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Quantum random sampling is the leading proposal for demonstrating a computational advantage of
quantum computers over classical computers. Recently, first large-scale implementations of quantum
random sampling have arguably surpassed the boundary of what can be simulated on existing classical
hardware. In this article, we comprehensively review the theoretical underpinning of quantum random
sampling in terms of computational complexity and verifiability, as well as the practical aspects of its
experimental implementation using superconducting and photonic devices and its classical simulation.
We discuss in detail open questions in the field and provide perspectives for the road ahead, including
potential applications of quantum random sampling.
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I. INTRODUCTION

Dating back as far as to the 1980s, researchers have been
thinking about what the computational power would be of
computers the constituents of which are not following the laws
of classical physics but rather those of quantum physics (Be-
nioff, 1980; Deutsch, 1985; Feynman, 1982, 1985). Given that
quantum mechanical systems allow for superpositions and en-
tanglement, this might give rise to quite a distinct model of
computation compared to the paradigmatic Turing machine
model that captures classical computations.

Within the model of quantum computation (Bernstein and
Vazirani, 1997; Deutsch, 1985), certain computational tasks
can indeed be achieved much more efficiently than is possible
using classical computing devices. While for some problems
such as database search (Grover, 1996) quantum computation
offers polynomial speedups over classical algorithms, for oth-
ers such as factoring integer numbers (Shor, 1994, 1997) and
simulating quantum systems (Lloyd, 1996) it even offers pre-
sumably exponential speedups.

Within the framework of computational complexity theory,
quantum computation has also been exponentially separated
from classical computation via so-called oracle separations
(Bernstein and Vazirani, 1993, 1997; Raz and Tal, 2019; Si-
mon, 1994, 1997; Yamakawa and Zhandry, 2022). The advent
of quantum error correction (Shor, 1996) and the threshold
theorem (Aharonov and Ben-Or, 1997) brought the notion of
quantum computation closer to reality showing that—at least
in principle—errors can be corrected faster than they are gen-
erated, provided their rate is low enough.

Since these discoveries, the search for applications of quan-
tum computation has flourished (Martyn et al., 2021; Mon-
tanaro, 2016a). Quantum algorithms have been discovered
for solving ‘classical problems’ such as solving structured lin-
ear equations (Harrow et al., 2009), solving systems of non-
linear differential equations (Liu et al., 2021a), and perform-
ing optimization tasks (Brandão and Svore, 2016; Farhi et al.,
2014, 2000). More sophisticated methods for quantum sim-
ulation have been devised, such as higher-order Trotter for-
mulae (Childs et al., 2021), qubitization (Low and Chuang,
2019), or linear combination of unitaries approaches (Childs
and Wiebe, 2012), and we have a much better understanding
of computational primitives possible in quantum computing in
terms of the quantum singular value transform (Gilyén et al.,
2019) as a general way to process quantum signals (Low and
Chuang, 2017, 2019).

Today, there already is strong evidence that the dream of
a universal quantum computer may become a reality in the
not-too-far future. Quantum devices have been developed

in a plethora of experimental platforms, ranging from ultra-
cold atoms trapped in an optical-lattice potential (Bloch et al.,
2008), Rydberg atoms in optical tweezers (Bernien et al.,
2017) and trapped ions (Blatt and Roos, 2012) to supercon-
ducting qubits (Clarke and Wilhelm, 2008), photonic plat-
forms (Bartolucci et al., 2021; Kok et al., 2007) and silicon
quantum dots (Zwanenburg et al., 2013). Already for more
than ten years, special-purpose analogue quantum simulators
have been able to qualitatively simulate variants of the Hub-
bard model (Jaksch et al., 1998), the Heisenberg model (Friis
et al., 2018), and other classically intractable Hamiltonians
with high precision and tunability of parameters at scales of
up to tens of thousands of atoms (Trotzky et al., 2010). While
much smaller still, universal quantum devices are advancing
at a rapid pace. Moving beyond the proof-of-principle demon-
strations of quantum algorithms on small scales (Vandersypen
et al., 2000, 2001), first steps towards error-corrected quan-
tum devices are being made at the moment (Acharya et al.,
2022; Egan et al., 2021; Krinner et al., 2022; Ofek et al., 2016;
Ryan-Anderson et al., 2022). The quest to actually build
a universal, fault-tolerant quantum computer has now also
reached industry (Arute et al., 2019; Bartolucci et al., 2021;
Jurcevic et al., 2021; Reagor et al., 2018). Quantum com-
puting has thus expanded from an area of primarily academic
interest to the consistent subject of news headlines around the
world.

However, the devices at our availability right now remain
far from the error-correctable regime in terms of both error
rates and the sheer number of qubits and quantum opera-
tions required for quantum error correction (Gheorghiu and
Mosca, 2019; Gidney and Ekera, 2019; Häner et al., 2017;
O’Gorman and Campbell, 2017). Available today are noisy
universal quantum devices with up to roughly 50 to 100 phys-
ical qubits (Arute et al., 2019; Zhu et al., 2022), as well as
special-purpose quantum simulators which allow for larger
system sizes but lack universal programmability. When engi-
neering those devices one is faced with the challenge of con-
trolling individual quantum systems with a high degree of ac-
curacy over long times, making their improvement and scaling
a monumental challenge.

Given this profound challenge associated with building a
universal, fault-tolerant quantum computer, one may—and
should—ask whether we should even believe that quantum
computations that outperform classical computation are phys-
ically possible? This is the question at the heart of this re-
view. The so-called extended Church-Turing thesis states that
any physically implementable model of computation can be
efficiently simulated by a classical computer (Bernstein and
Vazirani, 1997; Vergis et al., 1986). In particular, this thesis
implies that quantum computers which exponentially outper-
form classical computers should not be possible. And indeed,
in the entire history of computation, and despite the significant
evolution of computing devices, no counter example—other
than quantum computing—has been found, lending signifi-
cant credibility to the thesis. Vice versa, the physical possi-
bility of quantum computers challenges the extended Church-
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Turing thesis.
We can think of the extended Church-Turing thesis as a

computational analogue of the thesis that nature must have
a description in terms of a local and realistic theory (Einstein
et al., 1935). Bell’s inequalities (Bell, 1964) quantitatively
capture how quantum theory violates this thesis and provide a
concise experimental setting to test local realism. The exper-
imental violation of a Bell inequality (Aspect et al., 1982a,b;
Freedman and Clauser, 1972) has once and for all falsified
this belief and fundamentally changed the way we think about
the interactions between the (local) constituents of our world.
Reasonable sceptics will have been convinced of this since
the last closable loopholes have been closed (Giustina et al.,
2015; Hensen et al., 2015; Shalm et al., 2015).

An experimental violation of the extended Church-Turing
thesis, called quantum advantage or “quantum supremacy”
(Preskill, 2012), would mark a similar milestone for the field
of computing. From the perspective of computer science, it
would demonstrate the physical possibility of computations
that are not efficiently simulable in a classical Turing machine
model. From the perspective of physics, it would demonstrate
that quantum theory is applicable even in regimes that are not
accessible by the means of computation we currently have.

This gives rise to the question what a computational ana-
logue of a Bell inequality as a means to test local realism is.
In other words, what is (i) a simple task that can be performed
on noisy and intermediate-scale quantum devices which is at
the same time computationally difficult to simulate for classi-
cal computers both (ii) asymptotically and (iii) in practice us-
ing available computing hardware? And what could be (iv) a
simple test that this task has been successfully and unambigu-
ously achieved so that a reasonable sceptic can be convinced?

All of these requirements are extremely challenging at dif-
ferent levels. The central complexity-theoretic challenge is
to prove an asymptotic speedup of quantum computers over
classical computers, a challenge that has remained elusive for
several decades now. Next, given the intrinsic complexity of
the task by the first requirement, a direct verification using
only classical computing resources seems impossible at first
sight. The final challenge is to actually build an intermediate-
scale quantum computer that is able to outperform the classi-
cal supercomputers available today. At the same time, it is a
conceptual challenge to identify ways to fairly compare near-
term quantum and large-scale classical computations solving
the same task since their limitations are very different in na-
ture: Roughly speaking, near-term quantum devices are lim-
ited by noise, while large-scale classical devices are limited
by the size of the available computers.

A conceptually simple way to achieve these theoretical re-
quirements is to make use of the quantum algorithm for in-
teger factoring. This is because factoring is believed to be a
problem for which no efficient classical algorithm exists. In
fact, a large part of the presently applied public-key cryptog-
raphy is based on the hardness of factoring. Factoring is par-
ticularly suited to public-key cryptography because it is be-
lieved to define a so-called one-way function, that is, a func-

tion which can be computed easily (the product of two large
prime numbers) but which is extremely difficult to invert (find-
ing those numbers given their product). Vice versa, this means
that verifying a successful implementation of Shor’s algorithm
is simple: One simply has to multiply the output and com-
pare it to the input. While proof-of-principle demonstrations
of Shor’s algorithm have been achieved (Vandersypen et al.,
2001), factoring a large 2048 bit number as is used for public-
key encryption via RSA is estimated to require a large-scale,
error-corrected universal quantum computer using roughly 20
million physical qubits (Gheorghiu and Mosca, 2019; Gidney
and Ekera, 2019; Häner et al., 2017; O’Gorman and Camp-
bell, 2017), placing this algorithm outside the realm of what
can realistically be achieved in the near future. Hence, while
impressive progress is being made along these lines of thought
(Acharya et al., 2022; Barends et al., 2014; Ryan-Anderson
et al., 2022), factoring cannot serve as a simple and near-term
test of the computational advantage offered by quantum de-
vices.

A particularly natural class of problems for quantum com-
puters are sampling problems. Indeed, any quantum mechan-
ical experiment can be seen as just being a sampling exper-
iment: given an experimental prescription, a repeated mea-
surement will provide intrinsically random measurement out-
comes according to a probability distribution determined by
the Born rule. Almost 20 years ago, it was first observed that
the patterns of measurement outcomes resulting from certain
quantum computations could in fact be so complicated that
classical computers would not be able to reproduce them (Ter-
hal and DiVincenzo, 2004).

A simple class of computations to consider as a test of quan-
tum devices are random quantum computations. Such compu-
tations are presumably not computations that solve a relevant
computational problem, but they may be useful in themselves,
serving at the same time as a benchmark of a given comput-
ing device and as a test of quantum computational advantage.
The task of sampling from the output distribution of a random
quantum computation is called quantum random sampling.

In the past 20 years, significant evidence has accumulated
that for a large variety of computations, and in particular for
non-universal computations, this task is computationally in-
tractable for classical computers (Aaronson and Arkhipov,
2013; Boixo et al., 2018; Bouland et al., 2022, 2018; Brem-
ner et al., 2010, 2016; Fujii and Morimae, 2017; Kondo et al.,
2022; Krovi, 2022; Movassagh, 2020; Shepherd and Brem-
ner, 2009). At the same time, there is significant evidence
that current-day supercomputers have a very hard time simu-
lating this task even for small systems comprising roughly 50
to 100 subsystems (Bulmer et al., 2022; Huang et al., 2020b;
Markov et al., 2018; Neville et al., 2017; Pan et al., 2022).
Very recently, quantum random sampling in a classically in-
tractable regime has been claimed to be achieved experimen-
tally on a universal quantum processor comprising 53 qubits
(Arute et al., 2019), and up to 60 qubits (Wu et al., 2021; Zhu
et al., 2022), as well as using photonic systems (Madsen et al.,
2022; Zhong et al., 2021, 2020).
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In this review, we provide a detailed overview of quan-
tum random sampling as a test of the presumed exponential
computational advantage of quantum computers over classi-
cal ones. We show in what precise way quantum random
sampling can be seen as a computation. We explain what
that computation solves, in what way it outperforms classi-
cal computations, what methods of verification are available,
and what challenges arise in this context.

In the first part, we focus on the theoretical aspects of quan-
tum random sampling: the question of how to prove an asymp-
totic quantum speedup, and the question of whether and how
quantum random sampling can be verified. Here, we ex-
plain in detail how the key idea of Terhal and DiVincenzo
(2004) to relate the hardness of sampling to the hardness of
computing probabilities has been developed further in recent
years. Building on the idea to show a collapse of the so-called
polynomial hierarchy (Aaronson and Arkhipov, 2013; Brem-
ner et al., 2010) based on the classical hardness of comput-
ing quantum probabilities (Fujii and Morimae, 2017; Valiant,
1979) and the assumed availability of an efficient classical
sampler, this idea has been further developed to allow for cer-
tain errors in the implementation (Aaronson and Arkhipov,
2013; Bremner et al., 2016), and brought closer to experimen-
tal implementation (Bermejo-Vega et al., 2018; Boixo et al.,
2018; Hamilton et al., 2017; Lund et al., 2014). The ques-
tion of how to verify quantum random sampling has first been
addressed by Shepherd and Bremner (2009), and it has been
pointed out that in its most restrictive forms, classical veri-
fication is unviable (Aaronson and Arkhipov, 2014; Gogolin
et al., 2013; Hangleiter et al., 2019). This notwithstanding,
weaker forms of classical verification turn out to be indeed
possible (Aaronson and Arkhipov, 2014; Arute et al., 2019;
Boixo et al., 2018), albeit at a potentially prohibitive compu-
tational cost (Arute et al., 2019).

In the second part, we discuss the practical aspects of quan-
tum random sampling, in particular, experimental implemen-
tations and concrete classical simulation algorithms for quan-
tum random sampling. In the context of experimental imple-
mentation, it is key to fully understand and analyse the noise
which remains present on the device in order to devise as-
robust-as-possible schemes (Arute et al., 2019; Boixo et al.,
2018). Likewise, from the perspective of classical simulation,
a central question is what features of a scheme obstruct clas-
sical algorithms (Aaronson and Chen, 2017; Markov et al.,
2018), and, vice versa, how to best exploit “weaknesses” of a
scheme or a verification method in order to devise faster sim-
ulation algorithms (Bulmer et al., 2022; Clifford and Clifford,
2020; Gao et al., 2021; Pan and Zhang, 2022).

It is important to stress that the topic at hand is highly con-
ceptual in nature, so that a precise understanding of the un-
derlying premises and an appreciation of the fine print that
comes along are key. For this reason, we have made the de-
liberate choice of keeping the exposition precise and accurate
in most places, sometimes using formal language, while at the
same time pedagogically introducing all required concepts.

What we do not discuss in this review are ways to demon-

strate a quantum advantage by other means. Particularly
prominent examples are the discovery of verifiable proofs
of quantumness (Brakerski et al., 2018, 2020; Kahanamoku-
Meyer et al., 2022) for which there are recent proof-of-
principle demonstrations (Zhu et al., 2021). These schemes
demonstrate access and control over a single qubit via a cryp-
tographic encoding. Recent work by Yamakawa and Zhandry
(2022) makes great progress along these lines by devising a
verifiable proof of computational quantum advantage based
on certain random computations. In this sense, it is at the
interface of quantum random sampling and cryptographic
proofs of quantumness. Presumably, none of these methods
can be implemented at a scale required for a quantum advan-
tage in the intermediate term, however (Hirahara and Le Gall,
2021; Liu and Gheorghiu, 2022; Zhu et al., 2021).

Before we start, let us also point the reader to more con-
cise and briefer reviews of quantum advantage (Harrow and
Montanaro, 2017), quantum random sampling (Lund et al.,
2017a), and implementations of boson sampling (Brod et al.,
2019) that may serve as starting points into the literature. It is
also worth mentioning the excellent textbook by Nielsen and
Chuang (2010), which covers the basics of quantum comput-
ing that we do not explain here.

We begin this review by setting the stage and stating what
a quantum random sampling scheme is in the first place in
Section II. Here, we define universal circuit sampling, instan-
taneous quantum polynomial time (IQP) circuit sampling, bo-
son sampling, and Gaussian boson sampling; but we also hint
at other schemes. Section III explains the basics of computa-
tional complexity to the extent they are needed in Section IV
to show the computational hardness of quantum random sam-
pling on classical computers. This detailed discussion consti-
tutes the heart of this review: It is precisely this fine print that
is needed to appreciate the significance of experimental imple-
mentations of quantum random sampling. Section V is con-
cerned with the question of how to verify the correctness of
the implementation of a quantum random sampling scheme.
In Section VI, we then detail the to-date experimental imple-
mentations of quantum random sampling. Section VII then
overviews methods of simulation run on classical supercom-
puters that aim to challenge quantum implementations in their
computational power. Finally, in Section VIII, we put the find-
ings into perspective and discuss a wealth of open questions,
as an invitation to taking further steps, in particular, to explore
potential applications of quantum random sampling.

II. QUANTUM RANDOM SAMPLING SCHEMES

Every experiment in quantum physics can be viewed as
a sampling experiment: Measurement outcomes are intrinsi-
cally random, sampled from a probability distribution deter-
mined by the Born rule. Sampling problems are therefore nat-
ural candidates exhibiting specifically quantum features. The
most prominent example of a quantum-classical divide is for
a specific quantum sampling problem that cannot be repro-
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duced classically under locality constraints: the violation of
a Bell inequality (Bell, 1964). Similarly, in terms of compu-
tational complexity, we expect it to be difficult to reproduce
the experimental outcomes of generic quantum computations.
And indeed, we can think of the corresponding experiments
as violating a computational equivalent of the Bell inequality.
The reasons for why we expect generic computations to be
hard to simulate are manifold and not precisely understood—
the exponentially growing Hilbert space dimension, quantum
interference leading to non-positive amplitudes, and entangle-
ment are only some examples of distinctly quantum features
obstructing classical simulation algorithms. Roughly speak-
ing, generic quantum computations explore the entire state
space available, providing no structure that can be exploited
by a classical simulation algorithm. Consequently, so the rea-
soning, the runtime of such an algorithm must be determined
by the exponential Hilbert space dimension.

In order to make the intuition rigorous that generic quantum
computations give rise to sampling problems that are classi-
cally intractable, the idea of quantum random sampling has
been introduced. In quantum random sampling problems, a
quantum computation is drawn at random according to some
specification. The task is then to sample from the Born rule
distribution generated by this random quantum computation.
Crucially, there are now two notions of randomness at play:
First, the randomness of the computation itself, which is clas-
sical randomness used to draw the computation at random.
Second, the intrinsically quantum randomness of individual
outcomes sampled from the output distribution of that com-
putation. Such quantum random sampling schemes are not
only hard to simulate by the known classical simulation al-
gorithms already at comparably small scales, but we can also
give complexity-theoretic evidence for asymptotic intractabil-
ity. Importantly, such evidence is independent of specific
algorithms and regards the intrinsic complexity of the prob-
lem by reducing it to a paradigmatic computational problem
that can be independently studied and therefore much stronger
than merely the failure of our known simulation algorithms.
Quantum random sampling schemes are particularly appeal-
ing for demonstrations of quantum advantage because, as we
will see, the complexity-theoretic argument even applies to
certain non-universal computations that may be comparably
easy to experimentally implement.

A quantum random sampling scheme is defined by the ran-
dom choice of a quantum computation realized by a quantum
circuit. A quantum circuit describes an arrangement of quan-
tum gates from a certain gate set in some spatial and temporal
order, acting on a specific set of individual quantum systems,
here often taken to be qubits. In a random quantum circuit
individual quantum logic gates are chosen at random from a
given gate set and applied to input registers according to a cer-
tain rule. For a fixed input size n, e.g., the number of qubits in
a random quantum circuit, this gives rise to a family of com-
putations, realized as a circuit family, denoted by Cn. The
classical sample space Ω comprises the possible measurement
outcomes.

Task 1 (Quantum random sampling). Given as input a prob-
lem size n and a circuit C chosen at random from a family Cn,
sample from the output distribution p(C) of the circuit applied
to a reference state |0〉1, with the probability of an outcome
S ∈ Ω given by

pS(C) = |〈S|C|0〉|2. (1)

Depending on whether the emphasis lies on the probability
distribution over the circuits C or the outcomes S of a fixed
circuit, we at times use pS(C) and at other times pC(S) for
the outcome probabilities.

In the remainder of this section, we formally introduce the
most important schemes—universal circuit sampling, IQP cir-
cuit sampling and boson sampling. Those schemes recurrently
appear over the course of this review in which we discuss their
and similar schemes’ properties. This includes, not only their
complexity-theoretic analysis (Section IV) and the question in
how far classical samples from their output distributions can
be verified (Section V), but also their experimental implemen-
tations (Section VI) and specific classical simulation schemes
(Section VII).

A. Universal circuit sampling

The most prominent example of a quantum random sam-
pling scheme, or rather, family of random sampling schemes,
is universal circuit sampling. The rationale behind universal
circuit sampling is to explore the entire Hilbert space avail-
able in small- or intermediate-scale experiments as quickly
as possible. This is why it is also a universal circuit sam-
pling scheme which has been implemented to experimentally
demonstrate a computational quantum advantage for the first
time (Arute et al., 2019).

In universal circuit sampling, quantum gates are drawn
from a gate set which is universal for quantum computation:
that is, any quantum computation could be implemented with
gates drawn from this set. The gates are placed at certain po-
sitions in a quantum circuit architecture, which might be fixed
or random. The circuit might also contain other non-random
gates.

For example, in the experiment of Arute et al. (2019) a
very specific type of random circuit is applied: in every layer
of the circuit random single-qubit gates are applied to every
qubit, and a specific two-qubit entangling gate is applied to
each edge of a square lattice in a particular sequence, see
Fig. 1(a). The single-qubit gates are drawn from the set
{
√
X,
√
Y ,
√
W} in such a way that and the same single-

qubit gate is not allowed to sequentially repeat. Here

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (2)

1 Throughout this review, we use the term ‘state’ both for density operators ρ
and for state vectors |ψ〉 in the underlying Hilbert space.



6

denote the Pauli matrices and W = (X+Y )/
√

2. The entan-
gling gates are given by the iSWAP-like gate

iSWAP∗ =


1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 e−iπ/6

 . (3)

As a toy model of random universal circuits which is the-
oretically very appealing, consider a continuous gate set G =
U(4) comprising all two-qubit gates. In this model, a depth-N
random circuit C acting on n qubits is constructed by choos-
ing a uniformly random gate in G ∈ G according to the
Haar measure and the pair of qubits it is applied to at ran-
dom (Brandão et al., 2016). Alternatively, we can apply the
gates in a parallel architecture in which each layer of the cir-
cuit comprises random gates from G applied in parallel to all
qubits.

B. IQP circuit sampling

A prominent family of random quantum sampling schemes
that uses restricted gate sets is given by so-called instanta-
neous quantum polynomial time (IQP) circuits (Shepherd and
Bremner, 2009). An IQP circuit is a commuting quantum cir-
cuit which is diagonal in the Hadamard basis. Such a circuit
can always be written as C = H⊗nDH⊗n, where D is diag-
onal in the computational basis and

H =
1√
2

(
1 1
1 −1

)
(4)

denotes the Hadamard gate. IQP circuits appear naturally
in the context of measurement-based quantum computation
(Raussendorf and Briegel, 2001). Instances of IQP circuit
families are defined by diagonal circuits comprised of di-
agonal 2-qubit gates with arbitrary phases on the diagonal
(Nakata et al., 2014) and circuits of Z, controlled-Z (CZ),
and controlled-controlled-Z (CCZ) gates, which flip the
phase of the target qubit iff the control qubit (CZ) or qubits
(CCZ) are in the |1〉 state (Bremner et al., 2016). But one
can also phrase IQP circuits in the language of Hamiltonian
time evolution. In this language, an IQP circuit is given by
the constant-time evolution under an Ising Hamiltonian with
edge weights chosen in a specific way (Bremner et al., 2016).
In this formulation, one can generalize IQP circuits to arbi-
trary multi-qubit interactions—so-called X-programs (Shep-
herd and Bremner, 2009). Another natural family of random
computations in this model of computation is given by prepar-
ing a so-called cluster state (Raussendorf and Briegel, 2001;
Raussendorf et al., 2003) on a square lattice and performing
random local rotations around the Z-axis (Haferkamp et al.,
2020a). This model bridges a gap to quantum simulation as it
can be implemented using translation-invariant Hamiltonians
(Bermejo-Vega et al., 2018; Gao et al., 2017).

Two specific examples of IQP circuit families, which are
theoretically clean and help us illustrate important concepts

in the subsequent sections, have been introduced by Bremner
et al. (2016). An instance Cf of the first family is defined by
a degree-3 Boolean polynomial f : {0, 1}n → {0, 1} over the
field F2 = ({0, 1},⊕, ·) as

f(x) =
∑
i,j,k

αi,j,kxixjxk +
∑
i,j

βi,jxixj +
∑
i

γixi, (5)

with Boolean coefficients αi,j,k, βi,j , γi ∈ {0, 1} denoting
whether or not a CCZ, CZ and Z gate is applied to qubits
(i, j, k), (i, j) and i, respectively.

An instance of the second family is defined by an adja-
cency matrix w with entries chosen from a set of angles
A = {0, π/4, . . . , 7π/4} as

Cw = exp

i

∑
i<j

wi,jXiXj +
∑
i

wi,iXi

 , (6)

where Xi is the Pauli-X matrix acting on site i. In other
words, on every edge (i, j) of the complete graph on n qubits,
a gate exp(iwi,jXiXj) with edge weight wi,j and on every
vertex i a gate exp(iwi,iXi) with vertex weight wi,i is per-
formed.

C. Boson sampling

The boson sampling scheme, due to Aaronson and
Arkhipov (2013), is one of the most prominent and histori-
cally earliest quantum random sampling schemes. The con-
ception of this scheme has its origins in the computational
difficulty of computing the permanent of a matrix. The per-
manent turns out to describe the output distributions of in-
terfering free bosons, such as single photons interfering on
a beam splitter. The complexity of computing the permanent
has its correspondence in a surprising physical effect—photon
bunching. The experimental observation of photon bunch-
ing in the famous Hong-Ou-Mandel experiment (Hong et al.,
1987) is one of the landmark experiments of quantum optics,
being among the first to experimentally confirm quantum en-
tanglement. In this experiment, two photons interfere on a
beam splitter and are measured in the photon-number basis.
Surprisingly, for indistinguishable photons one only ever ob-
serves zero or two photons in one of the modes but never one
photon in each mode.

The boson sampling problem generalizes this experiment.
Now, we increase the number of photons and let them inter-
fere in a complex network of beam splitters: n photons are in-
jected into the first n of m ∈ poly(n) modes. Those photons
interfere in a linear-optical network comprising beam split-
ters and phase shifters which is chosen in such a way that it
gives rise to a Haar-random unitary transformation of the in-
put modes, given by U ∈ U(m). Finally, the m output modes
of the network are measured in the photon-number basis; see
Fig. 1(b). As unitary mode transformations conserve the total
photon number, the sample space of boson sampling is given
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Figure 1 Circuit diagrams for (a) random universal circuits as performed in the experiment by Arute et al. (2019) with random single-qubit
gates comprised from the gate set

√
X,
√
Y ,
√
W and fixed two-qubit entangling gates iSWAP∗ at fixed positions in the circuit, and (b) boson

sampling, where passive linear optics comprising beam splitters and phase shifters are applied to a Fock input state |1n〉 and then measured in
the Fock basis with outcomes Si.

by

Φm,n =
{

(s1, . . . , sm) :
m∑
j=1

sj = n
}
, (7)

i.e., the set of all sequences of non-negative integers of length
m which sum to n. Its output distribution is

pU (S) ≡ Pbs,U (S) = |〈S|ϕ(U)|1n〉|2. (8)

Here, the state |S〉 is the Fock state corresponding to a mea-
surement outcome S ∈ Φm,n, |1n〉 is the initial state with
1n = (1, . . . , 1, 0, . . . , 0), and ϕ(U) the Fock space represen-
tation of the mode transformation U .

In order to clearly distinguish the boson sampling protocol
of Aaronson and Arkhipov (2013) with output probabilities
given by Eq. (8) from its variants—discussed below—we will
henceforth refer to it as Fock boson sampling.

D. Gaussian boson sampling

Variants of the boson sampling protocol play with the in-
put state and measurement basis. Most importantly, so-called
Gaussian boson sampling protocols start from a Gaussian
quantum state, where the input modes are prepared in single-
mode or two-mode squeezed states (Grier et al., 2022; Hamil-
ton et al., 2017; Kruse et al., 2019; Lund et al., 2014; Rahimi-
Keshari et al., 2015), or displaced squeezed states (Huh et al.,
2015; Quesada, 2019). The distribution of outcomes S ∈ Φm
is given analogously to Eq. (8) by

PGbs,U (S) = |〈S|ϕ(U)|g〉|2, (9)

where |g〉 is the initial Gaussian quantum state. Here, the sam-
ple space

Φm =
{

(s1, . . . , sm) ∈ Nm0
}

(10)

reflects an unbounded photon number, as Gaussian states do
not feature a fixed photon number. Similarly, we can also

think of the reverse, where a photon-number state is pre-
pared in the input and Gaussian measurements are performed
(Chabaud et al., 2017; Chakhmakhchyan and Cerf, 2017;
Lund et al., 2017b).

Gaussian boson sampling protocols are appealing in com-
parison to the original proposal as Gaussian states and mea-
surements are experimentally much easier to implement than
photon-number states and measurements. And, indeed, it is
those protocols for which large-scale experiments have been
performed recently (Madsen et al., 2022; Zhong et al., 2021,
2020).

E. Further schemes

Since the first quantum random sampling schemes—IQP
sampling (Bremner et al., 2010) and boson sampling (Aaron-
son and Arkhipov, 2013)—have been conceived, many more
proposals for quantum random sampling schemes have been
put forward. A theoretically particularly clear proposal is
so-called “Fourier sampling” (Fefferman and Umans, 2015),
which is a qubit analogue of boson sampling. Another ana-
logue of boson sampling is fermion sampling (Oszmaniec
et al., 2022), for which so-called “magic states” are required in
the input, and the closely related matchgates with magic state
inputs (Hebenstreit et al., 2019). The fermionic schemes that
make use of resource states as an input find their qubit ana-
logue in Clifford circuits with magic-state inputs (Hangleiter
et al., 2018; Yoganathan et al., 2019). The so-called one clean
qubit (DQC1) model is a model in which all but one qubit are
initialized in the maximally mixed state (Fujii et al., 2018;
Morimae, 2017; Morimae et al., 2014). This model is moti-
vated by mixed-state quantum computations, which is a suit-
able framework to capture, for instance, nuclear magnetic res-
onance quantum processors (Negrevergne et al., 2020). Other
proposals include Clifford circuits which are conjugated by
arbitrary product unitaries (Bouland et al., 2018), and per-
mutations of distinguishable particles in specific conditions
(Aaronson et al., 2016). Finally, certain models have also
been proposed with the goal to close loopholes such as the
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necessity to certify the correct implementation of a quantum
supremacy experiment (Hangleiter et al., 2017; Miller et al.,
2017), or to make such an experiment more error-tolerant (Fu-
jii, 2016; Kapourniotis and Datta, 2019).

In what follows, we discuss the properties of those schemes
with respect to the possibility of using them to demonstrate a
computational advantage over classical computations. Before
we dive into the main focus of this review, the complexity-
theoretic argument for the classical intractability of Task 1, let
us review some basics of computational complexity theory in
the next section.

III. COMPUTATIONAL COMPLEXITY OF SIMULATING
QUANTUM DEVICES

The quantum random sampling schemes introduced above
have been devised to show computational quantum advan-
tages of quantum devices over classical supercomputers.
There are two ways in which we can understand this goal:
First, we can understand it in terms of the actual time required
to simulate an actual experiment performing quantum random
sampling. This is the realm of concrete algorithm develop-
ment and a quantum advantage in this sense is reached as
soon as available supercomputers running state-of-the-art al-
gorithms are no longer capable of providing samples from the
desired distribution. Second, we can understand it in terms of
the asymptotic scaling of the best possible classical simulation
algorithm. This is the realm of computational complexity the-
ory. Computational complexity theory studies classes of prob-
lems in terms of their intrinsic complexity in an algorithm-
agnostic way. We can therefore supplement evidence towards
the first type of quantum advantage using computational com-
plexity theory. This can help us to hedge against a “lack of
imagination” in classical algorithm development.

Think of the related context of cryptography: in order for
us to be confident in the security of a certain cryptographic
scheme, it is key that this scheme is not just based on some
problem on which known algorithms do not perform well.
Rather, we want to collect additional evidence and—ideally—
underlying reasons that in fact no algorithm can efficiently
solve the problem on which the scheme is based. It is such ad-
ditional, independent evidence that computational complexity
theory can contribute to quantum random sampling.

Here, we will precisely explicate the available evidence for
the classical intractability of quantum random sampling, mak-
ing the intuition that quantum devices are more powerful than
classical ones more rigorous. We will see which ingredients
come together in a strategy to provide complexity-theoretic
evidence for the hardness of sampling from, or weakly simu-
lating, the sampling schemes defined above. These results will
constitute the complexity-theoretic underpinning of experi-
mental prescriptions designed to demonstrate quantum com-
putational supremacy, that is, to experimentally violate the ex-
tended Church-Turing thesis.

The argument is rather intricate, however, and builds on

some basic results about the computational complexity of ap-
proximately computing the output probabilities of, or strongly
simulating, quantum circuits, and algorithms for this task. In
this section, we review those results, before we leverage them
to weak simulation in the next section, Section IV.

A. Basics of computational complexity theory

In order to provide theoretical evidence for quantum ad-
vantage, we have to enter the realm of theoretical computer
science. There, classes of problems, so-called complexity
classes, are studied with respect to their computational com-
plexity, that is, the resources that an algorithm designed to
solve problem instances from such a class would require in
the worst case. In computational complexity theory, we can
discern distinct problem classes defined by certain resource
restrictions, most importantly the runtime and the memory
requirement of algorithms. Understanding the relations be-
tween different complexity classes, that is, separations and in-
clusions between them is the main subject of study in the the-
ory of computational complexity. For convenience, most often
decision problems are considered, where the task is to decide
whether a given string2 x ∈ {0, 1}∗ is in a so-called language
L ⊂ {0, 1}∗, which is a set of bit strings. A machine that
computes the Boolean function fL : {0, 1}∗ → {0, 1}, which
satisfies fL(x) = 1⇔ x ∈ L, decides L. For example, a lan-
guage L could be given by the set of all graphs for which there
exists a path that visits each vertex once, in binary encoding,
and a string x ∈ L is the binary encoding of a particular graph
instance.

The central concept of computational complexity theory is
that of an algorithm. In a simplified picture, we can think of
an algorithm as computing a Boolean function f : {0, 1}∗ →
{0, 1} for arbitrary-length inputs. Abstractly speaking, an al-
gorithm is a set of rules according to which a machine acts
on any given input. In the case of classical algorithms, for-
malized as a Turing machine, those rules may involve reading
bits of the input or a scratch pad and writing bits to that scratch
pad, choosing a new rule according to which to continue, or
stopping and outputting either 0 or 1 (Arora and Barak, 2009).
We say that an algorithm is efficient if its runtime scales poly-
nomially in the input size, given by the length |x| of x.

On an actual silicon-chip computer, those rules can be im-
plemented using certain elementary logic operations that are
applied sequentially (or in parallel) to some of the input regis-
ters (bits) at a time. The elementary logical operations might
act on a single register or bit such as the NOT operation, on
two such as OR and AND or even more registers. A set of
such operations is said to be universal if an arbitrary Boolean
function f : {0, 1}n → {0, 1} can be expressed as a clas-
sical circuit using poly(n) many input registers. A classical

2 We write the set of all finite-length bit strings as {0, 1}∗ =
⋃
n∈N{0, 1}n.
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circuit is a mathematical model of an arrangement of classi-
cal gates implementing a logical operation that is chosen from
a certain set in some spatial and temporal order computing a
Boolean function. Examples of such universal sets of logical
operations are {AND,NOT} and the singleton {NAND}. Using
a sequence of universal logical operations, one can therefore
express any other elementary logical operation. A classical
circuit Cn effectively computes a function of the values of its
n input registers, potentially using additional auxiliary regis-
ters. On input x ∈ {0, 1}n, its outcome Cn(x) ∈ {0, 1} is
given by its value on a single—say, the first—output register.
The size of a circuit |Cn| is given by the number of gates in
it. We call the model of computation in which we can execute
classical circuits the circuit model.

Notice that any given circuit takes inputs of a fixed size n,
while of an algorithm we demand that it works for any in-
put size. We can turn a family of circuits {Cn}n∈N into a
meaningful algorithm3 by supplementing it with an efficient
instance-generating procedure that given the input size n ef-
ficiently produces a description of Cn, which is then run on
the input x ∈ {0, 1}n. We call circuit families for which such
a procedure is possible uniform circuit families. Uniform cir-
cuit families are therefore a realisation of an algorithm in the
circuit model.

The fundamental class of problems in computational com-
plexity theory is the class P, the class of problems which can
be solved efficiently on a deterministic classical computer.

Definition 2 (P). A language L ⊂ {0, 1}∗ is in the class P if
there exists a classical algorithmA that, given x ∈ {0, 1}∗ as
an input, decides whether x ∈ L in polynomial runtime in |x|:

x ∈ L ⇔ A(x) = 1. (11)

Relations between complexity classes are typically studied
with respect to polynomial reductions—so-called Cook reduc-
tions—where access to a machine in P is granted. A key prob-
lem in the theory of computational complexity is that the re-
lation between different complexity classes defined with very
different resource restrictions in mind is inherently hard to pin
down. For this reason, basic relations between complexity
classes are therefore often merely conjectured based on the
available evidence. The most basic and at the same time most
fundamental separation in complexity theory is the belief that
P 6= NP. While P is the class of problems which can be ef-
ficiently computed on a classical computer, NP is the class of
problems which can be efficiently verified.

Definition 3 (NP). A language L ⊂ {0, 1}∗ is in the class NP
if there exists a polynomial p : N→ N and a polynomial-time
classical algorithm V (called the verifier for L) such that for

3 Indeed, if we ask merely for the existence of a circuit family as opposed
to an efficient algorithm then this allows us to solve undecidable problems
using polynomial-size circuits.

every x ∈ {0, 1}∗,

x ∈ L ⇔ ∃y ∈ {0, 1}p(|x|) : V(x, y) = 1. (12)

We call y the proof of x.

When gathering evidence for a separation between quantum
and classical computation, quantum and classical sampling in
particular, we want to try and keep as close to problems that
have been well-studied such as the conjecture P 6= NP. The
main challenge is that, at the same time, the computational
task must be such that it can realistically be realized on near-
term quantum devices in as easy and error resilient a way as
possible.

B. Where to look for a quantum-classical separation?

In order to better understand the complexity theory of quan-
tum computing we compare to its closest cousin, randomized
classical computation.4 We formalize randomized classical
and quantum computations in terms of decision problems as
complexity classes BPP and BQP.

Definition 4 (Classical and quantum computation). BPP
(BQP) is the class of all languages L ⊂ {0, 1}∗ for which
there exists a polynomial-time randomized classical (quan-
tum) algorithm with uniform circuit family {Cn}n∈N such that
for all n ∈ N and all inputs x ∈ {0, 1}n

x ∈ L ⇒ Pr[Cn(x) = 1] ≥ 2/3, (13)
x /∈ L ⇒ Pr[Cn(x) = 1] ≤ 1/3, (14)

where the probability is taken over the internal randomness of
the algorithm.

Classical computations are modelled as intrinsically deter-
ministic; only by artificially introducing randomness into the
circuit do we construct a randomized classical algorithm us-
ing elementary logic gates. A randomized algorithm for a
Boolean function f : {0, 1}n ×{0, 1}` → {0, 1} acts on both
the problem input x ∈ {0, 1}n and a uniformly random bit
string r ∈ {0, 1}` with ` ∈ poly(n). Clearly, randomized al-
gorithms are at least as powerful as deterministic one, as such
a function can simply disregard the random inputs, giving rise
to a deterministic algorithm. In many practical situations, ran-
domized algorithms turn out to be much more efficient than
deterministic algorithms, however.

While classical logical gates are not generally reversible in
that the mapping from input to output is injective, it turns out
that one can implement any classical computation in a cir-
cuit that uses only reversible operations (Fredkin and Toffoli,

4 In this section, we follow a line of thought which to the best of our knowl-
edge is due to Scott Aaronson @ https://www.scottaaronson.
com/blog/?p=3427.

https://www.scottaaronson.com/blog/?p=3427
https://www.scottaaronson.com/blog/?p=3427
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1982; Toffoli, 1980). In other words, there are sets of re-
versible operations such as the three-bit Toffoli, or controlled-
controlled-NOT, gate TOF (Toffoli, 1980) such that an arbi-
trary Boolean function can be expressed using the outcome of
a single register in a computation involving only those opera-
tions.

By taking the leap to reversible classical computation we
have already made it halfway to quantum computation. In-
deed, the question about the possibility of reversible classical
computation has originally been motivated by the observation
that the laws of physics are reversible (Fredkin and Toffoli,
1982). Hence, so the thought, a physical model of computa-
tion should be, too.

Quantum circuits are a generalization of reversible classi-
cal circuits. A quantum circuit acts on qubits the state space
of which is given by C2. The elementary operations or quan-
tum gates are unitary matrices acting on a k-qubit input space
(C2)⊗k, where k is a small number; typically k = 2. A quan-
tum circuit acting on m ∈ poly(n) qubit registers produces
not a single bit string as an output but a quantum state in
(C2)⊗m, which only upon a quantum measurement in some
basis—typically the standard basis—produces a bit string as
an output. Indeed, we notice that classical computation is a
special case of quantum computation: If we restrict to state
preparations and measurements in the standard basis and per-
mutation matrices in that basis (which are in particular uni-
tary), then we recover classical computation.

A quantum gate set G is said to be computationally univer-
sal if an arbitrary quantum circuit acting on n-qubits and using
t gates can be simulated by a circuit composed of gates from G
up to error ε with overhead polylog(n, t, 1/ε) in terms of both
the number of registers and gates (Aharonov, 2003). With
polynomial overhead in n and t, computational universality
therefore tolerates errors of the order 2−poly(n,t). A computa-
tionally universal gate set that will serve us well in due course
is the set {H,TOF} consisting of the Hadamard and the Tof-
foli gate. This gate set is universal for n-qubit computations
when acting on n+ 1 many qubits (Aharonov, 2003).

In contrast to classical computations, quantum computa-
tions are intrinsically randomized—the probability that an n-
qubit quantum circuit Cn applied to an input state |x〉 ∈ Cn
results in a particular outcome y after a measurement is given
by the Born rule as |〈y|Cn|x〉|2. We also call these probabili-
ties the output probabilities of Cn. Indeed, it is (presumably)
not possible to separate out the randomness from the compu-
tation as it is for classical computations.

A key but very subtle difference between quantum and ran-
domized classical computations presents itself in the guise of
the probability that such computations accept. This difference
is a lever that allows us to separate the two types of algorithms
in terms of their computational power.

C. Computing acceptance probabilities of randomized
algorithms

1. Classical acceptance probabilities

We start by discussing acceptance probabilities of classical
randomized algorithms before turning to quantum algorithms.
The acceptance probability

Pr[Cn(x) = 1] =
1

2p(|x|)
∑

r∈{0,1}p(|x|)
fx(r), (15)

of a classical randomized circuit Cn(x) computing a Boolean
function fx is given by the fraction of accepting random inputs
r ∈ {0, 1}p(|x|), where p : N→ N is some polynomial. Com-
puting the (unnormalized) acceptance probability of classical
circuits is therefore clearly a #P-complete problem.5

Definition 5 (#P (Arora and Barak, 2009)). The function
class #P is the class of all functions f : {0, 1}∗ → N for
which there exists a polynomial-time classical algorithm C
and a polynomial p : N→ N such that

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) : C(x, y) = 1

}∣∣∣ . (16)

In other words, #P functions by definition count the num-
ber of accepting inputs to a polynomial-time computation C.
In contrast to BPP and BQP, which are classes of decision
problems, #P is therefore a class of counting problems. In
turn, we can view the decision class NP (Def. 3) as asking to
decide whether there exists any input such that a computation
C accepts.

