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Abstract—Quantum computers have the potential to solve some
important industrial and scientific problems with greater effi-
ciency than classical computers. While most current realizations
focus on two-level qubits, the underlying physics used in most
hardware is capable of extending the concepts to a multi-level
logic—enabling the use of qudits, which promise higher computa-
tional power and lower error rates. Based on a strong theoretical
backing and motivated by recent physical accomplishments,
this also calls for methods and tools for compiling quantum
circuits to those devices. To enable efficient qudit compilation,
we introduce the concept of an energy coupling graph for single-
qudit systems and provide an adaptive algorithm that leverages
this representation for compiling arbitrary unitaries. This leads
to significant improvements over the state-of-the-art compilation
scheme and, additionally, provides an option to trade-off worst-
case costs and run-time. The developed compiler is available
via github.com/cda-tum/qudit-compilation under an open-source
license.

Index Terms—quantum computing, qudits, compilation

I. INTRODUCTION

Quantum computers promise to solve problems of industrial
and scientific interest with better resource and algorithmic
efficiency. State-of-the-art quantum devices, subject of current
research, are referred to as noisy intermediate-scale quantum
(NISQ) devices [1]. These devices host up to hundreds of noisy
quantum bits (qubits) and support a limited number of logical
operations on these qubits. Such NISQ devices have now been
realized in a number of technological platforms, including
superconducting circuits [2], trapped ions [3], and single
photons [4]. Notably, while these devices almost exclusively
work with two-level qubits, the underlying hardware almost
always natively supports encoding multiple-valued logic in
qudits (quantum digits).

The research on qudit design and computation has a long
history, with efforts primarily focusing on conceptual studies
of algorithms for idealized qudits and their comparison to
qubits [5]. Fundamentally, a qudit can not only store and
process more information per quantum particle, but also
features a richer set of logical operations [6] that make
information processing more efficient. As a consequence, it
has been shown that qudit computation enables improvements
in algorithmic and circuit complexity [5] for a wide class of
problems. These results have inspired the proposals for and

demonstration of basic qudit control in numerous physical
platforms, from trapped ions [7], [8], to photonic systems [9]–
[12], superconducting circuits [13], [14], Rydberg atoms [15],
nuclear spins [16], cold atoms [17] and nuclear magnetic
resonance systems [18]. More recently, efforts have intensified
with the demonstration of a universal qudit quantum processor
with error rates that are competitive to qubit systems [8].

One key component to utilize the full potential of qudit
hardware, however, is a method to translate abstract quantum al-
gorithms given as unitaries to the elementary logical operations
of the specific hardware platform. Due to additional structural
constraints, complex cost functions, and a large number of
different but valid decompositions of any given quantum
operation [8], [19], compilation for qudits is significantly more
complex than for binary quantum computers. The state-of-the-
art static QR decomposition [8], [19]–[24] fails to exploit the
full potential of the underlying technology thus far (discussed
and illustrated in Section II-B).

In this work, we develop an efficient adaptive compiler
for single qudit operations. To this end, we first introduce a
corresponding representation of underlying physical options
and constraints (i.e., the available potential) in terms of an
energy coupling graph. Based on this, we afterwards propose
adaptive methods that aims at leveraging this representation
for efficiently compiling arbitrary unitaries. In particular, these
methods exploit free placement of logical information on the
underlying physical information carriers to achieve a significant
improvement in complexity of the compiled operations.

To showcase the benefits of the proposed methods, we
compiled large sets of unitaries of dimensions 3, 5, and 7
to different target architectures—confirming the flexibility
to adapt to arbitrary coupling structures of different multi-
level systems as well as experimental constraints. While the
used cost-function is inspired by a recently presented qudit
hardware platform [8], the presented methods are general and
apply to any physical platform and cost function. Finally, a
comparison to the state-of-the-art QR decomposition showed
an significant improvement in the resulting costs on average;
with further potential to trade-off worst-case costs and run-time.
The resulting tool has been made available via github.com/cda-
tum/qudit-compilation under an open-source license.
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R0,1(θ, φ)

⇐⇒
R0,α(π, π2 ) R0,1(θ, φ− π

2 ) MS0,1(θ, φ) R0,1(θ, φ+ π
2 ) R0,α(π, π2 )

Figure 1: Example of local operations on entangling operation.

