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Abstract

Quantum walks have wide applications in quantum information, such as universal quantum

computation, so it is important to explore properties of quantum walks thoroughly. We propose a

novel method to implement discrete-time quantum walks (DTQWs) using only a single qubit, in

which both coin and walker are encoded in the two-dimensional state space of a single qubit, oper-

ations are realized using single-qubit gates only, and high-dimensional final states of DTQWs can

be obtained naturally. With this “one-qubit” approach, DTQW experiments can be realized much

more easily, compared with previous methods, in most quantum systems and all properties based

on quantum states of DTQWs (such as quantum correlation and coherence) can be investigated.

By this approach, we experimentally implement one-particle and two-particle DTQWs with seven

steps using single photons. Furthermore, we systematically investigate quantum correlations and

coherence (based on the full state of the coin and walker) of the DTQW systems with different

initial states of the coin, which have not been obtained and studied in DTQW experiments. As

an application, we also study the assisted distillation of quantum coherence using the full state of

the two-particle DTQW from the experiment. The maximal increase in distillable coherence for

high-dimensional mixed states is investigated for the first time by obtaining its upper and lower

bounds. Our work opens a new door to implement DTQW experiments and to better explore

properties of quantum walks.
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I. INTRODUCTION

Quantum walks can be divided into discrete-time quantum walk (DTQW) and contunuous-

time quantum walk (CTQW). In general, the CTQW is easier to implement in experiments,

while the DTQW is faster and has more degrees of freedom [1]. DTQW has a wide range of

applications in quantum algorithms [2–4], universal quantum computation [5–7], quantum

simulations [8–10], topological phases [11, 12], state preparation and transfer, and other

areas [13–16]. Moreover, the experimental implementation of DTQW has been achieved in

several quantum systems, such as linear optics [4, 9, 12, 17–20], ion traps [21, 22], neutral

atom traps [23], and circuit QED [24]. In DTQW experiments, the probability distribution

of the walker and the density matrix of the low-dimensional coin (after taking partial trace

over the walker) are usually adopted to study the properties of DTQWs, which are easy

to measure. A few correlation functions and the entanglement between the coin and the

walker, based on one of the two measurable quantities, have also been adopted to reveal

properties of DTQWs (e.g., see Ref. [9, 20, 25–29]).

However, after a review of the literature, we find that for DTQWs with multiple steps,

quantum quantities based on the full state of the walker and the coin, such as quantum

correlations and quantum coherence, have not been used to investigate DTQWs in experi-

ments. This is mainly because the high-dimensional quantum states (i.e., joint states of the

walker and the coin in multi-step DTQWs) are very difficult to obtain in DTQW experi-

ments. Note that the joint state of the walker and the coin, which contains all information,

is a key element to thoroughly study general properties of DTQWs. Researches in this area

can help to explore deep properties of quantum walks and expand their applications.

In this work, we first propose a novel method for the implementation of DTQWs, in

which both the coin and walker are encoded by a single qubit. With this one-qubit method,

the whole final states of DTQWs after many steps can be naturally obtained in principle,

which can be used to study deep properties of DTQW systems. Because only a single qubit

is needed, the resource required for implementing DTQWs is greatly reduced and the exper-

imental implementation of DTQWs becomes extremely simple. It enables one to implement

multi-particle DTQWs efficiently, which can provide an additional computational power and

can be used to improve simulation performances in complex tasks [7, 30]. Furthermore, the

implementation of DTQW in one qubit can be adopted to realize DTQWs in most quantum
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systems.

By this one-qubit method, we experimentally implement one-particle and two-particle

DTQWs with seven steps in linear optics. We obtain all final joint states of the walker

and the coin in the DTQW experiment and systematically study quantum correlations and

coherence of the DTQW systems with different initial states of the coin. The experimental

results fit well with the theoretical results. As an application, we also investigate the assisted

distillation of quantum coherence for high-dimensional pure states and mixed states using

the full states of the two-particle DTQW from the experiment.