2. Quantum acceptance probabilities

We say that a quantum computation with circuit Cn accepts
an input x, if a measurement on Cn|x〉 results in one of a set
of accepting outcomes Γacc. The acceptance probability of
the computation is then given by

Pr[Cn(x) = 1] =
∑
y∈Γacc

|〈y|Cn|x〉|2. (17)

For the following argument, it will be sufficient to consider the
set of accepting outcomes to be Γacc = {0}, where 0 ≡ 0n

denotes the all-zero outcome string, cf. (Fenner et al., 1998).
The acceptance probability ofCn is then just given by a single
output probability Pr[Cn(x) = 1] = |〈0|Cn|x〉|2.

We can express the acceptance probabilities of a
polynomial-size quantum circuit Cn on input x ∈ {0, 1}` via

5 Given a complexity class X, we say that a problem is X-hard if it is at least
as hard as any problem in X in the sense that all problems in the class are
polynomial-time reducible to it. We say that it is X-complete if it is in X
and X-hard.
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a function gx : {0, 1}p(`) → {+1,−1} for some polynomial
p as (Dawson et al., 2005; Montanaro, 2016b)6

Pr[Cn(x) = 1] =
1

2p(`)

∑
y∈{0,1}p(`)

gx(y). (18)

This is easily seen using the fact that the gate set comprising
the Hadamard and the Toffoli gate is universal for quantum
computing7. In this gate set, we can express the all-zero am-
plitude of an n-qubit computation Cn = C(t) · · ·C(1) using t
quantum gates C(1), . . . , C(t) (Dawson et al., 2005)

〈0|Cn|x〉 =
∑

λ1,...,λt

〈0|C(t)|λ1〉 · · · 〈λt|C(1)|x〉 (19)

=
1√
2h

∑
y

sx(y), (20)

in terms of the number h of Hadamard gates and a signed
function sx, with input space size given by the number of
paths leading from x to 0, which is bounded by 4t for a circuit
consisting of two-qubit gates, and hence for polynomial-size
circuits as 2poly(n). This is because the matrix elements of the
Toffoli gate are binary and those of the Hadamard gate are
±1/
√

2 so that each entry of the matrix product C(t) · · ·C(1)

is a sum of numbers (±1) · 2−h/2. We thus obtain

|〈0|Cn|x〉|2 =
1

2h

∣∣∣∣∣∑
y

sx(y)

∣∣∣∣∣
2

=
1

2h

∑
y,z

gx(y, z), (21)

where gx(y, z) = sx(y)sx(z).
Notice the subtle difference in the range of the function gx

versus the range of the function fx arising in classical compu-
tation: while fx is Boolean, gx takes values in {+1,−1}. We
can view this difference between Boolean and signed func-
tions as a signature of quantum interference as it allows for
the possibility of cancelling paths famously demonstrated in
the Hong-Ou-Mandel experiment which we discussed in the
introduction.

But we can easily translate back and forth between signed
and Boolean functions via the map g′x(y) = (gx(y) + 1)/2
and reexpress∑
y∈{0,1}p(|x|)

gx(y) = |{y : g′x(y) = 1}| − |{y : g′x(y) = 0}| .

(22)

6 We highly recommend the introduction to Boolean functions and their re-
lation to quantum output probabilities by Montanaro (2016b).

7 As discussed above, since Hadamard and Toffoli are computationally
universal (Aharonov, 2003; Shi, 2002), the acceptance probability of an
arbitrary polynomial-size computation can be expressed as the accep-
tance probability of such a circuit up to an error ε with an overhead of
polylog(1/ε). This means that we can obtain an O(2−poly(n)) approx-
imation of this acceptance probability. We will shortly come to a more
detailed discussion of such approximations and the question how hard it is
to compute them.

Notice that g′x is again a Boolean #P function. The sum (18)
can be viewed as the difference between the accepting paths
of the function g′x and its rejecting paths or, in other words, the
gap of that function. For a Boolean function f : {0, 1}n →
{0, 1} the gap is defined as

gap(f) = |{y : f(y) = 1}| − |{y : f(y) = 0}| , (23)

which we normalize to

ngap(f) =
1

2n
gap(f). (24)

This is why computing functions whose values can be writ-
ten as the gaps of #P functions is complete for a class called
GapP.

Definition 6 (GapP (Fenner et al., 1994)). Define the function
class GapP as the class of all functions f : {0, 1}∗ → Z for
which there exist g, h ∈ #P such that f = g − h.

Conversely, given a GapP function g : {0, 1}` →
{−2p(`), . . . , 2p(`)} for a polynomial p, we can find an n-qubit
quantum circuit Qg(x) with n ∈ poly(`) which has accep-
tance amplitude 〈0n|Qg(x)|0n〉 = g(x)/2n (Fenner et al.,
1998; Kondo et al., 2022). To see this, we observe that
for every GapP function g there is a polynomial-time com-
putable function G(x, y) such that g(x) = |{y ∈ {0, 1}p(|x|) :
G(x, y) = 1}| − |{y ∈ {0, 1}p(|x|) : G(x, y) = 0}|. With the
diagonal poly-size circuit Dx =

∑
y∈{0,1}n(−1)G(x,y)|y〉〈y|,

we then find that Qg(x) = H⊗nDxH
⊗n has acceptance am-

plitude g(x)/2n.
Altogether, we have found that acceptance probabilities of

a classical circuit are given by the fraction of accepting paths
of #P functions, while the acceptance probabilities of a quan-
tum circuit Cn can be expressed as the absolute value of the
normalized gap of a #P function f0 as

|〈0n|Cn|0n〉|2 = |ngap(f0)|2. (25)

How are GapP and #P related in terms of their computa-
tional complexity? We have already seen a simple mapping
between the two, which implies that computing GapP and
#P functions is equivalent under Cook reductions8 which we
write as

PGapP = P#P. (26)

So in this sense the two classes are very similar. But they ac-
tually turn out to be very distinct once we turn to the hardness
of approximating the respective sums (15) and (18) up to a
multiplicative error c.

8 We write a complexity class X in the exponent of another class Y to mean
that a machine in Y can call an oracle with access to a machine solving
arbitrary problems in the class X at unit time cost.
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D. Approximating GapP

Hereafter, we distinguish the following notions of approx-
imation: We say that for c ∈ (0, 1] an estimator s provides a
c-multiplicative approximation of the value S if

cS ≤ s ≤ S/c. (27)

We say that for r > 0 it is a r-relative approximation if

(1− r)S ≤ s ≤ (1 + r)S, (28)

and an ε-additive approximation for ε > 0 if

|S − s| ≤ ε. (29)

To intuitively see why there might be a difference in approx-
imability, notice that a #P sum over m-bit strings takes on
values between 0 and 2m. Typically, the values will therefore
be on the order of 2m so that a constant relative error is also
of that order. Conversely, GapP sums take on values between
−2m and +2m, but as the corresponding #P function takes on
an exponentially large value, the value of the GapP function is
the difference between two such exponentially large numbers.
This difference will in general be much smaller than each in-
dividual value so a relative error is, too.

Importantly, a relative-error approximation of a quantity is
guaranteed to have the correct sign. In contrast to relative-
error approximations of #P functions which always have a
positive sign, relative-error approximations of GapP function
therefore teach us nontrivial sign information. In fact, this
information is already sufficient to learn the exact value of
any GapP function up to arbitrary relative error.

Lemma 7 (Approximating GapP). Let f be a #P function.
Then approximating gap(f) up to any constant multiplicative
error is GapP-hard.

A detailed proof of Lemma 7 is provided, for example, by
Hangleiter (2021, Chapter 2.2). The basic idea is to use a
GapP oracle to iteratively compute the gap of a function fs
that is shifted compared to the gap of f by s2n. We can then
compare the signs of the two gaps and vary the value of s to
perform binary search.

For a function class X we define Apx·cX as the class of prob-
lems which can be solved by approximating

∑
x f(x) up to a

multiplicative error c for f ∈ X. We have now found that for
any c ∈ (0, 1)

PApx·cGapP = PGapP. (30)

The attentive reader will have noticed that in our discus-
sion of the hardness of approximating GapP using the sign
information we have glossed over the fact that, of course, ac-
ceptance probabilities of quantum circuits are non-negative.
And indeed, it seems unlikely that those acceptance probabil-
ities are hard to approximate up to any constant multiplicative
error.

Nevertheless, using a similar proof strategy one can prove
GapP-hardness of approximations for the square of the out-
put amplitudes of quantum circuits (Aaronson and Arkhipov,
2013; Fujii and Morimae, 2017; Goldberg and Guo, 2014;
Terhal and DiVincenzo, 2004). This strategy notices that not
only do multiplicative-error approximations get the sign cor-
rect, but certainly also the instances in which the true value is
exactly zero. What is more, there is a trivial additive-error ro-
bustness given by the spacing of the values of a (normalized)
#P function.

Lemma 8 (Approximating the absolute value of ngap). Let
f : {0, 1}` be a #P function. Then approximating ngap(f)2

up to

(a) any relative error ε < 1/2, or

(b) additive error 1/22n with n ∈ poly(`),

is GapP-hard.

Proof sketch. For part (b) we note that additive-error robust-
ness 1/22n is trivial since the spacing of the function ngap(f)
is given by 2/2n, i.e., twice the normalization of gap(f) in the
definition of ngap(f).

For part (a) of the proof we proceed similarly to the proof
of Lemma 7 above, following Bremner et al. (2016, Propo-
sition 8). The idea of the proof is to estimate ngap(f) by
using the fact that given a guess c, an algorithm that outputs
relative-error approximation to |ngap(f) − c| can certify the
correctness of c.

In the first step, we show that there is a polynomial-size
classical circuit C acting on p(`) + ` + 1 registers for some
polynomial p : N → N that computes a shifted function fc
such that ngap(fc) = (ngap(f) − c)/2 for some c ∈ [−1, 1]
such that c = 2k/2p(`) with k ∈ N. To this end we make
use of the following: for any polynomial p : N → N there
is a polynomial-size circuit Dc acting on p(`) registers com-
puting a function g such that ngap(g) = −c. Now consider
the polynomial-size circuit Qc acting on p(`) + ` + 1 regis-
ters which executes either C or Dc depending on the control
register. This circuit computes a function fc as desired.

Assume we have an efficient algorithm A that given a cir-
cuit C approximates ngap(fc) up to relative error ε < 1. On
input Qc this machine can certify whether ngap(f) = c. We
now use A to estimate ngap(f) using a sequence of guesses
c0, c1, . . . for its value, until we have found its exact value. At
each step, we have a guess ci for c, starting with c0 = 0. We
use A to output an estimate di to |ngap(f)− ci| and then ap-
ply it again to output an estimate d±i of |ngap(f)− (ci±di)|.
Define ci+1 = ci + di if d+

i ≤ d−i and as ci − di otherwise.
The algorithm acts contractively: Assuming c < ngap(f)

we find that an estimate d = (1 + γ)|c − ngap(f)| for some
|γ| < ε satisfies

|c+ d− ngap(f)| = |γ(ngap(f)− c)| ≤ ε|c− ngap(f)|,
(31)
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and a similar inequality holds for c− d if c > ngap(f). Con-
sequently, since ngap(f) is an integer multiple of 2/2n, if the
correct choice of c ± d is made in each step, the algorithm
halts after O(n) many steps.

It remains to be shown that the algorithm indeed halts after
O(n) steps. This can be seen from the equivalence

(1 + ε)|c+ d− ngap(f)| < (1− ε)|c− d− ngap(f)|
⇔ (1 + ε)|γ| < (1− ε)|2 + γ|, (32)

which holds for |γ| ≤ ε < 1/2. The same argument imme-
diately holds for |ngap(f)| as we have not used the sign of
ngap(f).

Given the mapping of gaps to output amplitudes of quantum
circuits described above, it therefore follows directly from
Lemma 8 that approximating the output probabilities of quan-
tum circuits is GapP.

Corollary 9 (Approximating output probabilities of quan-
tum circuits). Approximating the output probabilities
|〈0n|C|0n〉|2 of an n-qubit quantum circuit comprising m
gates is GapP-complete up to

(a) any relative error ε < 1/2, or

(b) exponentially small additive error 1/22n.

E. Approximating #P: Stockmeyer’s algorithm

For many #P-complete problems such as computing the
value of the permanent of a matrix taking values in {0, 1},
there are efficient randomized approximation schemes, in-
cluding the so-called fully polynomial randomized approxi-
mation scheme FPRAS (Jerrum et al., 2004). Many such
algorithms for approximate counting are based on Markov-
chain Monte Carlo methods (Jerrum and Sinclair, 1993; Jer-
rum et al., 1986). The property that those algorithms exploit
is the fact that each element of the sum (15) is non-negative.
Thus, the sum can be estimated by importance sampling,
that is, sampling its elements according to their (normalized)
weight in the sum. Insofar, the intricate sign structure of GapP
functions is what makes their relative-error approximation via
such sampling algorithms hard.

Going beyond specific algorithms, in this section, we will
get to know a powerful general result on the approximability
of such functions by a computationally restricted algorithm
with access to an NP oracle due to Stockmeyer (1983). Stock-
meyer’s algorithm is able to approximately count the number
of accepting paths of #P functions up to small multiplicative
errors even though it is not able to exactly compute this num-
ber. It thus provides a rigorous foundation for the distinction
between the approximability of GapP and #P. In the next
section, Section IV, we leverage the power of this algorithm
to derive rigorous separations between classical and quantum
sampling algorithms.

Before we are able to make those statements precise, how-
ever, we need to dive a little further into the depths of compu-
tational complexity theory and define what is called the poly-
nomial hierarchy. Stockmeyer’s algorithm lies in the third
level of the polynomial hierarchy. This class is much more
powerful than NP, but much less powerful than #P.

1. The polynomial hierarchy

We have already seen the most important classes in the the-
ory of computational complexity, namely, P and NP. It is no
exaggeration to say that the conjecture that P ( NP is in-
deed one of the if not the most tested and studied unproven
statement that scientists across a range of disciplines are con-
fident in. Among other things, this intuition rests on the pre-
sumed existence of problems whose solutions are hard to find
but easy to verify. In particular, the possibility of public-key
cryptography is based on the existence of such problems. It is
a generalization of this statement that forms the complexity-
theoretic grounding of claims to quantum supremacy. This
generalization posits that the levels of an infinite hierarchy
of complexity classes—the so-called polynomial hierarchy—
are strict subsets of one another. Considering hypothetical al-
gorithms within and outside of this hierarchy also allows us
to understand the computational complexity of approximating
#P functions.

Definition 10 (The polynomial hierarchy (Arora and Barak,
2009)). For i ∈ N0 a language L ⊂ {0, 1}∗ is in Σi if there
exists a polynomial q and a uniform polynomial-time circuit
family {Cn}n≥1 such that x ∈ L if and only if

∃u1 ∈ {0, 1}k ∀u2 ∈ {0, 1}k · · ·Qiui ∈ {0, 1}k :

C|x|(x, u1, . . . , ui) = 1, (33)

where k = q(|x|) and Qi denotes a ∀ or ∃ quantifier depend-
ing on whether i is even or odd, respectively. The polynomial
hierarchy PH is the set ∪iΣi.

Clearly Σi ⊂ Σi+1. Notice that NP= Σ1 since in its defini-
tion (3) there is only a single ∃ quantifier. We can then equally
characterize Σi as ΣNP

i−1, so in each level an additional NP-
oracle is added, see Figure 2. Intuitively, as we add alternating
∃ and ∀ quantifiers, the complexity of the problems solved by
the circuit family {Cn} strictly increases. Conversely, if two
levels of the hierarchy coincide then so will all other levels
above those. Indeed, it is a central conjecture that the polyno-
mial hierarchy is infinite, i.e., that every level strictly contains
the previous levels. Stated in other words, the conjecture is
that “the polynomial hierarchy does not collapse”.

2. Stockmeyer’s approximate counting algorithm

Indeed, it is no surprise that, given access to NP oracles one
can solve an enormously rich class of computational prob-
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Σ0 = P

Σ1 = NP

Σ2 = NPNP

...
∞
PH

P#P = PGapP

Figure 2 The polynomial hierarchy is a hierarchy of complexity
classes defined by adding consecutive NP oracles, where any layer
is presumed to strictly contain all lower-lying layers. Toda’s theorem
(Theorem 12) states that the polynomial hierarchy is contained in
P#P.

lems. Nevertheless, it is quite surprising that one can effi-
ciently approximate exponentially large sums up to any in-
verse polynomial multiplicative error. Stockmeyer’s approx-
imate counting algorithm (Stockmeyer, 1983) achieves this
task in a low level of the polynomial hierarchy—the third
level. We are now ready to state this result.

Theorem 11 ((Aaronson and Arkhipov, 2013; Stockmeyer,
1983)). Given a Boolean function f : {0, 1}n → {0, 1}, let

p = Pr
x∈{0,1}n

[f(x) = 1] =
1

2n

∑
x∈{0,1}n

f(x) . (34)

Then for all c ≥ 1 + 1/poly(n), there exists an FBPPNP

machine9 that approximates p to within a multiplicative factor
of c.

See (Trevisan, 2008) and (Hangleiter, 2021, Chapter 2.3)
for a sketch of the proof. Theorem 11 characterizes the com-
plexity of approximately counting up to an inverse polynomi-
ally small multiplicative error: Since BPP ⊂ Σ2 (Lautemann,
1983) and therefore BPPNP ⊂ Σ3, this task lies within the
third level of the polynomial hierarchy. But where does this
complexity class lie in relation to exactly computing a #P
sum? For the answer, we refer to a final fact in complexity
theory, namely that exactly computing #P functions lets one
solve any task in PH.

Theorem 12 (Toda’s theorem (Toda, 1991)).

PH ⊂ P#P. (35)

9 FBPP is the function-class equivalent of the decision class BPP, that is,
the class of functions computable in probabilistic polynomial time with
bounded failure probability.

The complexity of counting #P sums is therefore signifi-
cantly easier when considering multiplicative approximations
as opposed to exact computation. Conversely, we have al-
ready seen above in Eq. (26) and Lemma 7 that GapP does not
change its complexity under multiplicative approximations so
that the following inclusions hold

PApx·c#P ⊂ Σ3 ( PH ⊂ PGapP = PApx·cGapP, (36)

for any constant c > 0, since PGapP = P#P ⊃ PH. The
separation Σ3 ( PH marks the conjectured non-collapse of
the polynomial hierarchy to any finite level. The same inclu-
sions hold true when restricted to GapP-functions with non-
negative gap for values of c < 1/2.

We have now carved out a substantial difference in com-
plexity between quantum and randomized classical algorithms
in terms of the computational complexity of approximating
the respective acceptance probability to high precision. To de-
scribe quantum acceptance probabilities, negative signs are re-
quired and hence they are GapP-hard to approximate up to rel-
ative error. Conversely, classical acceptance probabilities can
be expressed as sums over nonnegative numbers and hence
approximating them up to relative error is in the class Σ3. Let
us stress again that neither the quantum nor the classical algo-
rithm should be able to multiplicatively approximate the re-
spective acceptance probabilities because the classes Σ3 and
GapP are not expected to be contained in BPP and BQP, re-
spectively. Nevertheless, this difference in complexity serves
as an important tool using which we can amplify harder-to-
pin-down differences in the runtime of actual classical and
quantum algorithms. Following this route, we will arrive at
a (conditional) exponential separation for sampling tasks.

IV. COMPUTATIONAL COMPLEXITY OF QUANTUM
RANDOM SAMPLING

A. Sampling versus approximating outcome probabilities

Our goal in this section is to prove not only that there is an
exponential quantum/classical divide in approximating output
probabilities of computations, but also that this divide reap-
pears when it actually comes to performing such computa-
tions, that is, perform the corresponding sampling. Random-
ized algorithms indeed seem to be the perfect playground,
where we might see a quantum advantage since any quantum
computation naturally produces random samples from the dis-
tribution determined by the Born rule, while classical random-
ized algorithms require external randomness.

In order to make a rigorous statement about randomized
computations, we consider the task of sampling from a given
distribution, not caring about a specific outcome of the com-
putation. To be able to apply the machinery of complexity
theory and Stockmeyer’s algorithm in particular, it in addition
proves useful to consider the task of sampling from randomly
chosen quantum computations.
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The key idea that we use to make a rigorous statement
about the complexity of classical and quantum sampling is
to relate the task of sampling from a distribution to com-
puting its output probabilities. In doing so, we leverage
the complexity-theoretic difference between computing clas-
sical and quantum output probabilities to classical and quan-
tum sampling. The key technical ingredient when doing so
is Stockmeyer’s algorithm. We observe that Stockmeyer’s
counting theorem (Theorem 11) can be directly applied to esti-
mating the acceptance probability, and in fact all output prob-
abilities, of so-called derandomizable sampling algorithms,
which are deterministic algorithms with random inputs as dis-
cussed above (cf. Aaronson and Arkhipov, 2013, Def. 3.11
and the proof of Thm. 1.1).

Definition 13 (Derandomizable sampling). A derandomizable
sampling algorithm is an algorithm A that takes as an input
a particular instance y ∈ {0, 1}n of a problem, as well as
a uniformly random string r ∈ {0, 1}poly(|y|) and outputs a
random bit string x = A(y, r) distributed according to

py(x) = Pr
r

[A(y, r) = x] . (37)

If A is such a derandomizable algorithm we can use Stock-
meyer’s algorithm to estimate its output probabilities (37). To
do so, we define its input function as

fy : {0, 1}poly(|y|) → {0, 1}

r 7→
{

1 if A(y, r) = x

0 else
.

(38)

The output of Stockmeyer’s approximation algorithm will
then be a 1− 1/poly(|y|)-multiplicative approximation to the
probability py(x). This provides the sought for connection be-
tween sampling and approximation of probabilities that forms
the basis of the proofs of sampling hardness below.

B. Strongly simulating quantum computations

For the specific schemes presented in Section II, approxi-
mating the output probabilities is in fact a GapP-hard task and
thus just as hard as for arbitrary quantum computations. Gen-
erally, and this is in particular true for universal random cir-
cuits, the output probabilities of a circuit family C are GapP-
hard to approximate if the circuit family generates the whole
of BQP after so-called postselection (Fujii and Morimae,
2017). In a postselection argument we compare two proba-
bilistic complexity classes by granting ourselves the ability to
restrict attention to a certain subset of desired outcomes even
if that subset has exponentially small probability. A postse-
lected class postA is defined as a class of decision problems
which we can solve by using a computation within A and post-
selecting on certain outcomes with a bounded error (Fujii and
Morimae, 2017).

Definition 14 (Postselected class (Fujii and Morimae, 2017)).
A language L is in the class postA if there exists a uniform

family of circuits {Cx} associated with A for which there are
a single output register Ox and a poly(|x|)-size postselection
register Px such that

i. if x ∈ L then Pr(Ox = 1|Px = 00 . . . 0) ≥ 2/3, and

ii. if x /∈ L then Pr(Ox = 1|Px = 00 . . . 0) ≤ 1/3 .

Aaronson (2005) showed that postBQP = PP, where PP is
the decision-problem equivalent of #P which asks whether at
least half of the inputs are accepted. This implies PpostBQP =
PPP = P#P ⊃ PH. Building on this result, Fujii and Morimae
(2017) have demonstrated that if postA = postBQP then a
machine that approximates the output probabilities of circuits
associated with A up to a multiplicative error 1/

√
2 < c < 1

can be used to decide any problem in PP and hence any prob-
lem in GapP. This is because the postA = postBQP condi-
tion ensures that A is rich enough to encode the output proba-
bilities of arbitrary quantum computations and hence gaps of
#P functions.

Taking a different perspective, one can show that the output
probability of a universal quantum circuit can encode hard in-
stances of the Jones polynomial (Goldberg and Guo, 2014;
Kuperberg, 2015; Mann and Bremner, 2017) as well as Tutte
polynomials (Goldberg and Guo, 2014; Kuperberg, 2015) and
certain Ising model partition functions (Boixo et al., 2018;
Bremner et al., 2016). In particular, estimating those quan-
tities up to a relative error 1/4 + o(1) is #P-hard.10 Express-
ing the output probabilities in terms of such quantities, which
have been studied in detail in the literature, will also prove
to be extremely useful once we get to approximate sampling
hardness.

Similarly, the output probabilities of several restricted
quantum computational models including the ones discussed
above, can be expressed in terms of universal quantities which
are GapP-hard to approximate (Bermejo-Vega et al., 2018;
Bouland et al., 2018; Fefferman and Umans, 2015; Fujii et al.,
2018; Gao et al., 2017; Miller et al., 2017; Morimae, 2017;
Morimae et al., 2014; Yoganathan et al., 2019). In the follow-
ing, we illustrate how this is achieved using the paradigmatic
schemes introduced in Section II.

1. IQP circuits

As a particularly neat example of such reasoning, for IQP
circuits, one finds that postIQP = postBQP.11 What is more,
for IQP circuits defined by a weighted adjacency matrix W

10 Notice that achieving a relative error 1/4+o(1) is slightly more demanding
than a multiplicative error 1/

√
2.

11 This can be shown using a gadget to implement the Hadamard gate via tele-
portation, the idea being that what IQP circuits are lacking for universality
is the possibility to switch between X and Z bases. By measuring a single
output line one can teleport a Hadamard gate to an arbitrary position in the
circuit using gate teleportation (Bremner et al., 2016; Montanaro, 2016b).
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(cf. Eq. (6)) the output amplitude

〈0|CW |0〉 =
1

2n
ZW , (39)

can be expressed as an imaginary-temperature partition func-
tion of an Ising model (Bremner et al., 2016; Fujii and Mori-
mae, 2017)

ZW =
∑

z∈{±1}n
exp

i

(∑
i<j

wi,jzizj +
∑
i

wi,izi

) . (40)

An analogous reduction can be made for the universal cir-
cuits of Boixo et al. (2018, SM III.B) with CZ gates. The
modulus square |ZW |2 of such partition functions has been
shown to be GapP-hard to approximate up to a relative er-
ror 1/4 + o(1) (Fujii and Morimae, 2017; Goldberg and Guo,
2014).

For an IQP circuit Cf defined by a Boolean degree-3 poly-
nomial f with coefficient vectors α, β, γ (cf. Eq. (5)), one
finds that the all-zero amplitude is given by the gap of f 12

〈0|H⊗nCfH⊗|0〉 =
1

2n

∑
x,y

〈y|Cf |x〉

=
1

2n

∑
x

(−1)f(x) = ngap(f). (44)

We have already seen above that approximating the gaps of
arbitrary #P functions f up to multiplicative errors 1/

√
2 is

GapP-complete. This remains true when restricting the func-
tion f to a degree-3 Boolean polynomial over the field F2,
since IQP-circuits are universal with postselection (Bremner
et al., 2016).

2. Fock boson sampling

The output distribution Pbs,U of a Fock boson sampling ex-
periment (cf. Eq. (8)) can be expressed as (Scheel, 2008)

Pbs,U (S) =
|Perm(US,1n)|2∏m

j=1(sj !)
, (45)

in terms of the permanent of the matrix US,1n ∈ Cn×n which
can be obtained from U according to the following prescrip-
tion. Define the submatrix US,S′ with S, S′ ∈ Nm as follows:
for all j, k ∈ [m] = {1, 2, . . . ,m}, keep a matrix comprising
Sj copies of the jth row of U , and now write S′j copies of the

12 To see this, notice that

Zi|x〉 = (−1)xi , (41)

CZi,j |x〉 = (−1)xixj , (42)

CCZi,j,k|x〉 = (−1)xixjxk . (43)

(a) (b)
|S〉〈1n|

1
1

0
0

0
0

1 1 0 0 0 0

US,1n

|S〉〈1k |

1

1
1

0
0

0
1 1 1 1 0 0

US,1k

US,1k

T1 1 1 1 0 0

US,1k

US,1k

Figure 3 (a) The output probabilities of Fock boson sampling (45)
can be expressed as the modulus squared of the permanent of a sub-
matrix US,1n of the Haar-random unitary U constructed by discard-
ing rows and columns according to the outcome and input registers
|S〉 and |1〉k. (b) Analogously, the output probabilities of Gaussian
boson sampling (54) with squeezed state inputs on k modes are pro-
portional to the modulus squared of the Hafnian of US,1kU

T
S,1k

.

kth column of that matrix into US,S′ , see Fig. 3(a). For so-
called collision-free outcomes S ∈ Φm,n, that is, outcomes
with only 0 and 1 entries, US,1n is therefore a certain subma-
trix of U . The permanent of a matrix X = (xj,k) ∈ Cn×n is
defined analogously to the determinant but without the nega-
tive signs as

Perm(X) =
∑

τ∈Symn

n∏
j=1

xj,τ(j), (46)

where Symn labels all permutations of the set [n] =
{1, 2, . . . , n}.

It is a well-known fact that computing the permanent of a
matrix is a problem that is #P-hard even when restricting to
binary matrices (Valiant, 1979). At the same time, its close
cousin, the determinant, can be exactly computed in polyno-
mial time. Aaronson and Arkhipov (2013, Thm. 4.3) extend
this famous result of Valiant (1979) to approximations of the
modulus squared of the permanent up to multiplicative errors.
More precisely, they show that for any c ∈ [1/poly(n), 1],
approximating Perm(X)2 up to multiplicative error c for
X ∈ Rn×n remains GapP-hard by a reduction similar to
the one used to prove Lemma 7 on multiplicative-error GapP-
hardness of computing the modulus of the gap of a #P func-
tion.

3. Gaussian boson sampling

Similarly, the output distribution of Gaussian boson sam-
pling (cf. Eq. (9)) can be expressed as (Hamilton et al., 2017;
Kruse et al., 2019)

PGbs,U (S) = det(σQ)−1/2 Haf(MS)∏m
j=1(sj !)

, (47)

in terms of the so-called Hafnian of a matrix MS constructed
as follows. Let σ ∈ C2m×2m be the covariance matrix13 of the

13 See the textbook by Kok and Lovett (2010) for an introduction to
continuous-variable quantum information processing.
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Gaussian state ϕ(U)|g〉 prior to the measurement and σQ =
σ + 12m/2. Set

M =

(
0m 1m

1m 0m

)(
12m − σ−1

Q

)
, (48)

where 1m denotes the m × m identity matrix. Analogously
to how we construct a submatrix US,S′ from U , we obtain the
submatrix MS of M as follows: for every j ∈ [m], MS com-
prises Sj copies of the j-th and m + j-th row and column of
M , respectively, see Fig. 3(b). Hence, if n =

∑
j Sj-many

photons are detected, then MS is a symmetric 2n × 2n com-
plex matrix. Like the permanent, the Hafnian of a matrix is a
certain polynomial in its matrix entries and defined for a ma-
trix A ∈ C2n×2n as

Haf(A) =
∑

σ∈PMP(2n)

n∏
j=1

Aσ(2j−1),σ(2j), (49)

where PMP(2n) is the set of all perfect matching permutations
of 2n elements, that is, permutations σ : [2n] → [2n] that for
every i satisfy σ(2i− 1) < σ(2i) and σ(2i− 1) < σ(2i+ 1)
(Barvinok, 2016a). In particular, the permanent of A can be
written as a special case of the Hafnian as

Perm(A) = Haf

[(
0 A
AT 0

)]
, (50)

and hence approximating the Hafnian is at least as hard as ap-
proximating the permanent, namely GapP-hard, in the worst
case.

The output probabilities of Gaussian boson sampling take
a particularly simple form if the input state |g〉 is a prod-
uct of single-mode squeezed states with squeezing parame-
ters ri, which is the setting that has been studied in experi-
ments (Zhong et al., 2021, 2020). In this case, the covariance
matrix σ of the Gaussian state before detection can easily be
derived to be given by

σ =
1

2

(
U 0
0 U∗

)
ΣΣ†

(
U† 0
0 UT

)
, (51)

with U ∈ U(m) the Haar-random unitary transformation of
the input modes, and

Σ =

(
⊕mi=1 cosh(ri) ⊕mi=1 sinh(ri)
⊕mi=1 sinh(ri) ⊕mi=1 cosh(ri)

)
. (52)

The output probabilities can then be written in terms of the
matrix A = U(⊕mi=1 tanh(ri))U

T as

PGbs,U (S) =
1∏m

j=1 cosh(rj)
|Haf(AS,S)|2 , (53)

recalling the definition of AS,S′ from Section IV.B.2; see also
Fig. 3(b). These probabilities take a particularly simple form
whenever k out of the m modes are prepared in single-mode
squeezed states with uniform squeezing parameter r and the
other m − k modes are prepared in the vacuum state. In this
case

PGbs,U (S) =
tanhk(r)

coshk(r)

∣∣Haf(US,1kU
T
S,1k

)
∣∣2 . (54)

C. Hardness argument

We are now in the position to prove that under certain con-
ditions on the quantum circuit family C, sampling from the
output distribution of a random instance C ∈ C cannot be
done in classical polynomial time in the size of C, i.e., poly-
nomial in the number of qubits. The idea of the proof is to
exploit the fact that approximating output probabilities of uni-
taries in C is GapP-hard. In contrast, if there was an efficient
(derandomizable) sampling algorithm for a random C ∈ C
then we could approximate its output probability using Stock-
meyer’s algorithm. But because Stockmeyer’s algorithm lies
in the third level of the polynomial hierarchy, the existence of
such an algorithm implies that Σ3 ⊃ PGapP ⊃ PH—the poly-
nomial hierarchy collapses to its third level. Assuming the
generalized P 6= NP conjecture that the polynomial hierarchy
is infinite, this rules out the existence of an efficient sampling
algorithm for circuits from C. In the following we present this
argument, which is due to Bremner et al. (2010, 2016) and
Aaronson and Arkhipov (2013), in detail.

1. Exact sampling and worst-case hardness

We formalize the idea sketched above in the following the-
orem.

Theorem 15 (Exact sampling hardness). Let C be a family of
quantum circuits such that there exists a constant c ∈ (0, 1] for
which approximating the output probabilities up to multiplica-
tive error c is GapP-hard. If there was an exact derandomiz-
able sampling algorithm for circuits in C then the polynomial
hierarchy would collapse to its third level Σ3.

Proof. Suppose there is a derandomizable sampling algorithm
A that, given as an input a description of a circuit C ∈ C
could efficiently sample from its output distribution p(C) as
defined in Eq. (1). Then we can apply Stockmeyer’s algo-
rithm (Theorem 11) to the function fC defined in Eq. (38).
In time poly(1/c) and within the third level Σ3 of the poly-
nomial hierarchy, the output of this procedure will produce a
multiplicative-error estimate q0(C) of the output probability
p0(C) that satisfies

p0(C)c ≤ q0(C) ≤ p0(C)/c. (55)

But since approximating p0(C) is a GapP-hard task by as-
sumption, this implies that the polynomial hierarchy collapses
to Σ3.

Notice two important subtleties of the argument: In order
to prove exact sampling hardness, it is crucial that the output
probabilities are not only GapP-hard to compute exactly but
even to approximate up to some constant relative error; see
Fig. 4. Meanwhile, it is sufficient for exact sampling hard-
ness that there is no algorithm which efficiently computes all
instances of the output probabilities. In other words, the ar-
gument relies on worst-case hardness of approximating the
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Hardness of ex-
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Figure 4 In the proof of Theorem 15 the idea is to relate the hard-
ness of approximating the probabilities in a distribution to the hard-
ness of exactly sampling from that distribution.

output probabilities since a single “hard instance” is sufficient
for it.

What happens, though, once the sampling algorithm is al-
lowed to make some error as compared to the ideal target dis-
tribution? Indeed, while an ideal quantum device samples
from the ideal distribution no such device can exist. Every
physical realization of the ideal model, be it in terms of a clas-
sical simulation algorithm, or a quantum implementation, will
inevitably lead to errors so that it is only able to approximately
sample from the target distribution. Such errors may be due to
finite precision issues intrinsic to computation, or noise in the
physical implementation of quantum random sampling using
near-term quantum devices.

Does hardness of sampling still hold in the presence of er-
rors on the sampled distribution? And if so, what types and
magnitudes of errors are tolerated?

2. Multiplicative-error sampling hardness

As a first step, and quite naturally, the proof of sampling
hardness can be extended from exact sampling, to sampling
from a probability distribution p that is multiplicatively close
to the target distribution p(C) in the sense that for some con-
stant d ∈ (0, 1] each probability px satisfies

dpx(C) ≤ px ≤ px(C)/d. (56)

We can then easily amend the proof of Theorem 15 for this
case to prove multiplicative-error robustness.

Multiplicative-error robustness of Thm 15. Assume there is
an efficient classical sampling algorithm A that achieves the
following task: Given as an input a description of a circuit
C ∈ C produce a sample from a probability distribution p
that approximates the distribution p(C) defined in Eq. (1) up
to a multiplicative error d as in Eq. (56). Then we can use
Stockmeyer’s algorithm to generate an approximation q0 of
the output probability p0 that is correct up to any constant
multiplicative error c

cp0 ≤ q0 ≤ p0/c. (57)

But the probability p was multiplicatively close to the ideal
output probability p0(C) to begin with so that we obtain

cdp0(C) ≤ cp0 ≤ q0 ≤ p0/c ≤ p0(C)/(cd), (58)

that is, an overall multiplicative-error approximation to the
probability p0(C) with constant multiplicative error cd. If c

and d are chosen such that the probability p0(C) is GapP-hard
to approximate up to multiplicative error cd the existence of
an efficient sampling algorithm with multiplicative error guar-
antee cd implies the collapse of the polynomial hierarchy.

3. From multiplicative to additive errors

We saw in our discussion about the approximability of
GapP how extraordinarily demanding multiplicative errors are
in the guise of Lemma 7. There, we used that such approxi-
mations always preserve the sign of a quantity and, moreover,
attain 100% accuracy if the quantity is 0. Similarly, for the
sampling task, there is no difference in complexity when al-
lowing for constant multiplicative errors compared to the ex-
act case. And indeed, to satisfy such a notion of approxima-
tion, an algorithm would need to account for the size of all of
the exponentially many probabilities, some of which may be
computer-precision close to zero to begin with. While this no-
tion of approximation may be achievable using a fault-tolerant
quantum device, and a computation using ultra-high precision
that scales with the system size, this state of affairs seems im-
plausible in practice.

What is a more plausible notion of approximation then? In
the following, we consider approximations q to a target distri-
bution p in terms of the total-variation distance (TVD)

‖p− q‖TV =
1

2

∑
x

|p(x)− q(x)| (59)

between p and q. The TVD measures the maximal distin-
guishability of two probability distributions in terms of the
optimal distinguishing strategy (Watrous, 2018) and is there-
fore a natural measure of statistical distance. But why is the
TVD a sensible measure to consider when consider quantum
advantage via quantum random sampling? While the answer
to this question is not entirely clear, there are several argu-
ments that one might make.

a. Why the total-variation distance? The first argument argues
from the perspective of classical simulation algorithms. In-
deed, a fundamental notion of imprecision of a randomized
algorithm, such as sampling algorithms, is given by additive
errors. To see why, observe that a classical computer makes
use of a constant precision representation of numbers. This
gives rise to an additive error on all computations that is expo-
nentially small in the number of digits of the representation.
Going a step further, imperfections in an algorithm often give
rise to additive errors on the result. One may therefore argue
that the precision that is achievable by classical algorithms is
fundamentally—and often in practice—just an additive error,
and the TVD is a natural way of capturing this error. At the
same time, this line of reasoning implies that the precision of
computing individual probabilities in the process of sampling
(see Section IV.A for details) needs to scale with the size of
the system.
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The second argument argues from the perspective of the
noisy quantum device. This argument observes that any de-
vice error is reflected in an additive error on the distribution.
To see this, we observe that for both coherent and incoherent
errors, we can write an erroneously prepared quantum state ρε
as a convex mixture of the target state ρ = U |0〉〈0|U† and
some other quantum state σ orthogonal to it as

ρε = (1− ε)U |0〉〈0|U† + ε σ. (60)

Consequently, the output distributions of the noisy and ideal
states when measured in the standard basis, p(ρ) and p(ρε),
satisfy

‖p(ρ)− p(ρε)‖TV =
1

2

∑
x

|px(ρ)− px(ρε)| (61)

≤ 1

2
max
{Mx}x

|Tr[(ρ− ρε)Mx] (62)

= ‖ρ− ρε‖Tr = ε, (63)

where the maximization runs over arbitrary positive operator-
valued measures (POVMs) {Mx}x. Here, we have defined the
trace distance ‖ · ‖Tr which is identical to the TVD for diag-
onal quantum states. The trace distance, analogously to the
TVD, measures the maximal distinguishability of two quan-
tum states in terms of the optimal quantum distinguishing
strategy (Watrous, 2018). Since the trace distance maximizes
over all possible measurement strategies, it upper-bounds the
TVD between the outcome distributions, which is given by
fixing a measurement basis.

However, it is important to note that trace or total-variation
distance are not good models of physically realistic errors oc-
curing on a noisy quantum device. Such errors—like the im-
precision of classical computers—are independent of the size
of the system. Hence, as constant local gate errors occur in
a quantum circuit, the trace distance of its output state scales
linearly in the number of gates which quickly increases to a
trivial value. In order to make TVD meaningful from the per-
spective of a noisy quantum device we thus need to scale down
the local errors as we scale up the circuit size.

Finally, as we will see, it turns out that the TVD arises nat-
urally when considering exact sampling algorithms that work
only in the average case. Since average-case algorithms are
natural for random quantum circuits, this provides further jus-
tification for the TVD. Compared to other statistical distances
such as the Kullback-Leibler (KL) divergence, the TVD also
turns out to be the measure that is amenable to the proof tech-
nique which we present in detail in the following.

To summarize this discussion, the TVD is a notion of ro-
bustness for both classical and near-term quantum algorithms
solving the sampling task. The smallest meaningful, and non-
trivial notion of approximation may be to consider the task of
sampling up to constant TVD. This only requires relatively
mild error or precision scalings of the individual components
of the respective algorithms on the order of 1/m. Of course,
such scaling of local algorithmic errors is already extremely
demanding, however.

b. Showing TVD robustness. In the following, we consider the
task of sampling from a distribution q that is ε-close to a target
output distribution p(C) of a quantum circuit C in the sense
that

‖p(C)− q‖TV ≤ ε. (64)

Our goal is to show that this task is hard for classical com-
puters. Compared to exact and multiplicative-error sampling
hardness, this endeavour is faced with the challenge that as
ε increases, so does the legroom for classical simulation: to
show hardness we have to prove that sampling from any dis-
tribution within an ε TVD neighborhood of the target distribu-
tion is classically intractable. We are faced with a dramatically
increased burden in the proof as hardness needs to be shown
for an entire volume of probability distributions rather than a
single point. Importantly, as ε → 1 the output state of the
computation becomes classically simulable as, in particular,
the uniform distribution is always within this error bound of
the target distribution. But the uniform distribution is easy to
sample from even on an exponentially large sample space by
repeated unbiased coin tosses.

