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Quantum random number generators (QRNGs) are able to generate numbers that are certifiably
random, even to an agent who holds some side-information. Such systems typically require that
the elements being used are precisely calibrated and validly certified for a credible security analysis.
However, this can be experimentally challenging and result in potential side-channels which could
compromise the security of the QRNG. In this work, we propose, design and experimentally demon-
strate a QRNG protocol that completely removes the calibration requirement for the measurement
device. Moreover, our protocol is secure against quantum side-information. We also take into ac-
count the finite-size effects and remove the independent and identically distributed requirement for
the measurement side. More importantly, our QRNG scheme features a simple implementation
which uses only standard optical components and are readily implementable on integrated-photonic
platforms. To validate the feasibility and practicability of the protocol, we set up a fibre-optical
experimental system with a home-made homodyne detector with an effective efficiency of 91.7% at
1550 nm. The system works at a rate of 2.5 MHz, and obtains a net randomness expansion rate
of 4.98 kbits/s at 1010 rounds. Our results pave the way for an integrated QRNG with self-testing
feature and provable security.

I. INTRODUCTION

Random number generators (RNGs) are the basic
building block of many computing methods and digital
solutions in use today, e.g., in simulation, optimisation,
cryptography, and gambling. Ideally, the output of a
RNG should be uniform and unpredictable. The first
property requires all outputs are equally likely and the
second stipulates that no observer can do better than a
random guess even with side information about the de-
vice. Indeed, the latter property is especially important
when dealing with digital technologies like secure commu-
nications, block-chain, and digital lottery, where privacy
and information security are critical.

Quantum processes are excellent sources of random-
ness due to their intrinsic probabilistic nature. In par-
ticular, by tapping on the uncertainty of quantum mea-
surements, one can, in principle, devise quantum random
number generators (QRNGs) which are perfectly uniform
and unpredictable [1–3]. The standard approach uses a
model-based approach, where the underlying probabil-
ity model is based on certain trusted quantum measure-
ment process. However, while this approach presents
a straightforward way to quantify the amount of ex-
tractable randomness, it is prone to implementation de-
viations. In particular, the model may not capture the
actual physical process due to unexpected device changes
and the amount of extractable randomness can be over-
estimated. Crucially, this could lead to catastrophic out-
comes when the device is used for cryptography, for ex-
ample.
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An elegant solution is to consider new forms of QRNGs
which provide certifiable randomness based on mini-
mal assumptions about the underlying quantum mea-
surement process. This is made possible by exploiting
the unique correlations established by quantum mea-
surements on entangled systems. The best example
is the Device-Independent (DI) QRNG [1, 4–8]. How-
ever, in view of the demanding experimental require-
ments for a loophole-free observation of non-local cor-
relations [4, 6, 9], it is generally believed that the first
practical application of such DI QRNGs will likely be
Randomness Beacons [6, 7].
There are other QRNGs that make reasonable assump-

tions about the system and require only a partial charac-
terisation of the device. These schemes provide a system
performance improvement in terms of the implementa-
tion complexity and the random number generation rate
when compared to DI QRNGs. Due to the partial char-
acterisation feature, this class of QRNGs are often called
semi-DI QRNG. A comparison of different QRNG studies
are listed in Table I.
For practical semi-DI randomness generations, the fol-

lowing features are highly desirable in practical appli-
cations. Firstly, the security of the randomness gener-
ation should rely on only a few justifiable assumptions
on the system operation its critical components. This
would ensure that these QRNGs remain secure even in
the presence of unexpected device changes. Secondly, it
should also provide a relatively high randomness gener-
ation rate. Finally, the QRNG should be cost-effective
and have small footprints. The latter would be essential
in a wide range of applications: from handheld devices
to Internet-of-Things.
In this regard, balanced homodyne detection offers

distinct advantages in practical randomness generation.
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FIG. 1. Schematic of the experimental setup. The Laser Diode (LD) emits a continuous-wave laser, which is split into two
parts by a Beam Splitter(BS). One is for quantum state preparation, and the other is for Local Oscillator (LO) for homodyne
detection. In the signal path, an Intensity Modulator (IM) is used for pulse curving and intensity modulation, and a Phase
Modulator (PM) is used for phase modulation. The optical signal is then attenuated to single-photon energy level by an
attenuator (ATT). The final quantum states after modulation are in QPSK or QAM-16 format. In the LO path, a PM is
deployed for basis choosing for the homodyne detection. The signal states and the LO are mixed on a balanced BS, and the
photocurrent of two photodiodes (PD) are subtracted and further amplified. Finally, a data acquisition (DAQ) device samples
the signal and obtain the data for analysis.

On-chip Uncharacterised Uncharacterised Finite-size Remove i.i.d. Side-Information
References compatibility Categories source measurement analysis assumption considered

Ref. [10, 11] ✗ TD ✗ ✗ ✗ ✗ none
Ref. [12–15] ✓ TD ✗ ✗ ✗ ✗ classical
Ref. [16, 17] ✓ TD ✗ ✗ ✗ ✓a quantum
Ref. [18, 19] ✓ Semi-DI ✓b ✗ ✓ ✗ quantum

Ref. [20] ✓ Semi-DI ✓ ✗ ✗ ✗ quantum
Ref. [21] ✗ Semi-DI ✓ ✗ ✓ ✗ classical
Ref. [22] ✓ Semi-DI ✓ ✗ ✗ ✗ quantum
Ref. [23] ✗ Semi-DI ✓b ✓ ✗ ✗ classical

Ref. [24, 25] ✓ Semi-DI ✓b ✓ ✗ ✗ classical
Ref. [26, 27] ✗ Semi-DI ✓c ✓ ✗ ✗ classical

Ref. [28] ✓ Semi-DI ✓b ✓ ✓ ✓d classical
Ref. [29] ✗ Semi-DI ✓e ✓e ✓ ✗ classical

Ref. [30–32] ✗ Semi-DI ✗ ✓ ✗ ✗ classical
Ref. [4, 5, 7] ✗ DI ✓ ✓ ✗ ✗ quantum

Ref. [6] ✗ DI ✓ ✓ ✓ ✗ quantum
Ref. [8] ✗ DI ✓ ✓ ✓ ✓ quantum

This work ✓ Semi-DI ✗ ✓ ✓ ✓ quantum

a By assuming Gaussianity and stationarity of the noisy processes.
b With additional assumption on the input energy.
c With assumption on the overlap of the states
d With additional assumptions of i.i.d. source and channel.
e With additional assumption on the system dimension.

TABLE I. Features of our proposed QRNG protocol as compared to the features of existing protocols. In this Table, protocols
that are compatible with on-chip implementation refer to protocols which are built on photodiodes, e.g., homodyne detection,
which had been implemented on the Photonic Integrated Circuits (PICs) (for example, see Refs. [33–36]). On-chip single-photon
detection has also been demonstrated recently [37, 38] but it has not been widely adopted yet. Moreover, cooling is typically
required in single-photon detection to achieve a desirable dark count level, which leads to additional system complexity and
space usage. TD: trusted-device scheme. Semi-DI: Semi-Device-Independent scheme. DI: Device-Independent scheme.

Firstly, as balanced homodyne detectors simply consist
of a pair of photodiodes and some electrical components,
they are readily implementable on integrated-photonic
platforms [33–36]. Hence, QRNGs that are based on ho-
modyne detectors have a unique practical advantage in
terms of the cost-effectiveness, compactness and system
stability. Secondly, homodyne detection works at room
temperature and no additional cooling is needed. This,

again, reduces the system complexity and eliminates the
extra requirement for space consumption.