The remainder of the paper is structured as follows: Section II
provides the required background to keep the paper self-
contained and motivates the problem. In Section III, we
introduce the proposed algorithm alongside the required
cost function. Section IV evaluates the proposed approach.
Finally, Section V concludes the paper.

II. BACKGROUND AND MOTIVATION

In this work, we provide the basis for efficient compilation
of qudit operations. To this end, we first briefly review the
basics of quantum information with a particular focus on multi-
level quantum logic. Afterwards, we discuss the currently
applied scheme of compiling corresponding operations and
their drawbacks—providing the motivation of this work.

A. Quantum Information Processing

In classical computations, the primary unit of information
is the bit (binary digit), which can exclusively be observed in
either the 0 or the 1 state. This concept can easily be generalized
to quantum computers, with the qubit (quantum bit) as the
corresponding unit of information for quantum computations.
The crucial difference to the classical case, however, is that
qubits can be in any linear combination of |0〉 and |1〉 (using
Dirac’s bra-ket notation).

Qubits are usually constructed by restricting the natural
multi-level structure of the underlying physical carriers of
quantum information. These systems, therefore, natively sup-
port multi-level logic with the fundamental unit of information
termed a qudit (quantum digit). A qudit is the quantum
equivalent of a d-ary digit with d ≥ 2, whose state can be
described as a vector in the d-dimensional Hilbert space Hd.
The state of a qudit can thus be written as a linear combination
|ψ〉 = α0 · |0〉+ α1 · |1〉+ . . .+ αd−1 · |d− 1〉, or simplified
as vector |ψ〉 = [ α0 α1 ... αd−1 ]

T, where αi ∈ C are the
amplitudes relative to the orthonormal basis of the Hilbert
space—given by the vectors |0〉, |1〉, |2〉, ..., |d−1〉. The squared
magnitude of an amplitude |αi|2 defines the probability with
which the corresponding basis state i will be observed when
measuring the qudit. Since the probabilities have to add up to
1, the amplitudes have to satisfy

∑d−1
i=0 |αi|2 = 1.

Example 1: Consider a system of one qudit with only three
energy levels (also referred to as qutrit). The quantum state
|ψ〉 =

√
1/3 · |0〉+

√
1/3 · |1〉+

√
1/3 · |2〉 is a valid state with

equal probability of measuring each basis. Equivalently, the
quantum state may be represented as vector

√
1/3 · [ 1 1 1 ]

T.
Two key properties that distinguish quantum computing

from classical computing are superposition and entanglement.
A qudit is said to be in a superposition of states in a given
basis when at least two amplitudes are non-zero relative to

this basis. Entanglement, on the other hand, describes a form
of superposition born from interactions in multi-qudit systems.
Entanglement is a powerful form of quantum correlation, where
the quantum information is encoded in the state of the whole
system and cannot be extracted from the individual qudits
anymore. The state of a single d-level qudit system can be
manipulated by operations which are represented in terms of
d× d-dimensional unitary matrices U , i.e., matrices that satisfy
U†U = UU† = I . The state after the application of U can be
determined by multiplying the corresponding input state from
the left with the matrix U .

Example 2: Consider a three-level qudit (i.e., a qutrit) initially
in the state |0〉. Applying the Hadamard operation H to it yields
the output state shown before in Example 1, i.e.,

H · |0〉 =
1√
3

1 1 1

1 e
2π
3 e

−2π
3

1 e
−2π
3 e

2π
3

 ·
1

0
0

 =
1√
3

1
1
1

 .
B. Compiling Multi-Level Quantum Operations

Using the basics of quantum information processing as
reviewed in the previous section, arbitrary (multi-level) quan-
tum operations can be defined. However, the elementary
operations available in state-of-the-art quantum computing
hardware typically couple only two levels and may be subject to
additional physical or practical constraints. As a consequence,
only a small set of single-qudit operations are available natively,
while the vast majority require compilation into elementary
operations. The goal of a good compiler is then to not only
realize the desired computations, but also to do so in the most
efficient way by fully exploiting the potential of the available
technology. Solutions designed for compiling unitaries on qubit
systems are generally directed towards scalability issues and
error mitigation. In a first step, the focus of compilation lies
on single-qudit operations. The reasons for this are three-fold:

1) One of the main advantages of qudit systems is that
complicated qubit entangling operations are traded for
simpler qudit local operations. A powerful local compiler
is critical for exploiting this potential.

2) Qudit systems present the possibility of performing
computations between quantum systems of different
dimensions and different characteristics [9]. This is
in contrast to qubit systems where all the units are
computationally identical to each other.

3) Compilation of entangling operations relies heavily on
the use of local unitaries. Hence, a local unitary compiler,
such as the one we present, is a prerequisite for compiling
general multi-qudit unitaries.
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Figure 2: Comparison between QR decomposition (3 steps)
and optimal solution (1 step) to rotate between |0〉 and |3〉

Example 3: Figure 1 shows an example of an entangling
operation that performs a controlled arbitrary rotation; there is
a total of four unitaries and one entangling gate, in this case the
Mølmer–Sørensen (MS) gate [25]. To ensure correct behavior of
the MS gate as a CNOT gate, it requires additional local gates
on each one of the qudits involved in the operation, applied just
after the native operation. First, d− 1 operations per qudit are
required to correct intrinsic phase shifts [8]. Second, another 4
local gates turn the corrected MS gate into the desired CNOT
gate, resulting in a total of 10 local operations for compiling
one entangling gate on two ququarts (4 levels). Evidently, the
ratio of local gates per entangling gates is rather high and not
being able to compile efficiently each one of the local unitaries
is an obstacle to scalability in this type of systems once full
applications are deployed.

The state-of-the-art qudit compilation [8], [19]–[24] relies
on a straight-forward QR decomposition algorithm, which
decomposes a matrix into an orthogonal matrix and an upper
triangular matrix. In such an algorithm, the sequence of
elementary two-level operations is fixed a priori and only the
angles of the rotations are calculated depending on the target
unitary. Importantly, this method does not take care of particular
restrictions encountered in real-world systems, for example the
impossibility of directly performing certain rotations and shorter
paths for routing two levels close to each other. An arbitrary
operation will therefore in general have a better decomposition
than the one generated by the fixed sequence and, hence, the
blind application of more operations could lead to greater error-
rates. Overall, the state of the art does not fully exploit the
potential of current multi-level architectures—as also illustrated
by the following example.

Example 4: Consider a target unitary U that rotates between
|0〉 and |3〉. The QR decomposition will generate three valid
operations to realize the rotation, namely U will be decomposed
into R2,3, R1,2, R0,1. Figure 2a illustrates the fixed sequence.

Now, given the connectivity in Figure 2, a shorter (and
optimal) decomposition R0,3 exists, that immediately utilizes
the existing connection, but is not found by the QR approach.
Figure 2b illustrates the optimal decomposition. In comparison,
the fixed sequence requires three reordering pulses, while

the optimal sequence will be composed of only one gate—
highlighting the possible improvements over the state of the
art even in small examples.

The objective of this work is to develop a method that is
adaptive and can be generalized to arbitrary coupling structures.
However, due to physical constraints, every technology has
restrictions which have to be taken into account during
compilation. In order to make these restrictions transparent,
we propose a dedicated representation of options as well as
constraints in terms of an energy coupling graph as well as
an adaptive algorithm that enables us to control a number of
trade-offs due to the technology that implements the qudit logic,
as well as the influence of the sources of error. Compiling
in this work is then viewed as a multi-tiered procedure that
requires several techniques in order to apply a single arbitrary
operation as efficiently and reliably as possible. Moreover, an
adaptive algorithm often leads to decompositions that reduce
the cost of application for a given unitary, or a sequence of
them.