Given what we have seen so far, there is a fundamental dis-
crepancy between how the proof of exact sampling hardness
can naturally be made robust to noise and the errors that nat-
urally occur in realistic settings. The discrepancy is one be-
tween the utterly unrealistic notion of multiplicative errors on
all probabilities and the more realistic notion of additive er-
rors on the global outcome distribution. The question we will
focus on now is whether we can overcome this hurdle?

In technical terms, what we would like to prove is that no
efficient classical algorithm A taking as an input an efficient
description of C exists that samples from any distribution q
such that ‖q − p(C)‖TV ≤ ε for a constant ε > 0. Again,
we will make use of Stockmeyer’s approximate counting al-
gorithm with a derandomizable sampling algorithm as an in-
put in order to take the step from hardness of approximating
probabilities. So how can we take the leap from proving ro-
bust hardness-of-sampling results for multiplicative to ones
for additive errors?

To approach an answer to this question let us conceive of
the sampling algorithm A as an adversarial party that, given
U as an input, tries to adversarially obstruct the approximate
counting algorithm in its goal to approximate specific proba-
bilities. The adversarially acting sampling algorithm is, how-
ever, constrained to sample from a distribution satisfying the
respective error bounds. A few observations regarding the na-
ture of additive errors in contrast to multiplicative ones are
instructive.

1. When the sampling algorithm is constrained to multi-
plicative errors on individual probabilities, the total ad-
ditive error it can make depends strongly on the shape
of the distribution. In particular, every individual prob-
ability will be correct up to an error that depends on its
size. In contrast, the additive-error constraint allows the
adversarial party much more flexibility. An additive er-
ror can be viewed as a total error budget that may be
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distributed across the individual probabilities at will. In
particular, a few probabilities can come with large (rel-
ative) errors supposing that the other ones are correct up
to a very small additive error.

2. When proving multiplicative-error robustness, the
shape and volume of the region in the space of probabil-
ity distributions on a sample space Ω of which hardness
is proven depend heavily on the specific shape of the
distribution. In contrast, for additive-error robustness
volume and shape of this region are only sensitive to
boundaries of Ω.

3. Approximating output probabilities of quantum compu-
tations up to an inverse polynomial additive error does
not remain hard for GapP but only for BQP (De las
Cuevas et al., 2011, Thm. 3). Only for inverse expo-
nentially small additive errors±1/2n those approxima-
tions become again GapP-hard. This is easily seen us-
ing the fact that normalized gaps of Boolean functions
acting on {0, 1}n only take on values that are integer
multiples of 2/2n. Approximating those gaps up to an
additive error< 1/2n is therefore just as hard as exactly
computing them.14

What can we take away from those observations? Point 3
implies that to prove a polynomial-hierarchy collapse via
Stockmeyer’s algorithm, we must still rely on the hardness
to approximate output probabilities of circuit families up to
relative errors or exponentially small additive errors.

Points 1 and 2 shine light on two sides of the same coin.
In contrast to the case of multiplicative robustness, we cannot
rely on the hardness of estimating individual probabilities that
might be very small. In particular, it cannot be the case that
only one of the circuits within C has a single output probability
on which all classical algorithms fail. Instead, we must rely
on circuit families for which not only single outcome proba-
bilities of some members of the family are hard to compute,
but rather a large—constant—fraction of all output probabili-
ties of the circuit family must be hard to compute. This idea
is formalized within the notion of average-case complexity:
Approximating the outcome probabilities of quantum circuits
must be hard for a large fraction of the instances, where an
instance is defined by a specific quantum circuit.

In particular, average-case complexity therefore requires
that not all but very few of those hard probabilities can be tiny,
i.e., smaller than, say, doubly exponentially small while very
few large ones are easy to approximate. Indeed, if this were
the case, since tiny quantities have tiny relative errors, the ad-
versarially acting sampling algorithm could easily distribute
the better part of its constant error budget on the few large
probabilities but at the same time still pass the relative-error
threshold on the tiny probabilities. In this way they would

14 See also the Supplementary Material of Bremner et al. (2016).

meet the constraint imposed by the global additive error, but
not achieve a provably hard task as the error on the computa-
tionally intractable probabilities would be too large. Rather,
there must be a large fraction of hard instances that are rea-
sonably large, say, at least as large as uniform probabilities
∼ 1/|Ω| on the sample space Ω. This idea is formalized
within the notion of anticoncentration, which is a condition
on the probability that a randomly drawn problem instance—
again, specified by a circuit and an outcome string—is reason-
ably large. Anticoncentration constrains how the adversarial
player can distribute their error budget: they can choose be-
tween getting many probabilities right with tiny errors, but
making larger errors on a few outcomes, say, inverse polyno-
mial errors on polynomially many probabilities, or getting all
probabilities right with reasonably small inverse exponential
errors. These observations have been made by Aaronson and
Arkhipov (2013) who observed that the natural problem in bo-
son sampling, namely, computing a permanent, is an average-
case hard problem.

In the discussion above, we have been touching upon on a
point that we had glossed over in our discussion of exact sam-
pling hardness: it is key to random circuit sampling schemes
that there are two notions of probability at play. First, there is
the random choice of a circuit from the family C, and second,
there is the random choice of an outcome string S that is dis-
tributed according to p(U). Equally, there are two probabil-
ity distributions—the distribution according to which random
circuits are drawn, and the outcomes distribution of each such
random circuit. These notions are crucially distinct.

As we will see, the choice of random circuit instances is
essential to providing evidence for the additive-error robust
hardness of simulating quantum circuits. The second notion
of probability is intrinsic to our choice of problem. In the end,
we aim to prove hardness of a sampling task. This is a task
requiring randomness: we want to obtain a random sample
from a distribution that we, in turn, chose at random from
another ensemble.

4. Additive-error sampling hardness

Given average-case hardness of approximating the output
probabilities, we can prove a hardness-of-sampling result that
is robust to constant additive errors. We proceed analogously
to the proof of multiplicative robustness, following the sketch
in Fig. 5.

Additive-error robustness of Thm 15. Assume there is an effi-
cient, derandomizable classical algorithm that takes as an in-
put a description of a circuit instance C from a family C and
outputs samples distributed according to a probability distri-
bution p that satisfies

‖p− p(C)‖TV ≤ ε. (65)

Here, p(C) is the ideal target distribution defined in Eq. (1).
We want to use this sampling algorithm in order to approxi-
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Figure 5 Outline of the proof strategy for additive-error sampling
hardness: a derandomizable sampling algorithm A, given C as an
input, samples from a distribution p that is ε-close in total-variation
distance (TVD) to the target distribution p(C). Using Markov’s in-
equality and the hiding property this implies that the output proba-
bility p0 of p is within additive error 2ε/(2nδ) of the ideal output
probability p0(C) with probability at least 1− δ. Given A as an in-
put, Stockmeyer’s algorithm can infer a 1/poly(n)-multiplicative ap-
proximation q0 of the approximate output probability p0 in the third
level of the polynomial hierarchy.

mate a random problem instance as given by the output prob-
ability p0(C) = |〈0|C|0〉|2 of C.

According to Task 1, we generate an instance by drawing
C ∈ C at random. To estimate the value of this instance, we
use Stockmeyer’s approximate counting algorithm with input
given by the algorithm A, the circuit instance C, and the out-
come string 0n. Using access to its NP oracle, Stockmeyer’s
algorithm will output a multiplicative-error approximation q0

of the noisy output probability p0 satisfying

|q0 − p0| ≤ cp0, (66)

in time poly(n, 1/c) within the third level Σ3 of the polyno-
mial hierarchy.

Our goal is to bound the error

|q0 − p0(C)| ≤ |q0 − p0|+ |p0 − p0(C)|. (67)

Eq. (66) already provides the first half of this bound. For the
second bound we need to leverage the total-variation-distance
bound (65) on the global distributions p and p(C) to an error
bound on the individual probabilities p0 and p0(C).

To obtain such a bound, consider again the sampling algo-
rithm A. Remember that qua being a derandomizable algo-
rithm, on input U, r with uniformly random r ∈ {0, 1}poly(n)

it will output a random sample from p so that

px(C) = Pr[C outputs x], (68)
px = Pr

r
[A outputs x on input C]. (69)

Acting adversarially, the algorithm A wants to maximize the
error |p0 − p0(C)|. To do so, it needs to have some prior in-
formation about which of the outcome strings are more likely
to be queried in Stockmeyer’s algorithm given a certain input
C so that it can distribute more of its constant error budget on
those outcomes. Such information would manifest itself in a
distribution of outcomes x that is non-uniform—and in fact
concentrated on the single all-zero outcome—from the per-
spective of A given C (Aaronson and Arkhipov, 2013, p. 51).
This is because the all-zero outcome is the one we are always
interested in. But if it was able to distribute all of its constant
error budget on this single outcome, then it would not be able
to achieve a hard task, which is what we are trying to show.

a. Hiding problem instances. To see how we can achieve that
this distribution over outcomes is not biased towards a few
outcomes but uniform over all outcomes, consider the distri-
bution over circuits Cy obtained by drawing C ∈ C at random
and then appending X gates Xy1

1 ·Xy2
2 · · ·Xyn

n for uniformly
random y ∈ {0, 1}n to the end of the circuit (Bremner et al.,
2016). We can then re-express the outcome probabilities of
Cy as

px(Cy) = |〈x|Cy|0〉|2 = |〈0|Cx⊕y|0〉|2 = p0(Cx⊕y). (70)

Consequently, the very same problem instance C can be
equivalently obtained when providing the adversary A with
an instance Cy for uniformly random y and then querying
Stockmeyer’s algorithm on the outcome y. When aiming to
estimate the problem instance p0(C) we can therefore hide
the instance C in the circuit Cy by randomly appending X
gates according to a uniformly random y, and then querying
Stockmeyer’s algorithm on outcome y. But since y is hidden
fromA, the distribution over outcomes on which we are going
to query Stockmeyer’s algorithm to obtain the output proba-
bility is uniformly random, and it cannot bias its error towards
any given outcome.

For this to work, it is of course crucial thatA cannot distin-
guish whether we have directly generated a random problem
instance C for which we are directly interested in the all-zero
outcome, or whether we have first drawn a random C ∈ C and
then hidden this instance by constructing the unitary Cy with
uniformly random y and query on the outcome y (Aaronson
and Arkhipov, 2013, p. 51)). Hence, the probability of directly
drawing Cy must be the same as that of drawing C and then
appending uniformly random X gates according to y.

Generally, we therefore say that a circuit family C has the
hiding property if

a) there is an efficient instance-generating procedure that
converts a given problem instance C ∈ C and a uni-
formly random outcome y into another problem in-
stance Cy , and

b) the distribution distribution over circuits is invariant un-
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der this procedure, i.e.,

Pr
Cy∼C

[Cy] = Pr
C∼C,y∼{0,1}n

[Cy]. (71)

The hiding property holds very naturally for most random cir-
cuit families, and in particular so for universal random circuits
where each gate is drawn from the Haar measure. This is be-
cause the Haar measure is left- and right-invariant under ar-
bitrary unitaries and the Pauli-X gate is one particular such
unitary.

If the hiding property holds, without loss of generality, we
can therefore always query Stockmeyer’s algorithm on the all-
zero outcome of C, making use of the fact that this outcome is
indistinguishable from a uniformly random one from the per-
spective of A. Conversely, we can conceive of the outcomes
of the circuits we are going to query Stockmeyer’s algorithm
on as being uniformly distributed from the perspective of A.
In this case, we can apply Markov’s inequality to obtain a
bound on the error for individual probabilities. For uniformly
random x we obtain that

Pr
x∈{0,1}n

[
|px − px(C)| ≥ 1

δ
E

x∈{0,1}n
[|px − px(C)|]

]
= Pr
x∈{0,1}n

[
|px − px(C)| ≤ 2ε

δ2n

]
≤ δ, (72)

since

E
x∈{0,1}n

[|px − px(C)|] =
1

2n

∑
x∈{0,1}n

|px − px(C)|

=
2

2n
‖p− p(C)‖TV =

2ε

2n
. (73)

Putting together Eqs. (67) and (72), we have now found that
with probability at least 1 − δ over the inputs, the error of
the estimate q0 output by Stockmeyer’s approximate counting
algorithm satisfies

|q0 − p0(C)| ≤ 1

poly(n)
p0 +

2ε

2nδ
(74)

≤ 1

poly(n)
p0(C) +

2ε

2nδ

(
1 +

1

poly(n)

)
.

(75)

This bound is a mixture of an exponentially small additive and
inverse polynomially small multiplicative error. However, the
error bound does not hold for all possible inputs to Stock-
meyer’s algorithm; it only holds for a (1 − δ) fraction of the
inputs. By the hiding property this corresponds to a (1 − δ)
fraction of the problem instances.

b. Approximate average-case hardness. To show hardness of
the sampling task, we need to show that achieving this error
on an arbitrary (1−δ) fraction of the outputs is sufficient for a

collapse of the polynomial hierarchy.15 Indeed, our procedure
involving Stockmeyer’s algorithm is precisely such an algo-
rithm (in the third level of the polynomial hierarchy). A suffi-
cient condition to show such a polynomial-hierarchy collapse
is then the following: The problem of estimating the probabil-
ities remains GapP-hard even when using a polynomial-time
algorithm that only succeeds on a constant fraction of the in-
stances. Phrasing this in other words, an algorithm solving
the estimation problem for p0(C) with error (75) and success
probability given by the respective fraction of the instances
(i.e. 1 − δ) is as powerful as an arbitrary GapP algorithm.
This contrasts with the proof of exact sampling, where it was
merely required that the estimation problem is GapP-hard in
the worst case, that is, for a machine that is required to suc-
ceed on all instances.

Making this intuition rigorous is the idea of average-case
hardness.

Definition 16 (Approximate average-case hardness). Let Γ ∈
(0, 1), ε > 0. A function class F is average-case hard with
constant Γ and error ε, if approximating any Γ fraction of the
instances in F up to error ε is GapP-hard.

If approximate average-case hardness holds with respect to
the error (75), the existence of an efficient sampling algo-
rithm A for the output distribution of a random instance C ∈
C implies that we can approximate GapP-hard probabilities in
the third level of the polynomial hierarchy using Stockmeyer’s
algorithm. The polynomial hierarchy collapses.

We have proven approximate sampling hardness; see Fig. 6.

Theorem 17 (Additively robust sampling hardness). Con-
sider a circuit family C that satisfies

1. the hiding property, and

2. approximate average-case hardness up to error (75) on
any (1− δ) fraction of the instances.

Suppose there is an efficient classical sampling algorithm A
that given C ∈ C drawn at random as an input, with suc-
cess probability at least 1 − δ over C, outputs samples from
an additive approximation p to the outcome distribution p(C)
satisfying ‖p− p(C)‖TV ≤ ε. Then the polynomial hierarchy
collapses.

We have walked a long route from the complexity-theoretic
foundations of quantum speedups all the way to rigorous
and approximate hardness-of-sampling arguments relevant to
near-term quantum technology. The complexity-theoretic
foundations of quantum speedups manifested themselves in
the GapP vs. #P dichotomy: while multiplicatively approx-
imating the acceptance probabilities of classical circuits can

15 This is because Markov’s inequality does not control the instances on
which the bound fails.
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Figure 6 While in the proof of exact sampling hardness, it was
sufficient to build on the hardness of approximating the output prob-
abilities of quantum circuits, in order to prove hardness of approxi-
mate sampling further properties of the circuit family C are required:
approximate average-case hardness of computing the output proba-
bilities and the hiding property.

be done in the third level of the polynomial hierarchy, this
task remains GapP-complete for certain quantum circuit fam-
ilies. We then saw how the at-first-sight different tasks of
sampling from a probability distribution (weakly simulating
it) and approximating its outcome probabilities (strongly sim-
ulating it) are related on a rigorous level: Stockmeyer’s ap-
proximate counting algorithm and the concept of the poly-
nomial hierarchy proved key to this question. Building on
those methods, we could show that the task of sampling from
the output distribution of certain random quantum computa-
tions cannot be achieved by an efficient classical algorithm.
In a last step, we aimed at making this result robust to real-
istic errors, that is, additive errors in total-variation distance
on the level of the output distributions. Making this leap
involved stronger properties of the output distribution, how-
ever: approximate average-case hardness and the hiding prop-
erty. The way we have formulated Theorem 17 provides a
general framework for providing a hardness argument for ap-
proximately sampling from the output distributions of quan-
tum circuit families. But of course, in order to complete the
proof, crucially, the two properties—hiding and approximate
average-case hardness—need to be shown for specific circuit
families.

We already hinted that the hiding property trivially holds
for most circuit families: to show this, we merely need to
show that X gates at the end of the circuit do not alter the cir-
cuit family. The only instances of circuit families for which
hiding is non-trivial, are boson sampling protocols. Let us
briefly sketch the argument here.

c. Hiding in boson sampling. We have already seen above in
Section II that the output probabilities of Fock boson sam-
pling are given by permanents (45) of submatrices of Haar-
random unitaries. Conceivably, though, there is some struc-
ture in such submatrices. To see this, consider the case in
which we obtain all bosons in a single mode as the outcome,

i.e., S = (n, 0, 0, . . .). In this case, all columns of the sub-
matrix US,1n are equal and, plausibly, this can be exploited
to approximate |Perm(US,1n)|2, or in other words, because
of the structure in the matrix, the specific outcome cannot be
hidden. However, Aaronson and Arkhipov (2013) show that,
under certain conditions, hiding holds in Fock boson sampling
in virtue of the fact that the output probabilities of a random
boson-sampling instance are determined by permanents of ap-
proximately Gauss-random and therefore highly unstructured
matrices.

In order to achieve this, Aaronson and Arkhipov (2013)
consider the collision-free boson sampling distribution P ∗bs,U .
The distribution P ∗bs,U is obtained from Pbs,U by discarding
all output sequences S with more than one boson per mode,
i.e., all S which are not in the set of collision-free sequences

Φ∗m,n =
{
S ∈ Φm,n : ∀s ∈ S : s ∈ {0, 1}

}
. (76)

Why are collision-free outcomes advantageous when proving
hardness? Intuitively, this is because for collision-free out-
comes, the submatrix US,1n has much less structure than for
outcomes with collisions because there are no repeated rows
or columns. If moreover, the size of US,1n becomes suffi-
ciently small compared to the full size of U , neither does there
remain any of the structure in U stemming from the orthogo-
nality of its columns.

The hiding property then follows from two facts. First,
we need to justify that restricting our attention to collision-
free outcomes is valid. This is true if postselecting onto the
collision-free subspace can be done efficiently in the sense
that its probability weight is at least a constant, and Aaron-
son and Arkhipov prove that this is the case if m grows suffi-
ciently fast with n and at least as m ∈ Ω(n2) (see Aaronson
and Arkhipov (2013, Theorem 13.4) and (Arkhipov and Ku-
perberg, 2011; Jiang, 2006)). Second, they prove that if m
grows even faster, namely, as m ∈ Ω(n5 log(n)2), the mea-
sure induced on U ∼ µH by taking n × n-submatrices of
unitaries U ∈ U(m) chosen with respect to the Haar mea-
sure µH is close to the complex Gaussian measure µG(σ)
with mean zero and standard deviation σ = 1/

√
m on n× n-

matrices. Consequently, irrespective of which submatrix we
choose, i.e., which collision-free outcome we obtain, the dis-
tribution of the submatrices is approximately Gaussian.

Conversely, Aaronson and Arkhipov (2013, Lemma 5.8)
prove that, given a Gauss-random instance X ∼ µG(σ) as
input, there is a BPPNP algorithm16 which, givenX hides this
matrix in a large unitary matrix in the sense that it generates
a Haar-random U ∈ U(m) such that there is a uniformly ran-
dom S ∈ Φ∗m,n such that X = US,1n . This provides the
instance-generating algorithm. Hiding a Gauss-random in-
stance X is therefore possible by constructing a larger unitary

16 Like Stockmeyer’s algorithm, this algorithm is therefore in the third level
of PH.
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matrix of which X is a uniformly random submatrix, simi-
larly to how we hid a qubit-circuit C by appending uniformly
random X-gates to it.

A similar reasoning can be applied to Gaussian boson sam-
pling, albeit with a slightly different distribution (Deshpande
et al., 2022). Recall that the matrices of which the Hafnian
is computed in Gaussian boson sampling with k single-mode
squeezed inputs and n detected photons in m modes are of
the form US,1kU

T
S,1k

, which, for collision-free outcomes, are
outer products of random n× k submatrices of the linear op-
tical unitary U . For those matrices, hiding plausibly holds
with respect to symmetric Gaussian matrices XXT , where
X ∼ Gn,k(0, 1/m) is an n × k matrix drawn from the Gaus-
sian distribution on n × k complex matrices. Indeed, this is
provably true in two regimes (Deshpande et al., 2022): first,
for m ∈ O(k5 log2 k) and k = n the submatrices are indi-
vidually Gaussian distributed by the result of Aaronson and
Arkhipov (2013) and hence we can also bound the distance to
the distribution of XXT . Second, for k = m, Jiang (2009)
showed that whenever n ∈ o(√m/ logm) the distribution of
n×n submatrices of UUT for unitary U converges asymptot-
ically to the distribution of XXT , where X ∼ Gn,m(0, 1/m)
is an n × m complex Gaussian matrix. For the intermediate
regime m1/5 < k < m, there is numerical evidence that the
hiding property remains true (Deshpande et al., 2022). The in-
stance generation algorithm of Aaronson and Arkhipov (2013,
Lemma 5.8) will also work for this setting provided that the
distributions of US,1kU

T
S,1k

for unitary U andXXT for Gaus-
sian X ∼ Gn,k(0, 1/m) are close not only in TVD, but also
in a slightly stronger multiplicative sense. This is because the
instance-generating algorithm simply postselects on the ma-
trix XXT appearing as a submatrix of U1kUT by making
use of the NP oracle.

A very neat way of constructing a Gaussian boson sam-
pling scheme that comes without the need of scaling m ∈
Ω(poly(n)) has been discovered by Grier et al. (2022). They
observe that by programming a Gaussian boson sampling de-
vice in a bespoke way, it is possible to encode the permanent
of an arbitrary matrix in the output probabilities. Specifi-
cally, they consider a bipartite system of 2m modes. The in-
put state is given by a product of two-mode squeezed states
on modes i and i + m for i = 1, . . . ,m with squeezing
parameters r1, . . . , rm. In other words, the two halves of a
two-mode squeezed state are associated with the two parti-
tions, respectively. Now, a bipartite unitary mode transfor-
mation U ⊗ V is applied to the system, and all modes mea-
sured in the Fock basis. This gives rise to output probabilities
which are proportional to a function of a submatrix of a ma-
trix C = U diag(r)V †, where r = (r1, . . . , rm) is the vec-
tor of squeezing values. Since this is nothing but a singular
value decomposition, by choosing r, U, V bespokely, C can
be programmed to be an arbitrary matrix, and in particular a
Gaussian one which satisfies the hiding property by definition.

Proving approximate average-case hardness is an entirely
different story, however, and remains the central open theory

problem in the context of quantum random sampling today.
However, much work has been put into gathering evidence
for the truth of approximate average-case hardness. In the
following section, we discuss this evidence.

D. Approximate average-case hardness

To do so, it is helpful to simplify the rather baroque er-
ror mixture (75) on any (1 − δ) fraction to something more
familiar—an exponentially small additive or a constant multi-
plicative error. Indeed, for those errors we already know that
worst-case hardness of approximating the output probabilities
and hence a necessary condition is true.

1. Reduction to additive or multiplicative average-case
hardness

To achieve this, we begin by observing that depending on
which one of the two terms in Eq. (75) is larger, the error
will be relative or exponentially small additive, respectively.
Hence, if we are able to get a handle on the comparative size
of the two terms, we can reduce the error to a simpler form.
Specifically if in the error bound (75) the probability p0(C) is
smaller than α/2n for some constant α > 0 then Eq. (75) can
be upper-bounded in terms of an additive error (2ε/δ + α +
o(1))/2n, if it is larger than α/2n, then Eq. (75) can be upper
bounded in terms of a relative error 2ε/(αδ) + o(1).

In order to reduce the error (75) to an exponentially small
additive error, we can make use of concentration of the prob-
abilities around their mean (given by 1/2n) using Markov’s
inequality

Pr
C∼C

[
p0(C) ≥ 1

2nα

]
≤ α, (77)

where the probability is taken over the choice of problem in-
stances. Since the probability in Eq. (77) runs over the choice
of random circuit, while in Eq. (72) it runs only over the uni-
formly random choice of outcome, the failure probabilities are
independent from one another. Hence, both bounds are satis-
fied with probability (1− δ)(1− α) in which case Eq. (75) is
upper bounded by an exponentially small additive error

|q0 − p0(C)| ≤
[

2ε

δ
+

1

poly(n)

(
1 +

1

α

)]
1

2n
. (78)

In order to reduce the error (75) to the arguably more “nat-
ural” case (Aaronson and Arkhipov, 2013, p. 61) of constant
relative-error approximation we invoke a so-called anticon-
centration property introduced by Aaronson and Arkhipov
(2013).

Definition 18 (Anticoncentration). We say that a circuit fam-
ily C anticoncentrates if for constant α > 0 there exists
γ(α) > 0 independent of n such that

Pr
C∼C

[
p0(C) ≥ α

2n

]
≥ γ(α). (79)
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Since the failure probabilities δ and γ(α) are independent,
both bounds (72) and (79) are satisfied with probability at least
γ(α)(1− δ) in which case we obtain the relative-error bound
bound

|q0 − p0(C)| ≤
(

2ε

δα
+

1

poly(n)

)
p0(C). (80)

For the relative-error case, we can set α = 1/c, ε = γ(α)/4
and δ = γ(α)/2 to obtain a (c/2+o(1))-relative error approx-
imation of p0(C) with probability at least γ(1−γ/2) over the
choice of instances. For the additive-error case, we can set
2ε/δ = κ/2 and α constant to obtain a (κ/2 + o(1))/2n-
additive approximation of p0(C) with probability at least
4εα/κ over the choice of instances.

We have reduced approximate average-case hardness (con-
dition 2. of Theorem 17) to either of

2a. additive approximate average-case hardness up to an
exponentially small additive error O(2−n) on any γ
fraction,

or

2b. relative approximate average-case hardness up to a rel-
ative error 1/4 on any γ(1− γ/2) fraction, and

3b. anticoncentration for α = 1 with constant γ = γ(α).

As of today, no proof of additive or relative approximate
average-case hardness exists. But to see why a multiplicative-
error average-case hardness conjecture is plausibly true for
GapP-functions, consider again the argument above. For typ-
ical #P functions the number of accepting paths is exponen-
tially large and hence a multiplicative error is also of the same
order of magnitude. In contrast, for typical GapP functions,
being differences of #P functions, their number of accepting
paths is a difference between two exponentially large num-
bers, which is often orders of magnitude smaller than each
such number. This is why for #P functions we often do not
expect approximate average-case hardness, while for GapP
functions this conjecture seems reasonable.

Another argument in favour of approximate average-case
hardness makes use of universal quantities such as the Ising
partition function (40) (Boixo et al., 2018; Bremner et al.,
2010, 2016; Goldberg and Guo, 2014), Tutte partition func-
tions (Goldberg and Guo, 2014) or the Jones polynomial (Ku-
perberg, 2015; Mann and Bremner, 2017). This argument ob-
serves that as we draw random instances of an Ising partition
function ZW no additional structure is present as compared
to a worst-case instance which a hypothetical approximation
algorithm might be able to exploit.

While one might argue that these arguments are relatively
weak, there have not been counterexamples to approximate
average-case hardness in the standard settings either. In the
following, we will see further and more substantial technical
evidence towards the additive average-case hardness conjec-
ture.

2. Anticoncentration

Let us begin with the anticoncentration property (Defini-
tion 18). The anticoncentration property allows us to re-
duce the baroque error (75) to a relative error, the arguably
most natural error if we want to prove hardness of approxi-
mating the probabilities because GapP naturally allows to re-
duce relative errors to exact computation. But anticoncentra-
tion can also serve as evidence for the additive approximate-
average case hardness property to hold. By ruling out that
almost all outcome probabilities are less than inverse expo-
nentially small, anticoncentration rules out that an inverse-
exponential additive error approximation is trivial: we cannot
simply guess 0 for all probabilities and be right almost always
if anticoncentration holds.

In this sense, a certain degree of anticoncentration is re-
quired to hold for approximate average-case hardness to be
true. Note, however, that anticoncentration is not a necessary
property for hardness of sampling to hold—and neither is ap-
proximate average-case hardness. Both properties are merely
used in the proof strategy we are describing in this section.
But while approximate average-case hardness is sufficient for
approximate hardness of sampling, anticoncentration is not.

Notice that to prove anticoncentration we merely need to
derive statistical properties of the respective random circuit
families. To see this, we make use of the Paley-Zygmund in-
equality (Bremner et al., 2016), a lower-bound analogue to
Markov’s inequality, which states that for a random variable
Z with 0 ≤ Z ≤ 1

Pr [Z > αE[Z]] ≥ (1− α)2E[Z]2

E[Z2]
. (81)

Using the Paley-Zygmund inequality we can therefore reduce
the anticoncentration property to the value of the second mo-
ments of the random circuit ensemble as

Pr
[
p0(C) >

α

2n

]
≥ (1− α)2 2−2n

E[p0(C)2]
. (82)

The normalized second moment 2n E[p0(C)2] is often also
referred to as the average collision probability.17 To prove
anticoncentration for quantum random sampling, it is there-
fore sufficient to bound this average collision probability as
O(2−n).

This scaling of the average collision probability as O(d−1)
for quantum states in dimension d is precisely the scaling that
one obtains when drawing a quantum state |ψ〉 uniformly at
random on the complex unit sphere S(Cd) and measuring it
in the computational basis. Equivalently, we can draw a uni-
tary U ∼ U(d) uniformly at random and apply it to a refer-
ence state as U |0〉, giving rise to a uniformly distributed quan-
tum state. The corresponding uniform measure US(Cd) on the

17 The collision probability of a distribution p is given by
∑
x p(x)2.
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unit sphere is therefore invariant under the action of unitaries
U(d). For this measure, we can compute the kth moment pro-
jector as

Mk =

∫
S(Cd)

(|ψ〉〈ψ|⊗k)dUS(Cd)(ψ) =
P[k]

D[k]
, (83)

where P[k] is the projector on the symmetric subspace of k
tensor copies, and D[k] =

(
d+k−1
k

)
is the dimension of that

subspace. See (Kliesch and Roth, 2021, Sec. I) for a pedagog-
ical introduction to random unitaries and states.

For uniformly random quantum states we can now compute
the second moments of the output probabilities |〈x|ψ〉|2 as

E[|〈x|ψ〉|4] = E
[
〈x|⊗2(|ψ〉〈ψ|)⊗2|x〉⊗2

]
(84)

= 〈x|⊗2 E
[
(|ψ〉〈ψ|)⊗2

]
|x〉⊗2 (85)

= D−1
[2] 〈x|⊗2P[2]|x〉⊗2 (86)

= D−1
[2] =

2

(d+ 1)d
, (87)

where we have used that |x〉⊗2 is in the symmetric subspace
so that the projector P[2] = (1 + S)/2 with swap operator

S =

d2∑
i,j=1

|i〉|j〉〈j|〈i| (88)

acts trivially on it.
For uniformly random quantum states, we therefore obtain

from Eq. (82) that the anticoncentration property holds with
success probability at least (1 − α2)/2. Proving anticoncen-
tration of quantum circuit families can therefore be viewed
as proving that the output probabilities of these families be-
have up to constant factors just like the output probabilities
of uniformly random quantum states in terms of their average
collision probability, their second moment. To prove bounds
on the average collision probability, one may now proceed in
various different ways. One can directly bound the average
collision probability, or one can show that already the output
states of circuits drawn from the family behave sufficiently
similarly to uniformly random states. Let us briefly sketch
the two most important ways via which anticoncentration can
be proven for random quantum circuits: the so-called design
property, and statistical-mechanics mappings.

a. Anticoncentration via spherical designs. While the circuit
families proposed for quantum random sampling do not gen-
erate uniformly random quantum state C|0〉, several families
have the strong property that they mimic uniform random-
ness at the level of the second moment. A family of vectors
Ψ = {|ψ〉i}i which mimics uniform randomness for the kth

moments in the sense that

Mk
Ψ =

1

|Ψ|
∑
i

(|ψi〉〈ψi|)⊗k =
P[k]

D[k]
, (89)

forms a so-called complex (spherical) k-design. We can
slightly relax the notion of a k-design to approximations
thereof and say that a family Ψ is a (relative) ε-approximate
k-design if

(1− ε)Mk
Ψ ≤

P[k]

D[k]
≤ (1 + ε)Mk

Ψ. (90)

The proof of the following theorem then directly follows
(Hangleiter et al., 2018).

Lemma 19 (Anticoncentration of 2-designs). Let Ψ be a rela-
tive ε-approximate 2-design on S(Cd). Then the output prob-
abilities |〈0|ψ〉|2 of a randomly chosen |ψ〉 ∈ Ψ anticoncen-
trate in the sense that for 0 ≤ α ≤ 1

Pr
|ψ〉∼Ψ

(
|〈0|ψ〉|2 > α(1− ε)

d

)
≥ (1− α)2(1− ε)2

2(1 + ε)
. (91)

Several circuit families considered for quantum random
sampling approximately exhibit the 2-design property when
applied to a reference state. This holds in particular for univer-
sal random circuits in various settings. For random circuits,
one can even prove a stronger property, namely that they are
unitary designs, mimicking uniform randomness on the uni-
tary group as opposed to the complex sphere. Unitary designs
by definition have the property that their columns form spheri-
cal designs and hence Lemma 19 applies to them. Historically,
the first proof of the 2-design property for random circuits is
due to Harrow and Low (2009), albeit for a weaker (additive)
notion of approximation than required for the proof of anti-
concentration.

Brandão et al. (2016) prove the stronger result that ran-
dom circuits on n qubits arranged in a linear chain form an
ε-approximate unitary k-design if they contain O(poly(k) ·
n(n + log(1/ε))) many gates. The circuits they consider are
composed of two-qubit gates that are applied either to ran-
dom neighboring qubits or in alternating parallel “brickwork”
configuration. The individual gates may be drawn either from
a universal gate set containing its own inverses or uniformly
(Haar) randomly. The key idea of the proof of Brandão et al.
(2016) is to map the design property to the gap of a local,
frustration-free Hamiltonian, the local terms of which cor-
respond to the individual two-qubit gates of the circuit and
act on 4 · k many qubits, using the so-called detectability
lemma (Aharonov et al., 2009; Anshu et al., 2016). The gap of
this Hamiltonian can then be bounded using a famous result
due to Nachtergaele (1996). Haferkamp (2022) has recently
improved this result by showing a milder polynomial depen-
dence in k, providing an improved bound on the spectral gap.
The same technique can also be applied to show the design
property for other circuit families that encode universal quan-
tum circuits, for example, random measurement-based quan-
tum computations (Haferkamp et al., 2020a).

Further examples of postselected-universal circuit families
that exhibit the 2-design property and therefore anticoncentra-
tion, are conjugated Clifford circuits (Bouland et al., 2018),
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Clifford circuits with magic-state inputs (Hangleiter et al.,
2018; Yoganathan et al., 2019), and diagonal quantum circuits
applied to the state |+〉⊗n (Hangleiter et al., 2018; Nakata
et al., 2014).

Improving the result of Brandão et al. (2016) to lattices of
arbitrary dimension, Harrow and Mehraban (2018) prove that
random universal circuits arranged on a lattice of dimension
D generate an approximate k-design using poly(k) · n1+1/D

many gates. This result reflects the intuition that due to the
fact that correlations in a parallel brickwork circuit spread bal-
listically, sufficiently random quantum states can only arise in
a depth that scales linearly with the diameter of the system,
and hence as n1/D.

b. Anticoncentration via computing the collision probability.
While this intuition is presumably true for the design prop-
erty of random circuits, it has recently been proven that anti-
concentration already arises in logarithmic depth for nearest-
neighbor random circuits in one dimension with uniformly
random two-qubit gates (Barak et al., 2021). To prove this
result, Barak et al. (2021) directly bound the average collision
probability, that is, the second moment 2n E[p0(C)2] using
a mapping to a statistical-mechanics model due to Zhou and
Nahum (2019). Dalzell et al. (2022) show that this result is
tight by complementing it with an O(n log(n)) lower bound
on the circuit size that holds for arbitrary geometries. For
architectures with arbitrary connectivity, they further show
that 5n log(n)/6 many gates are necessary and sufficient (up
to subleading corrections) for exponentially small collision
probability. This in fact also holds directly for the anticon-
centration property (Deshpande et al., 2021).

Let us briefly sketch the idea of these proofs, following
Hunter-Jones (2019). Again, the idea is to exploit the prop-
erties of the moment operator, albeit, now at the level of the
individual quantum gates in the random circuit. For uniformly
(Haar) random unitaries, we can, analogously to Eq. (83) de-
fine a moment operator Mk

H on U(d). This moment opera-
tor is characterized by so-called Weingarten functions Wg as
(Brouwer and Beenakker, 1996; Hunter-Jones, 2019)

Mk
H = E

U∼µH

[
U⊗k ⊗ U⊗k

]
=

∑
σ,π∈Sk

Wg(σ−1π, d)|σ〉〈π|.

(92)
Here, |σ〉 = (1⊗r(σ))|Ω〉, where r is the representation of the
symmetric group Sk on (Cd)⊗k which permutes the vectors
in the tensor product and |Ω〉 =

∑dt

j=1 |j〉|j〉 is the maximally
entangled state up to normalization. To evaluate formulae in-
volving the moment operator (92), it is useful to develop a
graphical language for the moment operator. In this language,
we can express the identity and the swap operator on two ten-
sor copies, as well as the corresponding maximally entangled

state as rewirings of single-copy identities as follows18.

1 = , S = , |Ω〉 = , 〈Ω| = . (93)

Hence, we can write

|S〉〈1| = = . (94)

For quantum circuits composed of Haar-random two-qubit
unitaries, we can now evaluate the expectation value locally
and the global moment operator is given by

E
U1,...,Um∼U(4)

[
U⊗2 ⊗ U⊗2

]
=

m∏
i=1

(
E

Ui∼U(4)

[
U⊗2
i ⊗ U⊗2

i

])
,

(95)

where U =
∏
i Ui and in some abuse of notation we take the

expectation over the individual quantum gates at their respec-
tive location in the quantum circuit. Using Weingarten calcu-
lus, we can now evaluate the Weingarten formula for k = 2,
obtaining the result in graphical representation as

E
U∼U(d)

 U
U
U
U



=
1

d2 − 1

 − 1

d
− 1

d
+

 . (96)

We can view the expectation value of a single two-qubit gate
as an effective vertex

E
U∼U(d)

 U
U
U
U

 −→ , (97)

where the vertices can take one of two values 1 or S (corre-
sponding to a spin up or down) that tell us how to contract
each of the incoming or outgoing edges, and the curly edge
between the vertices corresponds to a weight which is given
by−1/d/(d2−1) for the configurations 〈S|1〉 and 〈1|S〉, and
by 1/(d2 − 1) otherwise. The contractions themselves will
pick up different values; for example, for a single contraction,
we obtain 〈S|1〉 = 〈1|S〉 = d and 〈1|1〉 = 〈S|S〉 = d2. Com-
puting the second moment EU [|〈x|U |0〉|4 now corresponds to
computing a partition function over all local “spin” (aka. per-
mutation) configurations with the corresponding weights and

18 See (Bridgeman and Chubb, 2017) for an introduction to the graphical rep-
resentation.
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boundary conditions determined by |x〉 and |0〉.

(98)
One can now sum over the pink vertices, giving rise to a new
statistical mechanical model. This model is defined by terms
that with terms acting on the plaquettes of a triangular lattice.

(99)
The plaquette terms are now just functions of permutations of
the local spins with dimension k, which are nonzero only if
the product of the permutations on a plaquette is the identity.
For k = 2, this allows one to perform simple domain-wall
counting arguments in order to bound the value of the average
collision probability.

c. Further proofs of anticoncentration. An example of comput-
ing the second moments that makes use of the expression of
the circuit amplitudes as partition functions is given by IQP
circuits. For those circuits it is possible to directly compute
the average collision probability, making use of the simple
structure of the output probabilities as an Ising partition func-
tion (cf. Eq. (40)) (Bremner et al., 2016). Notably, there is
also a direct proof of anticoncentration that does not rely on
bounding second moments for the DQC1 model (Morimae,
2017).

The most important schemes for which anticoncentration
has remained elusive are boson sampling protocols. For Fock
boson sampling, one can also compute the second moment
of the output probabilities by making use of the hiding prop-
erty so that the well-studied properties of Gaussian matrices
can be exploited to compute EX∼G [|Perm(X)|2] = n! and
EX∼G [|Perm(X)|4]/(n!)2 = n+1 (Aaronson and Arkhipov,
2013). The value of the second-moments translates to a bound
on the anticoncentration probability γ in Eq. (79) given by
1/(n + 1) (Aaronson and Arkhipov, 2013). While numeri-
cal evidence suggests that anticoncentration is true for Fock

boson sampling (Aaronson and Arkhipov, 2013), second mo-
ments are therefore insufficient to prove this. Improving
this bound, Tao and Vu (2008) prove that the permanent of
n × n Bernoulli matrices is of order nn(1/2−ε) with prob-
ability 1 − n−0.1, while a bound of order nn(1/2−O(log(n)))

with inverse polynomial failure probability would be required
for anticoncentration (Aaronson and Arkhipov, 2013, p. 75).
While this result may be extended to Gaussian distributions
over C, it is unclear how to further improve it (Tao and Vu,
2008). As a way around this, one might try to use higher
moments of the Fock boson sampling distribution in order to
obtain tighter bounds than provided by the Payley-Zygmund
inequality. First steps in this direction have been taken by
Nezami (2021), who characterizes all moments of the distri-
bution of Gaussian permanents and computes the lower ones,
but concludes that only a closed formula for all moments may
be sufficient to prove anticoncentration. For Gaussian boson
sampling the situation remains even more elusive as, here,
the distribution over which moments of the Hafnian (9) need
to be computed is the so-called circular orthogonal ensem-
ble (COE), which is approximately given by symmetric Gaus-
sian matrices of the form XXT with X ∼ G; see Paragraph
IV.C.4.c.

Be that as it may, recall that anticoncentration is merely a
necessary condition for additively approximate average-case
hardness, and a means to reduce this to relative-error approx-
imations. The elephant in the room remains to prove the ap-
proximate average-case hardness conjecture in either its addi-
tive or its relative error version. This is the focus of the next
section.

3. Average-case hardness: An overview

Generally speaking, average-case complexity is a crucial
question in cryptography, and comes with a number of intrigu-
ing peculiarities. Unfortunately, we have very few handles on
average-case complexity and proofs of average-case hardness
are only possible for very few complexity classes. The ques-
tion of average-case hardness has first been posed by Levin
(1986) as a rigorous means to narrow down problem classes
in which one can hope for simulation algorithms that work
on average. What is the complexity of an instance drawn at
random from some distribution µ over all possible problems?
A key question in the context of average-case complexity is
one posed already by Levin (1986): how does the average-
case complexity of a problem class depend on the distribu-
tion? Clearly, if one defines a probability measure to be sup-
ported on hard problem instances only, average-case complex-
ity equals worst-case complexity. Intriguingly, there even ex-
ists a single so-called “universal distribution” for which the
average-case complexity of any algorithm equals its worst-
case complexity (Li and Vitányi, 1992). The strong depen-
dence on the distribution is part of the reason why average-
case complexity under natural measures such as the uniform
measure has remained largely elusive.
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Results that characterize average-case complexity of cer-
tain problems are only known for counting problems. The key
conceptual idea underlying proofs of average-case hardness
for such problems is the notion of random self-reducibility.
We say that a computational problem is randomly self-
reducible if we can polynomially reduce the problem of eval-
uating any fixed instance x to evaluating random instances
y1, . . . , yk with a bounded probability that is independent of
the input. Random self-reducibility is therefore a particu-
lar type of worst-to-average-case reduction: We assume that
there is a machine that solves random instances with proba-
bility bounded away from 1 over a given distribution and then
use this machine to try and efficiently solve an arbitrary fixed
instance. If this is possible, then such a machine allows us to
solve any instance in a time that is polynomially equivalent to
the time it takes to solve a random instance. Hence, the prob-
lem must be as hard on average over this distribution as in the
worst case.