Unfortunately, due to many practical limitations, real
homodyne detectors often deviate from an ideal quadra-
ture measurement – which is the standard theoretical
model for a balanced homodyne detection. Firstly, mod-
elling homodyne detectors as perfect quadrature mea-
surements of the input optical field requires the lo-
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cal oscillator (LO) to operate at the high intensity
limit [39, 40], which may not be the case in the ac-
tual implementation. In addition, implementing the per-
fect quadrature measurement would also require perfect
photon number subtraction which is non-trivial in the
presence finite common-mode rejection ratio (CMRR)
and imbalance drifts. Moreover, in contrast to perfect
quadrature measurements, practical homodyne detectors
are subjected to electronic noise, LO intensity fluctua-
tions, finite detection range, etc. While there are the-
oretical studies on how to account for these imperfec-
tions in the model (for example, the standard theoretical
treatment for electronic noise is to model it as an in-
dependent noise [12, 41] with Gaussian and stationary
nature [12, 16]), the model demands an accurate char-
acterisation of each imperfection. Not only is this task
technically demanding, there is actually a danger of false
precision with the model-based approach as the quality
of the homodyne detector may degrade over time. In
that case, this would invalidate the model and hence, the
randomness generated by the homodyne detection may
be overestimated.

Additionally, it has been pointed out that finite band-
widths of practical homodyne detector may result in cor-
relations among successive rounds of the QRNG opera-
tion [13, 16]. In this case, the experimental rounds in
practice would be unlikely to exhibit a completely inde-
pendent and identically distributed (i.i.d.) behaviour. In
particular, comparing to the quantum state generation
part, the homodyne detector with a shot-noise-limited
performance generally has a more restricted working
bandwidth [41, 42]. Therefore, it is of great interest to
devise a randomness certification that can mitigate (if
not fully remove) the i.i.d. assumption for the system
operation. Moreover, as any QRNG protocols have to be
executed in a finite number of rounds, finite-size effects
(such as statistical fluctuations) should be taken into con-
sideration. This is especially important for semi-DI and
DI QRNGs, whose randomness certification relies on ex-
perimental statistics, which necessarily entail statistical
fluctuations.

In this work, we propose a novel semi-DI QRNG pro-
tocol based on homodyne detection and certify its secu-
rity against quantum side-information. Given the chal-
lenges with modelling the homodyne detector, our pro-
posed framework treats it as a black-box quantum mea-
surement which sidesteps the demanding characterisation
requirement of the model-based approach. Importantly,
our framework does not require any i.i.d. assumption
on the measurement device which protects the security
of the protocol against potential correlations shared be-
tween different rounds. Moreover, the proposed protocol
is composably secure [43–45], which guarantees that the
random numbers produced by our protocol can be se-
curely used for cryptographic applications. Furthermore,
we show that our protocol can produce more randomness
than that consumed (for choosing the settings for the de-
vices) in the protocol. As such, our protocol is a quantum

randomness expansion (QRE) protocol.

II. RESULTS

A. Protocol description

We shall now present our proposed randomness genera-
tion protocol. The protocol that we consider is a prepare-
and-measure (P&M) protocol with an uncharacterised
measurement device. To illustrate the protocol, it is con-
venient to consider a device that consists of two parts: a
trusted source of quantum states (which we assume to be
operated by Alice) and an uncharacterised measurement
device (which is operated by Bob). As such, the protocol
that we consider is a self-testing protocol in which the
working of Bob’s measurement device is not assumed a
priori, but could be verified during the protocol using the
spot-checking scheme in which every round is randomly
assigned to be a generation or test round.
To that end, suppose that during the test round, the

device plays a P&M game G. A P&M game can be
thought of as a P&M analogue of the more well-known
nonlocal games in the context of Bell nonlocality [46, 47]
and device-independent protocols. In a P&M game, Alice
receives a random input x from a pre-defined set X and
then prepares the state |ψx⟩ from the set of states SX .
Similarly, Bob receives an input y from a pre-defined set
Y and uses it as his measurement setting. Let us suppose
that Alice and Bob receive those inputs with probability
q(x, y) which is fixed for a given game. For each pair of
inputs x and y, the game G defines the winning outcome
bxy ∈ {0, 1}. For a given round, the device wins the game
when Bob outputs the winning outcome; otherwise, the
device loses the game. In the Methods section, we present
a systematic method to choose the winning outcome bxy
as well as the probability of choosing each pair of inputs
q(x, y).
The protocol that we propose is given in Protocol 1

Protocol 1:
Arguments:
n – the number of rounds
γ – testing probability
X – the set of possible inputs for Alice
SX – the set of states that Alice can prepare
Y – the set of possible inputs for Bob
G = {(bxy, q(x, y)) : x ∈ X , y ∈ Y} – the P&M game
ω – the expected probability of winning the game G
δ – the width of the confidence interval for the win-
ning probability
Ext – a strong quantum-proof seeded extractor
S – random seed for randomness extraction
Protocol:

1. For each round i ∈ [n]: do Step 2 to 4
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2. Set Ci =⊥ and randomly choose Ti ∈ {0, 1}
such that Pr[Ti = 1] = γ.

3. If Ti = 0, setXi = 0 and Yi = 0. Else, setXi =
x ∈ X and Yi = y ∈ {0, 1} with probability
q(x, y).

4. Alice prepares the coherent state |ψXi
⟩ ∈ SX

depending on her input Xi. Bob sets his mea-
surement setting to Yi and records the output
Bi ∈ {0, 1}. If Ti = 1, they would set Ci = 0 if
Bi ̸= bXiYi

and Ci = 1 if Bi = bXiYi
.

5. If |{i : Ci = 0}| > nγ(1 − ω + δ), then abort
the protocol. Otherwise, we accept the proto-
col execution and preserve the data for further
processing.

6. Apply a quantum-proof strong seeded extrac-
tor Ext using a uniformly chosen random seed
S. Denote the output Z = Ext(B,S). Since a
strong extractor is used, the protocol outputs
the concatenation K = (Z,S).

In the experiment reported in this work, we consider
X = {0, 1, 2, 3}, the set of states SX = {|αeixπ/2⟩ : x ∈
X} and Y = {0, 1}. Furthermore, the honest implemen-
tation corresponds to homodyne detection with its LO’s
phase set to φ = π/2 when y = 0 and φ = 0 when y = 1.
The measurement device would then output b = 0 if the
result of the homodyne measurement is positive; else, it
would output b = 1. The quantum states in this case cor-
respond to quadrature phase shift keying (QPSK) mod-
ulation format, which is compatible with standard opti-
cal modulation techniques. Remarkably, it is straight-
forward to generalise the protocol to include more states
or more measurement settings, e.g. quadrature ampli-
tude modulation (QAM). The constellation diagrams of
QPSK format and QAM-16 format are shown in Fig. 2.

B. Security framework

We shall now consider the security of our protocol.
Here, we consider a framework in which the measurement
device is uncharacterised and hence, when analysing the
security of the proposed protocol, we shall treat Bob’s
measurement as a set of abstract measurement opera-
tors. In particular, we do not assume that Bob’s mea-
surement device behaves independently and identically
for each round.