III. ADAPTIVE COMPILATION OF
MULTI-LEVEL QUANTUM OPERATIONS

Based on the general idea sketched in Section II-B, this
section provides a detailed description of the proposed approach.
To this end, we first introduce the concept of an energy coupling
graph that describes the possible physical connections in the
architecture as well as the corresponding subset used for the
actual compilation and, by this, provides a representation of
both, the used coupling as well as the available potential. Based
on that, an adaptive decomposition approach is described which
explicitly considers (is adaptive) to the potential of underlying
technology when compiling a given unitary.

A. Energy Coupling Graph

The way information is encoded in the qudits (i.e., what
energy levels represent what basis state) has a major impact
on the quality of the resulting compilation result. Various
technologies have been employed to implement quantum
operations [7]–[18], which leverage different physical platforms
with different degrees of freedom for encoding information.
By nature, they inherently use multi-level physical structures
to represent their state, albeit currently only two of these levels
are commonly used. The construction of a representation of
these levels is compulsory for understanding how to efficiently
access them, and relate to each other for performing operations.

The connections between physical levels are not arbitrary,
but heavily dependent on the technology. To capture the
possible connections, we use the term coupling for levels
of a qudit in analogy to the coupling describing possible
interactions between qubits in two-level quantum computers.
More precisely, a coupling between levels of a qudit is the
possibility of transitioning from a certain level to a second
one, given an impulse to the system. Furthermore, we model
the possible couplings between levels with a graph—which we
refer to as energy coupling graph. The restrictions imposed by
the energy coupling graph are correspondingly referred to as
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Figure 3: A qutrit energy coupling graph

energy coupling constraints. The term is inspired by the fact
that the nodes of the graph represent different energy states
within the physical information carrier. The transitions can be
mathematically represented with unitary matrix operators and
associated to corresponding gates. In terms of the two-level
Bloch sphere, an operation is a rotation on the sphere with the
considered energy levels at the poles. By that, the resulting
energy coupling graph represents possible mapping of states
to levels as well as correspondingly resulting constraints as
provided by recent physical realizations [19].

Example 5: Figure 3 visualizes the proposed energy coupling
graph for a single three-level qudit, or qutrit. The black horizon-
tal bars are the physical levels provided by the technology, and
the black dotted lines show the theoretically possible couplings.
The blue rectangles are the logical nodes of the graph mapped
to a subset of the physical levels, and the blue lines are the
edges of the constituted graph that are built on the theoretically
available coupling. The blue lines represent the physically
feasible transitions, or an efficient subset of them.

With the energy coupling graph introduced, we can graph-
ically inspect the three main differences between the the-
oretically possible connectivity in a qudit and the realistic
connections in a quantum system. Given the graph of all the
possible levels available from the technology, we start by
mapping the logical states to the physical levels. Typically, not
all the physical levels in the energy coupling graph are used to
encode logical states—some of them may be used for ancillary
tasks, such as routing two distant logic states or as a cache
memory, temporarily storing information. In theory, i.e., in the
ideal qudit, there are transitions in an all-to-all fashion between
all the logic states. However, in the non-ideal real world, only
certain physical transitions can be effectively used—enabling
only certain rotations in the qudit state-space. Additionally,
there is a chance that logically contiguous states are placed on
distant nodes of the graph, and it may happen when optimizing
some particular applications on the qudit architecture. In this
work, we lay the foundations for a new layer of abstraction
that works as an interface between a physical qudit and a
corresponding compiler.

Example 6: Consider Figure 4a showing a realistic qudit,
which has three main differences compared to the ideal case
depicted in Figure 4b.
• Figure 4a has fewer connections than the ideal case, which

may be due to physical (e.g. atomic selection rules), or
practical constraints.

|2〉
|1〉

|0〉 |a〉
|4〉 |3〉

(a) Realistic Qudit

|1〉
|2〉

|0〉
|4〉 |3〉

(b) Ideal Qudit

Figure 4: A realistic qudit, limited by physical complexity,
compared to an ideal qudit, inspired by Ref. [8]

• In Figure 4a, the logic states are not placed in order, for
example the logic state |2〉 is connected to |0〉, but not
|1〉 and |3〉.