II. IMPLEMENTING DTQW WITH A SINGLE QUBIT

In a standard DTQW, a walker moves with respect to the state of a coin. The evolution

of the walker and the coin can be characterized by an operator U = T · S, where T is the

shift operator of the walker and S is the coin operator. For example, in each step of a

one-dimensional (1D) DTQW, the coin, with states |0〉c and |1〉c, is tossed by

S = Iw ⊗ (cos θ|0〉c〈0| − sin θ|0〉c〈1|+ sin θ|1〉c〈0|+ cos θ|1〉c〈1|) , (1)

where θ ∈ [0, π), and Iw is an identity operator of the walker. Then, the walker is shifted by

T =
∑

n

|n− 1〉〈n| ⊗ |0〉c〈0|+ |n+ 1〉〈n| ⊗ |1〉c〈1|, (2)

where the integer n represents the position of the walker in a 1D line.

Now we introduce how to implement a 1D DTQW using one qubit only. Both coin and

walker of the DTQW are encoded in the single qubit. The coin is encoded by two bases

|0〉q and |1〉q of the qubit, and the position of the walker is encoded by the phase of the two

bases. Thus, a general state of a 1D DTQW system is encoded as

∑

n

(an|n〉|0〉c + bn|n〉|1〉c) →
1

N

∑

n

(ane
inφ|0〉q + bne

inφ|1〉q), (3)

where
∑

n(|an|2 + |bn|2) = 1 and N is the normalized coefficient. Though this encoding is

invalid for all an = 0 or all bn = 0, in most cases this encoding is valid.

Now we show how to readout the information an and bn from the encoded qubit. The

above encoding should be repeated (2M − 1) times, where M is the total number of an

(equals to the total number of bn). For the kth encoding, the phase φ involved in Eq. (3)
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FIG. 1. (a) Schematic of the experimental setup for the one-particle DTQW in linear optics. (b)

Schematic of the experimental setup for the two-particle DTQW. Photon pairs are injected into

path 1 and path 2, respectively. BS: beam splitter. HWP: half-wave plate. PBS: polarizing beam

splitter. QWP: quarter-wave plate.

is replaced by φk (k = 1, 2, ..., 2M − 1). In each encoding, the state of the qubit can be

measured, and the values of the ratio rk = (
∑

n ane
inφk)/(

∑

n bne
inφk) can be obtained from

experiments. In this way, one obtains (2M − 1) equations for an and bn as

∑

n

(ane
inφk − rkbne

inφk) = 0. (4)

We need to solve these equations, with the normalized condition:
∑

n(|an|2 + |bn|2) = 1.

Then, all an and bn are obtained and thus the whole quantum state is readout.

By this implementation method, the circuit and operations in DTQW experiments are

extremely simple, because only one physical qubit is required. The implementing can be

sped up by m times if m qubits are adopted to run the same DTQW task which is executed

in the single qubit. Another major advantage of this method is that the whole final states

of DTQWs can be obtained, which enables one to investigate most properties of DTQWs,

such as quantum correlations and coherence.
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III. EXPERIMENTAL RESULTS

In our experiments, one-particle and two-particle DTQWs with seven steps have been

implemented using the one-qubit method introduced in the section II. In this case, the total

number of an (or bn) in the final state is 8, i.e., M = 8. To readout the final state, we

have set φk = kφ0 with φ0 = 23.6◦ (k = 1, 2, ..., 2M − 1). In addition, quantum correlations

and coherence in these DTQWs are systematically investigated and displayed. The adopted

measures of correlations and coherence include quantum mutual information I [31], entan-

glement E [32], correlated coherence Cc [33], measurement-induced disturbance M [34], and

quantum coherence C(ρ) from Ref. [35]. Note that all definitions of the above correlations

and coherence are based on the von Neumann entropy, which is obtained from the density

matrix of states, so that their behaviors could be compared with each other. Please refer

to Appendix for details of the realization of the DTQWs in linear optics, measures of the

correlations and coherence, and the assisted distillation of quantum coherence.