A first step towards proving approximate average-case
hardness of quantum output probabilities (that also consti-
tutes a necessary condition) is to prove average-case hard-
ness of near-exactly computing those output probabilities for
the respective circuit family. Average-case complexity for
near-exact computation has been pioneered by Lipton (1991)
for the permanent as it prominently features in boson sam-
pling (Aaronson and Arkhipov, 2013). The key idea of Lip-
ton’s method is to use polynomial interpolation in order to
interpolate from certain judiciously chosen random instances
to an arbitrary, fixed instance. This method is possible if the
quantity in question can be written as a polynomial in the
input parameters. While random quantum circuits lack this
structure, the polynomial interpolation method of Lipton’s can
in fact be adapted to a broad class of quantum random sam-
pling schemes (Bouland et al., 2022, 2019; Kondo et al., 2022;
Krovi, 2022; Movassagh, 2018, 2020). In the following, we
introduce and discuss these methods which eventually come
close to proving approximate average case-hardness in that
they tolerate an additive error of O(2−O(m)) for random uni-
versal circuits, where m is the number of gates in the cir-
cuit (Krovi, 2022). However, the step to inverse exponen-
tialO(2−n) or relative error average-case complexity remains
wide open and indeed remains the central open question in
the field of quantum supremacy from a complexity-theoretic
viewpoint.

4. Random self-reducibility of the permanent

Let us start from the simplest and historically original proof
of average-case hardness for #P–random self-reducibility of
the permanent over a finite field F with respect to the uniform
distribution over that field. Recall the definition of the perma-
nent of an n× n matrix X over F (46)

Perm(X) =
∑
σ∈Sn

n∏
j=1

xj,σ(j). (100)

The underlying structure in which the proof of random self-
reducibility for the permanent is rooted is the algebraic fact
that it is a degree-n polynomial in the matrix entries ofX (and
a degree-2n polynomial in the case of |Perm(X)|2). Con-
cretely, the idea is the following: given an arbitrary instance
A ∈ Fn×n, draw a uniformly random matrix B and for t ∈ F
define the matrix

E(t) = A+ tB, (101)

for t ∈ F. We think of A as a ‘hard instance’. Notice that for
any fixed value of t 6= 0, E(t) is distributed uniformly over
F. This is in spite of the fact that, of course, E(t) and E(t′)
are correlated for values t, t′ ∈ F. As the permanent is a
degree-n polynomial in the matrix entries of an n× n matrix,
the permanent of the matrix E(t) is a degree-n polynomial
q(t) = Perm(E(t)) in t.

Let us now assume that there exists an efficient machine O
that computes Perm(X) for uniformly random instances X
with failure probability δ. Such an algorithm—while it may
fail to evaluate q(0) ≡ Perm(A)—will, by assumption, likely
evaluate q(ti) correctly for some choice of evaluation points
ti. The idea is to infer q(0) from the values of q at the points
{ti}i using polynomial interpolation; see Fig. 7(a).

We can now queryO on n+1 distinct points t1, . . . , tn+1 6=
0 obtaining the values q(ti).19 Applying a union bound,
the probability that all of those values are correct is lower-
bounded by 1 − (n + 1)δ. Setting δ = 1/3n we thus obtain
n + 1 correct pairs {(ti, q(ti)), i ∈ [n + 1]} with probabil-
ity at least 2/3 − 1/3n. But q is a degree-n polynomial and
hence those points uniquely determine q. We can now solve a
linear system of equations to interpolate the polynomial q and
compute q(0) = Perm(A). Hence, an algorithm which solves
random instances with probability at least 1− 1/3n is able to
solve arbitrary instances and computing the permanent over
finite fields is average-case hard on any 1 − 1/3n fraction of
the instances.

a. Improving the success probability. Being correct on any 1−
1/3n fraction of the instances is a rather strong requirement
on the evaluation algorithm, however, and, by contraposition,
requires only that at most a 1/3n-fraction of the instances
need indeed be #P-hard to compute. Naturally, it is desirable
to lower this requirement as far as possible to make stronger
statements and assess average-case hardness as well as possi-
ble.

Indeed, we can bring down the requirement on O to work
correctly only for a constant 1/2 + 1/poly(n) fraction of the
instances (Gemmell et al., 1991; Gemmell and Sudan, 1992),

19 Notice that this requires the size of F to be at least n+2 and hence Lipton’s
proof does not work for the field F2, for instance. Indeed, for this case
there are also known approximation schemes for the permanent (Jerrum
et al., 2004).
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Figure 7 (a) From at least r + 1 interpolation points (ti, q(ti)) one can efficiently interpolate a polynomial q(t) of degree r. (b) Using the
Berlekamp-Welch decoding algorithm (Welch and Berlekamp, 1986) for the Solomon-Reed code one can reconstruct a degree-r polynomial
from k points (ti, yi) if at least (k + r)/2 of those points are correct. (c) When drawing instances from a distribution on the infinite field C
as opposed to the uniform measure over a finite field, the interpolation points are chosen from the interval [0, ε] for ε = 1/poly(n) so that the
distribution ofG(t) in Eq. (108) does not deviate too far from the original distribution. (d) Using the result by Rakhmanov (2007, Theorem 23)
one can bound the interpolation error of a degree-r polynomial in the interval (−ε, ε) when given evaluation points that are correct up to an
error ∆ (with inverse polynomial failure probability). Using the Lemma by Paturi (1992, Lemma 22) one can then bound the extrapolation
error when extrapolating to the hard problem instance at t = 1.

(see also Arora and Barak, 2009, Section 8.7). The idea is
to use error-correction techniques for polynomial codes such
as the Reed-Solomon code (Reed and Solomon, 1960), where
a string of n symbols is identified with the coefficients of a
degree-(n − 1) polynomial. Decoding algorithms for such
codes output the correct polynomial even in the presence of
some amount of errors.

An error-correction algorithm for Reed-Solomon codes that
will be extremely useful for our purposes is the algorithm
by Welch and Berlekamp (1986) as it works over arbitrary
fields and can even be extended to rational-function interpola-
tion (Movassagh, 2018, 2020).

Theorem 20 (Unique decoding for Reed-Solomon (Welch
and Berlekamp, 1986)). Let q be a degree-r polynomial over
any field F. Suppose we are given k pairs of elements
{(ti, yi})i∈[k] with all ti distinct with the promise that yi =
q(ti) for at least max(r+ 1, (k+ r)/2) points. Then one can
uniquely recover q exactly in poly(k, r) deterministic time.

We illustrate decoding with errors in Fig. 7(b). Notice that
for polynomially large k the Berlekamp-Welch decoding al-
gorithm tolerates an error rate that is arbitrarily close to a
half. The Berlekamp-Welch algorithm is thus optimal in that
as soon as less than half of the points are correct, no unique
solution is guaranteed to exist.

This issue is addressed by so-called list-decoding algo-
rithms which output a list of compatible solutions, observ-
ing that there cannot be too many such solutions (Arora and
Barak, 2009, Sec. 19.5). Such algorithms have been devel-
oped (Beaver and Feigenbaum, 1990; Lipton, 1991) for so-
called Reed-Muller codes (Muller, 1954; Reed, 1954) over fi-
nite fields of which Reed-Solomon is a special case (Sudan,
1997). Using list-decoding algorithms, average-case hard-
ness of the permanent over sufficiently large finite fields has
been shown even for any inverse polynomial fraction of cor-

rect points (Cai et al., 1999); see (Guruswami, 2006) for an
overview of such approaches.

Let us illustrate the use of the Berlekamp-Welch algorithm
to prove average-case hardness due to Gemmell et al. (1991):
Using the Berlekamp-Welch algorithm, we can query the or-
acle O a number of times given by k > 2(n + 1) at dis-
tinct points ti, obtaining pairs (ti,O(ti)). We can then upper-
bound the probability that less than (k+ n)/2 of the obtained
data points are correct as

Pr

[
|{i,O(ti) 6= q(ti)}| > k − k + n

2

]
<

2δk

k − n, (102)

using Markov’s inequality. This probability is at most 1/2 if
the failure probability of O satisfies

δ <
1

4

(
1− k

n

)
. (103)

Hence the decoding procedure succeeds using k samples as
long asO works on a 3/4+k/4n = 3/4+1/poly(n) fraction
of the instances. Using an interpolation path to A which is a
polynomial in k. Gemmell and Sudan (1992) show that this
can further be improved to a 1/2 + 1/poly(n) fraction.

b. Distributions over infinite fields: the case of F = C. When
considering the output probabilities of Fock boson sampling
(8) and Gaussian boson sampling (9)—and looking ahead also
of quantum circuits—the matrices in question have entries not
in a finite but an infinite field, the complex numbers F = C. In
this case, we are faced with two additional technical difficul-
ties: first, there is no uniform or translation-invariant measure
over the complex numbers. This means that when we con-
struct the random matrix E(t) as in Eq. (101) by drawing a
random matrix B from some distribution µ, then E(t) will
be distributed according to some distribution µ′ depending on
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the value of t and the hard instanceA. Assuming that we have
found a solution to this problem, second, the polynomial in-
terpolation and error-correction techniques that we have used
above for the case of finite fields fail in case we only have a
finite approximation of the values of q(ti). Numerically deal-
ing with real numbers will, however, inevitably lead to finite-
precision errors on the order of 2−poly(n).

We can circumvent the first problem by choosing values
of t that are small such that the difference between µ′ and µ
in total-variation distance is small. As the total-variation dis-
tance upper-bounds the difference in probability that the two
distributions assign to a specific event this difference trans-
lates to an additional contribution to the failure probability
of O.

The natural distribution over C which also appears in the
Fock boson sampling problem is the complex normal dis-
tribution NC(µ, σ) with mean µ and variance σ2. The fol-
lowing lemma, a variation of Aaronson and Arkhipov (2013,
Lemma 7.4), bounds the total-variation distance between
slightly shifted and squashed products Gaussian distributions
with products of the standard distribution.

Lemma 21 (Autocorrelation of Gaussian distributions). For
the distributions

D1 = NC(0, (1− ε2)σ)M , (104)

D2 =

M∏
i=1

NC(vi, σ), (105)

with v = (v1, v2, . . . , vM ) ∈ CM and ε, σ > 0 it holds that

‖D1 −NC(0, σ)M‖TV ≤ 2Mε, (106)

‖D2 −NC(0, σ)M‖TV ≤
1

σ
‖v‖`1 . (107)

The same result holds for the uniform distribution UC(µ, σ)
centered around µ with cutoff σ.

For an arbitrary matrix A = (ai,j)i,j we now define the
family of matrices

G(t) = tA+ (1− t)B (108)

similarly as above by drawing standard normal distributed in-
stances B ∈ Cn×n. The matrix E(t) is then distributed ac-
cording to the new distribution

D =

n∏
i,j=1

NC(tai,j , (1− t)2). (109)

Choosing equidistant values of ti in the interval (0, ε] for some
cutoff ε > 0 will then result in a success probability of the
algorithm O which has failure probability δ that is given by

Pr [O(ti) = q(ti)] ≥ 1− δ − ‖D − GC(0, 1)n
2‖TV (110)

≥ 1− δ − 6n2ε. (111)

The remainder of the argument follows analogously as above
by choosing ε = δ/6n2. We illustrate the procedure in
Fig. 7(c).

c. Robustness to finite-precision errors. The finite-precision
problem requires somewhat more powerful machinery: using
bounds on the stable extrapolation and interpolation of poly-
nomials, we can recover the original proof using polynomial
interpolation. This comes at the cost, however, that we can-
not make use of the powerful error-correction techniques of
Berlekamp and Welch anymore because those techniques re-
quire that some of the points are evaluated exactly.

The two results that have been identified as being helpful
to this effort by Aaronson and Arkhipov (2013, Section 9.1)
are a Lemma by Paturi (1992) and a theorem by Rakhmanov
(2007).

Lemma 22 (Stable extrapolation (Paturi, 1992)). Let p : R→
R a polynomial of degree r and suppose that |p(x)| ≤ ∆ for
all x such that |x| ≤ ε. Then |p(1)| ≤ ∆e2r(1+1/ε).

Theorem 23 (Stable interpolation (Rakhmanov, 2007)). Let
Ek denote the set of k equidistant points in (−1, 1). Then for
a polynomial p : R → R of degree r such that |p(x)| ≤ 1 for
all x ∈ Ek, it holds that

|p(x)| ≤ C log

(
π

arctan
(
k
r

√
R2 − x2

)) , (112)

for |x| ≤ R =
√

1− r2/k2.

We can now apply those results to the polynomial p(t) =
q(t) − q′(t), where q′(t) is the polynomial defined by the
slightly erroneous values q′(ti) of q(ti) satisfying |q′(ti) −
q(ti)| ≤ 2−O(nc) for a sufficiently large c. Using
Rakhmanov’s result (Rakhmanov, 2007) we can bound the
error between q and q′ between the evaluation points; using
Paturi’s lemma (Paturi, 1992), we can then bound the error
tolerance when extrapolating to q(1); see Fig. 7(d).

Let us note that exactly the same arguments apply to the
output probabilities of Gaussian boson sampling, which are
given by the squared Hafnian |Haf(XXT )|2 for Gaussian
X ∈ C2n×2k; recall Eq. (47). The squared Hafnian is a
degree-2n polynomial in its matrix entries (recall its relation
(50) to the permanent), and hence a degree-4n polynomial in
the matrix entries of the Gaussian-distributed matrix X .

5. Average-case hardness of quantum output probabilities

Let us now turn to average-case hardness of the output
probabilities of quantum circuits. Firstly, let us observe, that
there is a natural polynomial structure on the success prob-
abilities of quantum circuits. For a quantum circuit C =
Cm · · ·C2C1 comprising m gates Ci acting on n qubits, the
output amplitudes can be expressed in terms of a path integral

〈0|C|0〉 =∑
λ1,...λm−1∈{0,1}n

〈0|Cm|λm−1〉 · · · 〈λ2|C2|λ1〉〈λ1|C1|0〉.

(113)
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Consider that C is drawn from some measure µC that defines
a circuit family C. Some of the gates in C might be randomly
drawn from a gate set G, others might be fixed across all C ∈
C.

Now we are faced with a severe issue when trying to in-
stantiate the idea of Lipton (1991), however: when trying to
construct an equivalent of E(t) by choosing random instances
B for a fixed worst-case circuitA, the matrix given byA+ tB
will not be unitary for t 6= 0 and therefore does not define
a valid problem instance. Of course, this is because the uni-
tary matrices do not form a group with respect to addition, but
multiplication. How then can we perform a worst-to-average
case reduction? A natural idea is to make use of the group
structure by multiplying A and B in a gate-wise fashion in a
way that is polynomial in an interpolation parameter, and then
show that the distribution of the resulting instances does not
deviate too much from the distribution of B. We can do so in
different ways.

a. Local Taylor series truncation (Bouland et al., 2019). On a
high level, the first approach saves the polynomial structure of
Eq. (101) by making use of Taylor expansion. We interpolate
between a hard and a random instance as follows. For a hard
instance of a circuit C with random gates C1, . . . , Cm drawn
uniformly from a continuous subgroup G of the corresponding
unitary group U(d) we define a new circuit by setting each
gate

Ci(t) = CiHie
−ithi , (114)

where Hi is Haar-random in G and hi = −i logHi is its gen-
erator. Denote the resulting circuit asC ◦H(t). Ci(0) is Haar-
random in G, while for t = 1 we recover the original gate Ci.
Similarly to average-case hardness of Gauss-random perma-
nents, for tiny t the gate Hie

−ithi looks almost Haar-random.
One can therefore hope to follow the same procedure as above
to extrapolate to t = 1, given values of |〈0|C ◦Ht|0〉|2.

However, the gates Ci(t) and hence the output probability
|〈0|C ◦ Ht|0〉|2 are no (low-degree) polynomial in t so that
polynomial interpolation cannot be applied. An easy way to
circumvent this problem is to consider Taylor-approximations
of the deformed gates Ci(t). Let us define the (t,K)-
truncated and perturbed Haar measure on the circuit family
C by replacing each Haar-random gate Hi in a circuit C by

Gi = Hi ·
(

K∑
k=0

(−ihit)
k

k!

)
. (115)

We can now use the standard (Suzuki) bound on Taylor trun-
cations

|〈ψ|CiGi − CiHie
−ithi |ψ〉| ≤ κ

K!
, (116)

for a constant κ > 0, set K ∈ poly(n), use an analogue of
Lemma 21 to complete a worst-to-average case reduction for
exactly computing the probabilities on any 3/4 + 1/poly(n)

fraction of the instances. Alternatively, as discussed above,
we can apply the stability results by Rakhmanov (2007) and
Paturi (1992) to achieve robustness to additive errors 2−poly(n)

on a 1−1/poly(n) fraction of the instances (see also Bouland
et al., 2019, Sec. 1.7 of the SM).

A notable caveat of this approach is that in the reduction
we have left the unitary group since the Taylor truncation
of e−ithi is non-unitary. This means that average-case hard-
ness is not achieved for exactly evaluating the circuit suc-
cess probabilities, but only for exactly evaluating numbers
p0(C)′ which are 2−poly(n) additive approximations thereof
and which do not correspond to success probabilities of valid
quantum circuits. Nevertheless, average-case hardness of
those numbers is a necessary requirement for the additive ap-
proximate average-case hardness property and hence serves
as evidence for the conjecture. What is more, the additive
approximate average-case hardness conjecture of the trun-
cated distribution is equivalent to the additive approximate
average-case hardness conjecture of the non-truncated distri-
bution (Bouland et al., 2019, SM, Sec. 1.4). For a more de-
tailed discussion of this caveat, see (Napp et al., 2022, App.
D) and (Movassagh, 2020, Sec. 4.3).

b. Rational function interpolation (Movassagh, 2018). A more
natural interpolation that remains within the unitary group and
is much more error-robust makes use of the Cayley function

f(x) =
1 + ix

1− ix
, (117)

for x ∈ R, defining f(−∞) = −1. The Cayley function is
a bijection between R ∪ {−∞} and the complex unit circle.
Observing that unitary matrices have eigenvalues on the com-
plex unit circle, a Haar-random unitary matrix H ∈ U(d) can
therefore be uniquely represented as

H = f(h), h = h†, (118)

and H† = f(−h). For each quantum gate Ci ∈ U(d) we can
then construct the path

Ci(t) = Cif(thi), (119)

with hi = f−1(C†iHi) for Haar-random Hi so that Ci(0) =
Ci and Ci(1) = Hi. The interpolated gate (119) can be ex-
pressed as a fraction of two degree-d polynomials using the
spectral decomposition of h =

∑d
α=1 hi,α|ψi,α〉〈ψi,α| as

Ci(t) =
1

qk(t)

d∑
α=1

pi,α(t)Ci|ψi,α〉〈ψi,α|, (120)

with

qi(t) =

d∏
α=1

(1 + ithi,α), (121)

pi,α(t) = f(hi,α)(1− thi,α)
∏

β∈[d]\α
(1 + ithi,β). (122)
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Path Interpolation method Robustness Instance fraction

(Bouland et al., 2019)* Truncated local Taylor series Berlekamp-Welch (BW) Exact 3/4 + 1/poly(n)

Truncated local Taylor series Paturi + Rakhmanov 2−poly(n) 1− 1/poly(n)
(Movassagh, 2018) Cayley paths Rational BW Exact 3/4 + 1/poly(n)

(Movassagh, 2020) Cayley paths Paturi + Rakhmanov 2−O(m3) 1− 1/poly(n)

(Bouland et al., 2022) Cayley paths Robust BW in BPPNP 2−O(m logm) 3/4 + 1/poly(n)

(Kondo et al., 2022) Cayley paths Lagrange interpolation + error bounds 2−O(m logm) 1− 1/O(m)

(Krovi, 2022) Truncated global Taylor series Robust BW in BPP 2−O(m) > 3/4

Table I Comparison of the average-case hardness results for random quantum circuits on n qubits with m gates.
*Note that Bouland et al. (2018) prove average-case hardness for a non-unitary circuit whose output probabilities are 2−poly(n) close to the
ideal output probabilities and the robustness we state is with respect to this non-unitary circuit, see the main text for a discussion of this point.

Denote the circuit resulting from this interpolation asC?H(t)
Now, one can bound the total-variation distance for the distri-
bution Dε on the circuit obtained when choosing t = 1− ε as
O(mε) (Movassagh, 2020).

However, while the techniques we have used so far were
useful for polynomial interpolation, now we need to extrap-
olate a rational function. As a first step, it turns out one can
generalize the Berlekamp-Welch algorithm to rational func-
tions with degrees k1, k2 in the numerator and denominator,
respectively (Gemmell and Sudan, 1992; Movassagh, 2018).
This algorithm requires that the number of evaluation points
ti is at least k1 + k2 + 2e, where e is the number of errors
made by the evaluation algorithm O.

A barrier to making this result robust lies in the fact
that the results on stable interpolation (Rakhmanov, 2007)
and extrapolation (Paturi, 1992) of low-degree polynomials
do not apply to rational functions. Movassagh (2020) ob-
serves, however, that the output probabilities of the interpo-
lated circuit can be reduced to a polynomial. To see this, ob-
serve that the output probabilities can be written as a frac-
tion of two polynomials Q(t) =

∏m
i=1 qi(t) and P (t) =∏m

i=1

∑
α pi,α(t)Ci|ψi,α〉〈ψi,α|:

|〈0|C ? H(t)|0〉|2 =
|〈0|P (t)|0〉|2
|Q(t)|2 . (123)

But as we can compute Q(t) exactly in time Θ(m), we can
reduce the rational function to a polynomial function by mul-
tiplying with |〈0|C ? H(t)|0〉|2 with |Q(t)|2. Now, one can
show that |Q(t)|2 ≤ 1 + O(mε) so that when choosing
ε = 1/m the additional error incurred due to this multiplica-
tion is a multiplicative O(1) error. The scaling of the extrap-
olation error in |〈0|C ? H(t)|0〉|2 is therefore not disturbed
when interpolating |Q(t)|2 · |〈0|C ? H(t)|0〉|2 instead.

Now we can again resort to Lemma 22 and Theorem 23
in order to compute the robustness as 2−O(m/ε) = 2−O(m2)

on any 1 − 1/poly(n) fraction of the instances (Movassagh,
2020, Theorem 3) where (0, ε] defines the interval on which
the success probabilities of C(t) are evaluated. Kondo et al.
(2022) observed that this can further be improved using the
same strategy if Lagrange polynomials are used for the in-
terpolation. For those polynomials, they find results anal-
ogous to Lemma 22 of Paturi (1992), and Theorem 23 of

Rakhmanov (2007) to obtain a robustness of 2−O(m logm) on
any 1− 1/O(m) fraction of the instances.

The limitation of this approach, however, is that there is no
error-correction procedure so that all results of the oracle need
to be correct, giving rise to a very small tolerated failure prob-
ability because a union bound needs to be applied. Aiming to
circumvent this issue, Bouland et al. (2022) observe that the
failure probability can further be improved to 3/4+1/poly(n)
while retaining the same error scaling 2−O(m logm) by making
use of an NP oracle. They achieve this by constructing more
robust Berlekamp-Welch algorithm for polynomial interpola-
tion over the real numbers. This algorithm makes use of the
NP oracle in addition to randomness, and is therefore in the
third level of the polynomial hierarchy.

c. Global Taylor series truncation (Krovi, 2022). In a curious
twist of events, Krovi (2022) recently observed that rather
than performing a Taylor-series truncation on the level of in-
dividual gates, one can perform such truncation on the level of
the global output distribution. The key observation of Krovi
(2022) is that the output probabilities of circuits interpolated
via Eq. (114) can be expressed as a path integral

p(t) =
∑
r

e−i(t/m)∆φrAr, (124)

in terms of 42m paths r, |Ar| ≤ 1 and |∆φr|/m ∈ O(1).
Here, the coefficients Ar can be thought of as the path
weights, and ∆φr as their phases. Performing an appropri-
ately chosen Taylor series truncation of p(t), one finds that
a degree-O(m/ logm) polynomial is sufficient to achieve er-
ror robustness 2−O(m) for circuits with Haar-random 2-qubit
gates and in fact robustness 2−O(n) for IQP circuits. This re-
sult thus reduces the gap to the required robustness of 2−n to
constants in the exponent. By making use of recent results
in polynomial interpolation that make use of specifically cho-
sen points (Kane et al., 2017), the success probability of the
interpolation can further be improved to a constant without
the need for an NP-oracle as in (Bouland et al., 2022). We
summarize the various average-case hardness results just dis-
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cussed in Table I.20

A key issue to note in the worst-to-average case reductions
on the unitary group is that the random gates in the circuit
families need to be drawn from continuous subgroups of the
unitary group. Only if this is the case can one choose values
of the interpolation parameter t that are small enough such
that the measure on the gate set is not perturbed too much
in the interpolation step. In particular, this implies that the
reduction does not apply to discrete gate sets and for some
architectures the choice of random gates must be modified for
the reduction to apply. For instance, to apply the average-
case hardness results to IQP circuits family defined in Eq. (6),
we need to choose the edge weights wi,j uniformly from the
unit circle S1 rather than from a discrete set of angles; see
also (Haferkamp et al., 2020b).

One step in the direction of achieving an (exact) average-
case hardness reduction for a discrete gate set has been taken
by Dalzell et al. (2020, Thm. 6). They consider the discrete
family of IQP circuits whose output amplitudes are given by
gaps of degree-3 Boolean polynomials (cf. Eqs. (5) and (44)).
Specifically, they show a recursive reduction from the gap of
a degree-3 polynomial with random degree-1 terms (but fixed
degree-2 and degree-3 terms) to the gap of a worst-case poly-
nomial (with the same degree-2 and degree-3 terms). This
translates to an exact average-case hardness result over a cer-
tain discrete family of IQP circuits. There are two issues with
this approach, however. First, the family is very specific since
it depends explicitly on the degree-2 and degree-3 terms of a
worst-case instance. Second, it does not work for the output
probabilities since these do not contain sign information about
the gap anymore, which is crucial for the reduction—compare
also the proof of approximate worst-case hardness of GapP
discussed in Section III.D. This strategy is still worth noting,
however, since it is intrinsically distinct from the polynomial
interpolation approaches discussed above and might yield an-
other path to proving approximate average-case hardness.

6. Discussion

Using the techniques discussed above, we are currently able
to prove approximate average-case hardness of universal ran-
dom circuits with robustness 2−O(m), where m is the number
of gates in the circuit. This is further improved for IQP cir-
cuits to 2−O(n), where n is the number of qubits. To prove
the approximate average-case hardness conjecture, we would
need to improve this still toO(2−n), however. Can we hope to
prove such a result? The key technical obstacle on the way to
addressing this question is the instability of polynomials with
respect to variations in the interpolation points. Indeed, we

20 Let us also note that a formulation of the above proof strategy using the
language of representations of Lie groups is provided by Oszmaniec et al.
(2022).

saw in Paturi’s lemma (Lemma 22) that the extrapolation er-
ror of a bounded error polynomial scales exponentially in the
degree r and size of the interval ε on which the bound holds,
and the stronger version used by Kondo et al. (2022) scales as
an order-d Chebyshev polynomial in ε. As we have to make
this interval inverse polynomially small to maintain closeness
of the probability distributions, this results in a strong increase
of the Paturi bound, which can only be counter-weighted by
an inversely scaling error bound on the interval (−ε, ε). Small
variations of a polynomial at a few points can thus lead to very
large variations far away from those points.

Random self-reducibility thus seems doomed when it
comes to additive robustness of success probabilities on the
order 2−n as would be necessary for the quantum supremacy
conjecture. Indeed, already Aaronson and Arkhipov (2013,
Section 9.2) argue that polynomial interpolation faces a
significant barrier. They argue that—in the presence of
anticoncentration—the fact that polynomial interpolation is
linear in the coefficients and hence linear with respect to ad-
ditive errors prohibits it from allowing to prove approximate
average-case hardness. Roughly speaking, this is because,
even if two polynomials agree up to exponentially small er-
ror in an interval, they may exponentially disagree outside of
that interval, while at the same time the target value of the
polynomial might not be exponentially larger. Hence, con-
stant relative-error approximations in the evaluation interval
could translate to exponentially larger relative-error approxi-
mations at the target point. The suggestion of Aaronson and
Arkhipov (2013, p. 91) is then to make use of a restricted class
of polynomials that are not closed under addition, but which
are at the same time able to capture the quantity of interest.

Making this argument somewhat quantitative, Bouland
et al. (2022) investigate the applicability of random self-
reducibility in the context of noisy circuits with error de-
tection; see also (Aaronson and Arkhipov, 2013, Section
9.2). They show that even noisy, error-detectable probabil-
ities which are conjectured to be 2−O(m) close to uniform
(Boixo et al., 2018) remain #P-hard to compute up to er-
ror 2−16m logm−O(m) in the average case via random self-
reducibility. But, so they argue, this implies that the average-
case robustness of 2−O(m logm) is essentially optimal for this
technique up to log-factors in the exponent. The result of
Krovi (2022) has further removed the log-factors in the ex-
ponent, providing a matching 2−O(m) scaling of the robust-
ness for universal random circuits and 2−O(n) for IQP circuits.
Similarly, for the case of Fock boson sampling onm = O(nc)
many modes, they are able to show an even tighter error bound
of e−(c+4)n logn−O(n), which is only constant factors in the
exponent away from the e−n logn robustness required to prove
the approximate average-case hardness conjecture.

Let us note that while the scaling conjecture of Boixo et al.
(2018) has recently been shown in the low-noise limit (Dalzell
et al., 2021), at high noise strengths, Deshpande et al. (2021)
prove the expected convergence of the probabilities to uniform
as 2−n−O(d) (Deshpande et al., 2021); see Section IV.F.1 for
a discussion of these results. The latter result may lower the
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barrier for random circuits significantly.
As another piece of evidence complicating a proof of ap-

proximate average-case hardness, for a (somewhat baroque)
constant-depth universal circuit architecture in two dimen-
sions, Napp et al. (2022) proved that no approximate worst-to-
average case reduction that enables the Stockmeyer argument
is possible. Rather this architecture admits algorithms for both
strong and weak simulation that are efficient on large fractions
of the instances. But for the same architecture, strong simu-
lation is classically intractable in the worst case unless GapP
admits a polynomial time algorithm and the polynomial hier-
archy collapses to its third level, respectively. Moreover, they
provide numerical evidence that random constant-depth uni-
versal circuits in 2D are efficiently simulable on average in
practice. Strengthening this point, Deshpande et al. (2021)
show that at sublogarithmic depth, almost all probabilities are
subexponentially small for random universal circuits, so that
anticoncentration does not hold. This implies that the triv-
ial algorithm which always outputs 0 is a good additive ap-
proximate average-case strong simulator for this case. Note
however, that this does not imply an average-case approxi-
mate sampling algorithm. Technically speaking, the upshot
of these results is that any technique to prove approximate
average-case hardness must be sensitive to the depth of the
circuit, since we do not expect any technique to work at low
depth. Moreover, while hardness of approximate sampling
might hold for certain sublogarithmic depths, we are barred
from proving it via the Stockmeyer argument.

For an approximate worst-to-average case reduction we
would require, it seems, quantum success probabilities that
are extremely robust to noise in generic instances. Techniques
such as quantum error correction (Raussendorf et al., 2006)
might at first sight seem ideally suited for this task, but in
such approaches errors need to be actively corrected. While in
the framework of quantum sampling active correction can be
bypassed using postselection (Fujii, 2016; Kapourniotis and
Datta, 2019), this means that only those probabilities corre-
sponding to specific measurement outcomes on subsystems
will be protected against errors. Since the postselection reg-
isters comprise at least a constant fraction of all registers the
protected probabilities comprise only a 2−Ω(n) fraction of the
instances. But by the hiding property every outcome prob-
ability is in one-to-one correspondence with the acceptance
probability of a circuit from the family. So postselected fault-
tolerance seems to be in conflict with average-case hardness.

To summarize, as it stands, we have very strong
complexity-theoretic evidence of the hardness of exact sam-
pling from the output distributions of quantum random sam-
pling schemes. This evidence is provided by the conjectured
non-collapse of the polynomial hierarchy, which is a direct
generalization of the unanimously believed P 6= NP conjec-
ture, whose failure would have extreme consequences on our
widely tested view of the computational complexity of many
different problems. Conversely, the evidence for the hard-
ness of approximate sampling is substantially weaker, since
it is only based on the approximate average-case hardness

conjecture. The failure of this conjecture—while presumably
unlikely—would not result in any meaningful consequences
in complexity theory. But while, as we have sketched in this
section, there remain significant hurdles, proving this conjec-
ture might still be possible in the not too far future.

E. Fine-grained results

The complexity-theoretic arguments we have discussed in
quite some detail rule out an efficient classical simulation al-
gorithm under the assumption of the non-collapse of the poly-
nomial hierarchy and approximate average-case hardness of
computing the respective output probabilities. However, they
do not—and cannot—make any quantitative statements about
lower bounds on the runtime of any classical simulation algo-
rithm. But a convincing demonstration of quantum advantage
not only require relies on asymptotic complexity-theoretic
statements but also evidence that for the given finite size of
the experiment there is no classical algorithm which can solve
the problem using a reasonable amount of resources.

This is the point at which so-called fine-grained complexity
results continue to try and provide lower bounds on the run-
time of classical simulation algorithms. The key idea of such
results is to leverage versions of the so-called strong expo-
nential time hypothesis (SETH) which states that certain NP-
complete problems cannot be solved in time faster than 2an in
the input size n for some constant a depending on the type of
problem. Such conjectures may then be leveraged to conjec-
ture a fine-grained version of the collapse of the polynomial
hierarchy.

Let us discuss this idea more concretely using the example
of IQP circuits with output probabilities given by the squared
gap of degree-3 polynomials (cf. Eq. (5) and (44)). Dalzell
et al. (2020) provide a fine-grained hardness argument for
this circuit family via a closely related problem, which they
call poly3-NONBALANCED. The input to this problem is
a degree-3 Boolean polynomial f , and the task is to decide
whether gap(f) 6= 0, i.e., whether the function f has a dif-
ferent number of 0 and 1 outputs. Since computing the gap of
degree-3 Boolean polynomials is #P-complete (Montanaro,
2016b), this problem is complete for a complexity class called
coC=P. A language L is contained in coC=P if there exists a
polynomial-time algorithm M such that for all x ∈ {0, 1}∗

x ∈ L⇔ gap(M(x, ·)) 6= 0, (125)

and is therefore closely related to the class PP where the con-
dition is

x ∈ L⇔ gap(M(x, ·)) < 0. (126)

coC=P is analogous to PP and #P in that an oracle to coC=P
is sufficient to solve any problem in the polynomial hierar-
chy (Toda and Ogiwara, 1992), and conversely, an efficient
algorithm for coC=P within the polynomial hierarchy would
imply a collapse of PH.
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The idea of fine-grained supremacy results is now analo-
gously to the Stockmeyer argument to assume the existence
of an efficient classical derandomizable sampling algorithm
for the output distribution of an n-qubit IQP circuit Cf up to
a multiplicative error, using g(n) gates and t(n) time steps.
This algorithm gives rise to a non-deterministic algorithm for
poly3-NONBALANCED running in s(n) steps in the sense
that it accepts if and only if there is at least one computational
path (i.e. input of randomness) giving rise to the all-zero sam-
ple. The fine-grained advantage result now relies on the fol-
lowing conjecture (Dalzell et al., 2020).

Conjecture 24 (poly3-NSETH(a)). Any non-
deterministic classical algorithm that solves poly3-
NONBALANCED requires in the worst case 2an−1

time steps, where n is the number of variables in the
poly3-NONBALANCED instance.

This conjecture directly yields a lower bound on the time
complexity of the assumed classical sampling algorithm as
t(n) ≥ 2an−1. Omitting some fine print about the compu-
tational model in which this conjecture is phrased here21, the
best known limit on a is given by a < 0.9965 (Lokshtanov
et al., 2017).

Analogously to the proof of additive-error sampling hard-
ness via Stockmeyer’s algorithm, fine-grained statements can
be made for additive errors assuming an average-case lower
bound on the runtime of a classical algorithm. From this
it is possible to estimate the number of qubits required to
show a quantum advantage such that no classical computer
will be able to reproduce the task. Dalzell et al. (2020, Sec.
5.1) estimate that IQP circuit sampling on roughly 200 qubits
and 106 many gates, would require at least a century using a
classical-simulation algorithm running on state-of-the-art su-
percomputers.

Furthermore, statements can be made for different models
by relating their simulation to well-studied problems such as
poly3-NONBALANCED. In particular, this has been done for
boson sampling (Dalzell et al., 2020), as well as the DQC1
model and Clifford+T universal circuit sampling (Morimae
and Tamaki, 2019).

Huang et al. (2020a) pursue a complementary approach on
fine-grained results by considering strong simulation of quan-
tum circuits via certain simulation algorithms. Specifically,
they consider a subclass of classical simulation algorithms,
which they call monotone simulators. Roughly speaking, a
monotone simulator is one that does not explicitly make use of
the specific values of the nonzero matrix entries of the gates.
A counterexample to a monotone method is therefore the sim-
ulator of Bravyi and Gosset (2016), which explicitly uses the
number of T gates in the circuit. Note, however, that a T gate

21 Since fine-grained complexity is about the concrete runtime, one has to fix
the computational model. Typically, fine-grained complexity results are
stated in terms of the so-called Word RAM model (Williams, 2015).

does not differ from a simulable Z or S gate in terms of the
locations of the non-zero matrix entries. Nonetheless, most
tensor-network based methods (see Section VII for details)
are well captured by the monotone framework. They show
an explicit lower bound of Õ(2n−3) on the runtime of such
monotone simulators. Furthermore, invoking the exponential-
time hypothesis they provide a 2n−o(n) lower bound on strong
simulation of quantum circuits.

F. Complexity of sampling in the presence of noise

All of the complexity-theoretic analysis we have seen so far
pertains to constant total-variation distance errors. While this
is a meaningful notion of robustness, it is extremely challeng-
ing to achieve such errors in a scalable way: doing so requires
local gate errors to scale at most inversely with the circuit size.
Since local gate errors are the experimental bottleneck in any
implementation of quantum random sampling, it is therefore
natural to ask whether the sampling task remains hard in the
presence of constant local gate errors. Constant gate errors
tend to give rise to a TVD between the experimental output
distribution and the target distribution that deviates from unity
only by an inverse exponential. But it might still be the case
that the sampling task remains difficult for a classical com-
puter.

There are (at least) two ways of approaching this question.
First, we can ask: Given certain local errors in a quantum ran-
dom sampling scheme, what is the complexity of sampling
from the output distribution? Second, we can ask: Is it possi-
ble to design a quantum random sampling scheme that is ro-
bust to constant local errors? While the first question requires
an analysis of the noisy output distribution from the perspec-
tive of computational complexity, the second question might
be solved by encoding a random sampling scheme in a fault-
tolerant way. Let us briefly sketch some results along these
directions in the following.

1. Noisy output distributions

A natural noise model in the context of universal random
circuits is given by single-qubit noise channels after each two-
qubit gate in the circuit, since the fidelity of two-qubit gates
is typically much worse than the single-qubit fidelity (Arute
et al., 2019). Let us assume for simplicity that the noise chan-
nel is gate-independent, or that all two-qubit gates and the as-
sociated noise channel are the same, and that its average gate
fidelity is given by 1 − ε. This model has been analyzed by
Dalzell et al. (2021) and Deshpande et al. (2021) in different
regimes of the parameter ε.

Dalzell et al. (2021) compare the output distribution of the
noisy circuit pnoisy to the “white-noise distribution” with re-
spect to an ideal distribution pideal. Given a fidelity F , the
white-noise distribution is defined as

pwn = Fpideal + (1− F )punif , (127)
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where punif is the uniform distribution. As it turns out, ap-
proximately sampling from the white noise distribution pwn
with inverse polynomial fidelity F within TVD error εF is
just as hard as approximately sampling from the ideal distri-
bution pideal within TVD error ε, given that pideal anticoncen-
trates in the sense that it has exponentially small second mo-
ments (Dalzell et al., 2021, Theorem 4). Notice that achieving
an inverse polynomial fidelity would still require a local error
rate of Θ(1/n) for circuits of size O(n log(n)), which is the
minimal size required for anticoncentration to hold, see Sec-
tion IV.D.2.

Dalzell et al. (2021) now show that the distance of the
noisy distribution approaches the uniform distribution as
e−2mε+O(mε2), i.e., exponentially in the circuit size. At the
same time, the distance to the white-noise distribution with fi-
delity parameter F = e−2mε±O(mε2) scales as O(Fε

√
m), in

the regime in which the noise parameter is small in the sense
that εn log(n) � 1 and the circuit family satisfies the anti-
concentration property, requiring m ∈ Ω(n log(n)). Since
the distance to the white noise distribution scales as a square
root in the circuit size, their result shows a quadratic improve-
ment in the required noise level for random quantum circuits
as compared to the worst case for which the error would grow
as O(εm). To summarize, the average fidelity decay is ex-
ponential in m and the typical distance to the correspond-
ing white noise distribution grows slower than the worst case.
Consequently, there is now an optimal scaling of m with n
that achieves the minimal error to an appropriate white-noise
distribution in terms of the circuit size. It is in this regime that
the XEB fidelity translates to a TVD bound and provides the
best measure of quantum advantage; see also the discussion in
Section V.B.3.

Meanwhile, Deshpande et al. (2021) show that in the
regime of large noise ε ∈ O(1), the expected total-variation
distance to the uniform distribution is lower-bounded by
exp(−O(d)), where d is the depth of the circuit. In certain
regimes this result also holds for typical instances. In light of
the result of Dalzell et al. (2021) which shows a fidelity decay
in the circuit size m = n · d, this is a surprisingly slow decay.

Notice that the respective bounds translate to a concen-
tration bound on the distance of the individual probabilities
to uniform as 2−O(m)−n and 2−O(d)−n, respectively, by a
Markov bound on the TVD. Let us also stress that the two
results consider complementary regimes and their respective
proof techniques fail beyond the considered regime. It re-
mains an interesting open question to analyze the entire dis-
tribution of the TVD between the noisy distribution and the
uniform distribution as well as its noise dependence in more
detail.

2. Fault-tolerant random sampling

As an alternative approach, one can consider the possi-
bility of embedding quantum random sampling in a fault-
tolerant encoding wherein error syndrome measurements are

part of the sampling scheme. Fujii (2016) observes that sam-
pling from the entire distribution of such an encoding remains
worst-case hard in the presence of noise. This is because one
may postselect on the syndrome measurements returning the
no-errors outcomes. In this case the conditional distribution
on the sampling measurements is just given by the ideal dis-
tribution provided that the corresponding postselection proba-
bility is nonzero. Consequently, exact simulation of the noisy
distribution remains computationally intractable in the worst
case provided the local error rates are below the threshold for
the used encoding.