• Both the graphs are connected, but Figure 4a has an
ancillary state |a〉 to ensure connectivity.

The energy coupling graph as proposed offers designers
and automatic tools a means to properly reflect the potential
as well as the restrictions of the underlying technology. In
the following, the energy coupling graph is used to guide the
compilation.

B. Decomposition

With the energy coupling graph introduced in the previous
section, the next step in the multi-tiered compilation process
is a decomposition of the target unitary U . In the scope of
this work, the decomposition algorithm is intended to output a
sequence Vi of two-level rotations between adjacent physical
levels in the energy coupling graph and a diagonal matrix Θ
of arbitrary phases [19] as in Eq. (1).

U = Vk · Vk−1 · . . . · V1 ·Θ (1)

The objective of the algorithm is to output a sequence of
operations that realize the target unitary U , taking into account
the capabilities and restrictions of the underlying technology.

Example 7: Consider performing a rotation between two
levels, that are not directly connected. Some naive solutions for
improving the flexibility of the QR decomposition to different
graphs, could be either to permute the unitary to match the
encoding on the graph, with a reordered basis set or to fix
the encoding and add single-qudit reordering pulses to the
sequence to bring logic states in the energy coupling graph
closer, perform the operation and then bringing them back.
Both variants work in a static fashion: potentially introducing
unnecessary operations and, thus, unnecessary costs.

To alleviate the drawbacks of static decomposition ap-
proaches, we propose an adaptive algorithm based on a
recursive depth-first search and using a tree structure to keep
track of the exploration of the possible decomposition. An
overview is provided in Algorithm 1. By adaptively changing
the energy coupling graph, this algorithm avoids the problems
the static solutions in Example 7 have. The algorithm starts by
allocating only the root of the tree, where the only information
stored is the cost limits imposed by the fixed QR decomposition,



the target unitary to compile and the initial energy coupling
graph. The cost limits for the adaptive approach are the costs
of the QR decomposition applied on the same target unitary,
and the summed costs of each single rotation of the adaptive
decomposition will not exceed these limits. The complexity for
calculating this cost bound is asymptotically quadratic in the
number of dimensions. In every step, the algorithm applies a
two-level Givens-rotation [8], [21] to the unitary and checks if
the resulting matrix is diagonal. If it is diagonal, the algorithm
returns the nodes in the tree that are on the path of the best
decomposition and terminates. Otherwise, the code enters three
nested loops: one over all the columns, and two over indices
that keep track of two different rows, where the innermost
loop’s index is always greater than the first loop over the
rows. At every step of the execution of these loops the entries
of the matrix indexed by the column counter and the two
rows indices are selected and they are compared against two
constants (indicated as as 0 and threshold). Since the angle of
rotation is calculated as a ratio between the two entries and the
phase is calculated similarly with a ratio on the two components
of each of these complex numbers, the thresholds guarantee
that the coefficients will not go to infinity due to the usage of
floating point numbers and possible division by a number close
to zero. Moreover, the threshold should be chosen in relation
to the experimental performance of the fundamental two-
level couplings, such that the resulting parameter fluctuations
are negligible compared to the inherent imperfections of the
quantum operations. Once the integrity of the entries is verified,
the angle and phase of rotation are calculated as shown in the
pseudo-code. These two parameters are then used to create the
Givens-rotations of the decomposition as elementary blocks.
These matrices represent the rotation on the Bloch sphere of
two energy levels, but they are also the rotation of a subspace
of the larger Hilbert space of the qudit.

The rotation between two levels i and j are expressed as

Ri,j(θ, φ) = exp

(
−iθ

2

(
cos(φ)σi,jx + sin(φ)σi,jy

))
(2)

where σx,y are the Pauli-{X,Y } matrices, describing the two-
level coupling, θ is the rotation angle, and φ is the phase of
the rotation.