A. Quantum correlations and coherence in one-particle DTQW

Photon pairs are generated by type-I spontaneous parametric down conversion in a 3-

mm-thick nonlinear beta-barium borate (BBO) crystal pumped by a 100 mW diode laser

(centered at 405.8 nm). The photons in one path are directly detected as the trigger and

the photons in another path are injected into the setup shown in Fig.1(a) to implement a

one-particle DTQW. Each step of the DTQW is achieved using a combination of two QWPs

and one HWP, as shown in the Fig.1(a). We implement a seven-step DTQW using the initial

state

|φ0〉 = (α|0〉c + i
√

(1− α2)|1〉c)⊗ |0〉, (5)

with α ∈ [−1, 1]. In this initial state, the correlations between the coin and the walker are

equal to 0 and the maxima of quantum coherence appear at α = ±1/
√
2.

The whole final states of the coin and the walker are obtained from the experiment, so

that the correlations and coherence of the DTQW system can be investigated. Appendix

A2 presents the definitions of the adopted correlations and coherence measurements.

The effects of α on quantum mutual information I [31], entanglement E [32], and corre-

lated coherence Cc [33] between the coin (subsystem a) and the walker (subsystem b) are
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FIG. 2. (a) Variance of the position σ (black dashdotted line), quantum mutual information I (red

dotted line), correlated coherence Cc (green dashed line), and entanglement E (blue solid line)

with respect to the parameter α of the initial state for a one-particle DTQW. (b) Effects of α on

the quantum coherence of the coin (blue solid line), the walker (green dashed line), and the whole

system (red dotted line) of a one-particle DTQW. The lines (points and error bars) represent the

theoretical (experimental) results. The error bars only represent statistical errors.

shown in Fig. 2(a). Effects of α on quantum coherence C(ρ) [35] of the coin, the walker, and

the whole system are shown in Fig. 2(b). In addition, the variances of the walker’s position

σ [36] are also obtained and shown in Fig. 2(a).

The experimental results fit well with the theoretical results. For all α, Fig. 2 shows that

I(ρab) > Cc(ρab) > E(ρab) and C(ρab > C(ρb) > C(ρa). (6)

Note that different α represent different initial states of the coin. Extreme values of all

correlations and coherence appear at α ∼ ±1/
√
2, which just corresponds to the positions

of maximal quantum coherence in the initial state. It is also interesting to note that the

correlations and coherence of the whole system have similar behaviors to that of the variance

of the position with respect to α. It may be inferred that both the correlations and coherence

are related to the variance of the position.

B. Quantum correlations and coherence in two-particle DTQW

Photon pairs in the entangled state α|HV 〉 +
√

(1− α2)|V H〉 can be generated from

two identical down-conversion BBO crystals [37]. This polarization-entangled state just

corresponds to the initial state of the two-particle DTQW (α|01〉c+
√

(1− α2)|10〉c)⊗ |00〉,
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FIG. 3. Quantum mutual information I (red dotted line), correlated coherence Cc (green dashed

line), and entanglement E (blue solid line) between two parts of four bipartite cases: parts AB

and CD, parts AC and BD, parts A and BCD, and parts B and ACD. The coin and the walker in

path 1 are denoted as A and B, while the coin and the walker in path 2 are denoted as C and D.

The lines (points and error bars) represent the theoretical (experimental) results. The error bars

only represent statistical errors.

in which the two coins are initially entangled. The setup designed for a two-particle DTQW

is shown in Fig.1(b). Entangled photons are injected into path 1 and path 2, respectively.

The photons in path 1 are reflected by a beam splitter (BS) to implement the seven-step

DTQW with the optical circuit. To reuse the devices in path 1 for making the same DTQW

steps, two additional HWP pairs are adopted in the path 2. In general, two optical circuits

are needed if photons in two pathes are employed to realize two different DTQWs.

For the two-particle DTQW, the whole system consists of four subsystems: two coins and

two walkers. Here we denote the coin (the walker) in path 1 as subsystem A (B) and denote

the coin (the walker) in path 2 as subsystem C (D). The two-particle DTQW system can be

divided into four bipartite systems with (i) AB and CD, (ii) AC and BD, (iii) A and BCD,
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FIG. 4. Quantum coherence of the whole system (red dotted line) and quantum coherence of two

parts (green dashed line and blue solid line) for the four bipartite cases studied in Fig. 3. The

lines (points and error bars) represent the theoretical (experimental) results. The error bars only

represent statistical errors.