Kapourniotis and Datta (2019) provide an explicit exam-
ple of such an encoding in the measurement-based model of
quantum computing, which also allows for an efficient verifi-
cation scheme. However, it is unclear to what extent the ap-
proximate average-case hardness conjecture required for this
scheme is plausible, since it is based on the postselected suc-
cess of magic-state distillation. Building on ideas of Bravyi
et al. (2020), Mezher et al. (2020) develop high-dimensional
and interactive measurement-based protocols in which this is
achieved for every instance by appropriate classical postselec-
tion.

V. VERIFICATION

In the previous section, we discussed in detail the
complexity-theoretic evidence for the classical intractability
of quantum random sampling. But in order to demonstrate a
quantum advantage via quantum random sampling the quan-
tum implementation must be sufficiently accurate. It is there-
fore essential to verify that a claimed implementation of quan-
tum random sampling in fact achieves the purported task.

The verification task is extremely challenging, however.
This is due to the difficulty of verifying sampling tasks in
general, as well as the impossibility of efficiently simulating a
sufficiently accurate implementation of quantum random sam-
pling, or computing the corresponding output probabilities. In
this section, we review different approaches to the verification
problem, both inefficient and efficient ones.

Clarifying the verification problem somewhat more for-
mally is a first nontrivial task since there are various distinct
settings in which we can conceive of verification—we might
allow for interaction between a skeptic and a quantum device
which is claimed to produce samples from the correct distri-
bution, or merely claimed to perform a task that is classically
not efficiently solvable. We might ask to verify the device just
from the samples it produces, or we might allow access to the
quantum state of the device, i.e., by performing measurements
in different bases.

We begin by reviewing in some detail the reason why naïve
verification from samples alone is impossible in the absence
of assumptions on the device just because too many samples
from the device would be required in Section V.A. We then
move on to sample-efficient but computationally inefficient
protocols for different verification settings that just use sam-
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ples from the device in Section V.B. Given the previous result,
such protocols require assumptions on the device, or verify a
weaker statement than the correctness of the samples. In Sec-
tion V.C, we then consider the setting in which we have di-
rect access to the output state C|0〉 of the computation. As
it turns out, this allows fully efficient and yet rigorous certi-
fication protocols for quantum sampling schemes that assume
accurate quantum measurements in certain restricted bases.
Finally, we briefly discuss verification schemes that involve
several rounds of interaction between a sceptic verifier and
the quantum device under investigation in Section V.D.

A. Hardness of verification from classical samples

In this section, we will see a simple argument why veri-
fying the samples from quantum random sampling schemes
typically requires exponentially many samples and is there-
fore infeasible—the quantum device would need to be run ex-
ponentially many times. To this end, one can invoke a strong
result by Valiant and Valiant (2017) on optimal identity testing
and properties of the output probability distribution of quan-
tum random sampling (Hangleiter et al., 2019).

Theorem 25 (Optimal identity testing (Valiant and Valiant,
2017)). There exist constants c1, c2 > 0 such that for any
ε > 0 and any target distribution P , there exists a test which,
given samples from a distribution Q, distinguishes whether
P = Q or ‖P −Q‖TV > ε, promised one is the case, given

c1 max

{
1

ε
,

1

ε2
‖P−max
−ε/16 ‖`2/3

}
(128)

many samples. On the other hand, there exists no such test
from fewer than

c2 max

{
1

ε
,

1

ε2
‖P−max
−2ε ‖`2/3

}
(129)

samples.

For a vector of non-negative numbers P we here define
P−max to be the vector obtained from P by setting the largest
entry to zero, and P−ε the vector obtained from P by set-
ting all of the smallest entries to zero such that the sum of
the removed entries is less than ε. Moreover, ‖P‖`2/3 =

(
∑
x p

2/3
x )3/2. The `2/3 norm of P−max

−ε therefore completely
characterizes the asymptotic complexity of identity testing up
to constant factors in ε. The intuition behind the result of
Valiant and Valiant (2017) is that the largest probability as
well as the tail of the distribution are easily detected in an
identity test, because a constant deviation in these parts of the
distribution will be visible in the samples obtained with high
probability. An important corollary of their result—which
was known prior to it (see e.g. Goldreich, 2017)—is that the
complexity of testing against the uniform distribution on a
sample space Ω requiresO(

√
|Ω|) samples, while verification

requires less samples for more peaked distributions.

Lower bounds on the certifiability of quantum random sam-
pling, intuitively speaking, follow from the fact that the out-
put distributions of the schemes are extremely flat with high
probability. Technically speaking, we obtain the lower bounds
from bounding the `2/3 norm. It turns out that the second mo-
ments that were used to prove anticoncentration are just suffi-
cient for that. To see this, following Hangleiter et al. (2019),
we first observe that the `2/3 norm can be lower bounded in
terms of the largest probability p0 of a distribution P as

‖P−max
−ε ‖`2/3 ≥ p

−1/2
0 (1− ε− p0)3/2. (130)

Second, we observe that the Rényi-2 entropy H2(p) =
− log

∑
x p

2
x upper bounds the largest probability as

log p0 ≤ −
1

2
H2(P ). (131)

But now we can use the fact that most quantum random sam-
pling schemes given by a circuit family C have bounded av-
erage collision probabilities (cf. Section IV.D.2) and that they
concentrate around the mean by Markov’s inequality as∑

x

E
C∼C

[px(C)2] ≤ O(2−n/δ), (132)

with probability at least 1 − δ. This implies that the Rényi
2-entropy is bounded as H2(PC) ≥ n + log(O(δ)). Con-
sequently, the largest probability is exponentially small with
high probability, i.e., log p0 ≤ −(n + log(O(δ)))/2. The
sample complexity of certifying quantum random sampling
from samples scales at least as Ω(2n/4+O(δ)) with probabil-
ity 1 − δ over the choice of circuit instance. Let us note that
even though the second moments of the boson sampling prob-
abilities are not sufficiently small to prove anticoncentration,
they are small enough to prohibit sample-efficient verification
(Gogolin et al., 2013; Hangleiter et al., 2019).

While one might think that this result is actually not too bad
in that few enough samples may be required for intermediate-
scale instances of quantum random sampling, it turns out that
the optimal identity test of Valiant and Valiant (2017), which
employs a variant of the χ2-test, is highly impractical in that
the constants involved are much too large. What is more, the
problem becomes more challenging when the test is also re-
quired to accept distributions not too far away from the ideal
distribution. This is because this requirement poses an addi-
tional constraint on the testing protocol.

B. Sample-efficient classical verification via
cross-entropy benchmarking

To overcome the obstacle of exponential sample complex-
ity, one may consider a weaker requirement than verifying the
full total-variation distance. The most prominent approach
that achieves this is a family of tests, which we subsume under
the label cross-entropy benchmarking. These tests have been
introduced in a series of works (Aaronson and Chen, 2017;
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Figure 8 In the task heavy outcome generation (HOG) one is
asked to output a list of strings {x1, . . . , xk} for which PC(xi) ≥
med(PC).

Arute et al., 2019; Boixo et al., 2018; Neill et al., 2018). The
central idea is to use multiplicative measures of similarity be-
tween the implemented “noisy” distribution Q and the ideal
target distribution PC that measure the correlation between
the two distributions. We can express those measures as fol-
lows.

Definition 26 (Cross-entropy measures). Let f : [0, 1] → R
be a monotonously increasing function. Define

Ff (Q,PC) =
∑

x∈{0,1}n
Q(x)f(PC(x)) (133)

as the cross-entropy measure corresponding to f .

The first observation that we can make is that by a Cher-
noff bound the cross-entropy measures Ff can be sample-
efficiently estimated from a number of samples that depends
on the variance of f(PC(x)) over x and scales as 1/ε2 in the
estimation error. Notably, for exponentially small values of
Ff (Q,PC), the error ε needs to scale inverse exponentially,
too. Hence, sample efficiency is lost in that case.

The second observation is that estimating cross-entropy
measures is computationally inefficient for quantum advan-
tage schemes since the probabilities PC(x) of the ideal dis-
tribution (or a function thereof) need to be computed for the
observed outcomes. As we will see, this constitutes an im-
portant obstacle to their practical usage in verifying quantum
random sampling in the quantum advantage regime.

While different variants of the measure are interpreted dif-
ferently, the intuition underlying all such measures is the fol-
lowing: those distributions which get the heavy outcomes
of a quantum computation correct will score well on cross-
entropy measures because these outcomes dominate the mea-
sure (Aaronson and Chen, 2017). One can characterize “heavy
outcomes” as those bit strings x ∈ {0, 1}n for which the prob-
ability PC(x) of obtaining x is large, for example, larger than
the median of PC , see Fig. 8.

Before we introduce the most important measures—heavy
outcome generation, cross-entropy difference, and cross-
entropy benchmarking fidelity—let us discuss in more detail

the shape of the outcome distribution of random quantum cir-
cuits. Consider the success probability pU (0) = |〈0|U |0〉|2
of a Haar-random unitary U ∈ U(d). Then the distribution
of p = pU (0) over the choice of U is given by the so-called
Porter-Thomas distribution (Porter and Thomas, 1956) which
is asymptotically exponentially distributed22

PPT(p) = (d− 1)(1− p)d d�1−−−→ d exp(−dp). (134)

For d � 1 one can now invoke Levy’s lemma 23 (Ledoux,
2005) to see that the finite distribution of outcome probabil-
ities of a fixed, Haar-randomly drawn unitary is expected to
be O(1/

√
d) close to the Porter-Thomas distribution. While

exactly implementing Haar-random unitaries via a quantum
circuit requires exponentially many gates, it has been numer-
ically shown by Boixo et al. (2018) that the output distribu-
tion of universal random circuits quickly tends towards the
Porter-Thomas distribution in terms of the lower moments of
the distribution. This evidence serves as justification for the
use of properties of the Porter-Thomas distribution as opposed
to merely the second moments of the distribution in the anal-
ysis of cross-entropy measures.

1. Heavy-outcome generation

The most basic cross-entropy measure that serves as intu-
ition for the more involved measures we will see later, is based
on the so-called heavy outcome generation task or HOG as in-
troduced by Aaronson and Chen (2017).

Problem 27 (HOG (Aaronson and Chen, 2017)). Given as
input a random quantum circuit C ∈ C from a family C, gen-
erate distinct output strings x1, . . . , xk, at least a 2/3 fraction
of which have a probability greater than the median med[PC ]
of PC .

HOG is equivalent to achieving a non-zero score in the
HOG fidelity

FHOG(Q,PC) =

2

ln 2

∑
x∈{0,1}n

Q(x)

(
θ(PC(x)−med[PC ])− 1

2

)
, (136)

22 See (Haake, 2010, Chapter 4.9) for the derivation.
23 Levy’s lemma (Ledoux, 2005) can be stated as follows. Given a function
f : SD → R defined on the D-dimensional hypersphere SD with zero
mean and an x ∈ SD chosen uniformly at random, then

Pr[|f(x)| ≥ ε] ≤ 2 exp

(
−

2C(D + 1)ε2

η2

)
, (135)

where η > 0 is the Lipschitz constant of f and C > 0 is a constant. For
normalized quantum state vectors of a complex vector space of dimension
d, D = 2d − 1. The heuristic intuition developed here is that for random
processes with an approximately constant Lipschitz constant, one would
expect the fluctuation to scale approximately as the inverse square root of
the dimension d = 2n of the underlying Hilbert space.
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defined in terms of the step function θ : R → {0, 1} which is
0 for x < 0 and 1 otherwise.

Because it is defined in terms of the bias of the target distri-
bution, FHOG can be sample-efficiently estimated. First, the
median can be estimated very efficiently up to a small er-
ror from few samples. Given k samples {x0, . . . , xk} from
a noisy distribution Q, we then need to compute the probabil-
ities PC(xi) and compare them to the median. By Hoeffding’s
inequality this can be achieved with error O(1/

√
k) with ex-

ponentially small failure probability.
Let us briefly discuss the properties of FHOG. If Q is maxi-

mally noisy—that is, the uniform distribution—then

FHOG(Q,PC) =

2

ln 2

(
1

2n
|{x : PC(x) ≥ med[PC ]}| − 1

2

)
= 0, (137)

as the median is defined as the largest number such that the
sum of the output probabilities of C exceeding that number
is at least 1/2. On the other hand, in an ideal implementa-
tion for which Q = PC , FHOG(Q,PC) > 0 so long as PC
is nonuniform. This is because, by definition, the probabili-
ties above the median are larger than those below the median
and hence the probability weight above the median is at least
1/2. More specifically, if the outcome probabilities PC(x) are
Porter-Thomas distributed, then FHOG(PC , PC) = 1. To see
this, observe that the median of the exponential distribution is
given by ln 2/2n and the total probability weight of PC above
the median is then given by24

∑
x∈{0,1}n

PC(x)θ(PC(x)− ln 2/2n)

≈
∫ ∞

ln 2/2n
2ne−2np dp =

1 + ln 2

2
. (138)

More generally, a distribution that scores well in terms of
FHOG will therefore tend to be closer to an ideal implementa-
tion of PC in terms of total-variation distance. This is rigor-
ously true in case the noisy distribution is a convex mixture

Qλ(x) = (1− λ)PC(x) + λ
1

2n
, (139)

of the ideal target distribution and the uniform distribution
with λ ∈ [0, 1].

Clearly, there are also distributions, however, which score
well on the HOG fidelity, but are far away from PC . To see
this, just take the distribution which is supported on {x :
PC(x) ≥ med[PC ]|}. This distribution will have a HOG fi-
delity of 1/ ln 2 > 1 even though its total variation-distance
to PC is at least (1− ln 2)/2.

24 See also Aaronson and Chen (2017, Footnote 3).

a. Computational hardness of HOG. It is presumably very hard
to find a distribution which has high support on the heavy
outcomes of the target distribution, though. Scoring well on
FHOG may thus well be computationally hard even though it
is a strictly easier task than approximately sampling from the
target distribution. To see this observe that the ability to sam-
ple from the correct distribution implies the ability to score
well on FHOG, but not vice versa since FHOG does not quan-
tify the TVD. Aaronson and Chen (2017) conjecture precisely
that: HOG is computationally intractable for random quantum
circuits. To support this conjecture, they reduce it to the hard-
ness of deciding whether |〈0|C|0〉|2 is larger than med[PC ]
with probability at least 1/2 + Ω(2−n) over the choice of C.
The quantum threshold assumption (QUATH) states that this
task is computationally intractable for classical computers. To
reduce QUATH to HOG we simply assume that there is an ef-
ficient routine solving HOG. Then, given a quantum circuit
C we can run that routine on the circuit C ′ =

∏
iX

zi
i , where

z is a uniformly random string. If z is contained in the k
output samples, then we output “Yes”, otherwise we output
“Yes” with probability 1/2 and “No” otherwise. This proce-
dure decides whether z is a heavy string for C ′, or equiva-
lently whether 0n is heavy for C, with success probability at
least 1/2 + Ω(1/2n) since z is uniformly random.

Conversely, HOG can be solved by a quantum algorithm for
circuits with probability weight above the median greater than
2/3 with probability at least 1− exp(−Ω(k)). Aaronson and
Chen (2017, Lemma 8) provide a neat proof that this is indeed
the case with high probability by showing that in expectation
the probability weight above the median is lower-bounded by
5/8.

The HOG test, and the HOG-fidelity FHOG can therefore be
considered benchmarks for quantum random sampling based
on evidence independent of the argument presented in Sec-
tion IV. While HOG and QUATH may be plausible conjec-
tures, however, the level of complexity-theoretic evidence for
either both QUATH and the intractability of HOG is extremely
weak. This is because we have no independent underpinning
of those conjectures such as the non-collapse of the polyno-
mial hierarchy which is independently grounded in significant
evidence.

b. Fine-graining HOG: Binned outcome generation. A natural
way to connect the properties of the HOG fidelity with the
TVD, is to bin probabilities in a more fine-grained fash-
ion (Bouland et al., 2019). This retains the complexity-
theoretic intuition behind HOG that producing outcomes that
are correlated with the ideal distribution is hard, and is also
more directly supported by evidence for the intractability of
simulating quantum random sampling within constant TVD.
A natural starting point for such a more fine-grained measure
is to observe that HOG effectively divides the probabilities
into two bins—those that are larger than the median and those
that are smaller. The HOG benchmark is then obtained from
testing whether the empirically obtained samples satisfy cer-
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Figure 9 The fine-grained generalization of heavy outcome gener-
ation is to bin the samples x1, . . . , xk from the noisy distribution
Q according to the probabilities PC(xi). This constitutes a coarse-
grained estimator of the total-variation distance between Q and PC .
Since PC is (nearly) exponentially distributed for random circuits, a
suitable choice of m bins [pi, pi+1) is such that they are equifilled
with a 1/m fraction of the ideal samples. This is shown in the figure
for a noisy exponential distribution on a n = 3-qubit sample space,
with m = 12 bins and k = 100 samples.

tain properties expected from ideally distributed samples on
the respective bins. The sample efficiency of computing this
benchmark can be retained even when generalizing it to poly-
nomially many bins and comparing the number of observed
outcomes per bin with the number of expected outcomes.

Given that the distribution of outcome probabilities is ex-
pected to be an exponential distribution, the natural way to
bin is to choose a larger number of bins. Concretely, we can
choose m equifilled bins [pi, pi + 1) satisfying∫ pi+1

pi

2ne−2np dp =
1

m
, (140)

for i = 1, . . . ,m and p0 = 0, pm = 1. Define Ω =
{[pi, pi + 1)}i∈[m]. The task of binned outcome generation
BOG (Bouland et al., 2019) is to obtain a good, i.e., low value
of the binned distance

dBOG(Q,PC)

=
∑
X∈Ω

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

(Q(x)− PC(x))δ(PC(x) ∈ X)

∣∣∣∣∣∣
(141)

=
∑
X∈Ω

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

Q(x)δ(PC(x) ∈ X)− 1

m

∣∣∣∣∣∣ , (142)

where the last equality is true if PC is Porter-Thomas dis-
tributed. This is a discretized estimator of the total-variation
distance of the outcome distribution and can be estimated
from polynomially many samples; see Fig. 9. Indeed, for
Q = PC this measure is 0, while for anyQ 6= PC it converges
to ‖Q − PC‖TV as m → ∞. Canonne and Wimmer (2020)
prove that such binned identity testing with k bins up to error

ε is possible usingO(k/ε2) many samples, and moreover, that
this is asymptotically optimal.

2. Cross-entropy difference

While HOG and its variants are conceptually intuitive, in
practice, we want to capture as much about the distribution
as possible, given the available samples. To capture correla-
tions between the distribution Q and PC as well as possible
an appealing measure is the cross-entropy (Boixo et al., 2018)

CE(Q,PC) = −
∑
x

Q(x) logPC(x). (143)

The cross-entropy is a well-known statistical measure of simi-
larity between two distributions and measures correlations be-
tween the two distributions (Murphy, 2012). It also gives rise
to a distance measure betweenQ and PC , known as the cross-
entropy difference25

dCE(Q,PC) = CE(Q,PC)−H(PC) (145)

=
∑

x∈{0,1}n
(Q(x)− PC(x)) log

1

PC(x)
(146)

where H denotes the Shannon entropy.
But how does the cross-entropy difference fare when ap-

plied to the task of verifying quantum supremacy distribu-
tions? Again, using the assumption that the ideal probabilities
are exponentially distributed, we observe that it constitutes a
good measure for distributions of the form Qλ in Eq. (139)
(Boixo et al., 2018, Section 2 of the SM):

dCE(Qλ, PC)

= (1− λ)dCE(PC , PC) + λdCE(1/2n, PC) (147)
≈ (1− λ) · 0 + λ · 1 = λ. (148)

To see why this is the case, we can compute the expectation
value of H(PC) over the random choice of C as (Boixo et al.,
2018)

E
C

[H(PC)] = −
∑
x

E
C

[PC(x) logPC(x)] (149)

= −2n
∫ ∞

0

2ne−2npp log p dp (150)

= n− 1 + γ, (151)

25 Note that Boixo et al. (2018) define the cross-entropy difference in terms
of Eq. (133) as the deviation of cross-entropy between Q and PC from the
cross-entropy between the uniform distribution and PC

FXE(Q,PC) = CE(1/2n, PC)− CE(Q,PC). (144)
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where γ ≈ 0.5774 is the Euler constant. Likewise, the cross-
entropy between PC and the uniform distribution is in expec-
tation given by

E
C

[CE(1/2n, PC)] = − 1

2n

∑
x∈{0,1}n

E
C

[logPC(x)] (152)

= −
∫ ∞

0

2ne−2np log p dp (153)

= n+ γ. (154)

From this we obtain EC [dCE(1/2n, PC)] = 1.
By the above argument that the probabilities PC(x) for a

given (Haar) random and large enough unitary C are (pair-
wise) independently identically distributed according to the
Porter-Thomas distribution, with high probability over the
choice of C, dCE(1/2n, PC) = 1 for a fixed circuit. Con-
versely, as the cross-entropy reduces to the Shannon entropy
for Q = PC we trivially have dCE(PC , PC) = 0. To sum-
marize, the cross-entropy difference attains the value 1 for the
uniform distribution and vanishes for the ideal distribution,
giving rise to linear interpolation (147) for states of the form
Qλ. Notice that this is equally true for any noisy distribution

Q′λ = (1− λ)PC + λQ′, (155)

in which the uniform distribution is replaced by a distribu-
tion Q′ that is uncorrelated with PC , i.e., EC [CE(Q′, PC)] =
−∑xQ

′(x)EC [logPC(x)].
Under certain conditions the cross-entropy difference in

fact bounds the total variation distance (Bouland et al., 2019).
To see this, notice that the definition of the cross-entropy dif-
ference is similar to that of the Kullback-Leibler divergence

DKL(Q‖PC) = CE(Q,PC)−H(Q), (156)

which bounds the total-variation distance by Pinsker’s in-
equality as

‖Q− PC‖TV ≤
√
DKL(Q‖PC)/2. (157)

Hence, if the cross-entropy difference satisfies dCE(Q,PC) ≤
ε and the noise is entropy-increasing such that H(Q) ≥
H(PC), we have

‖Q− PC‖TV ≤
√
DKL(Q‖PC)/2 (158)

≤
√
dCE(Q,PC)/2 ≤

√
ε/2. (159)

The conditionH(Q) ≥ H(PC) is a fairly general condition
on the type of noise under which the total-variation distance
bound (158) holds. But it is also a condition that cannot be
checked from fewer than exponentially many samples fromQ.
Moreover, one can easily construct examples of distributions
that violate the inequality (158) (Bouland et al., 2019): those
examples fare well on the cross-entropy difference, but are far
from the ideal target distribution.

The cross-entropy difference can be efficiently estimated up
to accuracy ε with failure probability α from

m ≥ (n+O(log n))2

2ε2
log(2/α) (160)

many independently identically distributed (iid.) samples
from Q. To derive Eq. (160), we apply Hoeffding’s inequal-
ity and assume that the probabilities PC(x) are Porter-Thomas
distributed. We obtain that with probability at least 1−1/f(n)
over the choice of U , the probabilities PC(x) satisfy

2−2n/f(n) ≤ PC(x) ≤ (n+ log f(n))2−n, (161)

so that their logarithms logPC(x) differ only by a constant
factor of ∼ (2 +O(log(f(n)) from −n.

3. Linear cross-entropy benchmarking (XEB) fidelity

The most widely used cross-entropy benchmark is the lin-
ear cross-entropy benchmarking (XEB) fidelity introduced by
Arute et al. (2019). This measure simply chooses f to be
the identity function, up to rescaling and shifting, fXEB(x) =
2nx− 1, so that

FXEB(Q,PC) =
∑

x∈{0,1}n
Q(x)(2nPC(x)− 1). (162)

The XEB fidelity has the virtue that it can meaningfully be
applied in two variants: in the first variant, it is a variant of a
randomized benchmarking protocol with the goal of obtaining
a fidelity measure averaged over random sequences of quan-
tum gates. This variant is a special instance of randomized
benchmarking (Helsen et al., 2022, 2019; Liu et al., 2021c)
and can be applied to gates acting on few qubits (Arute et al.,
2019, SM). In its second reading, it can be used as a verifi-
cation protocol for single instances of quantum random sam-
pling. By making use of a typicality argument based on Levy’s
lemma, guarantees for the average randomized-benchmarking
behaviour can be transferred to the single-instance applica-
tion. Therefore, the XEB fidelity unifies the idea of bench-
marking a quantum processor by running random computa-
tions on it, and the idea of demonstrating a quantum advantage
via sampling from the output distribution of such circuits.

Even though it may serve as a measure of the fidelity of a
single circuit instance for a large number of qubits, the XEB
fidelity is intrinsically an average-case measure, and its abil-
ity to verify single instances is only derived from the fact
that these instances are typical. Given the choice of rescaling
and shifting, the average XEB fidelity for a family of quan-
tum circuits C that gives rise to a spherical 2-design (recall
Section IV.D.2) indeed gives rise to a meaningful measure of
quantum advantage in the sense that

E
C∼C

[FXEB(QC , PC)]

=

{∑
x 2n EC [PC(x)2]− 1 ≈ 1 QC = PC ,∑
x PC(x)− 1 = 0 QC = 1

2n ,
(163)
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in the extreme cases in which for every C, QC is the ideal tar-
get distribution and the uniform distribution, respectively. In
the following, we discuss in more detail these interpretations
of the XEB fidelity, and the extent to which the XEB provides
a meaningful measure of quantum advantage.

a. Sample complexity of estimating the XEB fidelity. For Haar-
random unitaries, FXEB can be estimated up to error ε with
probability at least 1− δ from

` ≥ e2

2ε2
ln2

(
2

2d

)
ln

(
2

δ

)
(164)

many samples (Hangleiter, 2021; Kliesch and Roth, 2021).
Moreover, using the bounds (161) on the size of the prob-
abilities PC(x) we can estimate the average XEB fidelity
EC [FXEB(Q,PC)] up to error 2ε with failure probability δ
from

`C ≥
1

2ε2
log

2

δ
(165)

many distinct random circuits and

` ≥ (n+O(log n))2

2ε2/`2C
log(2/δ) (166)

many samples per circuit (Hangleiter, 2021). In fact, an O(1)
bound on the variance of E[FXEB] is true even if only the third
moments of the circuit are close to the Haar-random value and
the noise is gate-independent (Helsen et al., 2022).

b. Benchmarking via XEB fidelity. Let us now briefly sketch
how XEB can be used to benchmark a quantum device. For
instance Arute et al. (2019, Sec. IV A, SM) analyse how to
estimate the depolarization error pc per cycle of the compu-
tation using the XEB fidelity. Let us follow their argument.
Consider the noisy quantum state

ρC = εdC|0〉〈0|C† + (1− εd)χC , (167)

after applying a random circuit C with d gate layers (cf.
Eq. (75)). Here, εd describes the effect of errors on
the state, and in the case of χC = 1/2n is interpreted
as the depolarization fidelity. We assume now that the
erroneous state χC is uncorrelated with C in the sense
that the probabilities of a computational basis measure-
ment are uncorrelated as EC [〈x|χC |x〉〈x|C|0〉〈0|C†|x〉] =
EC [〈x|χC |x〉]EC [〈x|C|0〉〈0|C†|x〉].

When averaging or “twirling” over random unitaries that
form a unitary design we would then expect to obtain a fully
mixed state

E
C

[
C†χCC

]
=

1

2n
, (168)

so that one might expect

E
C

[
C†ρCC

]
= εd|0〉〈0|+ (1− εd)

1

2n
, (169)

where εd denotes the average of the individual values of εd
over the random choice of unitaries. Eq. (169) precisely de-
scribes the effect of a depolarizing channel acting in each cy-
cle of the computation with depolarization fidelity pc such that
pdc = εd.

We obtain an expression of the circuit-averaged XEB fi-
delity in terms of the depolarization fidelity

E
C

[FXEB(Q,PC)] = pdc

(
2n
∑
x

E
C

[PC(x)2]− 1

)
, (170)

where Q is the output distribution of the noisty state ρC and
PC is as usual the output distribution of C|0〉. We can now
use this expression in order to estimate pc from FXEB(Q,PC).
To do this, we classically estimate the quantity in brackets in
Eq. (170) and obtain

pdc h
F̂XEB(Q,PC)

2n
∑
x EU [PC(x)2]− 1

, (171)

where F̂XEB(Q,PC) denotes the empirical estimate of
FXEB(Q,PC) for a fixed circuit and FXEB(Q,PC) denotes the
empirical average over random circuits. From an exponential
fit of pdc for various values of d one can now estimate pc.

Notice that in writing Eq. (169), we have used the average
XEB fidelity FXEB as a proxy for the average fidelity F of
the quantum state. Arguments for why the assumption that
the noise is uncorrelated from the circuit should be true are
essential to substantiate that connection.

Liu et al. (2021c) provide further credence to the connec-
tion between average fidelity and average XEB fidelity by per-
forming numerical simulations. They also further substantiate
the claim that the model of Arute et al. (2019) is valid—even
in certain cases in which their uncorrelated noise assumption
does not hold. To this end, they consider “RCS benchmark-
ing” in the spirit of randomized benchmarking. Specifically,
they formalize the protocol of Arute et al. (2019) as estimat-
ing the average quantum fidelity Fd of quantum circuits of
increasing depth d = 1, . . . , D, and finally performing an ex-
ponential fit F = Ae−λd. If (a) the average fidelity is in fact
well fitted by a single exponential decay, and (b) the average
XEB fidelity is a good proxy of the average quantum fidelity,
then this model matches XEB benchmarking as performed by
Arute et al. (2019).

Liu et al. (2021c) make the connection (a) by prov-
ing the following: Consider random circuits that are com-
prised of layers of arbitrary non-Clifford gates (say, the
two-qubit iSWAP∗ gates) and single-qubit Haar-random
gates.26 Now suppose that every layer of non-Clifford (two-
qubit) gates comes with a Pauli noise channel N (ρ) =∑
α∈{0,1,2,3}n pασαρσα, where σα denote the n-qubit Pauli

26 This is the setup of a cycle benchmarking protocol (Erhard et al., 2019).



44

matrices and pα are their coefficients. Then the average fi-
delity EFd of depth-d circuits does in fact decay exponen-
tially in the total error λ =

∑
α6=0 pα in the sense that

e−λd ≤ EFd ≤ e−λd(1 + Kλ) for d � 2n up to a first
order approximation in λ; see also the related discussion of
Helsen et al. (2022, Section IX)

For the second connection (b), they perform numerical sim-
ulations for various noise models. To this end, they make use
of a somewhat more versatile fidelity estimator that is closely
related to the XEB fidelity, which has been introduced by
Rinott et al. (2022).27 Intuitively speaking, in this “unbiased
XEB” estimator, instead of multiplying the ideal probability
by 1/2n, it is multiplied by the inverse second moments of
the ideal output distributions

FXEB,u(Q,PC) =
FXEB(Q,PC)

EC [FXEB(Q,PC)]
. (172)

This means that it is normalized on average to unity not only
for deep quantum circuits which have design-like moments
(recall Eq. (163)), but also for more shallow circuits with dif-
fering second moments. Liu et al. (2021c) find good agree-
ment between the fidelity and their unbiased XEB fidelity for
various correlated noise models and more over show that the
variance of the XEB fidelity scales as O(1/` + λ2(EF )2) in
the number of samples ` collected per circuit. The unbiased
estimator (172) has recently been tested as a measure of fi-
delity in small instances of measurement-based quantum ran-
dom sampling (Ringbauer et al., 2022).

Let us also note that the maximum-likelihood estimator
(MLE) for the fidelity has been analyzed by Rinott et al.
(2022). They find that the MLE has smaller bias and variance
than the linear XEB estimator and—like the unbiased XEB
estimator—is therefore a better fidelity estimator. They also
find—as was already noted by Arute et al. (2019, SM)—that
in the regime of small depolarization fidelity εd � 1, the XEB
fidelity estimator converges to the MLE of the fidelity.

c. Single-instance verification. When the number of qubits is
large, and the unitary C is drawn Haar-randomly, Levy’s
lemma implies that the fluctuations around the expectation
value over C (163) are expected to be on the order of
O(1/

√
2n). Consequently, for a large number of qubits, the

fidelity concentrates around its expected value over the choice
of random circuits (Arute et al., 2019).

For a large number of qubits, following Arute et al. (2019,
SM IV.B) we write again the noisy implementation of the
quantum state C|0〉 as

ρC = F C|0〉〈0|C† + (1− F )χC , (173)

27 Unbiased estimators for other scenarios are discussed by Choi et al. (2021)
and Liu et al. (2021c).

where the mixed state χC describes the effect of noise and
F = 〈0|C†ρCC|0〉 is the fidelity of ρC and the target state
C|0〉. We can now make the assumption that χC is uncorre-
lated from C|0〉 in the sense that (Arute et al., 2019, Eq. (25)
in the SM)∑

x

〈x|χC |x〉f(pC(x)) =
1

2n

∑
x

f(pC(x)) + ε, (174)

for ε � F . By the Levy’s Lemma argument, Arute et al.
(2019) expect a typical fluctuation ε ∈ O(1/

√
2n).

Large parts of the analysis of the theoretical proposal of
random circuit sampling (Boixo et al., 2018) and the experi-
mental realization thereof (Arute et al., 2019, Section IV B of
the SM) are indeed dedicated to validating the assumption of
uncorrelated noise. This can be done, for example, by numer-
ically studying realistic error models such as random Pauli er-
rors. To summarize, given the arguments sketched above hold,
the XEB fidelity quantifies the fidelity FXEB(Q,PC) = F up
to a deviation of order 1/

√
2n.

d. Hardness of achieving a nontrivial XEB fidelity. Similarly to
HOG, we expect that achieving an exponentially small score
in the XEB fidelity b/2n for constant b > 1, formalized
as the task XHOG, is computationally hard. This is be-
cause, intuitively, XHOG is a refined version of HOG in
which the outcomes have to be produced according to their
actual weight. Analogously to the argument reducing HOG to
QUATH (Aaronson and Chen, 2017), XHOG can be reduced
to an analogous conjecture XQUATH (Aaronson and Gunn,
2019). XQUATH states that given a circuit C ∼ C, there is
no efficient classical algorithm that produces an estimate p of
pC(0) such that

E[(pC(0)− p)2] = E[(pC(0)− 2−n)2]− Ω(2−3n) (175)

where the expectation is taken over the choice of random cir-
cuit and the algorithm’s internal randomness.

e. Spoofing the linear XEB fidelity. Summarizing the discus-
sion above, the XEB fidelity serves two distinct functions
(Gao et al., 2021). First, the argument of Aaronson and Gunn
(2019) suggests that achieving a nontrivial XEB value is a
computationally intractable task for random quantum circuits.
Second, the XEB fidelity serves as a proxy for the quantum fi-
delity (Arute et al., 2019; Choi et al., 2021; Liu et al., 2021c).

Gao et al. (2021) and Zhou et al. (2020b) observe, how-
ever, that the XEB fidelity in fact overestimates the quantum
fidelity in certain settings, leading to weaknesses that can be
exploited by an adversarial classical simulator. More con-
cretely, Gao et al. (2021) characterize the conditions under
which the XEB fidelity serves as a good proxy of the quantum
fidelity when comparing a noisy quantum device to an ideal
circuit. Based on these conditions they then demonstrate that
the XEB fidelity is not a reliable measure of quantum advan-
tage in an “adversarial setting” in which these conditions can
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be violated. 28 The explicit argument of Gao et al. (2021) and
Zhou et al. (2020b) is based on three properties of the XEB
fidelity that make it distinct from the fidelity.

First, the fidelity and the XEB fidelity exhibit different
scaling behavior as multiple quantum systems are combined
into a larger one: whereas the quantum fidelity generally de-
creases exponentially in the number of combined systems,
the XEB fidelity generally increases. To see this, consider
k disjoint n-qubit quantum systems with XEB fidelity values
χi = 2n

∑
x qi(x)pi(x)− 1 and fidelities Fi for i = 1, . . . , k,

where qi and pi are the output probabilities corresponding to
the respective noisy and ideal circuits. The fidelity then scales
multiplicatively as F =

∏
i Fi, whereas the total XEB fidelity

scales as

χ = 2kn
∑
xi

∏
i

pi(x)qi(x)− 1 (176)

=
∏
i

(χi + 1)− 1 ≈
∑
i

χi, (177)

assuming χi � 1. This difference in scaling behavior is fun-
damental to the fact that the first term of the XEB fidelity tends
toward a nonzero value (namely unity) as p and q become un-
correlated from one another, which is explicitly subtracted.

Second, their values may be distinct for highly correlated
errors. To see this intuitively, consider a noisy quantum cir-
cuit with m gates and independently and homogeneously dis-
tributed random errors across the circuit at rate ε. The prob-
ability that no error occurs is then given by (1 − ε)m. If the
presence of a single or more errors leads to vanishing contri-
butions to the XEB or the fidelity, then both will be equal to
(1 − ε)m. However, outside of some limiting cases, there are
non-zero correction terms for finite-size systems. Consider a
single bit-flip error at depth t in a 1D random circuit. In the
Heisenberg picture, we can propagate X(t) backward in time
and consider its effect on the initial state |0n〉. If the dynamics
are chaotic, then X(t) becomes a linear combination of 4|s|

Pauli strings the support of which grows linearly as |s| ≈ 2ct
with an effective “scrambling velocity” c. But out of those op-
erators ∼ 2|s| are products of 1 and Z and hence they do not
cause an error on the input state |0n〉. Consequently, a single
error contributesO(2−2ct) to the XEB fidelity and quantum fi-
delity alike. Conversely, we can forward-propagate the error,
but now the argument only holds for the XEB fidelity because
measurements are performed in the Z basis, while all terms
contribute to the quantum fidelity, leading to a distinct behav-
ior. Gao et al. (2021) further argue that this difference can be
amplified when considering specific spatial error patterns, and
provide a lower bound on the total correction.

In the complementary “benign setting” of error distributed
independently and homogeneously across the system, they
find necessary and sufficient conditions for the XEB fidelity

28 A similar overestimation of the fidelity has also been observed in the liter-
ature on randomized benchmarking (Boone et al., 2019).

and the quantum fidelity to agree, namely, that nεf(c) � 1,
where f(c) ∈ O(1) is a decreasing function depending on
the architecture details. Via a mapping to a statistical me-
chanics model analogous to the one we have introduced in
Section IV.D.2 they derive a diffusion-reaction for how errors
evolve in the circuit and analyse it for different ensembles of
random gates. Using this model, they explore the intuition just
described quantitatively, finding that the XEB fidelity starts to
deviate from the fidelity for strong noise.

Thirdly, because the XEB fidelity quantifies the correlations
between the distribution q and p, complete knowledge of p al-
lows to amplify those correlations by choosing q adversarially.

Building on those insights as well as a spoofing algorithm
of the XEB fidelity for low-depth quantum circuits (Barak
et al., 2021), Gao et al. (2021) construct an algorithm which
achieves high scores for large quantum circuits. The key idea
of this algorithm is to approximate the ideal circuit with a cir-
cuit that is given by a product over smaller subsystems each of
which can be simulated on a classical computer. To achieve
this, given a number of subsystems to divide the circuit in,
they remove entangling gates between those subsystems. Us-
ing the algorithm they achieve a score of 1.85 · 10−4 in 0.6s
on a single GPU, while the experiment at Google by Arute
et al. (2019) achieved 2.24 · 10−3, and achieve a similar ra-
tio for the larger follow-up experiments at USTC (Wu et al.,
2021; Zhu et al., 2022). They find, however, that for small
system sizes, the ratio between the performance of their algo-
rithm and the experimental score increases and conjecture that
their algorithm will achieve an advantage over the quantum
value of the XEB fidelity. Relating to the hardness argument
of Aaronson and Gunn (2019), their algorithm seems to refute
the XQUATH conjecture. More concretely, Gao et al. (2021)
show that for 1D circuits, their algorithm achieves an XEB
fidelity that scales inverse exponentially e−O(d) in the circuit
depth29. On the other hand, they show that the XEB score
of a variant of their algorithm precisely reflects the statement
of the XQUATH conjecture in terms of probability estimation
on average. Consequently, their results refute the XQUATH
conjecture for circuits of sublinear depth d ∈ o(n).

Given this discussion, achieving a quantum advantage in
terms of cross-entropy benchmarking via quantum random
sampling boils down to the question whether the inverse expo-
nential scaling of the quantum score of the linear XEB fidelity
can be beaten by another inverse exponential scaling of a clas-
sical algorithm. And it seems that it can. A different way of
benchmarking quantum advantage experiments from the lin-
ear XEB fidelity thus seems to be necessary to demonstrate
that quantum devices are in fact able to scalably outperform
classical algorithms in an adversarial setting. To this end, note
that the spoofing algorithm of Gao et al. (2021) and Zhou et al.
(2020b) presumably do not work for the cross-entropy differ-
ence as it intrinsically builds on the linearity of the linear XEB

29 A slightly weaker statement holds also for 2D circuits.
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fidelity. In spite of the results for the linear XEB, the cross-
entropy difference remains to be a potential valid means of
benchmarking quantum advantage.

Let us stress again, however, that while XEB measures may
be estimated from few samples, all variants of XEB suffer
from the problem that their evaluation is computationally inef-
ficient. This limits their practical usage to a regime just below
the quantum advantage threshold in which classically com-
puting the output probabilities is still possible, but at a high
cost. Alternatively, as we will see in Section VI, other quan-
tities might be used in order to feasibly obtain an estimate of
XEB measures. In the following, we discuss an alternative
approach that does not suffer from the conceptual—in terms
of quantifying quantum advantage—and computational—in
terms of its efficient evaluation—disadvantages of XEB.

C. Efficient quantum verification

An approach that is both natural in an experimental setting
and a direct follow-up of the previous discussion regarding
the relation between XEB fidelity and quantum fidelity, is to
verify the sampling task directly on the level of the quantum
state. This is reasonable: In an experimental setting, we know
that there is a quantum state on which measurements are per-
formed. Therefore we can exploit access to that quantum state
in order to circumvent the no-go result of Section V.A and
potentially achieve fully efficient verification of the TVD be-
tween the experimental and the target distribution, assuming
that the measurements are carried out correctly.

Of course, verification of a quantum state is possible if we
have access to an ideal state preparation via a swap test, or
by verification protocols that use measurements along the di-
rection of the target state (Pallister et al., 2018). But assum-
ing this capacity would already assume the ability to prepare
the ideal target state. A reasonable quantum protocol for ver-
ifying quantum random sampling schemes should therefore
make use of only restricted quantum capacities, such as the
ability to implement single-qubit measurements, or to prepare
single-qubit states reliably. Experimentally, such assumptions
are extremely well justified: in most platforms single-qubit
gate fidelities are orders of magnitude better than entangling-
gate fidelities. It is also entirely different in kind when com-
pared to assumptions on the global effect of the noise on
the outcome probability distribution PC such as the assump-
tion H(Q) ≥ H(PC) that was necessary for a cross-entropy
based test to yield bounds on the total-variation distance: it
is an assumption on single-qubit measurements and therefore
local. This means that it can be verified to the same de-
gree that one can characterize those measurement apparata.
For single- or two-qubit measurements this is possible using
tools such as gate set tomography (Blume-Kohout et al., 2017,
2013; Brieger et al., 2022; Cerfontaine et al., 2020; Green-
baum, 2015; Helsen et al., 2021; Merkel et al., 2013) or the
device-independent verification of quantum processes and in-
struments (Sekatski et al., 2018).