The cost of each rotation is calculated by a method that
takes the necessary routing of the states on the graph of the
qudit into account, as detailed in Section III-E. Additionally,
the reordering sequence that enables the rotation, and the
modified graph are returned alongside the calculated cost. If
the total current costs of the decomposition is smaller than
the cost limit, the rotations, the cost, the new unitary rotated,
and the new graph are saved as new child of the current node
in the tree. The function recursively calls itself with each
child of the current node as parameter. As the implemented
method is in the category of backtracking algorithms, the worst
case complexity is asymptotically exponential [26]. However,
the experimental results show that a suitable choice of the
cost function allows the algorithm to perform similarly to the
fixed QR decomposition.

Algorithm 1 Adaptive Decomposition

Require: Tree.root: n, U , Energy coupling Graph:g,
Cost Limit: cl

Ensure: Decomposition, Best Cost
if checkDiagonal(n.U) then return
end if
father = n
for c do

for r ≥ c do
for r2 > r do

if Ur,c 6= 0 and Ur2,c > threshold then
θ = 2 · arctan[|Ur2,c/Ur,c|]
φ = −(π/2 + arg[Ur,c]− arg[Ur2,c])
c′, πgates, g′ = Cost(U, g,R)
U ′ = Rr,r2(θ, φ) · U
if father .cost + c′ < cl then

father .addNode(gates, U ′, g′, c′, cl)
end if

end if
end for

end for
end for
for child in father.children do

Adaptive(child)
end for

C. Satisfying Energy Coupling Constraints

The decomposition from the previous section led to a
sequence of operations which are elementary on the respective
technology, but not necessarily in-line with the level-to-
state mapping, i.e., transitions between states might not be
immediately possible. This problem of satisfying the energy
coupling constraints is addressed by inserting reordering gates
into the operation sequence and introducing rules for correct
patterned sequences.

1) Routing: The decomposition is driven by the cost for
the possible logical rotations on the transition of two logical
states. Here, the energy coupling graph is used to track the
position of each logical state. Consider a Givens-rotation on
the logic states i and j. The returned routing sequence is a list
of reordering gates that will bring the logical state j adjacent to
the logical state i in the energy coupling graph. The reordering
gates are constructed as Givens-rotations with default values
θ = π, φ = −π/2 and indices of rotation depending on the
nodes on the shortest path from i to j. The energy coupling
graph is adapted accordingly. Algorithm 1 takes the energy
coupling constraints into account.

2) Graph rules: Another challenge arises from the fact that
the reordering pulses are not permutation matrices, but carry
additional sign flips. This is a result of the mathematical form
of the generators of the primitive physical rotations. In the
following we outline a set of simple rules that have to be
applied to the reordered gate sequence. First, rotation matrices
are defined to rotate from a lower level to a higher level. If



during compilation we encounter a situation where this ordering
is reversed, this leads to an inversion of the sign of the phase φ
for that operation. Second, whenever a gate in the sequence is
preceded by a reordering pulse whose higher level coincides
with any of the levels of the gate in question, the sign of θ is
flipped. The last rule leverages a particular feature of the graph,
where each node is able to store a phase value that the physical
level has accumulated during computation. The feature is useful
for solving two challenges: the first one arises when compiling
several unitaries in a row where the Z-rotations that are not
expressed in the form of a gate can be just recorded in the
graph’s nodes, allowing for even shorter sequence and avoiding
the problem of propagating these gates explicitly. The second
challenge is unique to the adaptive algorithm where routing
sequences are not uncomputed as in the QR decomposition
case. Consequently, the sign flips from the reordering pulses do
not cancel and need to be tracked explicitly as an accumulation
of π phases due to the routing gates. Hence, the third rule
adds to the the phase value of a gate the phase stored on the
higher energy node and subtracts the phase stored on the lower
energy node.

3) Ancilla states: A further possibility enabled by the pro-
posed approach is the inclusion of ancillary states in the graph.
Use of ancillary states is known to enable improvements in
gate complexity [9] and simplify the application of established
quantum gates in qudit Hilbert spaces [8]. After a state is
declared as ancillary, the algorithm tracks them like regular
states, but gains the option of exploiting them for routing
purposes or caching.