(iv) B and ACD. Due to the symmetry between two particles, these four bipartite systems

include all bipartite cases.

From the experiment on two-particle DTQW with seven steps, correlations between two

parts for four bipartite cases are obtained and shown in Fig. 3, quantum coherence of the

whole system and quantum coherence of two parts are shown in Fig. 4. For all of four

bipartite cases, quantum mutual information I, entanglement E, and correlated coherence

Cc reach extremums at α ∼ ±1/
√
2, where the quantum correlations between the two coins

in the initial state also reach maximum. Likewise, quantum coherence reaches extrema at

α ∼ ±1/
√
2. As expected, Fig. 4 indicates I(ρab) ≥ Cc(ρab) ≥ E(ρab) for high-dimensional

pure states.

The correlations between an arbitrary coin and an arbitrary walker for the two-particle

DTQW are also studied theoretically and experimentally. For example, to obtain the corre-
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FIG. 5. Left two panels: effects of α on the quantum mutual information I (red dotted line),

correlated coherence Cc (green dashed line), and measurement-induced disturbance M (blue solid

line) between subsystems A and B, as well as between subsystems A and D, respectively. Right

two panels: quantum coherence of the corresponding bipartite systems (red dotted line), and

quantum coherence of subsystem A (blue solid line) and another subsystem (green dashed line).

The lines (points and error bars) represent the theoretical (experimental) results. The error bars

only represent statistical errors.

lations between the coin in path 1 (i.e., subsystem A) and the walker in path 2 (subsystem

D), we take the partial trace over subsystems B and C and obtain a density matrix ρAD,

which is usually a mixed state. Then we adopt quantum mutual information I, measurement-

induced disturbanceM [34], and correlated coherence Cc to measure the correlations between

subsystem A and subsystem D. The corresponding quantum coherence is also obtained.

The effects of α on the correlations between subsystems A and B and on the correlations

between subsystems A and D are obtained and shown in Fig. 5. The corresponding coherence
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FIG. 6. The upper bound of δCd(ρb) (blue dotted line) and the lower bound of δCd(ρb) (red solid

line). (a) For bipartite systems consisting of subsystems A and B in the two-particle DTQW, (b) for

bipartite systems consisting of subsystems A and D in the two-particle DTQW, (c) for bipartite

system in the one-particle DTQW. The lines (points and error bars) represent the theoretical

(experimental) results. The error bars only represent statistical errors.

is also shown in Fig. 5. All these systems consist of a coin and a walker, but behaviors of the

correlations between the coin and the walker and behaviors of the coherence are very different

from those for the one-particle DTQW. There is no symmetry for α → −α in the correlations

of ρAD. At α ∼ ±1/
√
2, the minima of coherence are reached, while the coherence reaches

the maxima in the one-particle DTQW case. Moreover, one here can only ensure I ≥ Cc

and I ≥ M for ρAD and ρAB, C(ρAB) > C(ρB) > C(ρA), and C(ρAD) > C(ρD) > C(ρA) as

demonstrated in Fig. 5.

C. Application in assisted distillation of quantum coherence

DTQW can generate high-dimensional multipartite states, which can be used to study

how correlations and coherence change in various processes, such as in the task of assisted

distillation of quantum coherence [38, 39] in bipartite systems with high-dimensional pure

or mixed quantum states. In this task, two parties, Alice (with subsystem a) and Bob (with

subsystem b), are involved. Their goal is to maximize the quantum coherence of Bob’s

subsystem b by Alice performing arbitrary quantum operations on subsystem a, while Bob

is restricted to just incoherent operations on his subsystem b. The classical communication

between Alice and Bob is allowed. This is referred to as local quantum-incoherent operations

and classical communication (LQICC).
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The definition of maximal increase in distillable coherence of subsystem b [δCd(ρb)] is

introduced in Appendix A3. The δCd(ρb) for pure states can be easily calculated, while it

is challenging to obtain the δCd(ρb) for mixed states. We introduce an upper bound and a

lower bound of δCd(ρb) for mixed states in Appendix A3. With the bounds, some properties

of δCd(ρb) for mixed states can be obtained and studied.