In contrast to classical verification from samples where we
were given classical samples from an a-priori untrusted de-
vice, we can conceptualize quantum verification as the task
to verify the preparation of a certain quantum state by a deep
circuit using components of the device that are well character-
ized and known to work correctly.

In the following we will see protocols that are able to verify
or estimate the quantum fidelity between two quantum states
σ and |ψ〉〈ψ|

F (σ, |ψ〉〈ψ|) = 〈ψ|σ|ψ〉. (178)

Via the Fuchs-van de Graaf inequality, the fidelity bounds the
TVD via the trace distance

‖pσ − pψ‖TV ≤ ‖σ − |ψ〉〈ψ|‖Tr ≤
√

1− F (σ, |ψ〉〈ψ|),
(179)

where pσ and pψ are the output distributions of σ and |ψ〉〈ψ|
in the standard basis, respectively.

Generally, we can think about such protocols in terms of
their information gain versus their complexity in terms of
number of measurements and distinct measurement settings
as well as assumptions made in the derivation of the proto-
col (Eisert et al., 2020). While protocols with low complexity
tend to yield little information about an underlying quantum
state, protocols with higher complexity can reveal more in-
formation about that state. In the following, we discuss two
types of protocols to verify the output states of quantum ran-
dom sampling via the fidelity—fidelity witnessing and fidelity
estimation.

1. Fidelity witnessing

We call an observable W a fidelity witness for a target state
ρ, if (Gluza et al., 2018)

i. Tr[σW ] = 1 iff ρ = σ,

ii. Tr[σW ] ≤ F (ρ, σ).

Conceptually speaking, fidelity witnesses are very much like
entanglement witnesses (Gühne and Tóth, 2009) in that they
cut a hyperplane through quantum state space, which detects
a property of quantum states: Those states that lie on the left
of the hyperplane defined by Tr[Wσ] ≥ FT are guaranteed to
have a high fidelity of at least FT since Tr[Wσ] lower-bounds
F (ρ, σ). For those states on the right of the hyperplane—
satisfying Tr[Wσ] < FT we cannot make a statement about
their fidelity. Conversely though, all states σ with low fidelity
F (ρ, σ) ≤ FT are guaranteed to lie to the right of the hyper-
plane as Tr[Wσ] ≤ F (ρ, σ) ≤ FT . We illustrate the idea of a
fidelity witness in Fig. 10.

a. Fidelity witnessing via parent Hamiltonians. A simple fidelity
witness WH = 1 − H/∆ can be constructed for the ground
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Quantum state space

|ψ〉F
(|ψ

〉〈ψ
|, σ

)
=
F T

F
T
+
δ

Tr[Wσ] ≤ FT

Tr[Wσ] ≥ FT

Figure 10 Given a target state ρ = |ψ〉〈ψ|, a fidelity witness W for
ρ provides a lower bound on the fidelity F (ρ, σ) ≥ Tr[Wσ] so that,
in particular, all states σ such that F (ρ, σ) ≤ FT it also holds that
Tr[Wσ] ≤ FT . Conversely, all states σ satisfying Tr[Wσ] ≥ FT
will also satisfy F (ρ, σ) ≥ FT . There is a gap δ ≥ 1−FT such that
all states σ with fidelity F (ρ, σ) ≥ FT + δ lie on the left side of the
witness.

state of a Hamiltonian H with gap ∆ (Cramer et al., 2010;
Hangleiter et al., 2017). To see this, one can simply expand
the Hamiltonian with ground state energy set to 0 in its eigen-
basis |i〉 with eigenvalues λi in order to bound the fidelity be-
tween the ground state |0〉〈0| and a state preparation ρ using
that

Tr(Hσ) =

d∑
i=1

λi Tr(|i〉〈i|σ) ≥ ∆

d∑
i=1

Tr(|i〉〈i|σ)

= ∆(1− Tr(|0〉〈0|σ)) = ∆(1− F (|0〉〈0|, σ)). (180)

To apply this witness, it is required to have knowledge of both
the ground state energy and the gap of the Hamiltonian in
question. Applying this fidelity witness to quantum random
sampling, it was observed by Hangleiter et al. (2017) that ar-
bitrary quantum computations and in particular those required
for quantum random sampling can be embedded in the ground
state of a frustration-free, local Hamiltonian via the Feynman-
Kitaev history state construction. This protocol finds a partic-
ularly natural application in the measurement-based model of
quantum computation, which is universal for quantum com-
putation (Raussendorf and Briegel, 2001; Raussendorf et al.,
2003). Since the prepared quantum state in measurement-
based quantum computing is a stabilizer state, it is the ground
state of a local, commuting Hamiltonian with gap 2 com-
prised of the stabilizers, which are product operators. The
state preparations of quantum random sampling schemes in
the measurement-based model can therefore be verified via
fidelity witnessing using only trusted single-qubit measure-
ments (Bermejo-Vega et al., 2018; Gao et al., 2017).

Let us briefly illustrate this point and define the cluster state

on N qubits on a lattice as

|CS〉 =

∏
〈i,j〉

CZi,j

H⊗N |0N 〉, (181)

where the symbol 〈i, j〉 denotes nearest neighbors on a lat-
tice. Arbitrary quantum computations can be driven by single-
qubit operations on that state—adaptive measurements at the
correct angles in the X–Y plane (multiples of π/8 suffice)
(Mantri et al., 2017). Assuming highly accurate single-qubit
operations and measurements, we can now use the fidelity
witness in order to verify the pre-measurement quantum state
|CS〉.

To do so, we need to derive a “parent Hamiltonian” which
has |CS〉 as its ground state. This can be done easily by ob-
serving that the diagonal Hamiltonian

H0 = −
N∑
i=1

Zi , (182)

has the all-zero state |0N 〉 as its ground state with ground
state energy E0 = −N and gap ∆ = 2. Our strategy to de-
rive a parent Hamiltonian H of |CS〉 is based on the observa-
tion that conjugation by unitary transformations U preserves
the eigenvalues so that U |0N 〉 is a ground state of UH0U

†

with ground state energy E0 and gap ∆. Inserting U =
(
∏
〈i,j〉 CZi,j)H

⊗N and using the relation CZ(X⊗1)CZ =
X ⊗ Z we obtain that the Hamiltonian

H = −
N∑
i=1

Xi ·
∏
j∈∂i

Zj

 = −
N∑
i=1

Si, (183)

is a parent of |CS〉 with ground state energy E0 = −N and
gap ∆ = 2. Here, ∂i = {j ∈ V : (i, j) ∈ E} denotes the
neighborhood of site i on a graph G = (V,E). The operators
Si = Xi ·

∑
j∈∂i Zj are often called stabilizers of |CS〉. Of

course, the same applies if we rotate the cluster state locally
prior to a computational-basis measurement.

The fidelity witness has also been applied to the verifi-
cation of IQP circuits the diagonal part of which comprises
Z, CZ and the non-Clifford CCZ gate defined in Eq. (5)
(Miller et al., 2017). While the resulting non-local stabiliz-
ers hi are not directly products of Pauli operators in the same
way as we obtained CZ(X ⊗ 1)CZ = X ⊗ Z, Miller et al.
(2017) show that single-qubit Pauli-X and Z measurements
suffice to measure those stabilizers. More precisely, a mea-
surement of the stabilizer hi can be achieved by measuring
Xi ·

∏
j 6=i Zj with outcome v = (v1, . . . , vn) and returning

(−1)∂if(v)+vi , where ∂if(x) = f(x1, . . . , xi + 1, . . . , xn)−
f(x1, . . . , xi, . . . , xn).

b. Fidelity witnesses for weighted graph states. Efficient fidelity
estimation protocol for arbitrary weighted graph states as they
are generated by the IQP circuit CW with arbitrary weights
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wi,j have been developed by Hayashi and Takeuchi (2019);
Morimae et al. (2019); and Zhu and Hayashi (2019). Those
circuits can be seen to give rise to graph states in which not
only vertices (as in the example above) but also edges can have
arbitrary weights, so-called weighted graph states.

c. Fidelity witnesses for quantum optical states. Another ap-
proach to constructing fidelity witnesses has been discovered
by Chabaud et al. (2021b) in the context of linear-optical
state preparations as a means to verify the output state of the
boson-sampling protocol given by ϕ(U)|1n〉 (Eq. (8)), where
U is a Haar-random linear-optical unitary. They observe that
if certain Gaussian measurements are performed on the state
ϕ(U)|1n〉, then one can efficiently simulate the effect of the
linear-optical unitary in the postprocessing. Specifically, con-
sider a single-mode heterodyne measurement with POVM el-
ements |α〉〈α|, where |α〉 = eαa

†−αa|0〉 is a coherent state.
Then the effect of a linear optical unitary multi-mode hetero-
dyne POVM element π−m

∏
i |αi〉〈αi| is to transform it into

another element π−m
∏
i |βi〉〈βi|, where ϕ(U)

∏
i |αi〉 =∏

i |βi〉 and the values of βi are efficiently computable. This
idea can be used to verify a noisy state preparation σ of
ϕ(U)|1n〉 by performing heterodyne measurements, obtain-
ing outcomes αi and reinterpreting the outcomes as βi. Now
we observe that the fidelity of the quantum state σ with a pure
product state ψ =

∏
i |ψi〉〈ψi| can be bounded as

F (ψ, σ) ≥ 1−
m∑
i=1

(1− F (ψi, σi)) ≥ 1−m(1− F (ψ, σ)),

(184)

where ρi = Tr1,...,m\{i} ρ is the reduced state of ρ on the ith
mode. This reduces the verification problem to estimating the
single-mode fidelities F (ψi, σi). Chabaud et al. (2021b) show
that this is possible using only heterodyne measurements on
the state σi if ψi has bounded support in the Fock basis. The
second inequality in Eq. (184) moreover shows that the wit-
ness has a certain robustness to noise.

A similar protocol for Gaussian states and hence Gaussian
boson sampling has been developed by Aolita et al. (2015).
In this protocol, a witness is constructed directly on the level
of them-mode quantum state preparation σp, again, observing
that the time evolution can be inverted classically for Gaussian
measurements. More precisely, observe that

W = 1−
m∑
i=1

ni, (185)

witnesses the vacuum state |0m〉, and hence W̃ = 1 −∑i ñi
with ñi = UniU

† witnesses the state U |0m〉. Since the
number operator can be measured using homodyne (x and
p) measurements which can be seen through the equality
ni = x2

i +p2
i −1/2, and since the action of a Gaussian unitary

U on those operators can be computed efficiently: Defining

r2i−1 = xi and r2i = pi, the vector r is transformed as

U†rU = Sr + d = r̃, (186)

where S is a symplectic matrix corresponding to U and d ∈
R2m. Measuring all elements of r̃2, i.e., certain linear com-
binations of xipj , xixj and pipj thus allows one to estimate∑
i ñi and hence the witness of U |0m〉 for any Gaussian state.
All of the fidelity witnesses that we have seen in this section

can be written in the form W = 1 −∑k
i=1 wi with operators

wi that we need to measure in an experiment. The sample
complexity to achieve an overall estimation error ε thus scales
as O(k(ε/k)−2) = O(k3/ε2) since the error of every individ-
ual term needs to scale as ε/k.

A downside of fidelity witnesses is that while they provide
a bound on the fidelity and are therefore well suited to verify
state preparations that are very close to the ideal target state,
the bound provided by the witness typically becomes loose
rather quickly and hence the value of the witness becomes
trivial even while the fidelity is still reasonably high. This
motivates to directly estimate the fidelity, which, while poten-
tially more difficult, yields much more detailed information
regarding the state preparation.

2. Fidelity estimation

As it turns out, in certain settings, fidelity estimation is
possible with a constant number of samples via the so-called
direct fidelity estimation protocol due to Flammia and Liu
(2011) and similar to the protocols proposed in (Bourennane
et al., 2004; Kiesel et al., 2005; Pallister et al., 2018; Tóth
and Gühne, 2005). Using direct fidelity estimation we can es-
timate the fidelity of imperfect state preparations σ with pure
target states of the form

ρ =
∑
λ∈Λ

pλAλ, (187)

in terms of normal operators {Aλ}λ∈Λ weighted by probabil-
ities pλ.

The idea is the following: Decompose Aλ =∑
a∈spec(Aλ) aπ

a
λ in terms of its eigenprojectors πaλ. The fi-

delity can then be written as

F (ρ, σ) =
∑
λ

∑
a∈spec(Aλ)

pλ Tr[πaλσ] · a, (188)

and hence it can be estimated by sampling λ ← pλ and mea-
suring Aλ on the state preparation σ, obtaining outcome a
with probability Tr[σπaλ]. Given k samples ai obtained in
this way, the fidelity can then be estimated as F̂ (ρ, σ) =
1
m

∑m
i=1 ai with error ε using O(1/ε2) many samples.

Of course, for the protocol to be efficiently possible in prac-
tice, some requirements are necessary:

i. For each λ ∈ Λ, Aλ can be efficiently measured. In
particular, this is the case if Aλ = Aλ1

⊗ · · · ⊗ Aλn



49

with λ = (λ1, . . . , λn) is a product of single-qubit op-
erators Aλi .

ii. For each λ ∈ Λ, spec(Aλ) ⊂ [aλ, bλ] for constants
aλ, bλ ∈ R.

iii. The probability distribution p = (pλ)λ∈Λ can be (clas-
sically) sampled efficiently.

A particularly simple application of the protocol is its appli-
cation to stabilizer states such as the (locally rotated) cluster
state |CS〉, since such a state is in the joint +1 eigenspace of
the stabilizer operators (Flammia and Liu, 2011). A state |ψ〉
stabilized by n operators Si with eigenvalues±1 can therefore
be expressed as |ψ〉〈ψ| =

∏
i(1 − Si)/2 = 2−n

∑
λ∈S sλ,

where S denotes the stabilizer group of |ψ〉 which is gener-
ated by the n operators Si. Thus, it can be efficiently applied
to quantum random sampling architectures which are based
on state preparations that are locally equivalent to stabilizer
states, in particular, ones based on measurement-based com-
putation (Hangleiter, 2021; Ringbauer et al., 2022). Notice,
though, that universal random circuits are not of this type.

A potential drawback of the direct fidelity estimation pro-
tocol as opposed to fidelity witnesses is that it in principle
requires a different measurement setting in each run of the
experiment. In contrast, to evaluate the fidelity witness only
two distinct measurement settings are repeated many times.
So while the overall quantum sample complexity is dramat-
ically reduced from O(n3) to O(1) in the number of qubits,
the measurement setting complexity is increased fromO(1) to
O(1/ε2) in the estimation error. Depending on the experimen-
tal setting at hand there may well be a trade-off between the
time required to switch between settings and the time required
for many repetitions of the same measurement setting, see for
example (Ringbauer et al., 2022). It has also been noted that,
when restricting the operators Aλ to Pauli operators, the sam-
ple complexity of verification scales exponentially in the num-
ber of non-Clifford gates in the circuit (Leone et al., 2022).

A closely related fidelity estimation protocol is so-called
shadow fidelity estimation (Huang et al., 2020c). In this pro-
tocol, measurements are performed in a random Clifford ba-
sis, see (Kliesch and Roth, 2021, Sec. II.J) for an explanation.
The sample complexity of shadow fidelity is also constant,
but it is computationally inefficient for non-Clifford states,
since overlaps between the target state and an arbitrary sta-
bilizer state need to be computed. Another fidelity estima-
tion protocol that can be applied to quantum random sampling
schemes is the adaptive protocol of Bennink (2021), which
requires two auxiliary qubits and entangling gates between
the unknown state preparation and those auxiliary qubits and
on-the-fly classical computation. Interestingly, this scheme is
sample-efficient precisely for anticoncentrating distributions
with exponentially small collision probability. To even further
reduce the experimental effort of verification as compared to
direct fidelity estimation one would need to improve the scal-
ing in the tolerated estimation error ε. For stabilizer states this
has recently been studied by Kalev et al. (2019).

D. Efficient classical verification

In the previous sections, we have on the one hand seen
classical verification methods that are sample efficient in that
they require only few (polynomially many) samples from the
quantum device, but require exponential computational run-
time. On the other hand, we have seen quantum verification
tools that are fully efficient but require trust in an experimen-
tal quantum measurement and are experimentally more de-
manding since they require measurements in different (local)
bases. We conclude our discussion of verification protocols
with classical verification protocols that are fully efficient but
make other types of assumptions than experimental ones, or
yield less information about the implemented distribution.

1. State discrimination

Rather than trying to certify the full target distribution in
TVD we can alternatively discriminate the experimentally im-
plemented distribution from our best guess of what a very
noisy distribution or a closeby classically simulable distribu-
tion could be. One can see the full verification task in this
mindset as distinguishing the imperfect preparation against all
possible distributions that are at least ε-far away from the tar-
get distribution.

The discrimination task is considered by Gogolin et al.
(2013) in a setting of a highly restricted client aiming to verify
a boson sampler just from the histogram of outcomes with-
out using the information about which outcome has been ob-
tained. They show that in this setting, a boson sampling dis-
tribution cannot be distinguished from uniform and prompted
the development of a fully efficient and simple state discrim-
ination test that makes use of the actual outcomes (Aaronson
and Arkhipov, 2014). To date, state discrimination remains
the most convincing way of validating boson sampling exper-
iments as it is unclear whether the XEB fidelity yield a mean-
ingful benchmark of boson sampling experiments.

Let us illustrate the idea by means of the test of Aaron-
son and Arkhipov (2014) for discriminating the Fock bo-
son sampling distribution from the uniform distribution. The
idea is to use the so-called row-norm estimator for a matrix
X ∈ C(n× n)

R∗(X) =
1

nn

n∏
i=1

Ri(X), (189)

where Ri(X) = ‖xi‖22 = |xi,1|2 + · · · + |xi,n|2 is the
norm-squared of the ith row of X . Indeed, for a Gaus-
sian normal matrix X ∼ N ≡ NC(0, 1)n×n one expects
EX∼N [R∗(X)] = 1. The fluctuations around this value
depend on whether experimental samples are chosen from
the boson sampling distribution or a uniform distribution and
can be exploited to discriminate a device from uniform. In
order to discriminate a distribution from uniform, we com-
pute R∗(US,1n) for a few samples S and comparing the out-
come to one’s expectation. To see why this achieves the
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task, let H be the distribution N with distribution function
pN (X) scaled by the probability of obtaining the correspond-
ing outcome, i.e., pH(X) = pN (X)P (X). When special-
izing to boson sampling, the matrix X will be an approx-
imately Gaussian-distributed submatrix US,1n of the linear-
optical unitary U . Remember that the probability of obtain-
ing this matrix, corresponding to the outcome S, is given by
PU (S) = |Perm(US,1n)|2/n! (cf. Eq. (45)). One finds that
(Aaronson and Arkhipov, 2014, Corollary 18)

Pr
H

[R∗ ≥ 1]− Pr
N

[R∗ ≥ 1]

=
1

2
E
N

[|R∗ − 1|] ≥ 0.146−O
(

1√
n

)
. (190)

In other words, the row norm estimator R∗(X) is ever so
slightly correlated with Perm(X). An intuitive reason for this
is that multiplying every row of X by the same scalar c also
multiplies Perm(X) by c (Aaronson and Arkhipov, 2014).
At the same time, it can be computed in time O(n2). To
discriminate a boson sampler from the uniform distribution,
one therefore needs to simply collect k samples S1, . . . , Sk
from a device claimed to realize a boson sampler and com-
pute 1

k

∑k
i=1 |R∗(USk)− 1| up to sufficiently high precision

so as to confidently distinguish the resulting value from 0.30

In the same framework, one can distinguish a boson sam-
pler against other—some what more informed—distributions
such as a distribution of distinguishable particles that are sent
through the linear-optical network (Carolan et al., 2014; Spag-
nolo et al., 2014). In the experiments of Zhong et al. (2021,
2020), the output distribution is additionally distinguished
from a thermal distribution. To distinguish from any classi-
cally efficient distribution, they use the Bayesian likelihood
ratio estimator

c =
Pr({x1, . . . , xS}|P0)

Pr({x1, . . . , xS}|P0) + Pr({x1, . . . , xS}|Q)
(191)

where the likelihood of obtaining the experimental samples
x1, . . . , xS is evaluated both with respect to the ideal target
distribution P0 and a distribution Q that we want want to dis-
tinguish from P0.

An additional experimentally motivated test ruling out
spoofing distributions that makes use of low-order marginal
probabilities (Villalonga et al., 2021), performed by Zhong
et al. (2021), is to measure these marginals. One can then
compare them to the theoretical predictions, thereby ruling
out that a distribution which only agrees on the first two or
three marginals is a good spoofing distribution.

The efficient state discrimination tests for boson sampling
highlight a key difference between the output distributions of
variants of boson sampling and universal circuit sampling: for
universal circuit sampling we expect the output distribution

30 This may be done in a Bayesian framework (Carolan et al., 2014).

not even to be efficiently distinguishable from the uniform
distribution. This expectation can be understood in various
readings. First, it can be viewed from the perspective of HOG-
like tests, since high performance on a HOG-like test serves as
a discriminator against the uniform distribution. Conversely,
if HOG is indeed a computationally difficult task, then this
provides evidence that discriminating against uniform is also
a difficult task. Indeed, it is difficult to imagine a way of
discriminating against uniform that does not make use of a
HOG-like estimator. Stilck França and Garcia-Patron (2022)
make this intuition more rigorous. They show that if there
exist functions defining a cross-entropy measure (133) that
gives rise to a sample-efficient state discrimination test, then
full verification of the total-variation distance will be sample-
efficiently possible in a multi-round scheme. Since we do not
believe the latter to be possible, the result of Stilck França and
Garcia-Patron (2022) serves as more formal evidence against
the possibility of efficient state discrimination for random
quantum circuits.

2. Cryptographic tests

A completely orthogonal but promising avenue of verify-
ing sampling schemes has been pioneered by Shepherd and
Bremner (2009): By allowing the certifier to choose the clas-
sical input to the sampling device rather than drawing it fully
at random, it may be possible to efficiently certify that a quan-
tum device has performed a task that no classical device could
have solved under cryptographic assumptions on the hardness
of certain tasks. This could be facilitated by checking a previ-
ously hidden bias in the obtained samples for a certain family
of IQP circuits (Shepherd and Bremner, 2009).

It is instructive to understand the idea behind such a test of
computational quantumness. The protocol of Shepherd and
Bremner (2009) is formulated for a certain family of IQP cir-
cuits, called X-programs. An X-program acting on n qubits
is defined by a list of pairs (θp, p) ∈ [0, 2π]×{0, 1}n and acts
as

|0〉 7→ exp

i
∑
p

θp

n∏
j=1

X
pj
j

 |0〉. (192)

For the purposes of the quantumness test it is sufficient to
choose a constant value of θ that is the same for every nonva-
nishing term in the Hamiltonian. In this case, an X-program
with k nonvanishing Hamiltonian terms acting on n qubits can
be represented by a 0/1 matrix P ∈ {0, 1}k×n. Each row of
this matrix specifies a Hamiltonian term and it is easy to see
that the output distribution of such an X-program is given by

PP (x) =

∣∣∣∣∣∣
∑

a∈{0,1}k: PT ·a=x

cos(θ)k−wt(a) sin(θ)wt(a)

∣∣∣∣∣∣
2

,

(193)
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where wt(a) = |{l ∈ [k] : al = 1}| is the Hamming weight
of the binary string a ∈ {0, 1}k.

For a random variable X taking values in {0, 1}n, and
s ∈ {0, 1}n, the bias of X in the direction of s is just the
probability that a sample x ∼ PP is orthogonal to s, i.e., that
xT s = 0. The key idea of the test of computational quantum-
ness is to hide a string s the output probability distribution of
anX-program in such a way that this string s cannot be deter-
mined efficiently, but at the same time the bias of the output
distribution of the X-program in direction s is significantly
larger than the bias of any cheating distribution that can ef-
ficiently be obtained using classical computing resources. In
particular, the bias of the output distribution PP of the X-
program defined by a matrix P ∈ {0, 1}k×n and angle θ is
given by

Pr
x∼PP

[xT s = 0] =
∑

x: xT ·s=0

PP (x). (194)

To achieve this, Shepherd and Bremner (2009) notice that the
matrix P can be viewed as the generator matrix of a linear
code. That is, the columns of P span the code space C =
{P ·d : d ∈ {0, 1}n}. If we let Ps be the ns×n submatrix of
P obtained by deleting all rows p for which pT s = 0,31 and
Cs be the code generated by Ps, then we can rewrite the bias
(194) of Pp as (Shepherd and Bremner, 2009, Thm. 2.7)

Pr
x∼PP

[xT s = 0] = E
c∼Cs

[
cos2 (θ(ns − 2 · wt(c))

]
. (195)

We can now set a quantum challenge that is intrinsically
verifiable in the following way. We choose a code Cs and a
value of θ in such a way that both the bias (195) is strictly
larger than 1/2, and that any classical strategy can only
achieve a bias that is significantly lower, say, by a constant.
We then choose a generating matrix Ps for Cs such that s
is not orthogonal to any of the rows of Ps. Finally, we ob-
fuscate this matrix by adding rows that are orthogonal to s,
permuting all rows and potentially performing reversible col-
umn operations, giving rise to a matrix P . Given samples
from the distribution PP , we can now distinguish the hypoth-
esis that the sampling device has quantum capacities from the
hypothesis that it is cheating by comparing the frequencies
of outcomes that are orthogonal to the hidden string s. No-
tice that this protocol does not certify that the samples are
distributed according to the correct distribution. Therefore,
it does not constitute a workaround to the no-go theorem of
Section V.A based on cryptographic assumptions. Similarly
to the HOG test (Problem 27), this cryptographic test of quan-
tumness merely certifies that the device has the capacity to do
something that presumably—under assumptions—no classi-
cal computing device could have achieved.

The particular suggestion of Shepherd and Bremner (2009)
is to use quadratic residue codes and a particular obfuscation

31 Of course, this leaves only rows for which pT s = 1.

procedure that exploits specific properties of such codes (such
as that the full-weight vector is always a codeword). They
conjecture that recovering the matrix Ps from the obfuscated
matrix P is NP-complete. Choosing θ = π/8, this construc-
tion gives rise to a bias that serendipitously matches that of the
Bell inequality: cos2(π/8) ≈ 0.854 for the quantum value,
and 3/4 for the best classical strategy discussed by Bremner
et al. (2010).32

Note also that besides the security assumption on the ob-
fuscation procedure, additional conjectures need to be made
(Shepherd and Bremner, 2009, Conjectures 4.2 and 4.3) for
such a test to achieve its goal: First, the distribution PP of a
randomly selected X-program with constant θ = π/8 should
be hard to sample from so that only a quantum device can
perform this task. Second, the output distribution should be
sufficiently flat in the sense that its Rényi 2-entropy or colli-
sion entropy is close to maximal, i.e., H2(PP ) = Ω(n) so that
cheating becomes more difficult.

Iterating the importance of extensively testing crypto-
graphic assumptions for their security, Kahanamoku-Meyer
(2019) has developed a classical cheating strategy for the pro-
tocol proposed by Shepherd and Bremner (2009). Given a
description of an X-program in the form of the matrix P , the
cheating strategy extracts the secret vector s with probability
arbitrarily close to unity in an (empirically observed) average
runtime of O(n3).

In a similar mindset, albeit without restricting to sampling
tasks for which there is strong complexity-theoretic evidence
for hardness, cryptographic tests of quantumness have been
devised by Brakerski et al. (2018, 2020). There, the authors
made use of so-called trapdoor claw-free functions to delegate
a simple task that no classical device can efficiently solve,
but a quantum device succeeds with higher probability. A
trapdoor claw-free function is a 2-to-1 efficiently computable
function f such that it is difficult to find a claw x, x′ for which
f(x) = f(x′), but it becomes easy when given access to the
trapdoor. So while a classical algorithm can only every hold
y = f(x) and x but not at the same time x′, a quantum algo-
rithm can compute f in superposition and therefore hold y as
well as a superposition |x〉 + |x′〉. The idea of the proof is to
exploit this superposition: we can ask the device to perform a
measurement in the computational basis, obtaining x or x′, or
in the Hadamard basis, obtaining d for which d · (x⊕x′) = 0.
This reveals some information about x and x′ that is not acces-
sible to a classical device. Such protocols were recently im-
proved to much simpler functions (Kahanamoku-Meyer et al.,
2022) and low-depth implementations (Hirahara and Le Gall,
2021; Liu and Gheorghiu, 2022), bringing their experimental
demonstration within closer reach (Zhu et al., 2021).

Using such trapdoor claw-free functions, it is also possible
to classically delegate a BQP computation to a fully untrusted
quantum server (Mahadev, 2018), and even to verify sampling

32 There is no proof that this 3/4 is the optimal classical value.
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problems (Chung et al., 2020). A drawback of the protocol
of Chung et al. (2020), however, is that it only has inverse
polynomially large soundness, so that it cannot be used as a
subroutine in secure computation problems. More severely,
for an application to verifying quantum random sampling, the
overhead is unfeasibly large.

E. Further approaches to the verification of quantum
samplers

Another approach to verification of quantum states from
measurements—blind verified quantum computation—has
been developed by Broadbent et al. (2009) and Fitzsimons
and Kashefi (2017). While the protocols discussed in Sec-
tion V.C.1 make use of the ability of the experimenter to mea-
sure single qubits with high fidelity, blind verified quantum
computing presupposes the ability to accurately prepare single
qubits. And indeed, blind verified quantum computing also
applies measurement-based computation using cluster states,
exploiting the property that single-qubit phase gates commute
through the state preparation. While in our approaches, the
imperfect state preparation is directly verified, however, in
verified blind quantum computing so-called trap qubits are
made use of. The outcome of measurements on those qubits
is deterministic and can thus be checked to build confidence
in the correct functioning of an untrusted quantum server. By
turning blind quantum computing upside down, a “post hoc
verification protocol” for quantum computations has been de-
veloped by Fitzsimons et al. (2018).

In order to build trust in the correct functioning of a sam-
pling device one may also resort to weaker types of verifica-
tion than direct verification of the quantum state or output dis-
tribution. For instance, instead of directly running a randomly
chosen unitary circuit, one can run specific computations on
the device, the output distribution of which is highly struc-
tured, such as the quantum Fourier transform (Tichy et al.,
2014). Finally, one can build trust in the device from certain
efficiently computable benchmarks such as two-point correla-
tion functions (Phillips et al., 2019), higher correlation func-
tions (Zhong et al., 2021), the click-number distribution in
boson sampling with threshold detection (Drummond et al.,
2022), or comparison to a coarse-grained distribution (Wang
and Duan, 2016).

Let us also note that with the exception of the classical ver-
ification protocol due to Chung et al. (2020) and Mahadev
(2018) most of the verification protocols considered here re-
quire independently identically distributed (iid.) state prepa-
rations which is an additional assumption—albeit a very real-
istic one. In order to relax this assumption to the non-iid. case,
one can make use of de-Finetti arguments (Caves et al., 2002;
Finetti, 1937; Hudson and Moody, 1976; König and Renner,
2005). This has been done by Takeuchi and Morimae (2018)
and optimized for an application to graph states by Markham
and Krause (2020) and Takeuchi et al. (2019) and to bosonic
states by Chabaud et al. (2020, 2021b).

VI. EXPERIMENTAL IMPLEMENTATIONS

It is the comparative simplicity of quantum random sam-
pling schemes that renders them particularly compelling for
an implementation on current-day devices. In contrast to other
proposals for quantum advantage they do precisely not require
interactive or multi-round feedback. Moreover, comparably
small circuit sizes are required so that it might be possible
to implement the circuits with non-negligible fidelity without
full-fledged quantum error correction. This makes quantum
random sampling schemes attractive as proofs of quantum
advantage from an experimental point of view. Experimen-
tal implementations of quantum random sampling start with
the first proof-of-principle demonstrations of boson sampling
(Broome et al., 2013; Crespi et al., 2013; Spring et al., 2013;
Tillmann et al., 2013) and universal circuit sampling (Neill
et al., 2018), and culminate in the recent large-scale imple-
mentations of universal circuit sampling (Arute et al., 2019;
Wu et al., 2021; Zhu et al., 2022) and Gaussian boson sam-
pling (Madsen et al., 2022; Zhong et al., 2021, 2020), which
are arguably in the classically intractable regime. In this sec-
tion, we summarize the most important technological devel-
opments and experimental subleties of quantum random sam-
pling implementations with a focus on universal circuit sam-
pling.

A. Universal circuit sampling with superconducting
circuits

At the current state of the art, universal circuit sampling is
most feasibly implemented using superconducting transmon
devices. The first large-scale experiment aimed at reaching
a quantum advantage was performed in such an architecture
(Arute et al., 2019). This experiment is a landmark experi-
ment which has arguably first reached the regime of a quan-
tum advantage over the capabilities of classical supercomput-
ers and hence the “quantum supremacy” regime. We therefore
dedicate slightly more detail to the discussion of this experi-
ment, as an exemplary discussion pars pro toto. The experi-
ment implemented a random circuit consisting of up to 20 lay-
ers of the universal random circuits introduced in Section II.A
acting on 53 qubits.

1. Design of the experiment

The experiment of Arute et al. (2019) was performed on a
transmon superconducting chip referred to as Sycamore chip.
Transmons are superconducting charge qubits that have been
designed to be less sensitive to charge noise than is common in
other settings, a feature that renders them particularly attrac-
tive for the use in quantum computational schemes. Generally
speaking, in a superconducting circuit, currents and voltages
behave quantum mechanically, as conduction electrons con-
dense into a macroscopic quantum state. For this to be possi-
ble and to ensure that the ambient thermal energy is reduced
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to well below the native energy scales of the qubits, cryogenic
temperatures are required. The extremely low temperatures
of ∼ 20 mK required for the experiments are to date only ac-
cessible in dilution refrigerators. Each of the qubits can be
seen as a non-linear superconducting resonator operating at
5–7 GHz. These qubits can be tuned by resorting to two de-
grees of freedom. On the one hand, there is a microwave drive
that allows to drive Rabi oscillations of the qubit. On the other
hand, there is a magnetic flux control that allows to tune the
frequency.

During a quantum circuit, the qubits are tuned to three dif-
ferent frequencies: first, there is the qubit idle frequency at
which single qubit gates are performed. Second, there is an
interaction frequency to which neighbouring qubits are tuned
in order to interact. The idle frequency is chosen such that
there is as little as possible crosstalk during single-qubit gates,
while at the same time minimizing the frequency distance re-
quired for interaction with its neighbours. Finally, the qubits
are tuned to a readout frequency. When selecting those fre-
quencies, there are trade-offs to be accounted for between
energy-relaxation, dephasing, leakage, and control imperfec-
tions (Arute et al., 2019, SM, VI.A.4). At the idle frequency,
single-qubit gates are implemented by driving the qubits with
25 ns microwave pulses.

In the Sycamore superconducting-qubit architecture, two-
qubit gates are implemented using adjustable couplers. Since
the qubits are arranged in a planar two-dimensional archi-
tecture, these couplers are naturally placed between nearest
neighbors on a lattice.33 The couplers allow to quickly switch
on and off a coupling of up to 40 MHz by tuning the frequency
of the coupler qubits. Specifically, the coupling is achieved
by tuning neighboring qubits’ frequencies on-resonance and
turning on a 20 MHz coupling for 12 ns. The coupling in the
system natively gives rise to the two-qubit gate

fSim(θ, φ) =


1 0 0 0
0 cos(θ) −i sin(θ) 0
0 −i sin(θ) cos(θ) 0
0 0 0 e−iφ

 , (196)

with tunable angles θ, φ. Here, the angle θ is interpreted as the
swap angle and the angle φ is a conditional phase. The fSim
gate captures a wide range of entangling gates, including the
iSWAP gate with θ = π/2 and φ = 0, the CZ gate with θ = 0
and φ = π.

In the experiment of Arute et al. (2019), iSWAP-like fSim
gates close to iSWAP∗ (3) with θ ≈ π/2 and a conditional
phase φ ≈ π/6 were performed. Notably, the specific phases
of each two-qubit gate, corresponding to a particular physical
coupler between two qubits varied around their ideal values.
Arute et al. (2019) were able to measure the precise angle,
thus ensuring higher accuracy of the resulting computational

33 This architecture has also been chosen to be forward-compatible with the
realization of a surface code for quantum error correction.

task. The uncertainty in the actual angles implemented in the
circuit can be viewed as limited programmability of the de-
vice: some parameters of the circuit are only determined con-
tingently on the specific physical implementation. More re-
cently, progress has been made towards achieving full pro-
grammability of the angles in the fSim gate (Foxen et al.,
2020).

Every qubit can be read out by means of a linear resonator.
To this end, the qubit frequency is tuned to its readout value
and coupled to a far-detuned resonator via a neighbouring
coupler (Blais et al., 2004; Bultink et al., 2018; Gambetta
et al., 2006). As the qubit state changes from |0〉 to |1〉, there
occurs a frequency shift in the resonator, which can be read
out via the phase shift incurred by a microwave probe signal
applied to the resonator (Arute et al., 2019, SM III.B). On the
chip, the qubits are divided into groups of six qubits which
are each coupled to their own resonator, but resonators within
a group are simultaneously read out via frequency multiplex-
ing. Overall, the architecture consists of 53 such transmon
qubits, each of which is connected to a read-out device, with
86 couplers connecting nearest-neighbor qubits.

2. Benchmarking of the components

Naturally, substantial efforts have been made to carefully
benchmark the experiment.

a. Benchmarking of single-qubit gates. At the lowest level,
benchmarking of the experiment was performed on the level
of the individual components of the device. For the individual
components, the single-qubit operations, the entangling gates
and the read-out were benchmarked individually. For both
single-qubit gates and two-qubit gates as well as the bench-
marking of the entire device, Arute et al. (2019) make use of
linear XEB. Here, we pick up the line of thought developed in
Section V.B.3 and put it into the context of experimental find-
ings. As developed there, XEB provides a unified picture for
average-case benchmarking of small-scale operations in the
sense of randomized benchmarking on the one hand (Arute
et al., 2019; Liu et al., 2021c), and single-instance bench-
marking of typical large-scale quantum states on the other
hand (Arute et al., 2019). Again, the use of linear XEB is
attractive in this context as this procedure does not require the
classical computation of all possible events, but the classical
simulations only need to compute the likelihood of the set of
bit strings obtained in an experiment.

For the benchmarking of single-qubit gates, linear XEB
benchmarking has been used to estimate the probability of
an error occurring on the single-qubit level. For each qubit,
a sequence of a variable number of randomly selected gates
is applied and FXEB(Q,PC) as defined in Eq. (162) and dis-
cussed in Section V.B.3 is estimated. Notably, the resulting
scheme can be seen as a randomized benchmarking protocol
(Helsen et al., 2021; Liu et al., 2021c). One finds a decay of



54

the signal in the length ` of the sequence that is well described
by an exponential dependence of the form (1 − 3e1/4)`,
where e1 ∈ [0, 1] is the single-qubit Pauli error probability.
The single-qubit errors e1 over the various qubits follows a
distribution that is estimated by suitable histograms. From
these histograms, one can then estimate an average of about
e1 = 0.16% in simultaneous operation of the qubits on the
chip.

b. Benchmarking of two-qubit gates. For the linear XEB bench-
marking of the two-qubit gates, as in the single-qubit case, se-
quences of cycles are employed. Now, each cycle consists of
randomly chosen single-qubit gates followed by the iSWAP∗

two-qubit gate. This gives rise to an interleaved randomized
benchmarking scheme (Arute et al., 2019), in which the same
logic as for single-qubit gate benchmarking is applied: an ex-
ponential curve is fitted to the decay and one can estimate the
two-qubit error rate e2 by subtracting the single-qubit error
rate e1. After appropriate corrections for dispersive shifts and
cross-talk, an average of about e2 = 0.62% is found when
operating gates simultaneously on the chip. Finally, the com-
bined single- and two-qubit error rate e2C which characterizes
a single layer of a gate cycle is measured to be e2C = 0.93%
on average.

c. Characterization of single-qubit measurements. Measurement
errors of single-qubit readout are obtained by preparing |0〉
and |1〉 and performing a measurement of the state. The iden-
tification error is taken to be the probability that the qubit was
read out in a state other than intended, giving rise to a median
identification error of 0.97% for the |0〉 state and 4.5% for
the |1〉 state (Arute et al., 2019, SM VI.D.3). The fact that the
state preparation fidelity is much higher than the measurement
fidelity justifies this procedure.

In a second step, multi-qubit readout is characterized by
preparing and measuring 150 random classical bit strings with
53 qubits and repeating each measurement 3000 times, result-
ing in a 13.6% probability of correctly identifying the state.
This can be decomposed to a median error for simultaneous
single-qubit readout of 1.8% for |0〉 and 5.1% for |1〉, giving
an overall simultaneous readout error of about 3.8%.

3. Verifying the sampling task

The entire setup of the experiment has been tailored to
achieving a quantum computational advantage. Benchmark-
ing the individual components builds trust in the functioning
of the 53 qubit device as a whole, but does not yet constitute a
test of quantum advantage as outlined in the introduction (Sec-
tion I). In light of the hardness of rigorous verification of the
sampling task using the samples as explained in Section V.A,
the entire scheme has been benchmarked via linear XEB, but
now applied to typical instances of high-dimensional quantum

states as discussed in V.B.3. As discussed there, while the lin-
ear XEB fidelity does not yield a rigorous certificate for the
sampling task, achieving a nontrivial XEB value might be a
computationally difficult task in itself. Having said that, the
claim of Arute et al. (2019) is indeed to have performed the
sampling task to nontrivial precision.

In order to estimate the XEB fidelity, the probability of each
bit string obtained in the experiment needs to be computed. As
laid out in more detail in the following section (Section VII),
for the full random quantum circuit this is beyond the reach
of classical computers. This is why proxy methods need to be
used in order to reduce the complexity of computing the out-
put probabilities of the implemented quantum circuits. Specif-
ically, Arute et al. (2019) make use of three different simula-
tion strategies.

In a full circuit simulation, the exact output probabilities of
a given quantum circuit are computed. In “patch circuits”, one
removes all two-qubit gates along a slice through the 2D qubit
array, so that the circuit is split into two unconnected parts and
the overall fidelity is nothing but the product of two fidelities.
In “elided circuits” one removes a fraction of two-qubit gates
between the two partitions of the qubits, so that the parts are
coupled, but less entanglement is being generated.

In order to benchmark the patch circuit and elided circuit
method against the full circuit method as a means to estimate
the XEB fidelity, Arute et al. (2019) perform what they call
“verification circuits”. Those circuits are chosen in such a way
that a full circuit simulation is still possible. Specifically, two-
qubit gates are arranged in a simplifiable tiling so that circuits
with exactly the same gate count as in the full experiment are
easier to classically simulate. For circuits with 14 cycles on
up to 53 qubits, this allows for the comparison of the three dif-
ferent methods of estimating the XEB fidelity, see Fig. 11(a),
showing that all methods yield roughly the same value of the
XEB fidelity.

For full circuit simulation of up to 43 qubits, a “Schrödinger
type” simulation algorithm is run for the simulation of the
full quantum state, making use of 100.000 cores and 250 Ter-
abytes memory. For larger qubit sizes, a hybrid “Schrödinger-
Heisenberg type” simulation algorithm is run.

Providing further justification Arute et al. (2019) provide a
model for how the XEB fidelity FXEB(Q,PC) scales given the
errors obtained for the individual circuit components, yielding
good agreement with the predictions obtained via the various
simulation methods. Altogether, these tests constitute the jus-
tification for the use of the “elided” and “patch” methods as a
substitute of full circuit simulation when computing the XEB
benchmark.