Example 8: Consider the matrix in Eq. (3), which is
composed of two different portions. The upper-left part is
the Hadamard gate that we want to compile on the first 3 logic
levels. The lower-right part is the matrix that will operate on
two ancillary states. It is therefore possible to compile two
separate operations in one unitary.


1 1 1 0 0

1 e
2π
3 e

−2π
3 0 0

1 e
−2π
3 e

2π
3 0 0

0 0 0 a11 a12
0 0 0 a21 a22

 (3)

D. Phase Shift Propagation

After decomposition and insertion of reordering gates from
the previous sections, the phase shifts have to be taken into
account. The phase shifts are encoded in the diagonal matrix Θ
(see Eq. (1)) and have to be decomposed into individual phase
shifts on single levels to ensure correctness of the overall
decomposition, albeit the phase shift are not physically realized.
These individual phase-shifts are formulated as diagonal
matrices, with only the i-th entry on the diagonal set to a
phase shift of φ of the logic state, and 1 otherwise, with
i ∈ {0, . . . , d− 1}.

Example 9: Consider a three-level qudit system and a rotation
of φ on the second entry on the diagonal. The corresponding
matrix is shown in Eq. (4).

RZ,1(φ) =

1 0 0
0 eiφ 0
0 0 1

 (4)

These phase shifts can be introduced at zero cost in the
sequence, since they can be propagated to the end of the circuit,
where a phase shift is then negligible, as changes in phase
immediately before a measurement do not change the outcome
probabilities. We refer to these rotations as “virtual Z-gates”1

since they are not executed on the quantum computer. The
commutation of phase gates and Givens-rotations is exemplified
in Eq. (5).

M ·R0,1(θ, α) = R0,1(θ, α− φ+ γ) ·M (5)

with M =

eiφ 0 0
0 eiγ 0
0 0 eiδ


The equation is given for a rotation on the coupling R0,1

but it can generalized to any coupling. The application of
the commutation can lead to a linear cost reduction, but is
potentially limited once entangling gates are introduced into
the circuit.

E. Cost function

The previous sections described the steps to decompose
the target unitary, satisfy the energy coupling constraints, and
propagate the phase shifts. The decisions made in these steps
are guided by a cost function, that is provided in this section.
While this cost function is inspired by the trapped-ion system
recently presented in [8] and the numerical results derived
from benchmarking the platform in the same reference, it is
primarily determined by considerations that are found in a
similar form also in other technologies. More precisely:
• The cost of each rotation scales linearly with the rotation

angle.
• Each two-level coupling is calibrated for a fixed rotation

angle, typically π/2. Angles that differ from π/2 will incur
additional cost due to non-ideal performance of physical
devices. We assume this cost to increase linearly with the
distance from the calibrated value.

• The system is initialized almost perfectly in a fixed initial
state. Those couplings that do not involve the initial state
will incur a larger cost (here we assume a factor, function
of the distance of two logic states in the graph), since
they require a more complicated multi-step calibration
procedure.

Taking into account these effects, we model the cost of the
single rotation as

C1 = 10−4 · d(i, j) ·
(
4θ +

∣∣mod(θ +
1

4
,

1

2
)− 1

4

∣∣) (6)

1The term virtual Z-gate does not refer to the Pauli operation.



Table I: Evaluation of costs for the QR and the proposed
(adaptive) decomposition

QR decomp. [8] Proposed decomp.

Dim Unitaries min avg max min avg max

3 333 8 25.47 140 4 21.69 36
333 4 21.19 28 4 9.49 12
333 12 35.89 44 4 14.93 20

5 2 985 60 166.34 200 64 113.36 124.63
2 985 36 101.27 128 16 82.86 91.05
2 985 88 240.62 280 16 121.97 133.7

7 6 438 132 662.35 756 44 255.58 279.08
6 438 192 518.23 620 48 389.94 425.51
6 438 88 392.35 508 44 330.3 361.51

Cost is multiplied by 104 to aid legibility.

for θ ≥ 1/4 (in units of π). Here the overall factor 10−4 comes
from the fundamental cost of a π rotation [8].