Likewise, we do not assume that the quantum channel
faithfully transmits the quantum states sent by Alice, nor
it behaves independently and identically for each round.
As we do not limit the dimension of the Hilbert space of
the channel output, we can model any quantum channel
by an isometry U which preserves the inner-product of
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FIG. 2. Constellation diagram for (a) QPSK and (b) QAM-
16. The blue circles represent the quantum states to be pre-
pared by the transmitter. The circle with red centre repre-
sents the state used when the randomness generation round
is chosen, and all the states are used for the testing rounds.
The black dashed lines represent the two measurement bases
in our protocol. For the convenience of illustration, we shift
the phase of the states and measurements by π/4 comparing
to the descriptions in the main text. This will not affect ei-
ther the security analysis or the experimental results.

the states prepared by Alice’s trusted source.
Additionally, we also allow the adversary (or any agent

trying to guess the output of the protocol), Eve, to
have some pre-shared entanglement with Bob’s unchar-
acterised device, but due to some technicality regarding
the method used to certify the generated randomness,
we assume that Eve does not obtain additional quantum
side-information when the protocol is executed. This as-
sumption can be well justified for the setting considered
in QRNG protocols where Alice and Bob are both inside
the same secure location.
Finally, we also assume that the device is equipped

with trusted and private random seed that is used to
choose the inputs for each round as well as to perform
seeded extraction. For a detailed discussion on the as-
sumptions we make in the randomness certification, we
refer the readers to the Methods section IIIA 2.
The security of our protocol relies on the quantum-

proof strong seeded extractor which guarantees that
whenever the protocol is not aborted, the output string
is close to an ideal random bit-string that is uniformly
random and independent from any pre-shared quantum
information held by the adversary as well as the initial
random seed. Hence, we have to certify that our protocol
produces enough randomness (measured in terms of the
conditional smooth min-entropy of the raw string) before
applying the randomness extraction. To that end, we
adopt the framework of entropy accumulation theorem
(EAT) [48–51]. Informally, the EAT states that when
our protocol is not aborted, the conditional smooth min-
entropy of the raw string given Eve’s side information
and the random inputs is at least

nh(ω, δ)−O(
√
n). (1)
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FIG. 3. Characterisation of our homodyne detector. (a) Power spectrum of the homodyne detector from DC to 120 MHz. The
3 dB bandwidth is ∼72 MHz. (b) Noise variance for different LO powers. A clearance of 16.94 dB is obtained with 10 mW LO
input.
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FIG. 4. Expected net randomness expansion rate rnet against system efficiency ηeff for different number of rounds n for (a)
QPSK modulation and (b) QAM-16 modulation. Security parameters used for the simulation: εcom=1 × 10−3, εsou=1 × 10−6

and ϵEA=1 × 10−6.
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signal and LO phase modulation. The green pulses represent the temporal modes for defining the two-mode coherent states.
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QRNG execution. The constellation diagrams illustrate the distributions of the quadrature measurement with given input
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FIG. 6. Illustration of the time frame configuration. Refer-
ence signals for phase calibration are prepared and measured
amongst the signals for QRNG execution.

Importantly, the leading term which scales linearly
with the number of rounds n can be evaluated by
analysing a single-round of the protocol. The constant
of proportionality h(ω, δ) as well as the correction term
O(

√
n) can then be computed using a semi-definite-

programming technique introduced in Ref. [52]. More
precisely, we have the following theorem

Theorem 1 (Entropy accumulation theorem (as modi-
fied from Lemma III.3 of Ref. [51])). Let Ω denote the
event in which Protocol 1 is not aborted and ρΩ be the
final state conditioned on this. Let f(1− ν) be an affine
lower bound on the single-round conditional von Neu-
mann entropy for any strategy that wins the game G with
probability ν. For fixed parameters ϵs, ϵEA, β ∈ (0, 1),
then either Protocol 1 aborts with probability greater than
1− ϵEA or

Hϵs
min(B|T,X,Y, E)ρΩ

> nf(1− ω + δ)− 1

β
[1− 2 log2(ϵEAϵs)]

− n
[
βV (γ, f) + β2K(β, γ, f)

]
. (2)

The explicit expressions for the functions f, V,K can be
found in the Methods section IIIA 3.

As Theorem 1 holds for any choice of β, as we can see
in the Methods section, we can choose β ∝ 1/

√
n such

that the correction term would scale with
√
n as claimed

earlier. We refer to the parameter ϵEA as the entropy
accumulation error. As can be seen from Theorem 1, it
quantifies our tolerance of encountering an event in which
the protocol is not aborted but the lower bound (2) on
the accumulated entropy does not hold.

Finally, with the lower bound on the conditional
smooth min-entropy being established, we can use the
quantum leftover hash lemma [53, 54] to find the ex-
tractable length of the output string Z, denoted by ℓ.
As the extractor seed S is part of the protocol output K,
the expected net randomness expansion rate rnet is then
defined as

rnet :=
ℓ− ℓin
n

, (3)

where ℓin is the expected amount of randomness used
during the protocol to choose the settings of the device.

Based on Theorem 1, the quantum leftover hash
lemma, and the definition of the expected net random-
ness expansion rate given in Eq. (3), we simulate the per-
formance of our proposed protocol, as shown in Fig. 4.
The details of randomness certification, the estimation of
the input randomness, and the homodyne detector mod-
elling can be found in Methods section IIIA, III B, III C,
respectively.
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FIG. 7. The expected net randomness expansion rate of the QRNG versus the (a) amplitude of the quantum state α and (b)
the probability of test rounds γ, with n = 1 × 1010, ηeff = 91.7%, εcom = 1 × 10−3, εsou = 1 × 10−6 and ϵEA = 1 × 10−6.

C. Experimental implementation

In order to verify the feasibility of the proposed pro-
tocol, we set up a fibre-optic experimental system. The
schematic diagram is shown in Fig. 1.

Our experimental system is composed of two main
parts, quantum state generation and quantum state mea-
surement. In the quantum state generation, a laser diode
emits continuous-wave (c.w.) laser with a central wave-
length of 1550 nm and a linewidth of 50 kHz, which is
split into two paths, one for quantum state preparation
and the other as Local Oscillator (LO) for homodyne de-
tection. In the signal path, an Intensity Modulator (IM)
first curves the c.w. laser into pulses with pulse width of
4 ns each, for defining the temporal mode of the quantum
states. Besides, the IM could also perform the intensity
modulation for QAM-16 state generation. A Phase Mod-
ulator (PM) modulates the phase of the quantum states.
Thereafter, the optical signals are attenuated to single-
photon energy level with an optical attenuator, to finally
generate the QPSK quantum states {|αeixπ/2⟩} where
x ∈ {0, 1, 2, 3}, whose constellation diagram is shown in
Fig. 2.

In the quantum state measurement, a homodyne detec-
tor is deployed. To maximise the generated randomness,
we developed a high efficiency and low noise fibre-coupled
homodyne detector. To minimise the optical loss, we
first adopt a pair of high efficiency photodiodes (PDs)
for photon detection. Moreover, we apply anti-reflection
coated graded-index (GRIN) lens for the light coupling

from optical fibre to the PDs. The overall efficiency of
the PD including the coupling loss is measured to be
98.3% and 98.8%, respectively. The signal and LO is
interfered in a balanced polarisation maintaining fibre-
optical beam splitter (BS) before detection, providing
good mode matching for a stable and efficient interfer-
ence. After a careful balancing of the two arms, the
photocurrents are subtracted and then amplified by a
low-noise amplifier. The characterisation results of our
homodyne detector are shown in Fig. 3. The 3 dB band-
width of our homodyne detector is ∼72 MHz, and the
clearance (shot noise to electronic noise ratio) is mea-
sured to be 16.94 dB with a 10 mW LO. Taking all the
factors into consideration, the total effective efficiency of
our homodyne detector is characterised to be 91.7%. The
details of homodyne characterisation and modelling are
provided in Methods section III C.

In the actual experiment, the settings for quantum
state preparation and measurement need to be optimised
for a high net randomness expansion rate. For exam-
ple, the randomness generation round could be chosen
for most of the time (with a small testing probability
γ) to obtain the optimal generation rate. This raises
an issue with our AC-coupled systems such as the high-
speed electro-optic modulators, amplifiers, and the ho-
modyne detector, where a DC-balanced data streams are
preferred to eliminate potential signal distortions [55].
To mitigate this, we apply a complementary modulation
scheme in our experiment where the protocol based on
QPSK modulation is performed, as shown in Fig. 5. With
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FIG. 8. The expected net randomness expansion rate and
the randomness consumed versus the homodyne detection effi-
ciency. The results are obtained by optimising the net expan-
sion rate (over |α|2 and γ) with n = 1×1010, εcom = 1×10−3

and εsou = 1 × 10−6.

our scheme, the quantum state preparation is performed
on two-mode coherent states, which are based on the two
successive temporal modes. In this case, the modulation
patterns for the state preparation and LO phase setting
are naturally DC-balanced with any settings x and y.
Besides, the two temporal modes are modulated with a
π phase difference, while the LO phase settings are kept
the same. As such, the expectation values of the individ-
ual quadrature measurements of the two temporal modes
possess opposite values. Hence, the outputs of the homo-
dyne detector are also naturally DC-balanced for all ex-
perimental settings. The quadrature measurement of the
two-mode coherent state in this case is qt =

1√
2
(qe − ql),

where qe and ql are the quadrature measurement value
of the two individual temporal modes. For more details
about the two-mode coherent states, please refer to Meth-
ods section IIID.