Two bounds of δCd(ρb) with different values of α for mixed states ρAB and ρAD in the

seven-step two-particle DTQW are investigated both theoretically and experimentally, as

shown in Fig. 6(a) and Fig. 6(b). Here, both bipartite systems consist of a two-dimensional

subsystem a (the coin) and a high-dimensional subsystem b (the walker). Experimental

results fit well with the theoretical results, and the lower bound of δCd(ρb) is under and

close to its upper bound. Obviously, δCd(ρb) is confined to the region between the upper

and lower boundaries. By comparing these results with the results of ρAB and ρAD in Fig. 5,

it may be inferred that δCd(ρb) is related to the correlations between subsystem a and

subsystem b. Moreover, one has δCd(ρb) ≤ Cc(ρab) ≤ I(ρab) for all α.

To verify the validity of the bounds of δCd(ρb), we also study δCd(ρb) for the pure state

of the seven-step one-particle DTQW in the experiment, as shown in Fig. 6(c). For a pure

state, the upper bound is equal to δCd(ρb). Figure 6(c) shows that the lower bound is indeed

lower than δCd(ρb) for pure states of the one-particle DTQW.

IV. DISCUSSION AND CONCLUSION

In our experiments, the standard DTQWs with seven steps are performed in linear op-

tical setups, from which all final joint states of the walker and the coin for the seven-step

DTQWs are obtained. Based on the joint states from the experiments, the quantum cor-

relations and coherence in the seven-step DTQWs are investigated systematically. As all

DTQW operations are implemented in the two-dimensional polarization space of a single

photon, a seven-step DTQW is realized using seven combinations of wave-plates, which

is very economic and efficient. Moreover, the single-photon measurement after seven-step

DTQWs is extremely simple.

To obtain the final joint state of the walker and the coin for a DTQW after N steps, it

appears that our DTQW experiment must be performed (2N + 1) times with different φk,

in order to achieve (2N + 1) equations of Eq. (4). Actually, in other DTQW experiments,
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which use orthogonal states and thus require many more qubits [12, 17–19], an N -step

DTQW has to be implemented 2(N + 1) times to measure 2(N + 1) probabilities |an|2 and

|bn|2. Moreover, it is challenging to obtain the complex numbers an and bn in those DTQW

experiments.

If a DTQW experiment is implemented in a single qubit, there is a limitation on the

number of DTQW steps, which mainly depends on the accuracy of the state measurement.

A key criterion is that the non-orthogonal states, which encode the states of the walker and

the coin, must be distinguishable in the measurement. As shown in our experiment, by

using a single qubit at least seven DTQW steps can be realized in the linear optical setups.

The number of performable DTQW steps can be increased if the experimental accuracy is

improved, such as adopting devices of high precision. Another efficient way of increasing

the number of performable DTQW steps is extending the one-qubit method to more qubits

and encoding the DTQW states by non-orthogonal states in the joint space of the qubits.

In this case, DTQWs with a large number of steps could be performed even if an extremely

small number of qubits are used.

In summary, we have proposed a novel one-qubit DTQW implementation method, which

makes it easy to obtain the final joint states of DTQWs and thus enables one to investigate

most properties of one-particle and multi-particle DTQWs. Based on this method, we

have experimentally implemented one-particle and two-particle DTQW with seven steps

in linear optics. By obtaining the final joint states of the DTQWs, we have investigated

quantum correlations and coherence in one-particle and two-particle DTQWs experimentally.

Furthermore, we have shown how to use the two-particle DTQW, which can generate high-

dimensional states of multipartite systems, to study the correlations and coherence rules,

i.e., the assisted distillation of quantum coherence for high-dimensional mixed states.