Besides the bare cost of logical rotations, there is an
additional cost associated with reordering the logical states on
the coupling graph, since it is, in general, not fully connected.
This is done with a sequence of π-rotations, with a cost again
governed by Eq. (6). These two terms then constitute the full
experimental cost of a decomposition.

IV. EVALUATION

The proposed method of adaptive compilation utilizes the
energy coupling graph to find more efficient decompositions.
To evaluate the method, we developed an implementation and
compared it against the state-of-the-art fixed-sequence algo-
rithm based on the QR factorization [8]. The implementation
is available under a free license via github.com/cda-tum/qudit-
compilation. To account for different scenarios, we compile
sets of random Clifford-unitaries [27], which are central to
quantum computing, for dimensions 3, 5 and 7 to three target
architectures each. The architectures are different in the number
of nodes, connectivity, and mapping of the logical states on the
physical levels—resulting in nine different target architectures.
Diagonal unitaries are excluded from the sets, as they are
decomposable in a sequence of virtual phase-gates and the cost
of the decomposition in each algorithm is zero. The evaluation
was performed on a computer with an Intel i7-10750H and
32 GB of memory, running Ubuntu 20.04 and Python 3.8.

The results are presented in Table I. The first column gives
the dimensionality, followed by the number of considered
unitaries in the second column. The next three columns show
the costs of the QR decomposition for the considered unitaries,
listing the minimal, average, and maximal costs according
to the cost function in Section III-E. The same listing on
costs are contained in the next three columns for the adaptive
compilation.

Comparing the costs in Table I shows a clear advantage of the
proposed adaptive algorithm. In every case, the maximal cost
of the considered set of unitaries is lower compared to that of
the QR decomposition—in some cases there is an improvement
of up to a factor of 3. The same conclusion can be drawn

from the average costs as well, which is considerably lower
in each set of considered unitaries. Regarding the run-time,
each decomposition of a unitary in this evaluation took less
than 1 s for the QR decomposition and the adaptive approach,
respectively. Hence, by spending the same computational
efforts, we get significantly better compilation results.

Moreover, the proposed method can be configured to get
even better results. In the evaluations summarized above, we
set the cost limit (see Algorithm 1) to 1.1 of the cost of the
QR decomposition to have an acceptable run-time for the
thousands of unitaries. For a more realistic scenario, where
a designer wants to realize an individual unitary, decreasing
the cost limit will push the proposed algorithm to get even
smaller costs—at the expense of longer run-time. Furthermore,
the improvement attainable by the proposed adaptive method
of course depends on the unitary that is considered, but also
on particularities of the underlying technology. One important
factor is how dense the connectivity of the energy levels is,
where a denser (and more physically unrealistic) connectivity
leads to less improvement on the cost by the adaptive algorithm.
With the implementation of the proposed method being publicly
available, every designer can accordingly use these features to
get better results than the ones summarized in the extensive
evaluations covering thousands of unitaries from above.

Overall, the results confirm that, using the proposed method,
more efficient decompositions can be determined and, addi-
tionally, further option exists to trade-off worst-case costs and
run-time—providing a solution that aims at fully exploiting
the potential provided by the given technology.

V. CONCLUSION

In this work, we proposed an adaptive compilation algorithm
to attain efficient decompositions of arbitrary local unitaries
for multi-level quantum systems. Compared to binary quantum
systems, qudits feature a much richer state-space, allowing for
different placements of logical information under consideration
of practical constraints, such as the energy coupling constraints.
With the constraints and options represented in an energy
coupling graph, the proposed algorithm exploits the available
potential by flexibly adapting the mapping between logical
states and physical energy levels to enable a much more
efficient compilation. Indeed, turning the argument around,
the proposed algorithm provides a way to compare different
placements of logical states by means of the average cost
to decompose random Clifford unitaries. This flexibility of
the proposed algorithm to adapt to realistic constraints in the
possible couplings as well as the cost of different rotations
enable significant improvements in gate costs.
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