To faithfully implement the QRNG protocol, a fixed
phase reference between the signal and LO is required.
To this end, a feedback control for phase locking (not
shown in Fig. 1) is deployed, by analysing the statistics
of the reference signals as well as the signals for QRNG
execution. The illustration of the time frame configura-
tion of our QRNG is shown in Fig. 6.

At this point, we emphasise that since our QRNG pro-
tocol does not require any characterisation of the mea-
surement device (i.e., the homodyne detector), our efforts
in loss and noise reduction, phase locking, etc. do not af-
fect the soundness of the randomness certification, but

will certainly improve the performance in terms of ran-
domness generation rate, the system stability (which is
related to the completeness of the protocol), etc.

The parameters used in the experiment are listed in
Table. II, where the mean photon number |α|2 of quan-
tum states in QPSK format, the probability of choosing
test rounds γ are optimised based on the system efficiency
of our setup and the chosen security parameters.

According to the construction described in Methods
section III E, we formulate the P&M game G used in
our QRNG protocol as shown in Table. III, which de-
termines the probability of choosing settings for Alice’s
input x and Bob’s input y for test rounds and the scoring
rules. Based on our model of the honest implementation
(refer to the Methods section III C for details), we set
ω = 0.59422 and δ = 0.00189 for the experiment, which
represents the expected winning probability, and the con-
fidence interval for the winning probability, respectively.

We collect n = 1 × 1010 rounds of data in the ex-
periment, and obtain an observed winning probability
of ωobs = 0.59443, which is very close to the expected
value. The number of rounds in which the players lost
the game is 942820, which is within the acceptance range
nlost ≤ 946026. Hence, the protocol execution is ac-
cepted, and we could certify a gross randomness gen-
eration rate (the randomness generated by the protocol
per round) of at least 0.00455 bits per round can be ob-
tained by running the protocol. Considering the random-
ness invested for determining whether a given round is a
test round and the inputs of Alice and Bob (x and y),
the expected randomness consumption rate in our case
is 0.00256 bits per round. Therefore, the expected net
randomness expansion rate of our system is 0.00199 bits
per round.

Finally, we implement randomness extraction using
Toeplitz hashing with the help of a random seed. Toeplitz
hashing is a family of two-universal hash functions, and
it has been shown to be a strong randomness extrac-
tor [53, 56, 57]. This means Toeplitz hashing not only
extracts randomness from a weak entropy source, but
also guarantees that the output string is independent of
the seed. Thus, in this work, the seed required for ran-
domness extraction is not considered as consumed ran-
domness as the seed can be concatenated to the output
due to the properties of a strong extractor.

We utilise a Zynq Ultrascale+ FPGA (XCZU28DR)
to implement randomness extraction. We construct a
Toeplitz matrix with the size of 45 × 10000 and reuse
the matrix to fully extract the random numbers from
the raw data. To achieve a faster extraction speed, we
further split the Toeplitz matrix into sub-blocks of size
45× 1000 during the extraction. In total, the size of the
raw data was 10.622 Gbits (we conservatively collected a
bit more data than 1×1010), and we extracted 47.8 Mbits
of random numbers from it. The detailed implementation
of Toeplitz hashing on FPGA is provided in Methods
section III F.
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n εcom εsou ϵEA |α|2 γ ω δ

1 × 1010 1 × 10−3 1 × 10−6 1 × 10−6 1.638 × 10−2 1.587 × 10−4 0.40578 0.00189

TABLE II. Parameters used in the experiment. n: number of rounds. εcom: Completeness error. εsou: Soundness error. ϵEA:
Entropy accumulation error. |α|2: The mean photon number of the quantum state. γ: The probability of choosing test round.
ω: The expected probability of winning the game. δ: The width of the confidence interval for the winning probability.

System x = 0 x = 0 x = 1 x = 1 x = 2 x = 2 x = 3 x = 3
Setting y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1

q(x, y) 0 0.256 0 0.232 0.244 0.012 0.244 0.012
Score for b = 0 0 1 0 0 0 0 1 0
Score for b = 1 1 0 1 1 1 1 0 1

TABLE III. The configuration for the P&M game G used in the test rounds in our experiment. The first row represents the
probability of choosing a specific setting for Alice’s input x and Bob’s input y. The second and third row show the score
assignment for each input-output configuration.

System x = 0 x = 0 x = 1 x = 1 x = 2 x = 2 x = 3 x = 3
Setting y = 0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1

P (b = 0|x, y) 0.4994 0.5952 0.4994 0.4023 0.4034 0.5022 0.5979 0.5006
P (b = 1|x, y) 0.5006 0.4048 0.5006 0.5977 0.5966 0.4978 0.4021 0.4994

TABLE IV. Observed experimental results for the test rounds.

D. Discussion

In this section, we discuss the feasibility of the pro-
posed protocol to be implemented on silicon photonic
integrated circuit (PIC), which is a leading platform
for integrated photonic applications with substantial ad-
vantages regarding miniaturisation, compatibility with
CMOS microelectronics, and high speed signal pro-
cessing. The process design kits (PDKs) from major
foundries can provide the key components on a single
chip, with a decent performance stability for volume pro-
duction [58–60].

By leveraging mature silicon-on-insulator (SOI) tech-
nology, the optical waveguide on silicon PIC is able to
provide a low propagation loss and large integration den-
sity. The 2×2 beam spliter can be achieved by us-
ing either evanescent couplers or multimode interference
(MMI) couplers.

For the high speed optical modulation, the carrier de-
pletion type modulators are available for quantum state
preparation. While the high-speed Germanium photode-
tectors could be utilised for the homodyne detection on
the optical quantum states.

The integrated laser, a critical component to our
QRNG system, turns out to be a hurdle that impedes
full system integration on a single silicon chip. This is
because the pure crystalline silicon lacks a direct bandgap
precluding the possibility of monolithic silicon laser [59].
Fortunately, the integrated laser based on packaging or
heterogeneous integration technologies could be adopted

to address this problem [58].

In this article, we are mainly concerned about achiev-
ing sufficient effective efficiency of the measurement de-
vice to demonstrate positive net randomness expansion
rate. To that end, we require high-efficiency PDs on sil-
icon PICs. Fortunately, such highly efficient PDs are
within the reach of current technologies. For example,
Globalfoundries offers PDs with > 1 A/W responsivity
at 1310 nm wavelength, which corresponds to a quantum
efficiency of > 94% [61] while AIM Photonics provides
ones with quantum efficiency > 80% at 1550 nm wave-
length [62]. Moreover, there is more flexibility for the
efficiency improvement if customised components can be
used. Thus, a fully integrated version of our QRNG pro-
tocol is practically attainable.

Finally, in this work, we assume that the device is
sufficiently isolated from the environment such that any
quantum side-information that is accessible to the ad-
versary was obtained before the start of the protocol.
While this assumption can be well justified for QRNGs
as both parties are inside in the same secure location, it
could still be removed using the recently developed gen-
eralisation of the EAT [63, 64]. The relaxed assumption
may be relevant in a more pessimistic scenario where the
device is surrounded by an insecure environment such
that any photons that are scattered in the channel might
fall into the adversary’s hands. Since the bound in the
generalised EAT is similar to the one derived under the
original entropy accumulation framework (with slightly
different correction terms), we expect that our QRNG
could still exhibit randomness expansion in the more pes-
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simistic scenario. We leave this investigation for future
work.

