

|k|∼M
ΨM (k)ωke

2πikx

∥∥∥∥∥∥
Lp

.

∥∥∥∥∥∥

∑

|k|∼M
ωke

2πikx

∥∥∥∥∥∥
Lp

.

Here we use the fact that the Fourier coefficients are supported on |k| ∼ M , for
which ΦM (k) = 1. We hence deduce (A.14). By summing inM >M0 and applying
(A.8) with δ sufficiently small, we obtain (A.13). Therefore (A.10) holds for some
M > M0.

To estimate the contribution for each dyadic M , we consider the subspace S of
Lp given by SpanC{e2πikx : |k| ∼ M}. We want to construct a 1

2 -norming set, Ξ,

contained in the unit sphere of Lp
′

with the following properties.

(1) maxϕ∈Ξ |〈g, ϕ〉| ≥ 1
2‖g‖Lp for all g ∈ S.

(2) ‖ϕ‖L2 .M1/2−1/p for any ϕ ∈ Ξ.
(3) log |Ξ| .M .

To find this set, we apply Lemma A.4 and take the orthogonal projection of Ξ
onto S. We obtain the first and third properties from Lemma A.4, and the second
follows from Plancherel’s theorem, Hölder’s inequality, and the Hausdorff-Young
inequality (applied to p′). Namely, for ϕ ∈ Ξ, we have

‖ϕ‖L2 = ‖ϕ̂‖ℓ2 .M1/2−1/p‖ϕ̂‖ℓp
.M1/2−1/p‖ϕ‖Lp′ =M1/2−1/p .

Having constructed the set, we now estimate the norm. We choose M > M0

satisfying (A.10). Then

σMMλ <

∥∥∥∥∥∥

∑

|k|∼M
ωke

2πikx

∥∥∥∥∥∥
Lp

≤ 2max
ϕ∈Ξ

∣∣∣∣∣∣

∑

|k|∼M
ωkϕ̂(k)

∣∣∣∣∣∣

= 2max
ϕ∈Ξ

∣∣∣∣∣∣

∑

|k|∼M
ωk

ϕ̂(k)

‖ϕ‖L2

∣∣∣∣∣∣
‖ϕ‖L2

. 2M1/2−1/pmax
ϕ∈Ξ

∣∣∣∣∣∣

∑

|k|∼M
ωk

ϕ̂(k)

‖ϕ‖L2

∣∣∣∣∣∣
,

where the first line uses property (1) of Ξ and the final inequality follows from
property (2) of Ξ. So

σMM
1/2+1/pλ . max

ϕ∈Ξ

∣∣∣∣∣∣

∑

|k|∼M
ωk

ϕ̂(k)

‖ϕ‖L2

∣∣∣∣∣∣
. (A.16)
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Let us take (σM )M>M0 satisfying (A.8) to be of the form

σM ∼M−1/p + (M0/M)1/2 , (A.17)

for a suitable choice of implied constant. For M > M0, let XM denote the event
(A.16). Then

Pω



∥∥∥∥∥
∑

k∈Z

ωk√
λk
e2πikx

∥∥∥∥∥
Lp

> λ,

(
∑

k∈Z

|ωk|2
λk

)1/2

≤ B


 (A.18)

≤ Pω (∪M>M0 XM ) (A.19)

≤
∑

M>M0

∑

ϕ∈Ξ

Pω



∣∣∣∣∣∣

∑

|k|∼M
ωk

ϕ̂(k)

‖ϕ‖L2

∣∣∣∣∣∣
& σMM

1/2+1/pλ


 (A.20)

.
∑

M>M0

∑

ϕ∈Ξ

exp
(
−cM1+2/pσ2

Mλ
2
)

(A.21)

.
∑

M>M0

exp
(
CM − cM1+2/pσ2

Mλ
2
)

(A.22)

=
∑

M>M0

exp
(
CM − c

(
M +M0M

2/p + 2M
1/2
0 M1/2+1/p

)
λ2
)

(A.23)

.
∑

M>M0

exp
(
−cM0M

2/pλ2
)

(A.24)

. exp
(
−cM1+2/p

0 λ2
)
.