Since only single-qubit operations are required, the proposed one-qubit approach for

realizing DTQWs is quite general, which can be applied to implement single-qubit-based

DTQW experiments in various physical systems (using much less resources), such as linear

optics, circuit QED and trapped ions. This work paves an avenue to study properties,

such as correlations and coherence, of the DTQWs and may extend their applications. The

present work also opens a new direction to study quantum correlation and coherence rules

of high-dimensional states in experiments. Furthermore, the proposed one-qubit encoding

method is expected to have applications in quantum algorithms and quantum simulations.
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APPENDIX

A1 The Implementation of DTQWs in linear optics

The coin state is encoded by the horizontal polarization state |H〉 and the vertical polar-

ization state |V 〉 of a single photon, and the walker’s positions are encoded by the phases of

|H〉 and |V 〉 of the single photon. The general state of Eq. (3) in the main text is encoded

as

1

N

∑

n

(ane
−inφ|H〉+ bne

inφ|V 〉). (a1)

Then the initial state of the one-particle DTQW in our experiment is encoded as

ψ0 = (α|0〉c + i
√
1− α2|1〉c)|0〉 → α|H〉+ i

√
1− α2|V 〉, (a2)

which is easily prepared by injecting a horizontally polarized photon into a HWP and a

QWP, as shown in Fig. 1(a) of the main text. And the initial state of the two-particle

DTQW is encoded as

(α|01〉c +
√

(1− α2)|10〉c)⊗ |00〉 → α|HV 〉+
√
1− α2|V H〉, (a3)

which is generated using two identical BBO crystals.

Next, we introduce how to realize the DTQW operator U = T · S in a linear optical
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system. In the two-dimensional polarization space, the coin operator S can be expressed as

S(θ) =





cos θ − sin θ

sin θ cos θ



 = e−iθσy , (a4)

and the shift operator T is

T =





e−iφ 0

0 eiφ



 = e−iφσz , (a5)

where σy and σz are Pauli matrices. In our DTQW experiments, θ = π/4 is adopted. The

unitary operator U = e−iφσze−iθσy is realized by a combination of two QWPs and one HWP:

U = UQWP

(π

4

)

UHWP

(

φ

2
− θ

2
+
π

4

)

UQWP

(π

4
+ θ

)

. (a6)

As shown in Fig. 1 of the main text, an n-step DTQW needs n combinations of waveplates.

After an n-step DTQW implementation, the state of single photons can be easily obtained

via tomography measurements. Then, the final state of the DTQW after n steps can be

readout using the encoding method.

A2 Measures of correlations and coherence

The coherence in the DTQW system and its subsystems will be studied using the rel-

ative entropy of coherence [35]. Correlation between arbitrary two subsystems of DTQW

will be studied using quantum mutual information [31], measurement-induced disturbance

[34], entanglement [32], and correlated coherence [33]. The correlated coherence is just the

quantum coherence contained within correlation, which can be used as a kind of quantum

correlation. All definitions of the above coherence and correlations are based on the von

Neumann entropy, which is obtained from the density matrix of states, so that their behav-

iors are comparable. Consider a bipartite state ρab of subsystem a and subsystem b. The

measure of correlations and coherence are defined as follows.

1. Quantum mutual information I is usually used to quantify the total correlation between

subsystem a and subsystem b, with

I(ρab) = S(ρa) + S(ρb)− S(ρab), (a7)

where ρa = trb ρab, ρb = tra ρab, and S(ρ) = −tr[ρ log2 ρ] denoting the von Neumann entropy.
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2. The measurement-induced disturbance M quantifies a sort of quantum correlation

between two subsystems, with

M(ρab) = I(ρab)− I(Π(ρab)), (a8)

where Π(ρab) =
∑

ij Π
i
a ⊗ Πj

b ρΠ
i
a ⊗ Πj

b is a classical state; and the complete projective

measurements {Πi
a} and {Πj

b} are induced by the spectral resolutions of ρa =
∑

i p
i
aΠ

i
a

and ρb =
∑

j p
j
bΠ

j
b, respectively. Here M(ρab) represents the disturbance of the correlation

(i.e., quantum mutual information) induced by the measurement Π. Note that the chosen

measurement Π leaves ρa, ρb, and the marginal information invariant, and M(ρ) is invari-

ant under local unitary transformations. Moreover, for pure states, M coincides with the

conventional entanglement E, i.e., M(ρab) = S(ρa) = S(ρb).

3. The entanglement E for a pure state of bipartite system can be quantified by the von

Neumann entropy, i.e.,

E(ρab) = S(ρa) = S(ρb). (a9)

For high-dimensional mixed states, measure of entanglement will not be illustrated, because

there is still no suitable definition of entanglement.