To summarise, we present a QRNG protocol based on
a completely uncharacterised homodyne detector. The
security analysis takes into account the finite size effects
and the non-i.i.d. measurement process, providing ran-
dom number generation that is certified in the presence
of quantum side-information. To verify the feasibility of
the protocol, we set up a high efficiency and low noise
fibre-coupled homodyne detector for experiment. The
averaged quantum efficiency of the photodiode pair is
98.55% at 1550nm, and the clearance is measured to be
16.94 dB with a 10mW LO input. The effective efficiency
of the homodyne detector is characterised to be 91.7%.
In order to have a proper implementation of our proto-
col and remove potential signal distortions, we come up
with a complementary modulation scheme and adopt the
two-mode coherent states for quantum state preparation.
This guarantees both the modulation signals and mea-
surement outcomes are DC-balanced data streams, for
any experimental setting during the QRNG protocol exe-
cution. The system works at a repetition rate of 2.5MHz,
and finally obtain a gross randomness generation rate of
0.00455 and a net randomness expansion rate of 0.00199,
with a 1×1010 rounds of protocol execution. In addition,
we show that our protocol is compatible with the sili-
con photonics platform and is readily implementable on
silicon PIC.

In conclusion, our results exhibit a practical QRNG
with self-testing feature and provable security, showing
a great potential for providing certifiable randomness
for practical and private use.
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III. METHODS

A. Randomness certification

1. Security criteria

Consider a randomness generation protocol that pro-
duces an output string, which we label as Z. In a self-
testing protocol such as ours, it is common that the legit-

imate parties exchange some classical information during
the protocol (e.g., in the parameter estimation step). We
denote the transcript of any classical communication in
the protocol by M. Suppose also that the protocol in-
volves seeded randomness extraction. We shall denote
the seed used for the randomness extraction by S. Fi-
nally, any side-information that is available to Eve will
be denoted by E. For a given run of the protocol, let
us suppose that its output can be described using the
quantum state

ρZSME = |∅⟩⟨∅|Z ⊗ τ|S| ⊗ ρ̃∅ME + σ̃ZSME . (4)

Here, we account for the probability that the protocol
may abort (in which case, we denote the output of the
protocol by ∅). Furthermore, τl denotes the uniformly
random string with length l denoted in the subscript and
ρ̃∅ME describes the sub-normalised state of Eve’s side-
information and the classical transcript when the proto-
col aborts. On the other hand, the sub-normalised state
σ̃ZSME in the second term describes the state when the
protocol is not aborted

σ̃ZSME =
∑
z,s

|z, s⟩⟨z, s|ZS ⊗ ρ̃z,sME , (5)

where the summation is taken over all possible output
and seed strings, which we denote by z and s. The sub-
normalised state ρ̃z,sME is the state describing Eve’s side-
information and the classical transcript conditioned on
the output string being z and the seed string being s.
Denoting the event in which the protocol is not aborted
by Ω, we have

Tr[ρ̃∅ME ] = 1− Pr[Ω],

Tr[ρ̃z,sME ] = Pr[Z = z,S = s],

Tr[σ̃ZSME ] =
∑
z,s

Pr[Z = z,S = s] = Pr[Ω].
(6)

Normalising the state in which the protocol is not
aborted, we obtain σZSME := σ̃ZSME/Pr[Ω]. We say
that the QRNG is εsou-sound if

Pr[Ω] · 1
2

∥∥σZSME − τℓ ⊗ τ|S| ⊗ σME

∥∥
1
≤ εsou (7)

for a fixed εsou ∈ (0, 1). Here, σME = TrZS[σZSME ]. In-
formally speaking, the soundness of the protocol would
imply that either the protocol aborts with high proba-
bility or the output of the protocol would be close (in
trace-distance) to a random string with length ℓ that is
independent of the seed S, any classical information being
exchanged in the protocol M, and Eve’s side-information
E. Importantly, the above security definition is compos-
able. Hence, the output of the protocol can be securely
used for other cryptographic applications.
However, a protocol that always aborts would trivially

satisfy the soundness condition given in Eq. (7), and such
a protocol is clearly undesirable. Therefore, we also im-
pose an additional requirement that the protocol would
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succeed with high probability in producing a random
string when the device works as expected. Formally, we
call a protocol εcom-complete if its honest implementation
(which may use imperfect devices) satisfy the following

Pr[Ω]honest ≥ 1− εcom (8)

for some fixed εcom ∈ (0, 1). Note that the subscript
“honest” emphasises that Pr[Ω]honest is calculated with
the assumption that the device works as expected, in par-
ticular, independently and identically for each round. In
this case, we normally model the behaviour of the device,
including its imperfection, and calculate the probability
of the protocol aborting (e.g., due to statistical fluctua-
tions in the parameter estimation) in such scenario.

2. Assumptions

To analyse the security of the protocol, we shall assume
the following:

1. Quantum theory is correct.

2. Alice has a trusted source of quantum states that
can accurately prepare the code states specified by
the protocol.

3. The device is equipped with trusted and private
random seed.

4. The device has access to trusted classical devices
to perform any classical post-processing

5. The device is well isolated such that it does not
leak additional quantum side-information nor the
output string.

Now, we shall briefly elaborate the assumptions men-
tioned above. The first assumption is normally taken for
granted as quantum theory is the best available descrip-
tion of nature at small scale that we currently have. As
such, throughout this paper, we shall assume that Eve
and the devices used in the protocol obey the laws of
quantum physics.

The second assumption can be practically justified by
careful characterisation of Alice’s source. As the scenario
that is relevant for QRNG considers the case where Al-
ice and Bob are located in close proximity to each other,
one could reasonably believe that the source is well pro-
tected from source side-channel attacks that are possible
in other quantum crytographic protocols (for example,
Trojan horse attacks in QKD [65]). In particular, we
assume that the source behaves identically and indepen-
dently in each round.

The third assumption is necessary because the mea-
surement device which generates the raw random string
in this protocol is uncharacterised. If the inputs are not
chosen from a trusted random number generator, one
possible scenario is that the uncharacterised measure-
ment device could have access to the inputs before the

protocol is run. In this case, it is trivial to reproduce
the statistics obtained by the honest implementation of
the protocol. Moreover, as our randomness certification
would utilise the EAT, using a trusted random number
generator could enforce the quantum Markov chain con-
dition. Lastly, the last step of the protocol uses seeded
extraction, which requires a private and uniformly ran-
dom seed.

The fourth assumption is necessary for any QRNG pro-
tocol to prevent the security criteria from being trivially
broken. For example, when the randomness extraction
is not executed properly, it is clear that the soundness
criterion may not be satisfied. Furthermore, when the
output string is leaked, it is trivial to guess the output
of the QRNG.

The last assumption is necessary for two reasons.
Firstly, it is obvious that the security of the protocol is
null when the device leaks the output string. Secondly,
due to some technicality with the EAT, we need to as-
sume that the quantum side-information available to Eve
is not updated as the protocol is run. It is worth noting
that this assumption is not too restrictive for QRNGs
since Alice and Bob are both inside the same secure lo-
cation. Recently, there is a generalised version of the
EAT [63, 64] that allows Eve’s quantum side-information
to be updated as the protocol is run and hence, it would
be interesting to see if the assumption that the device
does not leak additional quantum side-information can
be relaxed.