Here, (A.19) follows from (A.16). (A.20) follows from a union bound. (A.21) comes
from applying Lemma A.3 with Xi = ωi and ai = ϕ̂(i)/‖ϕ‖L2 (so that Q ∼ 1
and ‖a‖ℓ2 ≤ 1 by Plancherel’s theorem), and for (A.22), we use property (3) of
Ξ. (A.23) comes from (A.17). We obtain (A.24) from the fact that λ is large and
noticing that the second term will give a factor less than one. The final inequality
follows from the fact we have a geometric series with common ratio equal to 1−ζM0 ,
with ζM0 > 0. So we have shown (A.4), which completes the proof. �

Appendix B. Remarks about the cut-off function f

In this appendix, we expand on Remark 1.7 (1) and (3).

B.1. Interaction Potentials of Positive Type. For a bounded, real-valued,
even interaction potential w of positive type (i.e. ŵ ≥ 0 pointwise almost every-
where), we claim we can apply the methods used in the proof of [17, Theorem 1.8]
to get the result of Theorem 1.4 for ρ# defined without a truncation in N♯. To do
this, we follow the convention from the two and three dimensional cases from [17]
and consider a non-normal ordered quantum interaction, namely

W ′
τ :=

1

2

∫
dx dy ϕ∗

τ (x)ϕτ (x)w(x − y)ϕ∗
τ (y)ϕτ (y) , (B.1)

which we note is different to the convention adopted in the rest of the paper. We
also define H ′

τ := Hτ,0 +W ′
τ in contrast to (1.31). Applying (1.27), we have

W ′
τ = Wτ +

1

2τ
w(0)N 2

τ ,
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where we recall (1.30) and (1.32). We consider this non-normal ordered interaction
since W ′

τ acts on the nth sector of Fock space as multiplication by

1

2τ2

n∑

i,j=1

w(xi − xj) . (B.2)

The key difference from (3.13) is (B.2) includes the diagonal terms of the sum.
The remark follows from showing that if w is of positive type, (B.2) ≥ 0 almost
everywhere, since we can apply Proposition 2.6 as in the proof of [17, Proposition
4.5]. We can further reduce this to showing (B.2) ≥ 0 for w ∈ C∞ of positive type
by taking wε := w ∗ ϕε for a standard approximation to the identity ϕε of positive
type, since then wε → w pointwise almost everywhere.

To see this, recall that for g ∈ L2, Parseval’s theorem implies

〈g, w ∗ g〉 ∼
∑

k∈Z

|ĝ(k)|2ŵ(k) ≥ 0 (B.3)

since w is of positive type. Taking gε ∈ C∞ with gε →∑n
j=1 δ(· − xj) weakly with

respect to continuous functions, for w ∈ C∞ we have, by (B.3)

0 ≤ 〈gε, w ∗ gε〉 →
n∑

i,j=1

w(xi − xj) .

Letting ε→ 0 then yields (B.2) ≥ 0 for w smooth of positive type.

B.2. General L∞ interaction potentials. For a general bounded, even, real-
valued interaction potential w we show we could have used a Gaussian cut-off
rather than a compactly supported one. Notice that since w ∈ L∞, there is some
c such that wc := w+ c ≥ 0 pointwise. Throughout this section, for an object X#,
we use Xc

# to denote X# defined using wc rather than w. Notice that

W ′,c
τ = W ′

τ +
c

2
N 2
τ , (B.4)

Wc = W +
c

2
N 2 . (B.5)

Applying an adapted form of [17, Theorem 1.8] for non-normal ordered interactions,
we have

lim
τ→∞

Tr
(
Θτ (ξ)e

−H′,c
τ

)

Tr
(
e−H

′,c
τ

) =

∫
dµΘ(ξ)e−H

c

∫
dµ e−Hc . (B.6)

We note that the adapted form of [17, Theorem 1.8] holds by applying the same
proof, but using

∑n
i,j=1 w

c(xi − xj) ≥ 0 instead of
∑n
i,j=1,i6=j w

c(xi − xj) ≥ 0 in

the proof of [17, Proposition 4.5].
Rewriting (B.6) using (B.4) and (B.5) gives

lim
τ→∞

Tr
(
Θτ (ξ)e

−H′
τ e−

c
2 N 2

τ

)

Tr
(
e−H′

τ e−
c
2 N 2

τ

) =

∫
dµΘ(ξ)e−He−

c
2 N 2

∫
dµ e−He−

c
2 N 2 .
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[21] J. Fröhlich, A. Knowles, B. Schlein, and V. Sohinger. Interacting loop ensembles and
Bose gases, Preprint arXiv: 2012.05110 (2020), to appear in Ann. Henri Poincare.
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