4. The relative entropy of coherence C is calculated as

C(ρ) = S(ρD)− S(ρ), (a10)

where ρD is the diagonal version of ρ, which only retains the diagonal elements of ρ.

5. The correlated coherence Cc is just the local coherence subtracted from the total

coherence:

Cc(ρab) = C(ρab)− C(ρa)− C(ρb). (a11)

This correlated coherence can be rewritten as

Cc = [S(ρa) + S(ρb)− S(ρab)]− [S(ρDa ) + S(ρDb )− S(ρDab)]

= I(ρab)− I(ρDab),
(a12)

which is similar to the definition of measurement-induced disturbance M . Though the

correlated coherence is derived from the quantum coherence, it can be treated as a sort of

measurement-induced disturbance of correlation under a simple measurement based on the

basis of ρab.
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In general, one has the relation I(ρab) ≥ Cc(ρab) ≥ E(ρab), because I(ρab) represents the

quantum and classical correlation, Cc(ρab) represents the quantum correlation, and E(ρab)

represents the quantum entanglement, which can be treated as a minimal definition of

quantum correlation.

A3 Maximal increase in distillable coherence

It has been proved [38] that for a pure state |φ〉ab of the two subsystems a and b, the

maximal increase in distillable coherence of subsystem b is equal to the von Neumann entropy

of ρb, i.e.,

δCd(ρb) ≡ C
a|b
d (|φ〉ab)− Cd(ρb) = S(ρb), (a13)

where C
a|b
d (|φ〉ab) is the distillable coherence of collaboration and Cd(ρb) = C(ρb) ≡ S(ρDb )−

S(ρb) is the distillable coherence of ρb. For four bipartite cases shown in Fig. 3 and Fig. 4

of the main text, the corresponding δCd(ρb), C
a|b
d (|φ〉ab) and Cd(ρb) can be easily obtained

and used to demonstrate the relationship in Eq. (13) of the main text.

It is more interesting to study the assisted distillation of quantum coherence with mixed

states. For a general mixed state ρab, there is no deterministic equation of δCd(ρb) like the

Eq. (13) of the main text because of the difficulty for calculating C
a|b
d (ρab). Instead, the

bounds of C
a|b
d (ρab) can be obtained and used to study the properties of δCd(ρb) for mixed

states. In the following, we introduce an upper bound and a lower bound of δCd(ρb).

1. The distillable coherence of collaboration is bounded [38] according to

C
a|b
d (ρab) ≤ Ca|b

r (ρab), (a14)

where C
a|b
r (ρab) = S[∆b(ρab)]− S(ρab) with ∆b(ρab) =

∑

i(Ia ⊗ |i〉b〈i|)ρab(Ia ⊗ |i〉b〈i|), which
is defined for a fixed incoherent basis {|i〉b}. Thus, one has an upper bound for δCd(ρb):

δCd(ρb) ≤ Ca|b
r (ρab)− Cd(ρb), (a15)

which is calculated from ρab.

2. There is no simple lower bound for C
a|b
d (ρab). To obtain a lower bound, one can

implement a range of special LQICC operations on the bipartite system and then treat the

maximal coherence obtained from subsystem b as a lower bound of C
a|b
d (ρab). In order to

obtain this lower bound in experiments, von Neumann measurements of subsystem a are

adopted as LQICC operations, which will be performed on one copy of the state, instead
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of complex collective operations on many copies. In this way, one obtains a lower bound

for the distillable coherence of collaboration of one-copy, which is also a lower bound for

C
a|b
d (ρab). We denote this lower bound of C

a|b
d (ρab) as Cl(ρb) and obtain the lower bound of

δCd(ρb):

δCd(ρb) ≥ Cl(ρb)− Cd(ρb). (a16)

To obtain Cl(ρb), we have performed von Neumann measurements on subsystem a in the

basis cos(θ)|0〉+ eiφ sin(θ)|1〉 and e−iφ sin(θ)|0〉 − cos(θ)|1〉. Then the maxima of Cd(ρb) are

found as Cl(ρb) for each α with θ ∈ [0, π] and φ ∈ [0, 2π].
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