Having mentioned the assumptions we need in the se-
curity analysis, we emphasise again that we do not make
any assumptions on the measurement device and the
quantum channel. In particular, in a given round, the
behaviour of these components can have arbitrary corre-
lation to their inputs and outputs in the preceding rounds
(unlike the source which we assumed to behave indepen-
dently and identically in each round). Remarkably, our
protocol remains secure even if there is a degradation in
the homodyne detector or when Eve has some pre-shared
entanglement with Bob’s uncharacterised measurement
device.

3. Security analysis

As elaborated previously, we want our protocol to sat-
isfy both soundness and completeness criteria. We first
prove the completeness of Protocol 1. To that end, we
use the following theorem

Theorem 2 (Bounds on the binomial cumulative dis-
tribution [66, 67]). Let n ∈ N, p ∈ (0, 1) and let
X be a random variable distributed according to X ∼
Binomial(n, p). Then, for any integer k such that 0 ≤
k < n, we have

F (n, p, k) ≤ Pr[X ≤ k] ≤ F (n, p, k + 1), (9)
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where

D(q, p) = q ln

(
q

p

)
+ (1− q) ln

(
1− q

1− p

)
Φ(a) =

1√
2π

∫ a

−∞
dx e−x2/2

F (n, p, k) = Φ

(
sign

(
k

n
− p

)√
2nD

(
k

n
, p

))
Since the protocol is aborted if |{Ci : Ci = 0}| >

nγ(1 − ω + δ), we can apply Theorem 2, in the same
way as in Ref. [8], to get the following upper bound on
the probability of the protocol being aborted

Pr [|{Ci : Ci = 0}| > nγ(1− ω + δ)]

≤ 1− F (n, γ(1− ω), ⌊nγ(1− ω + δ)⌋). (10)

Hence, by choosing the completeness error as

εcom = F (n, γ(1− ω), ⌊nγ(1− ω + δ)⌋), (11)

Protocol 1 would satisfy the completeness condition.
Next, to prove the soundness of Protocol 1, we shall use

the following Quantum Leftover Hash Lemma (Theorem
8 of Ref. [54])

Theorem 3 (Quantum Leftover Hash Lemma [54]).
Let ρBE′ be a classical-quantum state and F = {fs :
{0, 1}n → {0, 1}ℓ} be a two-universal hash family with
Z = fs(B) and the seed S ∈ {0, 1}m is chosen uniformly.
Let 0 < κ ≤ ε/2 < 1, we have

1

2
∥ρZSE′ − τℓ ⊗ τm ⊗ ρE′∥1

≤ 2
(ε
2
− κ
)
+ 23/2

(
2ℓ−H

ε/2−κ
min (B|E′)

)1/4
(12)

where τℓ and τm are the uniform random strings of length
ℓ and m respectively. Consequently, if we choose the out-
put length to be

ℓ = max
κ

⌊
H

ε/2−κ
min (B|E′) + 4 log2 κ− 2

⌋
, (13)

where the maximisation is taken over κ ∈ (0, ε/2], then,
we have

1

2
∥ρZSE′ − τℓ ⊗ τm ⊗ ρE′∥1 ≤ ε.

On the other hand, for a fixed smoothing parameter
ϵs, the EAT (Theorem 1) guarantees that either the pro-
tocol aborts with probability of at least 1 − ϵEA (i.e.
the probability that the protocol is not aborted is upper
bounded by ϵEA) or the conditional smooth min-entropy
Hϵs

min(B|M, E)ρΩ (here, M consists of the registers T, X,
and Y) is lower bounded by a certain amount. By iden-
tifying the register E′ in Theorem 3 as the register ME
in the soundness criterion, we can choose the soundness
error εsou to be

εsou = max{ϵEA, 2(ϵs + κ)}. (14)

In this case, EAT either upper bounds Pr[Ω] by ϵEA

or – in conjunction with the Quantum Leftover Hash
Lemma – guarantees that the trace-distance term (for
the state in which the protocol is not aborted) in the
soundness criteria is smaller than 2(ϵs + κ). Hence, our
choice of εsou ensures that the protocol is sound in both
cases considered by the EAT. In this work, we choose
εsou = ϵEA = 2(ϵs + κ) where κ is chosen to maximise
the expected net expansion rate.
We shall now discuss the technical details of Theo-

rem 1. Firstly, to apply the EAT, it is important to
ensure that the so-called Markov condition is satisfied
during the execution of the protocol. More precisely, we
want that for any round i ∈ [n], we need

I(B[i] : Xi+1Yi+1Ti+1|X[i], Y[i], T[i]E) = 0 (15)

where I(A : B|C) denotes the quantum mutual infor-
mation between A and B conditioned on C. Here, B[i]

denotes the string (B1, B2, ...Bi) that describes the mea-
surement outcomes from the first round until the i-th
round. X[i], Y[i], T[i] are defined similarly. To enforce the
Markov condition in the protocol, we implement each
round sequentially and we choose the inputs for each
round from a trusted and private random seed which is
independent from the inputs and outputs from the pre-
ceding rounds. We also isolate the device such that Eve
does not obtain additional quantum side-information as
we execute the protocol.

The next ingredient we need is the so-called min-
tradeoff function f (for its formal definition, we refer the
readers to Definition II.4 of Ref. [51]). The min-tradeoff
function is, roughly speaking, an affine lower bound on
the worst case single-round conditional von Neumann en-
tropy H(Bi|Xi, Yi, Ti,E) that is “compatible” with the
probability distribution over C = {⊥, 0, 1} for random
variable Ci. Here, E is a quantum register that is iso-
morphic to the pre-measured state in round i.
To construct the min-tradeoff function, we follow the

framework presented in Ref. [51] in the context of device-
independent randomness expansion. A key difference
here is that we use the bound on the conditional von
Neumann entropy derived in the Theorem 14 of Ref. [68]

H(Bi|Xi = 0, Yi = 0, Ti = 0,E)

≥ 2 [1− pg(Bi|Xi = 0, Yi = 0, Ti = 0,E)] (16)

instead of the bound based on conditional min-entropy
used in Ref. [51]. While both bounds are based on the
guessing probability pg(Bi|Xi = 0, Yi = 0, Ti = 0,E), the
bound that we used here is significantly tighter than the
one given by conditional min-entropy in the parameter
regime in which the experiment is conducted. Another
advantage is that the bound that we use is already linear,
and as such, we do not need to perform the linearisation
that was performed in Ref. [51] to obtain an affine min-
tradeoff function.

To bound the guessing probability, we use the semi-
definite programming (SDP) technique proposed in
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Ref. [52] instead of the Navascues-Pironio-Acin (NPA)
hierarchy [69, 70] used in Ref. [51]. Both techniques are
two similar hierarchies of SDP relaxation that bound
the set of quantum correlations; the latter is for the
device-independent scenario while the former is appropri-
ate for the prepare-and-measure architecture considered
in our protocol. For a fixed level of relaxation k, a given
P&M game G, characterised by the scoring coefficients
wb,x,y = q(x, y)δb,bxy , and some winning probability ν,
the SDP for the guessing probability has the following
primal form

max
{Mb|y}b,y,{Πe}e,U

1∑
b=0

⟨ϕ0|Mb|0Πb|ϕ0⟩

subject to
∑
b,x,y

wb,x,y⟨ϕx|Mb|y|ϕx⟩ = ν,

⟨ϕx|ϕx′⟩ = ⟨ψx|ψx′⟩ ∀x, x′ ∈ X .
(17)

Here, {Mb|y}b,y denotes Bob’s POVM elements, {Πe}e
denotes the POVM elements acting on the system E and
U : |ψx⟩ → |ϕx⟩ denotes the isometry describing the un-
known quantum channel connecting Alice and Bob. From
the dual solution of (17), we can obtain a bound on the
guessing probability of the form

pg(Bi|Xi = 0, Yi = 0, Ti = 0,E) ≤ cν + λν · p. (18)

Here, p = (1−p, p) is the score distribution of the device
while λν and cν are the dual solutions to the SDP (17).
We emphasise that ν is a parameter that we can choose
freely and it does not have to be the actual winning prob-
ability that is attained by the device.