In the “supremacy regime” of 53 qubits and depth 20, elided
and patch circuit method remain close to the error model
(Fig. 11) yielding a value of FXEB(Q,PC) ≈ (2.24± 0.21)×
10−3 averaged over 10 circuit instances. Here, the error bar
is a σ interval, where σ combines statistical errors of the
finite-sample XEB benchmark and systematic errors due to
the elided simulation method. This shows that the XEB value
is larger than 10−3 with 5σ significance. Importantly, since
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Figure 11 (Arute et al., 2019, Fig. 4) (a) To build trust in the proxy methods (elided and patch circuits) for full circuit simulation used to
estimate the XEB fidelity, sampling on the quantum processor is performed using circuits with the same gate count as the “Supremacy circuits”,
but in a simplifiable pattern and with depth 14. Each data point is an average of the XEB fidelity of 10 circuit instances with 0.5 − 2.5 · 106

many samples per instance. The solid line represents the predicted value of the XEB fidelity, given the error model. (b) In the “supremacy
regime” of 53 qubits and depth up to 20, the elided and patch methods are used to estimate the XEB fidelity, and the classical simulation time
for verification and sampling is extrapolated.

the XEB-fidelity scales inverse exponentially, the number of
samples required to obtain the required significance scales ex-
ponentially.

In order to further substantiate the claim that, on the quan-
tum device, the sampling task has in fact been achieved to
nontrivial accuracy, Arute et al. (2019, SM VIII) perform fur-
ther tests. First, they compare the values of the linear XEB
with the logarithmic XEB or cross-entropy difference (145),
see Section V.B.2 for a discussion. This measure is expected
to have a larger variance than the linear XEB fidelity as it
puts more weight on the tail of the distribution but at the same
time relates more closely to the actual total-variation distance
(Bouland et al., 2018). Arute et al. (2019) argue that both
measures can serve as a proxy for the quantum fidelity as dis-
cussed in Section V.B.3. Second, they analyse in more detail
the distribution of bit string probabilities obtained in the ex-
periment. They find an excellent fit with the expected (Porter-
Thomas) distribution of the outcome probabilities, and per-
form hypothesis tests to reject the hypothesis that the samples
stem from a uniform distribution.

The claim of having achieved quantum computational ad-
vantage in a practical sense is substantiated by extrapolating
the computational effort to estimate the computational cost of
the quantum advantage circuits to larger system sizes. Arute
et al. (2019) estimate that for n = 53 and d = 14, sampling of
three million bit strings with 0.01 fidelity would take about a

year. By extrapolation, they then argue that for the full n = 53
and d = 20, obtaining a million samples on the quantum
processor takes about 200 s, while sampling to a compara-
ble fidelity classically would take 10 000 years on a million
cores, and the verification of the fidelity would require mil-
lions of years. These claims have naturally been challenged
by new improved classical simulation methods explained in
Section VII.

4. Follow-up work

Wu et al. (2021) and Zhu et al. (2022) follow up on the
landmark experiment of Arute et al. (2019), presenting com-
prehensive, and qualitatively similar data from a supercon-
ducting platform, but with larger number of qubits and cir-
cuit sizes. The superconducting processor of Wu et al. (2021)
and Zhu et al. (2022) of n = 66 transmon qubits, which are
coupled by 110 tunable nearest neighbor couplers.

However, quantitatively, the experiment improves in
several ways over the experiment of Arute et al. (2019). Wu
et al. (2021) benchmark the device using 56-qubit, depth-20
random Sycamore circuits (i.e., in the same scheme as Arute
et al. (2019)) and achieve comparable error rates. They find
an XEB fidelity of 0.0662% for roughly 10 million bit strings
observed in the experiment. Zhu et al. (2022) improve upon
this and measure an XEB fidelity of 0.0758% for 60-qubit,
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22-cycle circuits, and (3.66 ± 0.345) · 10−4 for 60-qubit,
24-cycle circuits. Their experiment improves over that of
Arute et al. (2019) especially when it comes to readout
fidelity, for which they achieve an average fidelity of 2.26%.
Zhu et al. (2022) estimate that the sampling task requires
about four orders of magnitude more resources compared to
the sampling task considered by Arute et al. (2019).

To summarize this discussion, both Arute et al. (2019) and
Wu et al. (2021) and Zhu et al. (2022) claim a significant ad-
vantage of their respective quantum device over all possible
classical algorithms applied to the same task. In a nutshell,
the advantage claim of those experiments is based on a place-
holder for the linear XEB fidelity which can be computed in
the advantage regime, as well as empirical and numerical ev-
idence for the validity of this estimator. In Section VII, we
discuss in detail how and to what extent this quantum advan-
tage claim is challenged by tailored classical simulation al-
gorithms, as well as how the particular choice of benchmark
affects the claim.

B. Photonic implementations

Historically preceding implementations using supercon-
ducting quantum circuits, photonic implementations of vari-
ants of boson sampling have developed significantly over the
past ten years. These fall into implementations of the origi-
nal proposal of Aaronson and Arkhipov (2013) to make use
of initial Fock state preparations, and implementations of the
Gaussian boson sampling protocol initially proposed by Lund
et al. (2014), and refined by Hamilton et al. (2017) and Kruse
et al. (2019).

1. Fock boson sampling

Soon after the proposal of boson sampling had become
available (Aaronson and Arkhipov, 2013), first experiments
with photonic systems were conducted, all around the same
time (Broome et al., 2013; Crespi et al., 2013; Spring et al.,
2013; Tillmann et al., 2013). These first implementations in-
volve a comparably small number of modes and photons, even
though already these early experiments were often performed
on photonic chips in integrated optics. Spring et al. (2013)
present data from an experiment involving m = 6 modes and
n = 3 and n = 4 photons, resorting to silica-on-silicon in-
tegrated waveguide circuits. In such waveguide circuits fab-
ricated by ultra-violet writing, evanescent waves overlap, giv-
ing rise to effective beam-splitter arrays. In this experiment,
two parametric down-conversion pair sources are used to in-
ject up to four photons into a photonic circuit. That is to say,
the sources are not used in a heralded mode, where one port
provides a classical signal for the presence of a photon in the
other port, but both output ports of the sources are fed into the
device. The dominant sources of inaccuracy in this type of

sampling are consequently multi-photon emission as well as
partial distinguishability of our photon sources.

In fact, limitations of single-photon sources to date still
constitute a key limitation in the way of large-scale implemen-
tations of Fock boson sampling experiments. Postselection is
made use of to ensure that higher photon numbers which are
intrinsically also produced in the process do not contribute
substantially. To build trust in the functioning of the device,
the measured relative frequencies of outcomes in which the
photons are detected in distinct modes are compared with ex-
pected numbers. This is possible as up to these system sizes,
the relevant probabilities can still be classically computed.

The experiment of Crespi et al. (2013) also shows three-
photon interference in an integrated interferometer, here in-
volving m = 5 optical modes. Similarly, Tillmann et al.
(2013) present data from a three photon in a m = 5 mode
integrated optical interferometer. In each case, single pho-
tons were created using parametric down-conversion. Broome
et al. (2013) perform boson sampling in a tunable architecture
on m = 6 modes with n = 2 and n = 3 photons. Here, po-
larization controllers at the inputs and outputs can be used to
perform different unitary evolutions.

The next step in implementation sized up the instances
slightly to n = 3 photons in m = 9 modes (Carolan et al.,
2014; Spagnolo et al., 2014). More significantly, both Carolan
et al. (2014) and Spagnolo et al. (2014) perform the efficient
state discrimination test proposed by Aaronson and Arkhipov
(2014) in order to distinguish the experimental samples from
a uniform distribution. Carolan et al. (2014) furthermore
distinguishes the samples from a distribution obtained if the
bosons were distinguishable, making use of a technique called
bosonic clouding. More recently, Giordani et al. (2018) ex-
perimentally demonstrated a way to efficiently witness multi-
photon interference in a n = 3 photon experiment, following
a proposal of Walschaers et al. (2016).

These small-scale experimental results have more recently
been brought to a new level in terms of large-scale photonic
implementations. This advance has been made possible by
substantial technological development (Loredo et al., 2017;
Wang et al., 2017). On the one hand, solid-state sources of
highly efficient, pure, and indistinguishable single photons
have been developed. Such quantum dot-micropillar systems
allow for the deterministic generation of indistinguishable sin-
gle photons with high sample rate. On the other hand, the
transmissivity of the linear-optical circuits has been dramat-
ically improved with the development of ultralow-loss opti-
cal circuits. These developments allowed Wang et al. (2017)
to implement a n = 5-photon, m = 9-mode boson sampler
with high sample rate. Improving those components even fur-
ther, importantly, by integrating the optical circuit in a three-
dimensional architecture, Wang et al. (2019) have performed a
boson-sampling experiment with n = 20 photons andm = 60
modes—the largest implementation of Fock boson sampling
to date. For a detailed discussion of the early photonic im-
plementations of boson sampling, we refer the reader to the
review of Brod et al. (2019).
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2. Gaussian boson sampling

Gaussian boson sampling allows for even larger system
sizes, given the comparably easier availability of suitable
sources. Recall that in Gaussian boson sampling, single-mode
squeezed states are prepared at the input, whereas in Fock bo-
son sampling, single-qubit Fock states need to be prepared—a
much more challenging task.

After early demonstrations of the so-called scattershot bo-
son sampling variant of GBS (Bentivegna et al., 2015; Pae-
sani et al., 2019; Zhong et al., 2018), Zhong et al. (2020) per-
formed a large-scale GBS experiment that involved 50 input
single-mode squeezed states featuring high indistinguishabil-
ity and squeezing parameters. The resource states are fed into
a large-scale bulk optical (and hence not integrated) interfer-
ometer with full connectivity among m = 100 modes that
implements a random transformation with low loss. Notably,
some randomness in this interferometer is physical: the inter-
ferometer is fabricated to implement a certain unitary transfor-
mation but imperfections of the process alter the targeted uni-
tary. To obtain an accurate description of the unitary, the inter-
ferometer is characterized post-hoc via tomography. Strictly
speaking, the boson sampling device used in this (and all pre-
vious) experiment is therefore not a programmable device.
Rather, it is designed to implement a specific transformation
which is slightly altered in the fabrication process. The out-
put of the interferometer is then sampled from making use of
high-efficiency single-photon detectors. In this experiment,
up to n = 76 output photon-clicks have been detected.

This scheme has yet been improved by Zhong et al. (2021)
in two ways. First, a restricted programmability of the bo-
son sampling device has been achieved by making use of the
capacity to vary the phase of the input squeezed states. This
can also be viewed as introducing programmable phases in the
random unitary transformation. Moreover, the experiment has
been pushed further to detecting n = 113 photon events at
the output of a photonic circuit comprising m = 144 optical
modes. Key to this latter improvement is the availability of
a high-brightness and scalable quantum light source that has
been developed for this purpose. This source builds on meth-
ods of the stimulated emission of squeezed photons, which are
improved to achieve near-unity purity and high efficiency.

In principle, such experiments can be efficiently verified
in their functioning using quantum measurements (Chabaud
et al., 2021b), see Section V.C.1. While such tests have been
performed in this experiment, subsystem properties—namely,
low-order mode marginals—were used by Zhong et al. (2021)
to efficiently distinguish from classically simulable distribu-
tions such as distinguishable photons and thermal states, see
Section V.D.1. To this end, they use a variant of Bayesian like-
lihood ratio estimators, which can be recast as a ratio of cross-
entropy scores. In a similar vein, Drummond et al. (2022)
found good agreement between the distribution of total num-
ber of clicks of the treshold detectors observed by Zhong et al.
(2021) with the theoretical click number distribution, includ-
ing some decoherence effects.

Very recently, Madsen et al. (2022) have performed Gaus-
sian boson sampling using time multiplexing in order to im-
plement low-depth, but high-dimensional unitary mode trans-
formations, as proposed by Deshpande et al. (2022). The
lower depth of the unitary transformation allows reaching
larger system sizes since the loss does not contribute as much.
At the same time, classical simulation may become easier,
but Deshpande et al. (2022) provide numerical evidence that
low-depth, high-dimensional transformations remain compu-
tationally intractable in practice. The experiment uses m =
216 single-mode squeezed input states, a linear-optical trans-
formation with three-dimensional connectivity, and photon-
number resolving detectors. The average number of detected
photons is 125. In order to benchmark the experiment, Mad-
sen et al. (2022) apply a number of tests. For the events with
very low photon number of n ≤ 6 and m = 16, they compute
the TVD between the experimental and the target distribution.
In the intermediate regime of photon numbers n ≤ 26 and
m = 216 modes, they estimate the cross-entropy difference as
well as the Bayesian estimator of Zhong et al. (2021) in order
to compare to potential classical spoofing algorithms as dis-
cussed in Section V.D.1. Finally, in the classically intractable
regime, they compute first and second order cumulants of the
experimental distribution.

Let us close this section by mentioning that a variant of
the original scheme of Gaussian boson sampling has been im-
plemented by Thekkadath et al. (2022) on an interferometer
comprising m = 15 modes. This scheme allows for shifts of
the input squeezed states in phase space. Such displacements
are useful when anticipating applications of Gaussian boson
sampling as sketched in Section VIII. A direct implementa-
tion of a scheme of approximating vibronic spectroscopy with
imperfect quantum optics as a variant of boson sampling has
been reported by Clements et al. (2018).

C. Further implementations of quantum random
sampling

The schemes of quantum random sampling discussed above
are by far the most common schemes that have been im-
plemented experimentally. That said, other platforms differ-
ent from superconducting or photonic architectures have also
been considered, sometimes even leading to an actual experi-
mental realization. Wang et al. (2020), discussed also below,
suggests to overcome the challenge of preparing and detect-
ing bosonic quantum states in photonic implementations and
implements a boson sampling protocol in a two-mode super-
conducting device, deviating from the common implementa-
tions of boson sampling on photonic platforms. This is used
for simulating molecular vibronic spectra as suggested by Huh
et al. (2015).

Quantum random sampling in the measurement-based
model of quantum computing has recently been demonstrated
on small scales by Ringbauer et al. (2022). The advantage of
this approach over gate-based circuits is that—in principle—
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significantly less device control is required. This is because
all entangling gates are fixed and can be applied in a sin-
gle layer, and only a single layer of random Z-type rota-
tions are required (Bermejo-Vega et al., 2018; Haferkamp
et al., 2020a). The trade-off of this approach compared to
a gate-based one is therefore one between depth of the cir-
cuit and space: in order to achieve a hard-to-simulate cir-
cuit comparable to the one of Arute et al. (2019), presum-
ably 2 500 − 10 000 qubits are required. Ringbauer et al.
(2022) make this trade-off explicit: By ‘recycling’—i.e., mea-
suring and re-preparing—certain qubits during the computa-
tion while keeping the remaining qubits coherent, depth of
the physically implemented circuit can be traded with the
number of qubits available in the device. A major advan-
tage of the measurement-based approach to quantum random
sampling is that it is possible to efficiently witness and mea-
sure the quantum fidelity using single-qubit measurements as
discussed in Sections V.C.1 and V.C.2 (Bermejo-Vega et al.,
2018; Hangleiter, 2021; Hangleiter et al., 2017). This al-
lows to perform the benchmarking and verification methods
discussed in Section V.B.3 using the quantum fidelity, and
thereby circumvent important caveats of the XEB fidelity.

Along similar lines, to lessen the burden of actually explic-
itly implementing random circuits in a gate-based approach,
a number of schemes have been suggested that would in ef-
fect give rise to such circuits, but based on physical interac-
tion mechanisms. For example, Muraleedharan et al. (2019)
considers the complexity of a probability distribution associ-
ated with an ensemble of non-interacting massive bosons un-
dergoing a quantum random walk on a one-dimensional lat-
tice. Such settings are potentially more feasible to implement
in cold atomic systems. In fact, the coherent cold collisions
that have already been experimentally implemented (Mandel
et al., 2003) in systems of neutral ultra-cold atoms in optical
lattices gives rise to precisely the interaction required for the
implementation of the scheme of Bermejo-Vega et al. (2018)
and Haferkamp et al. (2020a), which allows for efficient quan-
tum verification.

VII. CLASSICALLY SIMULATING QUANTUM RANDOM
SAMPLING SCHEMES

Random quantum sampling schemes are set up to showcase
the computational power of quantum devices, to demonstrate
that there are computational advantages of paradigmatic quan-
tum computers over classical computers. The rigorous state-
ments discussed in Section IV always involve a separation in
the scaling of classical versus quantum computations. Such
statements show that, as systems are scaled up, the speed of
the respective quantum computations will at some point cer-
tainly surpass that of every classical algorithm. But how large
does one actually have to make a quantum sampler such that
it cannot be simulated classically? In other words, what is the
finite-size behavior of the complexity of simulating quantum
random sampling?

This question can only explicitly be answered for specific
classical algorithms at a time.34 The effort of devising such
specific algorithms constitutes a crucial part in the quest of
demonstrating a quantum advantage and thereby violating the
extended Church-Turing thesis: One has to not only demon-
strate that the scaling is possible in principle, but also that the
frontier determined by the best available classical algorithm
run on the fastest available supercomputers can be surpassed
using actual quantum devices.

We can conceive of this situation as a competition between
classical algorithms with an unfavourable scaling of the com-
plexity, but run on extremely large supercomputers, and small
but extremely noisy quantum devices. In the absence of quan-
tum error correction, both competitors will hit a ceiling sooner
or later, and the competition between classical and quantum
devices is determined by which ceiling is more favourable:
Roughly speaking, the quantum device, which is constrained
by the noise present in current-day experiments will hit the
simulation barrier as the circuit size reaches the tolerated er-
ror divided by the local gate error. Conversely, the classical
algorithm, which is constrained by the scaling of the simula-
tion task will hit a barrier once the time or space complexity
reaches the tolerable limit determined by the speed and mem-
ory size of current-day supercomputers.

Of course, what is and what is not possible in this situa-
tion depends heavily on the precise setting considered: is the
goal to exactly simulate the sampling task, to sample from a
distribution close in TVD, or to simulate a quantum experi-
ment while including realistic amounts and sources of noise?
Or is it to score at least as high as the quantum device on a
given benchmark, potentially via other means than simulating
the sampling task? Depending on the task at hand, a classi-
cal simulation algorithm may be able to exploit weaknesses
in the benchmark, or optimally exploit the available time and
space resources to beat the performance of a noisy quantum
device.35

In this section, we provide a brief overview of classical
simulation algorithms for different tasks related to quantum
random sampling. We categorize those tasks into two cate-
gories: first, computing the output probabilities—a task that
inevitably requires exponential precision for random instances
as almost all probabilities are exponentially small (recall Sec-
tion V.A)—and second, simulating the sampling task. Com-
puting the output probabilities is first and foremost required
as a subroutine of most sampling algorithms, and also for the
estimation of the XEB fidelity of an experimental system. In
contrast, the goals of simulating the sampling task are mani-
fold: the goal can be to sample from the ideal output distri-
bution or a distribution close to that, it can be to simulate a

34 Alternatively, one can invoke fine-grained complexity assumptions as dis-
cussed in Section IV.E.

35 A quantitative analysis of the competing scalings for the task of sampling
from the exact or noisy distribution as measured by the linear XEB fidelity
has been made by Zlokapa et al. (2020).
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noisy quantum experiment as well as possible, or it may be to
achieve high scores on a given quantum advantage benchmark
such as the XEB fidelity.

A. Sampling versus computing output probabilities

Computing the output probabilities of a (random) quan-
tum computation, or strongly simulating it, involves com-
puting the output amplitudes of a quantum circuit. On a
high level, most classical algorithms for computing proba-
bilities can be broadly categorized into “Feynman” type al-
gorithms and “Schrödinger” type algorithms (Aaronson and
Chen, 2017). Consider a quantum circuit with m gates acting
on n qubits. A Schrödinger algorithm stores and consecu-
tively updates the entire state using ∼ 2n space and ∼ m2n

time. A Feynman algorithm, in contrast, makes use of a path-
integral formulation of the output amplitudes (recall Eq. (19))
that expresses them as a sum of ∼ 4m many products of m
matrix entries of the quantum gates in the circuit. Such an
algorithm computes each term and sums all term up consecu-
tively, and therefore requires merely ∼ m + n space. In fact,
Aaronson and Chen (2017) show that Feynman algorithms can
have a much reduced runtime for local circuits that can be de-
composed into d layers of m/d gates, by recursively comput-
ing sums over paths over portions of the circuit. This gives
rise to a runtime scaling of O(n(2d)n+1) for general circuits
and 2O(d

√
n) for circuits on a two-dimensional grid, while the

space consumption scales as n log n. Typically m � n and
hence, depending on the setting at hand, space or time may
be the limiting factor and determine the choice of simulation
algorithm.

Of course, in practice, more intricate algorithms are used,
but the basic idea remains often the same. For qubit-based
architectures, most importantly, universal random circuits, hy-
brid Schrödinger-Feynman type algorithms turn out to be most
efficient in practice. The most important tool here are so-
called tensor-network algorithms (see (Bridgeman and Chubb,
2017) for an introduction), which allow the exploitation of
locality structure in quantum circuits. For boson sampling
schemes, Feynman algorithms are natural since the output
probabilities are expressed in terms of matrix polynomials in
the entries of an n×n linear-optical unitary, albeit with expo-
nentially many terms. Locality can (in most instances) not be
meaningfully exploited for those systems.

Let us now turn to the task of sampling from the output dis-
tribution of a quantum circuit, or weakly simulating it. Com-
puting the probabilities is not sufficient for sampling from a
given distribution, and in fact not even necessary, however.
Having said that, computing the output probabilities is often
the key subroutine of sampling algorithms, and all methods
for sampling that we are aware of make use of that subrou-
tine. Let us sketch the most important ideas for how to sam-
ple from a given distribution that are used in simulations of
quantum random sampling.

First, there are ancestral sampling techniques. Here, the

idea is that in order to sample from a multivariate distribution,
say a distribution p over length-n bit strings with probabilities
p(x1, . . . , xn), we can iteratively sample from the marginal
distributions of larger and larger portions of the bit string. In
the first step of such an algorithm we sample a bit y1 from
the marginal distribution p1 =

∑
x2,...,xn

p( · , x2, . . . , xn), in
the second step we sample from the conditional distribution
p( · |y1), etc. The key obstacle to notice for this approach is
that it requires an algorithm not only for individual probabili-
ties but also for all marginals of the distribution, a potentially
considerably more difficult task as it naïvely requires sum-
ming over exponentially many probabilities.

Second, there are rejection-sampling techniques. The idea
of rejection sampling is to generate a sample y from a distri-
bution q, as well as a uniformly random number u ∈ [0, 1] in
the first step. The distribution q should be such that we can
efficiently sample from it and it must satisfy p(x) ≤ cq(x)
for some number c and all x. In the second step, the sample
x is accepted if ucq(x) ≤ p(x) and rejected otherwise. If it
is rejected, the procedure is repeated. The expected number
of probabilities that need to be computed per sample is given
by c. Rejection sampling has a natural geometrical intuition:
Suppose that q is the uniform distribution over length-n bit
strings and c = 2n. Then we sample uniformly random points
in the rectangle {0, 1}n × [0, 1] and accept a sample if it lies
within the histogram of the distribution p.

Then, there are so-called Markov-chain Monte Carlo tech-
niques. Here, the idea is to set up a Markov chain of bit strings
x1 → x2 → · · · → xm that converges to the target distribu-
tion p as its stationary distribution. This Markov chain is spec-
ified by the probability Pt(x) of being in state x at time step t,
and rates Wx→x′ for the transition x → x′ that determine the
probability of moving from state x to state x′. The overall idea
is to construct the Markov chain based on a proposal distribu-
tion q. The proposal distribution determines the probability
q(x′|x) of moving to state x′ given that the Markov chain is
in state x. The transition probabilities are then given by

Wx→x′ = Pr[Accept|(x′|x)]q(x′|x). (197)

A simple choice of the acceptance probability is the Metropo-
lis choice

Pr[Accept|(x′|x)] = min

{
p(x′)q(x|x′)
p(x)q(x′|x)

, 1

}
. (198)

This choice has the favourable property that it only depends
on the ratio p(x′)/p(x). This means that one need not be able
to compute those probabilities directly but only a function f ∝
p.

B. Simulating universal circuit sampling

The best studied family of quantum circuits are univer-
sal random circuits, and in particular, the circuits imple-
mented by Arute et al. (2019) and subsequently by Wu et al.
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(2021) and Zhu et al. (2022). Recall that these circuits com-
prise single-qubit gates

√
X,
√
Y ,
√
W and the two-qubit gate

iSWAP∗ = fSim(π/2, π/6). The goal of large-scale simula-
tions performed for this task has been to compare the perfor-
mance of inefficient classical algorithms potentially includ-
ing approximations and the noisy quantum devices in the lab.
The methods devised for this task have similar complexity for
the task of computing the probabilities and simulating the ex-
periment since amplitude estimation dominates the computa-
tional cost. Nonetheless, the number of amplitudes required
for sampling typically scales linearly in the number of samples
and hence producing millions of samples can be prohibitively
costly while computing a single amplitude is doable.

The figure of merit in terms of which the success of these
simulations is measured is either the fidelity of the classical
representation of an approximate quantum state in cases in
which such a representation exists, or the XEB fidelity of the
produced classical samples as a classical benchmark that acts
as a placeholder for the circuit fidelity.

1. Using tensor networks to simulate quantum circuits

The most important tool for the simulation of universal ran-
dom circuits are tensor networks (Boixo et al., 2017a; Markov
and Shi, 2008). The basic idea of a tensor network is to ex-
press a quantity of interest in terms of a network of multi-
index tensors in which the edges correspond to a prescrip-
tion to sum over the corresponding index. Amplitudes of
quantum circuits are therefore naturally tensor networks since
two-qubit gates are rank-four tensors, single-qubit gates are
rank-two tensors and a product state is just a product of vec-
tors (rank-one tensors). The circuit description is just a rule
specifying how to connect those tensors. In order to com-
pute the quantity of interest, one then needs to contract the
tensors across their edges, i.e., perform tensor multiplication
by summing over the corresponding index, see Fig. 12. The
contraction complexity is determined by the largest dimension
of an index that appears in a particular contraction scheme,
which is roughly determined by the treewidth of the underly-
ing graph (Markov and Shi, 2008).

While the properties of one-dimensional efficient tensor
networks can be computed efficiently in the dimensions and
size of the tensor network, this no longer holds generally true
for higher-dimensional geometries that do not admit a linear
contraction scheme (Haferkamp et al., 2020b; Schuch et al.,
2007). Nonetheless, it often remains possible to find contrac-
tion schemes that scale much better than the worst-case run-
time in practice.

Tensor networks admit various sampling algorithms. Very
naturally, one can make use of ancestral sampling because the
data structure of a tensor network naturally admits the com-
putation of marginals at a cost that is similar to the cost of
computing an individual output amplitude (Ferris and Vidal,
2012). Still, this method is rather costly since every sample
requires n different contractions of the circuit tensor network.
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Figure 12 In a tensor network every edge corresponds to a rule to
sum over the corresponding index of the neighbouring tensors. In a
quantum circuit two-qubit gates are represented as four-index tensors
(boxes) and single-qubit computational basis states (vertices) are sin-
gle index tensors or vectors. Contracting an edge with a neighbouring
computational basis state (indices i and j) corresponds to selecting
a slice of the neighbouring tensor. Contracting an edge between two
arbitrary tensors (index l) corresponds to summing over the entries
of the neighbouring tensors over that index, resulting in a new, larger
tensor.

For the output distributions of random universal circuits it
turns out that variants of rejection sampling are much more
efficient however. This is because the output distribution of
random universal circuits is exponentially (Porter-Thomas)
distributed, which implies that the largest probability is ex-
ponentially small with inverse polynomial failure probabil-
ity over the choice of the random circuit (recall Eq. (161)).
Choosing the uniform proposal distribution and the bound
c = log(2n/ε) in the rejection sampling algorithm (see Sec-
tion VII.A) one can therefore simulate Porter-Thomas dis-
tributed probability distributions for n = 49 up to error
ε = 10−3 using 41 probabilities per bit string on average
(Markov et al., 2018). Further improving this, Markov et al.
(2018) introduce a “frugal” sampling scheme that reduces the
fraction of rejected strings. To do so, frugal rejection sampling
chooses c such that the upper tail of the distribution with prob-
abilities > c/2n has fixed weight ε and accepts all proposed
strings xj with unit probability if their probability is larger
than 2np(xj)/c, see Fig. 13. This effectively reduces the prob-
ability of such outcomes to c/2n and improves the average
number of probabilities required per sample and makes them
independent of n. At the same time, it introduces an error of
the sampled distribution compared to the target distribution.
Quantitatively, this error is given by 2 exp(−c/(1 − e−c)) as
measured by the TVD of the sampled distribution to the ideal
one assuming exponentially distributed probabilities. For in-
stance, for c = 10, it is given by ∼ 10−4.

A further important advantage of rejection sampling over
ancestral sampling is that all probabilities can be pre-
computed. This is crucial because it allows a more efficient
use of the contractions of a tensor-network. Instead of con-
tracting a new tensor network for each amplitude, the desired
output strings are stored in a large tensor so that only a single,
albeit slightly more complex, contraction is required for the
entire batch. For instance in the algorithm of Markov et al.
(2018) saving 107 amplitudes instead of a single one leads to
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Figure 13 In frugal rejection sampling, we sample a point (x, u)
uniformly at random over the area {0, 1}n × [0, c/2n]. A sam-
ple is accepted if u ≤ p(x) (green area) and rejected other-
wise. For Porter-Thomas (exponentially) distributed outcome prob-
abilities (solid (green) line), this will result in a TVD error ε =
2 exp(−c/(1 − e−c)) of the actually sampled distribution (dashed
(pink) line) compared to the target distribution.

only a 2.76-fold slowdown of the simulation.

2. Simulation of random quantum circuits

The question of how to approximately simulate random
quantum circuits thus boils down to the question how to best
contract the tensor network representing the quantum circuit.
In the following, we discuss various techniques for that in
more detail.

a. State-vector simulation. The in some sense simplest algo-
rithms for the simulation of quantum circuits just store the en-
tire quantum state and time evolve that state (De Raedt et al.,
2019, 2007; Häner and Steiger, 2017; Pednault et al., 2019;
Smelyanskiy et al., 2016). Here, a key challenge is to exploit
all the available storage on a large computer. For this, the
state-vector simulation needs to be distributed among the dif-
ferent parts of the storage. To our knowledge, the largest such
simulation runs on 49 (7× 7) qubits (Li et al., 2018; Pednault
et al., 2017).

An alternative and arguably more natural way of storing
multipartite quantum states is given by a tensor network as
discussed above. In order to compute all amplitudes of the
output state of the quantum circuit, one can contract the ten-
sor network along the time dimension, giving rise to a tensor-
network representation of the output state. The description
complexity of a tensor network state is bounded by ∼ n2n,
while the simulation time scales as ∼ m2n in the worst case.
This approach has been pursued by a number of works (Guo
et al., 2019; McCaskey et al., 2018; Pan et al., 2020; Zhou
et al., 2020b), building on work in the simulation of quan-
tum many-body systems (Schollwöck, 2005; Verstraete et al.,
2008). While tensor networks can efficiently approximate
states with low entanglement (Schollwöck, 2005), this is not

the case for random quantum circuits which have high entan-
glement by construction.

Indeed, an important feature of tensor network algorithms
is that they allow for a natural way of relaxing the precision
of the simulation. When contracting a two-qubit gate into a
two-site tensor network, the dimension of the tensors are mul-
tiplied. In order to keep the storage effort constant, the usual
approach is to perform a singular-value decomposition (SVD)
of the new, larger tensor and then to truncate the smallest sin-
gular values. Thus, the tensor size is kept fixed. For quan-
tum states with low entanglement the singular value distribu-
tion will be nontrivial, allowing for an efficient approximation
scheme. For random quantum circuits, however, the singular
value distribution tends to be very flat so that a reduction of
the bond dimension results in large errors (Guo et al., 2019;
Markov and Shi, 2008).

The introduced error rate due to such truncation can be
viewed as analogous to a finite gate fidelity in a real quantum
quantum circuit. Such a sequential compression has been pur-
sued for one and two-dimensional quantum circuits by Zhou
et al. (2020b). Using this approach, fidelities of the output
state on the same order of magnitude as seen in the experiment
by Arute et al. (2019) can be reached for a two-dimensional
circuit with CZ entangling gates acting on 54 qubits. These
simulations could be carried out on a laptop in a few hours.
For 20 qubits, the linear XEB fidelity of the resulting state
classically can be computed using the exact probabilities that
are obtained from an untruncated tensor network contraction.
Note that this approach does not (yet) achieve the advantage
regime of FXEB ≈ 0.002 for the iSWAP∗ entangling gate
which is considerably more difficult to simulate. Zhou et al.
(2020b) estimate that this would require a bond dimension of
roughly 104 which is an order of magnitude above what is
needed for the CZ gate.

Even for algorithms that do not involve approximations, a
clever choice of contraction order can yield better runtimes,
however. For instance, Guo et al. (2019) provide a simula-
tor for quantum circuits acting on a two-dimensional lattice
based on specific contraction strategies of the tensor-network
representation of the quantum state after the circuit has been
applied. For a lattice of side length L and a circuit of depth d
their most generic contraction scheme achieves space and time
complexities of the resulting algorithm that scale as 2d(L+1)/8

and L22d(L+1)/8, respectively. This allows for the computa-
tion of a single output probability of a random quantum circuit
with CZ entangling gates of depth 26 on 10× 10 qubits on a
supercomputer in 9 minutes and a circuit of depth 40 on 7× 7
qubits in 31 minutes and 92.51 TB memory usage.

b. Hybrid algorithms. Implementing the idea of Aaronson and
Chen (2017) to balance memory consumption and computa-
tion time in a Schrödinger-Feynman hybrid algorithm, Chen
et al. (2018a,b); and Li et al. (2018) introduced “slicing algo-
rithms” in which the system is sliced into smaller subcircuits
that are independently simulated. Every time an entangling
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gate occurs between those sub-circuits the number of inde-
pendent circuits to be simulated is multiplied by the Schmidt
(product) rank of the entangling gate. By judiciously choosing
the slices, one can thus optimally balance the memory con-
sumption and computation time.

Importantly, all of the simulations above used CZ entan-
gling gates. In the universal circuit sampling experiments
(Arute et al., 2019; Wu et al., 2021; Zhu et al., 2022), the
entangling gates are ones that are close to the iSWAP∗ gate,
however. This gate is significantly more challenging to sim-
ulate. This is because while the CZ gate can be decom-
posed into a sum of two equally weighted product operators
as CZ = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗ Z, the iSWAP∗ gate saturates
the decomposition rank of four with equal magnitude weights
as

iSWAP∗ = |0〉〈0| ⊗ |0〉〈0|+ e−iπ/6|1〉〈1| ⊗ |1〉〈1|
− i|0〉〈1| ⊗ |1〉〈0| − i|1〉〈0| ⊗ |0〉〈1|. (199)

Roughly speaking, the effort of simulating circuits including
iSWAP-like gates will therefore be quadratically larger in the
number of gates across partitions of the circuit compared to
circuits with CZ entangling operations.

Markov et al. (2018) exploit such a decomposition to match
a given fidelity in a classical simulation. This makes use of the
observation that all two-qubit gate paths have equal weight in
absolute value, while the remainder of the circuit is chaotic,
meaning that different paths contribute roughly equally to the
final amplitude (Villalonga et al., 2020). This implies that one
may just estimate an output probability to a given fidelity by
summing over a fraction of the paths given by the fidelity. This
allows the simulator to produce a (correlated) sample of M
bit strings with target fidelity f at the same cost as computing
f ·M noiseless amplitudes.

Villalonga et al. (2019) further show that yet faster sam-
pling can be achieved by “recycling” an initial tensor con-
traction to obtain contractions for nearby bit strings. The
resulting simulation algorithm has been executed on one of
the fastest supercomputers available to simulate with fidelity
0.5% depth-40 7×7 random circuits withCZ entangling gates
in 2.44 h, and depth-24 11× 11 circuits in 0.28 h (Villalonga
et al., 2020).

A number of works aim at finding the optimal way of con-
tracting the corresponding tensor networks by finding good
contraction paths that keep the tensors relatively small (Chen
et al., 2018a,b; Gray and Kourtis, 2021; Guo et al., 2019,
2021; Huang et al., 2020b; Pan et al., 2020; Schutski et al.,
2020). An approach that is closely related to tensor-network
contraction has been introduced by Boixo et al. (2017a). This
approach makes use of undirected graphical models which are
probabilistic models for which a graph expresses the condi-
tional dependence structure between random variables (Bar-
ber, 2012).36 The key idea of this approach is the following:

36 As such they are closely related to tensor networks (Glasser et al., 2019).

When representing the quantum circuit by a product of uni-
tary matrices acting at different clock cycles, expressions for
probabilities can be viewed as a path integral with individual
paths formed by a sequence of the computational basis states.
The dependencies can then be cast into the form of a prob-
abilistic graphical model, except that in contrast with actual
probabilistic models, the factors in general take complex val-
ues. To evaluate the resulting expressions, a new variant of a
variable elimination algorithm (Murphy, 2012) has been sug-
gested. This algorithm allows to sample from the output dis-
tribution of circuits featuring a sufficiently small tree width, as
well as to estimate the XEB benchmark. Chen et al. (2018a)
and Huang et al. (2021a) have further improved this approach
and combined it with tensor-network contraction techniques
for an application in a parallelized architecture.

Other interesting variants of circuit contraction schemes
have been proposed by Chen et al. (2020), inspired by quan-
tum teleportation, to swap space and time in order to take
advantage of low-depth quantum circuits. Finally, Kalachev
et al. (2021a) devise a “multi-tensor contraction scheme” in
which the tensor network contraction is performed by as-
signing a so-called contraction tree with a recursive relation.
In this relation, certain pre-computed sub-expressions are re-
used as often as possible to speed up the overall computation.
In this way, they are able to compute individual probabilities
of Sycamore circuits of depth up to 16.

c. Simulating the experiment of Arute et al. (2019). The previ-
ously mentioned methods have been used to approximately
simulate different random circuits or different sizes as com-
pared to the ones performed by Arute et al. (2019); Wu et al.
(2021); and Zhu et al. (2022). In order to fairly compare the
noisy experiment with a classical algorithm it is necessary to
perform the same task or at least fairly comparable tasks in
the first place, however. Unfortunately, it is not fully clear
what exactly that task should be. Ideally, the task on which
we compare quantum and classical algorithms is to produce
samples from the correct probability distribution. However,
this point of view has the issue that it is not possible to verify
the distribution. Arute et al. (2019) seem to have precisely
this in mind when they argue that the linear XEB fidelity is a
placeholder for the quantum fidelity, and perform further tests
to corroborate this such as computing the logarithmic cross
entropy and estimate the entropy of the sampled distribution.
Alternatively, we could think that the task on which the ex-
periment has to be beaten is merely to score high on the XEB
benchmark. This interpretation has the advantage that there
is a clear-cut benchmark, which, while not efficiently com-
putable, can at least be sample-efficiently estimated (see Sec-
tion V.B.3) and is well defined.

The latter approach is taken by Pan and Zhang (2022). They
devise a tensor-contraction method which allows them to ex-
actly compute a certain subset of the probabilities. The basic
idea of their “big head” algorithm is to identify a bottleneck
in the contraction of the tensor network and split the tensor
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Depth # bit strings Time complexity (# FLOPs) Space complexity

(Kalachev et al., 2021a) 16 2 · 106 uncorrelated 1.1 · 1019 ?
(Gray and Kourtis, 2021) 20 1 uncorrelated 3.1 · 1022 227

(Huang et al., 2020b) 20 64 uncorrelated 6.7 · 1018 229

(Pan and Zhang, 2022) 20 2 · 106 correlated 4.5 · 1018 230

(Pan et al., 2022) 20 226 uncorrelated & correlated 3.5 · 1018 230

(Kalachev et al., 2021b) 20 225 correlated 6.9 · 1018 ?

Table II Comparison of the time and space complexity of computing bit string probabilities of Sycamore circuits with 53 qubits for selected
simulation schemes in terms of the total number of floating point operations (FLOPs). Sources: (Kalachev et al., 2021a,b; Pan et al., 2022;
Pan and Zhang, 2022).

network into two parts across that edge, which is close to the
output. This gives rise to a very large “head part” of the net-
work and a “tail part” of the network. The output qubits in the
head-part of the network are projected onto a fixed bit string
s1 = (0, . . . , 0). The tail part of the network is much smaller
than the head part and contains a subset of the output qubits.
Thus, the head part of the network need only be contracted
once, while the output amplitude of a bit string (s1, s2) can
be computed as the inner product of the vectors correspond-
ing to the contractions of the head and the tail part. In this
way, Pan and Zhang (2022) are able to obtain 221 correlated
bit strings, and postselecting onto the 106 largest ones gives
an XEB score of 0.736. Importantly the probabilities com-
puted by the algorithm are exact. (Liu et al., 2021d) reduce
the runtime of the algorithm to a few minutes by making use
of a large supercomputer.

Now, arguably, this method does not produce uncorrelated
or independent samples from the correct distribution and does
therefore not achieve the sampling task associated with the
universal circuit. Liu et al. (2021b) make use of the algorithm
of Pan and Zhang (2022) in order to produce perfect samples
from the target distribution. To this end, they leave fewer legs
of the tensor network open (6 instead of 21) and use the out-
comes to produce a single perfect sample of depth-20 circuits
in 276 seconds on a supercomputer. To produce many sam-
ples with smaller (XEB) fidelity, these perfect samples can
be diluted by uniform samples as proposed by Huang et al.
(2020b). Producing one million samples with XEB fidelity
0.2% is therefore equivalent to producing 2000 perfect sam-
ples.

Pan et al. (2022) pursue a different strategy and achieve
the approximate sampling task by artificially introducing ap-
proximations, and using a sparse representation of the output
state. Specifically, they “drill holes” into the tensor network
by judiciously removing a few of its edges at various positions
in the circuit. To achieve this, they remove k pairs of edges
of the iSWAP∗ gate, which allows them to significantly re-
duce the complexity while decreasing the fidelity of the state
by roughly a factor of 2−2k. Second, they compute the out-
put probabilities associated to L uniformly random groups of
l correlated bit strings. By removing 2k = 8 edges from
the tensor network they are able to compute 226 uncorrelated
batches of correlated probabilities. Using those they obtain

220 independent samples from a state with fidelity, or equiv-
alently, XEB fidelity of ≈ 0.37%. The simulation has a cost
about 15 hours on a small cluster of 512 GPUs. Importantly,
the samples produced in this way pass the same tests that were
performed by Arute et al. (2019) to validate the experimental
samples.

An analogous approach is pursued by Kalachev et al.
(2021b), who devise a slicing procedure based on maximiz-
ing the norm of partially summed slices to match a targeted
fidelity. Similarly to the approach of Pan et al. (2022), this
gives rise to batches of correlated probabilities. Kalachev
et al. (2021b) further provide an optimized sampling proce-
dure that minimizes the sampling overhead in terms of how
many probabilities need to be computed to a factor of 2. They
estimate that this would allow them to sample from a distri-
bution with fidelity 0.2% using 15 months time on a single
GPU. By postselecting on the largest amplitudes in a number
of batches, they are able to spoof the linear XEB benchmark
with a value of 0.47% in four hours on a single GPU.