Following the arguments in Ref. [51], consider the affine
function gν , which maps a distribution over C \ {⊥} to a
real number

gν(ec) = 2(1− γ) [1− cν − λν · ec] , (19)

where ec is the probability distribution where its c-th
entry is 1 and the other entries are zeros. Then, for some
constant u⊥ that we shall determine later, the following
function fν is a min-tradeoff function

fν(ec) =
gν(ec)

γ
+

(
1− 1

γ

)
u⊥, ∀c ̸=⊥

fν(e⊥) = u⊥.

(20)

To find the worst case over all distributions which lead
to the protocol being accepted, we repeat the argument
presented in Ref. [8] here. First, we use the condition for
the protocol to be accepted, freqC(0) ≤ γ(1− ω + δ), to
deduce that if u⊥ ≥ gν(e0), then we have

fν(freqC) ≥ (1− ω + δ) (gν(e0)− u⊥)

+
freqC(1)

γ
(gν(e1)− u⊥) + u⊥. (21)

Now, we demand that u⊥ ≤ gν(e1) and hence, the second
term in the right hand side can be dropped

fν(freqC) ≥ (1− ω + δ) (gν(e0)− u⊥)) + u⊥. (22)

This is increasing with u⊥ and hence, it is best to fix
u⊥ = gν(e1). We have

fν(freqC) ≥ (1− ω + δ)gν(e0) + (ω − δ)gν(e1) (23)

= 2(1− γ) [1− cν − λν · ω̃] , (24)

where the adjusted score ω̃ = (1 − ω + δ, ω − δ). Thus,
we have obtained the function f in Theorem 1.
Lastly, we have to calculate the correction terms V and

K. To that end, we need to consider a few properties of
the min-tradeoff function. They are the following

1. Maximum over all probability distributions

Max[fν ] = max
p∈PC

fν(p), (25)

where PC is the set of all valid probability distribu-
tions.

2. Minimum over all protocol respecting distributions

MinΓ[fν ] = inf
p∈Γ

fν(p), (26)

where Γ denotes the set of distributions of the form
(γω, 1 − γ). We call such distribution a protocol
respecting distribution.

3. The maximum variance over all protocol respecting
distributions

VarΓ[fν ] = max
p∈Γ

∑
c∈C

p(c)[f(ec)− fν(p)]
2. (27)

To compute these quantities, we consider the maxi-
mum and minimum attainable value of gν (over all dis-
tributions) as

Max[gν ] = 2(1− γ) [1− cν − λmin] ,

Min[gν ] = 2(1− γ) [1− cν − λmax] ,
(28)

where λmin = minc λν and λmax = maxc λν . Note that
the choice of gν(e0) ≤ u⊥ = gν(e1) implies that u⊥ =
Max[gν ]. Therefore, we are dealing with similar min-
tradeoff functions as those considered in Ref. [50, 51],
where we have the following relations

Max[fν ] = Max[gν ],

MinΓ[fν ] ≥ Min[gν ],

VarΓ[fν ] ≤
(Max[gν ]−Min[gν ])

2

γ
.

(29)

Based on the above relations, we can calculate the correc-
tion terms V and K. Following Ref. [51], the correction
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term V (γ, fν) is given by

V (γ, fν)

=
ln 2

2

(
log2 9 +

√
4(1− γ)2(λmax − λmin)2

γ
+ 2

)2

.

(30)

On the other hand, the other correction term K(β, γ, fν)
is given by

K(β, γ, fν) =
2β[1+2(1−γ)(λmax−λmin)]

6(1− β)3 ln 2

ln3
(
21+2(1−γ)(λmax−λmin) + e2

)
. (31)

Having specified the functions fν , V and K, we can now
apply Theorem 1 and Theorem 3 to prove the soundness
of Protocol 1. This concludes the randomness certifica-
tion of the protocol.

B. Input randomness

In the previous section, we have shown that if the ex-
tracted length ℓ is chosen according to Eq. (13), Proto-
col 1 can generate randomness securely. However, for
Protocol 1 to be practically useful, we may also demand
that, on average, it produces more randomness than the
one consumed to run the protocol.

In this work, as we consider strong extractors for the
randomness extraction, it is sufficient to consider the ran-
domness consumed to choose the inputs T,X and Y as
we can treat the extractor seed as part of the output.
As the optimal input distribution is biased, one could
either use a biased random seed or convert a uniform
random seed into a biased one (for example, using the
interval algorithm [71]). We denote the expected length
of random bit string used to generate the inputs by ℓin.
The expected input randomness ℓin is approximately the
Shannon entropy of the inputs (up to some small over-
head that is negligible for large block sizes)

ℓin = H(T,X,Y) + 3

= n[h2(γ) + γH(q)] + 3, (32)

where we have used the fact that the inputs for each
round are chosen independently from the ones from the
preceding rounds and we also used the chain rule for
Shannon entropy. Here, h2(γ) is the binary entropy func-
tion and H(q) is the Shannon entropy of the input dis-
tribution {q(x, y)}x,y.

C. Homodyne detector modelling and
characterisation

We model the homodyne detector from two aspects:
optical loss and the electronic noise.

The optical loss arises from two main parts. The inser-
tion loss of the BS, and the imbalance of the homodyne
detection, which is caused by the efficiency mismatch of
the two photodiodes and the imperfect BS splitting ratio.
We first characterise the photon detection efficiency of

the photodiodes, which includes the quantum efficiency
of the photodiodes, coupling loss to the photodiodes, and
the insertion loss of the fibre-pigtailed GRIN lenses, with
an optical power meter (EXFO PM-1100) and a Source
Measurement Unit (Keysight U2722A).
The GRIN lenses used are anti-reflection-coated in

the range of 1250-1650 nm, with an average reflection
of <0.2%. In addition, the waist diameter of the out-
put light beam is in the order of 10µm, which is much
smaller than the diameter of the active region of our PD
(100 µm). We measure the detection efficiency of the two
photodiodes, including the coupling loss and the insertion
loss, by putting a reverse bias at the working voltage of
the photodiode, giving a constant power input light from
the laser, and measuring the photocurrent by the Source
Measurement Unit. The efficiency of the two photodi-
odes are deduced from the ratio of the measured pho-
tocurrent and the input power to be 98.3% and 98.8%,
respectively.
The splitting ratio of the beam splitter is measured to

be 50.4:49.6, and the insertion loss is 0.2 dB. By match-
ing the beam splitter with the PDs, and carefully bal-
ancing the amplitudes of the two arms, we gradually in-
crease the input LO power with a variable optical at-
tenuator (Yokogawa AQ2200-311A) and obtain the noise
measurements. For frequency domain measurement, a
spectrum analyser (Rohde & Schwarz FSV40) is used,
with a resolution bandwidth of 1MHz and a video band-
width of 5MHz. For the measurement of the noise vari-
ance and clearance, an oscilloscope (Tektronix MSO64
BW 2.5GHz) is utilised.
The characterisation results are shown in Fig. 3. With

a 10mW LO input, a clearance of 16.94 dB is obtained.
Under the assumption that the electronic noise of ho-
modyne detector possesses a Gaussian distribution and
is independent of the measured optical signal, we follow
the model proposed in Ref. [72] and treat the effect of
the electronic noise as equivalent to efficiency loss. In
our case, an equivalent efficiency of 97.98% is estimated.
Taking all the factors into consideration, the total ef-

fective efficiency of our homodyne detector is charac-
terised to be 91.7%.

D. Two-mode coherent states

Two-mode coherent states are used in our system for
quantum state preparation. Here, we give the basic form
of the quadrature operator of the two-mode coherent
state, and show that the quadrature value can be ob-
tained by combining the quadrature values of individual
temporal modes.
Without loss of generality, we define the creation (anni-
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hilation) operators of the early and late temporal modes

by â†e (âe) and â
†
l (âl), respectively. Therefore, the quan-

tum state composed of coherent states in both temporal
modes can be expressed by:

|αe⟩|αl⟩ = e−
|αe|2

2

∞∑
m=0

(αeâ
†
e)

m

m!
· e−

|αl|
2

2

∞∑
n=0

(αlâ
†
l )

n

n!
|0⟩

= e−
|αe|2+|αl|

2

2

∞∑
k=0

(αeâ
†
e + αlâ

†
l )

k

k!
|0⟩

= e−
|αt|2

2

∞∑
k=0

(αtâ
†
t)

k

k!
|0⟩, (33)

where |αt| =
√

|αe|2 + |αl|2 and â†t = 1
|αt| (αeâ

†
e + αlâ

†
l )

represent the amplitude and the creation operator of the
new two-mode coherent state, respectively. In our case,

we have |αl⟩ = |−αe⟩, |αt| =
√
2|α|, and â†t = 1/

√
2(â†e −

â†l ).
As a result, the quadrature operator of the two-mode

coherent states can be obtained (in Shot-Noise Unit):

q̂t = âte
−iθ + â†te

iθ

=
âe − âl√

2
e−iθ +

â†e − â†l√
2

eiθ

=
1√
2
(q̂e − q̂l). (34)

Hence, the quadrature value of the two-mode coherent
state qt satisfies

q̂t|q⟩ =
1√
2
(q̂e − q̂l)|q⟩

=
1√
2
(qe − ql)|q⟩

= qt|q⟩. (35)

E. Formulating a P&M game

Previously, we took for granted that Protocol 1 spec-
ifies a P&M game that is used to test whether the de-
vices are working as expected. However, constructing
a game that is optimal for certifying randomness gen-
eration is a non-trivial task. In this section, we use
the SDP duality to construct a P&M game that can
asymptotically witness the same amount of randomness
that is certified by full input-output probability distri-
bution {P (b|x, y)}b,x,y. The idea behind our method is
to find a linear function of the input-output probability
distribution that witnesses the randomness generated by
Bob’s measurement. Then, from this linear function, we
could derive the input distribution q(x, y) and the win-
ning outputs bxy. Similar constructions have been used
in device-independent quantum information processing
to construct an optimal Bell inequality for certifying ran-
domness [73, 74] and self-testing [75].

Asymptotically, we expect that the full input-output
probability distribution should be optimal for witness-
ing randomness as it contains the full statistical informa-
tion about the devices’ behaviour. Let us now suppose
that the expected input-output probability distribution
is known (either by modelling the honest implementation
or calibrating the device prior to the protocol). To con-
struct a game that could optimally certify the amount
of randomness, we shall consider the following SDP for
the guessing probability subject to the full input-output
probability distribution.

max
{Mb|y}b,y,{Πe}e,U

1∑
b=0

⟨ϕ0|Mb|0Πb|ϕ0⟩

subject to ⟨ϕx|Mb|y|ϕx⟩ = P (b|x, y), ∀b, x, y
⟨ϕx|ϕx′⟩ = ⟨ψx|ψx′⟩, ∀x, x′ ∈ X .

(36)

Suppose that the optimal dual solution to (36) for the
k-th level of relaxation is given by

d̂k = ξ0 +
∑
b,x,y

ξ(b, x, y)P (b|x, y)

≥ pg(Bi|Ti = 0, Xi = 0, Yi = 0,E), (37)

where ξ0 is associated to the non-statistical constraints.
Any feasible dual solution is a linear function of the
input-output distribution that upper bounds the guess-
ing probability. As such, the set of feasible dual solutions
to the SDP gives a family of linear upper bounds on the

guessing probability while d̂k is the tightest upper bound
on the guessing probability among the family (in fact, it
is “tight” up to the semi-definite relaxation [52] of the
set of quantum correlations and any duality gap).
Now, for each pair of inputs (x, y), we define b′xy and

b′′xy such that ξ(b′xy, x, y) ≥ ξ(b′′xy, x, y). We consider

d̂k − ξ0 −
∑
x,y

ξ(b′′xy, x, y)

=
∑
x,y

[
ξ(b′xy, x, y)P (b

′
xy|x, y) + ξ(b′′xy, x, y)P (b

′′
xy|x, y)

− ξ(b′′xy, x, y)
{
P (b′xy|x, y) + P (b′′xy|x, y)

} ]
=
∑
x,y

{
ξ(b′xy, x, y)− ξ(b′′xy, x, y)

}
P (b′xy|x, y), (38)

where in the first equality we use the normalisation con-
straint. Noting that we are just subtracting a constant

from d̂k, the expression (38) is still an almost tight wit-
ness on the guessing probability. Finally, we could also
divide the above expression by a constant and the result-
ing expression ∑

x,y

q(x, y)P (b′xy|x, y), (39)
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with

q(x, y) =
ξ(b′xy, x, y)− ξ(b′′xy, x, y)∑

x,y

{
ξ(b′xy, x, y)− ξ(b′′xy, x, y)

} , (40)

would still be an almost tight witness on the guessing
probability. By construction, {q(x, y)}x,y is a valid prob-
ability distribution. Moreover, as b′xy is defined such that

d̂k (and hence, the bound on the guessing probability)
would be higher when P (b′xy|x, y) increases, we could in-
terpret b′xy as the losing outcome (i.e., we assign the score
C = 0) when the inputs x and y are chosen and q(x, y)
as the probability of choosing this pair of inputs. In this
case, the game G is defined as one where for Alice and
Bob choose the inputs (x, y) with probability q(x, y) and
the winning outcome is given by bxy = b′′xy.

The game construction that we have described above
is almost optimal to witness the generated randomness.
However, the construction may not minimise the ran-
domness consumed to choose the inputs and hence, its
performance in terms of the expanded randomness may
be far from optimal. Formulating the optimal game con-
struction that maximises the net randomness expansion
rate would be an interesting direction for future work.

F. Randomness extraction

Toeplitz hashing utilises a Toeplitz matrix, H. The
Toeplitz matrix is an m × n diagonal-constant matrix,
and it is constructed by filling up the first column and
first row of the matrix with a uniform seed, denoted by
S. Thus, the seed length required for Toeplitz hashing is

n+m− 1 bits. Toeplitz matrix H can be expressed as

H =


sn sn−1 · · · s2 s1
sn+1 sn · · · s3 s2
...

...
. . .

...
...

sn+m−1 sn+m−2 · · · sm+1 sm

 .
The hashing is done by expressing the raw bits as a col-
umn vector and performing matrix-vector multiplication
with the Toeplitz matrix. We used the calculated bit gen-
eration rate of 0.00455 and constructed a Toeplitz matrix
H with the parameters m = 45 and n = 10000.

A field programmable gate array (FPGA) is the cho-
sen platform for implementation of Toeplitz hashing, as
FPGA offers parallel execution and pipelining of algo-
rithms, a feature that CPUs are unable to provide. The
schematic of our post-processing on FPGA is shown in
Fig. 9. The raw data is stored on a personal computer
(PC) and sent in batches of approximately 600 Mbits via
1G Ethernet to the FPGA. Upon receiving the batch of
raw data, the processing system (PS) on FPGA sends in
10 kbits of data to the programmable logic (PL), where
the data will be further split into 10 batches of 1 kbits
each. The multiplexing of raw data and seed is done via
pipelining and the Toeplitz hashing algorithm is executed
in parallel. The PS then receives the output of 45 bits
from PL, and sends in a new set of 10 kbits of data to
PL, repeating until all the data in the current batch has
been processed. The PS then sends the extracted ran-
dom numbers of the current batch to PC via Ethernet
and waits for a new batch, until all 10.622 Gbits of raw
data has been processed.
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