In a similar spirit, and as discussed in more detail above,
Barak et al. (2021); Gao et al. (2021); and Zhou et al. (2020b)
provide evidence that weaknesses in the linear XEB fidelity
can be exploited in order to devise classical algorithms with a
score comparable to the score noisy quantum devices achieve.
Specifically, the algorithm of Gao et al. (2021) scores only
one order of magnitude below the experiment of Arute et al.
(2019) using a laptop. It is projected to keep roughly constant
score for larger circuits, while the experimental score is ex-
pected to further decrease exponentially. At the same time,
the quantum fidelity of the quantum state from which those
samples were produced is presumably exponentially small. It
may therefore remain to be difficult to sample from the output
distribution of a state with comparably high fidelity.

In Table II we compare the most advanced algorithms
for (approximately) computing the output probabilities of
Sycamore circuits. These algorithms are used as the crucial
subroutines in algorithms that approximately sample from the
output distribution of those circuits, and algorithms which per-
form the weaker task of outputting samples with a high XEB
score.

Summarizing the discussion above, it seems fair to say that
the experiment of Arute et al. (2019) has been simulated on
conventional computers, probably most convincingly by Pan
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et al. (2022). However, all of the simulation methods men-
tioned here fail already for the slightly larger implementa-
tion of universal circuit sampling by Zhu et al. (2022). Let
us stress that our discussion once again highlights how dif-
ficult it is to fairly compare different spoofing strategies to
experimental samples either of which can only be validated
by incomplete methods such as cross-entropy benchmarking.
For example, one might argue that the bit strings produced
by Pan and Zhang (2022) have already outperformed the ex-
perimental samples in terms of the relevant benchmark—the
XEB fidelity, since this is the benchmark which Arute et al.
(2019) have decided on as the central quantity characterizing
the quality of their experiment (granting that they did perform
further benchmarks). But one could equally well argue that
actually the samples of Arute et al. (2019) are approximately
sampled from the targeted distribution. In this reading, a high
XEB fidelity is only one of many features that those samples
should have. In addition, they should be independent sam-
ples, have a high entropy, even be sampled from the output
distribution of a quantum state which has high fidelity with
the ideal target state. Evidence for all of those features fea-
tures was collected in the experiment of Arute et al. (2019)
by means of various tests. In this reading only the samples
of Pan et al. (2022) can actually be said to “reproduce” the
experiment—as viewed through those tests. This discussion
highlights the importance of clearly identifying and stating
reproducible criteria under which we will consider quantum
random sampling to be successfully achieved—on a classical
or a quantum computer and in the absence of an unambiguous
and efficient means of verifying samples.

d. Efficient algorithms. While the above simulation algo-
rithms have exponential runtime or result in large errors, Napp
et al. (2022) provide both numerical and analytical evidence
that shallow (depth-3) universal circuits in a two-dimensional
brickwork architecture can be strongly simulated as well as
efficiently weakly simulated within a constant total-variation
distance error. They do so in a twofold approach: first, they
numerically demonstrate approximate simulation of random
universal circuits in a 400 × 400 brickwork architecture us-
ing a tensor-network algorithm (which is worst-case hard to
simulate strongly). They then provide analytical evidence for
easiness using a mapping to a recently developed model con-
sisting of alternating rounds of random unitaries and weak
measurements (Bao et al., 2020; Jian et al., 2020), see also
Section IV.D.6.

e. Alternative simulation schemes. Yet another approach of en-
tirely different type is to make use of the so-called stabilizer
decomposition of quantum states. This method is based on
the observation that stabilizer states, that is, states generated
by Clifford circuits can be efficiently simulated both weakly
and strongly (Gottesman, 1997). Circuits that comprise addi-
tional non-Clifford gates, can then be expressed as linear com-

binations of Clifford circuits (Aaronson and Gottesman, 2004;
Bennink et al., 2017; Bravyi and Gosset, 2016; Qassim et al.,
2021). The complexity of this scheme grows exponentially in
the stabilizer rank χ of a quantum state, that is, the number
of stabilizer states in this decomposition. Since the number of
non-Clifford gates typically grows much faster than the num-
ber of qubits, this approach is currently not practically useful,
however.

To summarize, the above efforts let us conclude that us-
ing sophisticated classical algorithms, modern supercomput-
ers can just so keep track of existing experimental schemes of
universal circuit sampling.

3. Analysis of noise

Intuitively speaking, noise should render the simulation
of quantum random sampling schemes less computationally
demanding. In an idealized scenario, if local depolarizing
noise with constant strength is applied at the end of a quan-
tum circuit, the output distribution will be very close to the
uniform distribution. However, often it is a priori unclear
how to exploit specific types of noise in a particular sim-
ulation algorithm, and more specifically which noise levels
will be classically simulable. It has therefore been a sub-
ject of some research to pin down regions—determined by
the type and strength of noise—in which quantum random
sampling schemes are efficiently simulable via classical al-
gorithms. Conversely, one can ask the question whether it is
possible to mitigate certain forms of noise without resorting
to quantum error correction techniques.

Early on Aharonov and Ben-Or (1996) have already con-
sidered the effect of depolarizing noise on the complexity of
quantum circuit simulation. They find a polynomial-time al-
gorithm for noisy circuits whenever the depolarizing fidelity
is higher than some threshold. More specifically to the case
of quantum random sampling, Bremner et al. (2017) show
that IQP circuits subject to local depolarizing noise at the
end of the circuit are classically simulable for any constant
noise strength, provided the ideal distribution in question is
sufficiently anticoncentrated. The key idea of their simula-
tion scheme is to make use of a simulation algorithm based
on a sparse Fourier representation of the output distribution
for sufficiently anticoncentrated IQP distributions (Kushile-
vitz and Mansour, 1993; Schwarz and van den Nest, 2013).
For measurement depolarizing noise with strength ε and dis-
tributions with collision probability ≤ α/2n their algorithm
runs in time O(nlog(α/δ)/ε) to sample from the target dis-
tribution up to TVD δ. This simulation scheme can be fur-
ther extended to universal circuits (Yung and Gao, 2017) us-
ing a measurement-based embedding (Gao et al., 2017) and
then exploiting the algorithm of Bremner et al. (2017) on in-
dividual branches of that embedding. It may not be clear,
however, to what extent the considered type of noise chan-
nel (local depolarizing noise at the end of the circuit) is ac-
tually realistic and reflective of common physical sources of
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quantum noise (Boixo et al., 2018, 2017b). It has also been
noted that, asymptotically, such Fourier-based simulation al-
gorithms are no more efficient than trivial algorithms (Boixo
et al., 2017b). Nonetheless, there may well be an intermediate
regime in which an advantage can be gained by exploiting the
specific structure of the Fourier coefficients.

Following up on this, Gao and Duan (2018) have proven
convergence to the uniform distribution for local Pauli noise
associated with single-qubit gates. This convergence result
has been refined recently by Dalzell et al. (2021) and Desh-
pande et al. (2021), who further delineate the regime in which
we expect classical simulation algorithms to be feasible; recall
Section IV.F.1. From the result of Deshpande et al. (2021),
it follows that random with a constant amount of noise are
efficiently simulatable up to inverse polynomial TVD—by
the trivial algorithm which just outputs uniform samples—
whenever the depth grows as ω(log n) since in this case the
TVD between the noisy output distribution and the uniform
distribution is smaller than any inverse polynomial.

Gao and Duan (2018) make a significant step forward from
this and give an average-case simulation algorithm for the out-
put distributions of universal quantum circuits with a noiseless
Clifford part and Pauli noise on non-Clifford gates with noise
strength η. The output distribution of these noisy circuits is
nontrivial in that it is far from uniform yet simulable up to
TVD error ε with a runtime of nO(log 1/ε)/η and hence effi-
cient for constant ε, η > 0. This algorithm only runs in quasi-
polynomial time if the goal is to simulate the noisy circuit up
to inverse polynomial TVD. This regime is significant since
an algorithm that can only simulate a noisy experimental cir-
cuit up to constant TVD can be efficiently distinguished from
the actual noisy experiment at polynomial overhead. Build-
ing on this algorithm of Gao and Duan (2018), Aharonov
et al. (2022) close this gap and find an algorithm that can ef-
ficiently simulate a noisy universal random circuit with con-
stant local depolarizing noise after every gate up to any in-
verse polynomial TVD whenever the output distribution an-
ticoncentrates. Since anticoncentration requires at least loga-
rithmic depth (Dalzell et al., 2022), the algorithm of Aharonov
et al. (2022) is therefore nontrivial precisely in the regime of
logarithmic depth. Given previous results, this is the regime in
which one might have hoped for an asymptotic quantum ad-
vantage even for quantum circuits with a constant amount of
noise (Deshpande et al., 2021); see our discussion of these re-
sults in Section IV.F.1. These results hence show that random
quantum circuits of logarithmic depth do not offer a “sweet
spot” at which anticoncentration already sets in and yet con-
stant noise levels are not yet overwhelming.

Let us briefly sketch the idea of the algorithm of Aharonov
et al. (2022) and Gao and Duan (2018), which draws its key
ideas from the work of Bremner et al. (2017). The starting ob-
servation of the algorithm is that the (ideal) output distribution
of a quantum circuit C = UdUd−1 · · ·U1 can be expressed as

a Pauli path integral

PC(x) =
∑

s0,...,sd∈Pn
Tr[|x〉〈x|sd] Tr[sdUdsd−1U

†
d ] · · ·

· · ·Tr[s1U1s0U
†
1 ] Tr[s0|0n〉〈0n|] (200)

=:
∑

s∈Pd+1
n

f(C, s, x), (201)

where Pn is the n-qubit Pauli group. This can be easily seen
from the fact that the Pauli matrices form a complete operator
basis and therefore Tr[UρU†s] =

∑
t∈Pn Tr[UtU†s] Tr[ρt].

We can also think of the Pauli path integral as a Fourier de-
composition of the output probabilities.

In the Fourier representation, the effect of local depolariz-
ing noise can be easily analyzed since it just acts as E(ρ) =
(1− ε)ρ+ εTr[ρ]1/2n. The contribution of a Pauli path of a
noisy quantum circuit to the total output probability thus de-
cays with the number of non-identity Pauli operators in it (the
Hamming weight of s) as37

p̃C(x) =
∑

s∈Pd+1
n

(1− ε)|s|f(C, s, x). (202)

Aharonov et al. (2022) now show that the sum can be approx-
imated by including only path weights f(C, s, x) with Ham-
ming weight |s| ≤ ` incurring a TVD error on the order of
2−Ω(`) on average. Then, they show that the truncated sum
can be calculated efficiently using that the low-weight Pauli
paths are sparse in that most of them actually have weight
0, using ideas very similar to those of Bremner et al. (2017)
and Kushilevitz and Mansour (1993) on computing quantities
with sparse Fourier spectrum. This completes an algorithm
for approximate strong simulation. The algorithm for approx-
imating the probabilities can be straightforwardly extended to
an algorithm that also approximates all marginals (over bits of
the measurement outcome x) of the truncated noisy distribu-
tion. Consequently the marginal sampling algorithm can be
used to sample from the output distribution up to TVD 2−Ω(`)

in time 2O(`).
Interestingly, for IQP circuits it has also been shown that it

is possible to classically protect against noise (Bremner et al.,
2017): Using classical coding techniques one can encode a
smaller IQP circuit C redundantly in a larger one C′ such that
even if local depolarizing noise is applied to the output of C′
one can sample efficiently from a distribution arbitrarily close
to the ideal output distribution of C. Unfortunately, it is not
at all clear however, how these coding techniques (similar to
the ideas used in the idea to use cryptography to verify IQP
circuits which we discussed in Section V.D.2) can be extended
beyond IQP circuits.

37 This reflects an analogous expression derived by Bremner et al. (2017) for
noisy IQP circuits.
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C. Simulating boson sampling protocols

Classical simulation methods for boson sampling naturally
exploit the expression of the output probabilities in terms of
the permanent or related matrix polynomials. The individ-
ual terms in those polynomials can be viewed as the weights
of a Feynman path integral expansion of the polynomial, and
hence Feynman-type algorithms are natural candidates for the
simulation of those schemes.

1. Computing probabilities: permanents and Hafnians

Computing the output probabilities of boson sampling
amounts to computing the permanent (46) for Fock input
states, and the Hafnian (49) for Gaussian input states. The
naïve runtime of computing the permanent of an n × n ma-
trix scales linearly in the number of all permutations of n el-
ements, given by n!, multiplied by the complexity of com-
puting the product of n numbers, given by n2, while the
space complexity is given by O(n). Similarly, we can ex-
press the Hafnian as a sum over all perfect matching permu-
tations of 2n elements and hence the worst-case runtime is
given by n2 times the number of perfect matching permuta-
tions |PMP(2n)| = (2n − 1)!! = 1 · 3 · 5 · · · (2n − 1) (Gupt
et al., 2019).

These worst-case estimates can be significantly improved,
however, via clever re-expressions of the permanent and Haf-
nian, respectively. Indeed, Ryser (1963) has found a way to
re-express the permanent via the principle of inclusion and
exclusion as a sum of 2n terms and hence the complexity of
computing the permanent is reduced to O(n22n) and further
to O(n2n) by using Gray codes. Alternative expressions for
the permanent with the same number of terms and hence the
same complexity have been found by Glynn (2010), using the
polarization identity for symmetric tensors and making use of
partial derivatives.38 Similarly, it turns out that the Hafnian
of a n × n matrix can also be computed in time O(n32n/2)
(Björklund, 2012). The Ryser formula for the permanent can
be further reduced to incorporate collision events, reducing
the number of terms from O(n2n) to

∏
i(ni + 1), where ni

is the number of photons observed in mode i (Chin and Huh,
2018; Shchesnovich, 2013; Tichy, 2014). Algorithms based
on these re-expressions remain the fastest for permanents and
Hafnians (Björklund et al., 2019; Gupt et al., 2019; Wu et al.,
2018), allowing for the computation of matrix permanents of
size up to 54 × 54 (Lundow and Markström, 2022). Their
runtime can also be further improved by exploiting specific
structures such as sparsity or the matrix bandwidth (Lundow
and Markström, 2022).

A natural way to exploit path-integral expressions for ap-
proximate computation of permanents and Hafnians is to ran-

38 See (Huh, 2022) for a use of the Glynn formula in a quantum algorithm for
permanent estimation.

domly sample out paths and sum up their weights to construct
a randomized estimator of the permanent or Hafnian. Gurvits
(2003) does precisely that, making use of Ryser’s or Glynn’s
formula, to obtain an algorithm that takes time O(n2/ε2) to
achieve an additive error ±ε‖A‖n estimate of the permanent
of A. Aaronson and Hance (2012) generalize the algorithm,
obtaining an improved runtime for permanents with repeated
rows and columns, corresponding to bunching events, and de-
randomizing the algorithm for non-negative matrices. Fur-
thermore, it can be extended to arbitrary input states (Yung
et al., 2016).

In specific instances one can also obtain multiplicative-
error approximations in sub-exponential or even polynomial
time. Such results delineate out regimes in which the perma-
nent is in fact not #P-hard to approximate and hence the sam-
pling task will not be intractable, too. Specifically, for non-
negative matrices Jerrum et al. (2004) give a Markov-chain
Monte Carlo based randomized algorithm that is able to ap-
proximate the permanent up to multiplicative error ε in time
poly(n, 1/ε) while, deterministically, only an approximation
factor of 2n is currently achievable (Barvinok, 1999; Gurvits
and Samorodnitsky, 2002; Linial et al., 1998). Using an inge-
nious method based on a Taylor-series approximation of the
complex polynomial f(z) = ln[Perm(J + z(A−J))], where
z ∈ C and J is the matrix filled with ones, Barvinok has iden-
tified certain regimes for which quasi-polynomial relative-
error approximations of the permanent and the Hafnian are
possible. This is the case if the function f(z) is holomor-
phic on the unit disc—for matrices with entries ai,j satisfying
|ai,j−1| ≤ 0.19 (Barvinok, 2016b), matrices with entries sat-
isfying δ < ai,j ≤ 1 (Barvinok, 2017), and diagonally dom-
inant matrices (Barvinok, 2019). An interesting case is that
of positive semi-definite matrices, as it has been shown that
exactly computing the permanent of such matrices remains
#P-hard (Grier and Schaeffer, 2018), but multiplicative-error
approximation algorithms in BPPNP (Rahimi-Keshari et al.,
2015) and with quasi-polynomial runtime (Anari et al., 2017;
Barvinok, 2020) exist in some circumstances. Building on
the approach of Barvinok, Eldar and Mehraban (2018) show
that for random Gaussian matrices with non-zero but vanish-
ing mean there is a quasi-polynomial time algorithm that ap-
proximates the permanent to within a multiplicative error.

Physically interesting cases include the case of low-rank
matrices since, such matrices determine the probabilities of
outcomes with collisions: for constant rank, the correspond-
ing permanents can be computed efficiently in the matrix
dimension (Barvinok, 1996). Quesada (2019) and Quesada
et al. (2019) analyze the complexity of computing of the out-
put probabilities of Gaussian states with finite displacement.
In this case, the probabilities correspond to so-called loop-
Hafnians (Björklund et al., 2019) which can be viewed as
counting the perfect matching of a graph with self-loops. Us-
ing similar techniques, Chabaud et al. (2021a) and Chabaud
and Walschaers (2022) find efficient algorithms for states with
polynomial stellar rank and polynomial support over the Fock
basis. Another physically relevant simplifying modification is
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to analyze the complexity of computing the outcome proba-
bilities if the detectors can only distinguish between 0 and at
least 1 photon, so-called threshold detectors. In this case, the
output probabilities can be expressed in terms of what Que-
sada et al. (2018) called the “Torontonian”. The complexity
of directly computing the Torontonian is given by O(n32n)
which is equivalent to the complexity of directly computing
the Hafnian. It remains an open question whether threshold
detectors significantly reduce the complexity of simulating
Gaussian boson sampling experiments. Furthermore, the out-
put probabilities of Gaussian boson sampling with local and
shallow linear-optical circuits can be efficiently computed by
making use of the banded structure of the adjacency matrix
(Qi et al., 2020b).

Exploiting the fact that for realistic experiments the num-
ber of modes is not much larger than the number of ob-
served photons as required by the proofs of hardness (see Sec-
tion IV.C.4.c) and the fact that threshold detectors are used
which only distinguish between 0 and≥ 1 photon, Popova and
Rubtsov (2021) introduce an iterative series of approxima-
tions to the ideal outcome probabilities. To this end, they ex-
ploit that low-order moments

∑
k k

jpn(k) can be efficiently
computed with complexity scaling exponential in j. Here,
pn(k) is the probability that photons have been detected in
k of m detectors, conditioned on a total number n of pho-
tons. Then they solve an inverse-moment problem to estimate
pn(k), projecting that using up to j = 4th order, probabili-
ties of a m = 100 mode-device can be estimated with 50 %
relative accuracy.

2. Simulating the sampling task

Given the entirely different structure of the circuits in vari-
ants of boson sampling schemes, the sampling algorithms
used are also different in type compared to simulations of uni-
versal circuit sampling. An important further distinction in the
quantitative comparison of classical simulation algorithms to
actual experiments is the lack of a simple benchmark anal-
ogous to the XEB fidelity. As discussed in Section V.D the
most important way of verifying boson sampling experiments
are state discrimination schemes, as well as certain efficiently
computable quantities such as low-order correlations of the
respective distributions. Consequently, in boson sampling ex-
periments it is also much less clear at which point quantum
advantage has been reached experimentally.

A first competitive classical simulation algorithm for Fock
state boson sampling uses the Markov-chain Monte Carlo
method described above, giving rise to a much better runtime
than the naïve worst-case complexity (Neville et al., 2017).
This algorithm takes into account noise in actual devices, in
particular, photon loss, which is the dominant source of errors.
This approximate sampling algorithm has been vastly im-
proved by Clifford and Clifford (2018), who provide an exact
boson sampling algorithm with the same improved runtime of
O(n2n + poly(m,n)) as compared to the worst-case runtime

of O(
(
m+n−1

n

)
n2n), where n corresponds to the number of

photons and m is the number of output modes. In follow-up
work by the same authors, this algorithm has been even further
improved, achieving an average-case time complexity that is
much lower when m is proportional to n (Clifford and Clif-
ford, 2020). When m = n, specifically, the algorithm runs
in time approximately O(n1.69n) on average. The sampling
algorithms by Clifford and Clifford are based on ancestral or
marginal sampling. The key insight of their algorithms is an
expression of the low-order photon marginals in terms of per-
manents of smaller and smaller matrices, so that the runtime
of the algorithm is dominated by the final marginal, where
a single permanent of the full n × n matrix needs to be com-
puted which in the worst case is given byO(n2n). Altogether,
these results indicate that Fock boson samplers require at least
∼ 40 photons before one can hope to surpass the capabilities
of currently available classical computers.

An exact algorithm for Gaussian boson sampling with
threshold detectors (Quesada et al., 2018) that has been imple-
mented by Gupt et al. (2020) requires exponential space, since
the entire probability distribution needs to be saved. Quesada
and Arrazola (2020) improve this and devise an exponential-
time exact sampling algorithm that uses only polynomial
space and has a runtimeO(n32n) for generating a single sam-
ple with n photons. To achieve a runtime scaling propor-
tional to the runtime required for a single Hafnian computa-
tion Bulmer et al. (2022) and Quesada et al. (2022) give algo-
rithms with a further quadratic improvement, achieving run-
time O(n32n/2). The key idea of Quesada et al. (2022) is to
perform a virtual heterodyne measurement in all modes first.
Such a measurement can be efficiently simulated. Then, one
can iteratively replace the heterodyne outcomes with photon-
number measurements and sample from the photon-number
distribution conditioned on the heterodyne outcomes in the
remaining modes. These probabilities are described by loop
Hafnians of matrices with increasing size, similar to how the
algorithm of Clifford and Clifford (2020) expressed probabil-
ities in terms of smaller permanents for standard boson sam-
pling. The idea of an algorithm for Gaussian boson sampling
with threshold detectors by Bulmer et al. (2022) is to sim-
ulate a photon-number resolving measurement, and then set
all nonzero photon numbers in a sample to one. In the di-
lute regime, this reduces the computation to a loop Hafnian
of size n × n, containing 2n/2 terms. Bulmer et al. (2022)
then provide a construction that reduces sampling in the non-
dilute regime to sampling in the dilute regime by artificially
introducing ‘sub-modes’ for each detector.

Bulmer et al. (2022) also present the most advanced imple-
mentation of (near-)exact sampling algorithms for Gaussian
boson sampling with photon-number-resolving detectors. To
this end, they implement the ancestral sampling algorithm of
Quesada et al. (2022) with a variety of improvements. Specif-
ically, they reduce the runtime of computing loop Hafnians
by making use of an inclusion/exclusion principle on pairs of
photons and using a so-called finite difference sieve analo-
gous to Glynn’s formula. Furthermore, they exploit threshold
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detectors explicitly in their sampling algorithm. For low pho-
ton density, it turns out that simulating photon-number resolv-
ing detectors and reducing collisions subsequently is advanta-
geous to computing the Torontonians which exactly describe
the output distribution with threshold detectors. Running on
a ∼ 100000 core supercomputer, they are able to simulate
m = 60 modes with up to 80 photons observed by photon-
number resolving detectors with a mean time per sample of
3 seconds, and m = 100 modes with up to 60 click events
with a mean time per sample of 8.4 seconds. Finally, they
generate a single 92-photon event in m = 100 modes and
photon-number resolving detectors in 82 minutes.

A complementary approach has been pursued by Villalonga
et al. (2021). The idea is to sample from a distribution that
reproduces the low-order mode marginals of the ideal tar-
get distribution. These low-order marginals can indeed be
classically efficiently calculated, since they are just deter-
mined by a submatrix of the covariance matrix. The practi-
cal challenge is to efficiently sample from a distribution with
the correct marginals. Villalonga et al. (2021) present two
heuristic approaches that are able to achieve this. The first
heuristic employs a maximum-entropy principle, which cor-
responds to a Boltzmann machine, i.e., a distribution of the
form p(z) = 1/Z exp(

∑
i λizi+

∑
i<j λi,jzizj + . . .), where

Z is the partition function that normalizes the distribution. To
find the correct parameters λi, λi,j , . . ., a mean-field approxi-
mation is used for the second order and costly log-likelihood
minimization for the higher orders. Another method makes
use of a greedy algorithm to generate samples with the correct
low order marginals with a cost exponential in the order of the
marginal. Villalonga et al. (2021) implement their sampler
using the ideal second- and third-order marginals and com-
pare to the experiment of Zhong et al. (2021) using m = 144
modes and squeezing values that give rise to an average pho-
ton number of up to 66.9. The total-variation distance of the
low-order marginal distributions of up to 14 modes compared
to the corresponding ideal distribution is lower than that of
the experimental distribution. In a similar vein, first steps
towards an approach analogous to that of Clifford and Clif-
ford are taken by Renema (2020a) who computes low-order
marginals in terms of photons rather than modes, potentially
offering a better approximation of the ideal distribution.

Another variant of a spoofing algorithm for Gaussian boson
sampling has recently been proposed by Martínez-Cifuentes
et al. (2022) and exploits the fact that the quantum device
is noisy. The idea is to replace the input squeezed states
with so-called squashed states, that is, coherent states with
vacuum fluctuations in one quadrature and larger fluctuations
in the other. Linearly transformed squashed states are clas-
sical Gaussian states in that a photon-number measurement
can be efficiently simulated classically. The definition of
squashed states is motivated by the fact that loss in the net-
work can be incorporated by replacing the initial squeezed
states with squeezed thermal states. Squashed states are in-
deed those Gaussian states which best approximate squeezed
thermal states and are at the same time classically simulable

in the photon-number basis. Martínez-Cifuentes et al. (2022)
find that while the experiment of Zhong et al. (2020) can be
spoofed by squashed-state Gaussian boson sampling in the
sense that the correlations in the distribution match the ideal
correlations better than the experiment, the more recent exper-
iment of Zhong et al. (2021) cannot.

Interestingly, such approaches cannot be applied to uni-
versal circuit sampling because the approximation that repro-
duces marginals and correlations up to a constant order would
be exponentially close to the uniform distribution due to the
highly entangled nature of the output distribution.

Let us also note that the complexity of Fock boson sam-
pling has been considered under locality constraints (Desh-
pande et al., 2018; Maskara et al., 2019). In certain setting,
such structure renders the classical simulation of boson sam-
pling efficient. Oh et al. (2022a) follow up on these results
and derive general algorithms for Fock boson sampling and
Gaussian boson sampling that exploit the graph structure of
a linear-optical circuit. For a sufficiently small tree-width of
the interaction graph, i.e., in particular, for low-depth, geo-
metrically local linear-optical circuits this exact sampling is
efficient.

3. Analysis of noise

In boson sampling experiments with photons, the dominant
sources of noise are losses of photons due to finite transmit-
tivity of wave-guides and other optical elements, finite distin-
guishability of the photons due to imperfect time or frequency
synchronization between the single-photon sources, so-called
mode mismatch. The asymptotic effects of these noise types
has been studied extensively—for photon loss and detector
noise (dark counts) (García-Patrón et al., 2019; Moylett et al.,
2019; Oh et al., 2021; Oszmaniec and Brod, 2018; Qi et al.,
2020a; Rahimi-Keshari et al., 2016; Renema et al., 2019) and
partial distinguishability of the photons (Moylett et al., 2019;
Rahimi-Keshari et al., 2016; Renema, 2020b; Renema et al.,
2018; Shchesnovich, 2014; Tichy, 2015). The overall obser-
vation of these studies is that already comparably low noise
levels drive the output probability distribution closer to distri-
butions that are simulable with less effort.

An interesting ‘toy’ noise model for boson sampling has
been considered by Kalai and Kindler (2014). In this model,
additive Gaussian noise is applied to the random (Gaussian)
submatrix of which the permanent is taken to compute the out-
come probabilities of boson sampling, see Eq. (45). Kalai and
Kindler (2014) show that the (collision-free) output probabil-
ities of boson sampling with a constant amount of such Gaus-
sian noise can be approximated by sparse low-degree poly-
nomials. This gives an efficient approximation algorithm for
the noisy xoutput probabilities with constant precision. This
noise model turns out to be very appealing: on the one hand
it “preserves the mathematical connection to random Gaus-
sian matrices, used to establish hardness of boson sampling”
(Shchesnovich, 2019, p.3). As Shchesnovich (2019) shows,
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on the other hand, this noise model is closely related to ex-
perimentally more relevant noise sources: it is equivalent to
photon loss at the input of the interfermoeter and dark counts
in the measurement that exactly compensate for the lost pho-
tons, as well as partial distinguishability of bosons.

While Kalai and Kindler (2014) do not provide a total-
variation distance bound on the approximate noisy distribu-
tions (with approximations given by the low-degree polyno-
mial), Shchesnovich (2019) provides such a bound and shows
that it can be made inverse polynomially small at a polyno-
mial cost in the time it takes to compute the corresponding
probabilities. Analogously to Renema (2020b) and Renema
et al. (2018), they then argue that a Metropolis Markov-chain
Monte Carlo algorithm can be used to efficiently sample from
this distribution.39 The result of Shchesnovich (2019) can thus
be viewed as unifying several more specific previous results
(Aaronson and Brod, 2016; Arkhipov, 2015; García-Patrón
et al., 2019; Leverrier and García-Patrón, 2015; Oszmaniec
and Brod, 2018; Renema et al., 2018, 2019; Shchesnovich,
2014) on the easiness and hardness of noisy boson sampling
in certain noise regimes, see (Shchesnovich, 2019, Table I)
for an overview, and gives rise to the following heuristic pic-
ture: Boson sampling with noise strength on the order of Ω(1)
can be simulated classically to total-variation distance error ε
with polynomial effort in n and 1/ε. Conversely, for a noise
strength scaling asO(1/n) the simulation complexity remains
the same as that of ideal boson sampling. In other words: con-
stant local noise renders boson sampling classically simulat-
able, while local noise scaling inversely with the number of
photons presumably remains classically intractable, with the
intermediate regime remaining open.

With the Fourier picture of Aharonov et al. (2022); Brem-
ner et al. (2017); and Gao and Duan (2018) in mind, Oh
et al. (2023) build upon those prior works and provide a
fully provable algorithm for sampling from the output dis-
tribution of noisy Fock boson sampling. Their sampling al-
gorithm is based on the low-degree polynomial decompo-
sition of Kalai and Kindler (2014), which they show also
works for the marginals of Fock boson sampling written in
first quantization. This allows them to compute all marginals
of the low-degree approximation to the noisy probabilities
and hence provides an approximate sampling algorithm for
the noisy distribution. At a constant noise rate, the total
runtime of the algorithm is quasi-polynomial and given by
nO(logn,log(1/ε),log(1/δ)) per sample to within a total-variation
distance ε > 0 for a proportion 1−δ of Haar-random unitaries,
assuming the hiding condition m ∈ ω(n5)40.

39 Notice, though, that this falls short of an efficiency proof since none of
those works actually bounds the mixing time of the corresponding Markov
chain.

40 To achieve a provable polynomial-time algorithm as for universal circuits,
the total noise rate has to scale like 1 − xγ with γ = Ω(logn) and a
constant x ∈ [0, 1). The authors argue that this is also the fair comparison
since a constant noise rate per gate results in an overall noise that scales
with the number of gates.

A compelling physical picture for why noise renders clas-
sical simulations tractable has been developed by Renema
(2020b) and Renema et al. (2019), who conceive of the boson
sampling distribution as arising from interference processes
with increasing order. As it turns out, the effect of noise
in a precise way results in higher order interference terms
to contribute exponentially less. This gives rise to a distri-
bution that just arises from low-order interference. The re-
sulting distribution can therefore be classically simulated ef-
ficiently. A similar intuition, albeit on the level of individual
modes, is followed by the simulation algorithm of Villalonga
et al. (2021). Shchesnovich (2022, 2021) shows, however, that
the output data from classical simulation methods based on
lower-order multi-boson interferences can be efficiently dis-
tinguished from a noisy boson sampling distribution since the
higher-order correlations remain sufficiently significant. This
matches the observation of Zhong et al. (2021), who find that
higher-order correlations remain present in experimental data.

To conclude, the fact that noise renders the classical sim-
ulation of imperfect devices less computationally demanding
adds a challenge to the experimental realization of quantum
random sampling schemes that show an unambiguous quan-
tum advantage.

VIII. PERSPECTIVES

The field of quantum random sampling has now reached a
state at which the theoretical foundations are thoroughly ex-
plored, and important but extremely difficult open questions
have been identified. It has reached a state at which we have
seen first demonstrations on the verge of classical intractabil-
ity and first pushbacks from classical algorithms. In this re-
view, we have comprehensively discussed these theoretical
and practical aspects of quantum random sampling.

But what is the road ahead? Some features of this road
are quite clear; important technical questions such as approx-
imate average-case hardness remain to be tackled, quantum
devices and classical algorithms alike are going to be further
improved. At the same time, the leap from demonstrations of
quantum computational advantage via quantum random sam-
pling or other means to achieving a practically useful task with
a quantum advantage seems enormous.

This section is more than a mere outlook. While we sum-
marize the key open question, we also provide summaries of
ideas to highlight exciting future directions of the field. We
start by summarizing the key open questions in the field of
quantum random sampling, most of which already appeared
in earlier sections. We then move on to take a broader per-
spective on the field of quantum advantages in general and
quantum random sampling schemes in particular, to see what
questions have already been comprehensively settled, what is
ahead, and what are reasonable next steps. In particular, we
begin an outlook by drawing connections between quantum
random sampling and other fields, for example, quantum sim-
ulation. Finally, we sketch some ideas that have been devel-
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oped with the goal of practical applications of quantum ran-
dom sampling in mind. These applications either make direct
use of the randomness of quantum random sampling, or of
the programmability of a quantum random sampler in order to
solve a specific task.

A. Open questions on quantum random sampling

Throughout the course of this review, we have highlighted
important open technical questions regarding our understand-
ing of quantum random sampling. Let us summarize some of
the most important ones here.

1. Understanding random quantum circuits better

From the perspective of the computational complexity of
quantum random sampling, the key open question is to prove
approximate average-case hardness, as discussed in detail in
Sections IV.D.5 and IV.D.6. As of now, approximate average-
case hardness is a conjecture that is based solely on the lack of
efficient classical simulation algorithms and the observation
that random instances do not offer any additional structure that
a classical simulation algorithm might exploit to perform bet-
ter than in the worst case. While we have progressively moved
forward on this question by making polynomial interpolation
techniques more robust (Bouland et al., 2022, 2018; Kondo
et al., 2022; Krovi, 2022; Movassagh, 2020), there remain
fundamental barriers to improving this result to the required
robustness O(2−n) as discussed in detail in Section IV.D.6. It
seems that, from this point onward, polynomial interpolation
alone will not be able to help us solve the question of approxi-
mate average-case hardness and new proof ideas are required.
The development of new methods, while most pressing, is also
elusive and constitutes a major challenge that reaches beyond
the field of quantum random sampling schemes all the way
into the midst of computational complexity theory. For ex-
ample, Aaronson and Arkhipov (2013, p. 91) suggest to make
use of a restricted class of polynomials that are not closed un-
der addition which are at the same time able to capture the
quantity of interest.

Let us zoom out from the details of the proof of robust sam-
pling hardness and consider the task of sampling from the out-
put distribution of a random quantum circuit up to a constant
total-variation distance error. To achieve such an overall con-
stant additive error on the global distribution, the gate errors
need to scale inversely as 1/(m+2n) with the total numberm
of gate applications, and n single-qubit state preparations and
measurements, respectively. But in experiments the gate ap-
plication, state-preparation and measurement errors typically
do not scale in the size of the system, or circuit, but are rather
fixed by physical details. This raises the question of what
the optimal trade-off for achieving a quantum advantage is
in terms of circuit-depth and system size. While on the one
hand, random short depth circuits might be easy to sample

from with a global error budget (Napp et al., 2022), too large
a circuit will incur a devastating amount of errors that renders
classical simulation trivial. This is why the detailed study of
noise in random circuits and its effect on the output distribu-
tion is paramount to better understanding the computationally
most difficult regimes. First steps towards this have recently
been taken by the complementing approaches of Dalzell et al.
(2021) and Deshpande et al. (2021). These two works study
the convergence to the white-noise or uniform distribution in
the regime of low gate noise ε ∈ Õ(1/n), and constant gate
noise, respectively. A better understanding of how different
types of experimentally relevant noise affect the output distri-
bution of typical random quantum circuits is thus paramount
to optimizing the parameters in a demonstration of quantum
advantage.

2. Verification beyond XEB

The issue of noise in random quantum circuits directly leads
to the next open question. In Section V, we discussed in detail
in what sense samples from random quantum circuits can be
verified. The standard measure of quantum advantage as of
today is the linear XEB fidelity (162). On the one hand, this
is because it offers the best available compromise between be-
ing practically viable and providing a meaningful benchmark
for achieving a nontrivial task on the quantum device. On the
other hand, it is because it provides a unified view for the use
of quantum random sampling as a benchmark of a quantum
device and as a means to demonstrate a computational advan-
tage. However, both interpretations of XEB fidelity are not
fully understood.

Coming from the perspective of quantum advantage
demonstrations, there is the question under which circum-
stances cross-entropy type measures—and in particular the
XEB fidelity—can yield certificates for the global distribu-
tion. The logarithmic XEB fidelity, for instance, provides rig-
orous bounds on the total-variation distance only if the noise
in the device is such that it increases the entropy of the ideal
distribution (Bouland et al., 2019). But estimating the entropy
of the noisy distribution is an infeasible task in itself.

Coming from a practical perspective of device development
and characterization, the question remains to identify in which
settings random quantum circuits can be used to benchmark
noise in the quantum circuit. As discussed in Section V.B.3,
Liu et al. (2021c) have made first steps towards understanding
how a noise parameter can be extracted from the XEB fidelity
for the case of global Pauli noise via a perturbative analysis in
the noise parameter. Going beyond perturbative methods, fur-
ther steps in this direction might make use of the framework of
Fourier analysis for randomized benchmarking (Helsen et al.,
2022). Ultimately, one would hope to analyse gate-dependent
noise channels in a local quantum circuit.

Finally, let us mention that the most important problem
with the use of XEB to verify for quantum random sampling
is the fact that evaluating XEB-like measures while sample-
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efficient, incur the exponential computational cost of estimat-
ing some of the target probabilities. Going beyond XEB, an
interesting open problem is whether the no-go result prohibit-
ing sample-efficient verification of flat distributions in Sec-
tion V.A can be circumvented in random sampling schemes
with larger second moments. Is there any “room in the mid-
dle” between exponentially flat distributions that are hard
to verify but anticoncentrate, and polynomially concentrated
distributions which do not anticoncentrate but are sample-
efficiently verifiable. If there is, then distributions could exist
which we can (sample-)efficiently verify from classical sam-
ples and which we can sample from efficiently on a quantum
computer, but cannot efficiently sample from on a classical
computer (see also Hangleiter et al., 2019). Works such as
the one by Morimae (2017) proving anticoncentration of the
DQC1 model without resorting to a second-moment bound
might yield some leeway in this direction.

But one may also ask whether there are fully efficient
ways of verifying that a classically intractable task has been
achieved via quantum random sampling without resorting to
directly verifying total-variation distance? We have men-
tioned ideas for the verification of quantum samplers that
make use of cryptographic secret hiding (Shepherd and Brem-
ner, 2009) in a delegated scheme. But such ideas remain
prone to classical attacks (Kahanamoku-Meyer, 2019), or re-
main orthogonal to the spirit of quantum random sampling as
a specifically simple, unstructured task that is executed on a
given quantum device. Having said that for very simple tasks,
proofs of quantumness that might not be too far realm of prac-
tical feasibility can be devised using such ideas (Hirahara and
Le Gall, 2021; Kahanamoku-Meyer et al., 2022; Liu and Ghe-
orghiu, 2022; Zhu et al., 2021). Interesting progress in the
direction of merging these worlds with public verifiability of
NP problems such as factoring has been made recently by Ya-
makawa and Zhandry (2022). It remains an exciting question
to further explore the possibility of verifying quantum random
sampling efficiently.

B. Developing novel schemes

Going beyond better understanding the current schemes,
there is the overarching question of how quantum random
sampling schemes can be extended beyond their current realm
of applicability. This regards both the extension from digi-
tal quantum devices to analog ones and to a larger error re-
silience.

1. Improving error resilience

Given all the strengths of the various approaches to quan-
tum random sampling, it is also limited in its capacity
to demonstrate quantum speedups. This is because these
schemes do not allow for any type of error correction, mak-
ing the region that is nontrivially accessible with finite errors

limited. Going from relative to additive errors has been a
tremendous technical achievement, matching complexity the-
oretic arguments more closely with experimental desiderata,
but it still falls short of capturing fully realistic errors. The
central challenge one has to overcome when realizing quan-
tum supremacy is thus to bring this barrier down as far as pos-
sible such that the computing capabilities of classical comput-
ers can be surpassed before the barrier is hit.

Ultimately, one would hope to make the hardness of quan-
tum sampling robust to constant local errors. This can indeed
be achieved for universal computations using quantum error
correction codes. However, quantum error correction is in-
trinsically based on the continuous measurement of error syn-
dromes, giving information about which errors have occurred
during one cycle of the computation. Those errors then need
to be actively corrected, requiring an elaborate machinery that
is again well outside the realm of what we envision the con-
text of quantum random sampling to be. What is more, from
a conceptual point of view, quantum random sampling is in-
trinsically based on a global property of the outcome state,
namely, the full probability distribution. To make this global
property robust to constant local errors will therefore likely
require invoking a global error-detection machinery such as
the one of Bremner et al. (2017).

One might think that coherent errors do not constitute
a specifically grave problem for quantum random sampling
schemes since, say, Pauli errors can often simply be absorbed
in the random ensemble, giving rise to a different computa-
tion distributed according to the same ensemble. Let us stress,
however, that to maintain hardness of sampling, we actually
need to know how the circuit has changed due to the errors. In
other words, the errors need to be “heralded”. But continuous
measurements of syndromes complicate the computation sig-
nificantly. Conversely, if the ongoing computation is not con-
tinuously measured in every gate cycle, it is not clear under
which circumstances such a “heralded noise model” is actu-
ally realistic. Finding ways around this obstacle, possibly us-
ing error detection and post-hoc corrections, is the major chal-
lenge towards making quantum random sampling schemes ro-
bust to physical noise and thus scalable.

Further intuition on the resilience of quantum circuits to lo-
cal errors is also provided by the analysis of constant-depth
quantum circuits: Bravyi et al. (2018) show that constant-
depth quantum circuits are more powerful than their classical
counterparts. Any classical probabilistic circuit composed of
bounded fan-in gates that solves what Bravyi et al. (2018) call
the two-dimensional hidden linear function problem with high
probability must have depth at least logarithmic in the system
size. In contrast, the same problem can be solved with cer-
tainty by a constant-depth quantum circuit that is composed
of one- and two-qubit quantum gates acting that act on a two-
dimensional lattice. It turns out that this scheme is robust to
noise in that the above separation in computational power per-
sists even when the shallow quantum circuits are restricted to
three dimensions and are corrupted by noise (Bravyi et al.,
2020). Technically, the argument supporting this conclusion
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is rooted in ideas on the generation of a long-ranged entangle-
ment in noisy three-dimensional cluster states (Raussendorf
et al., 2005).

In a similar spirit, first ideas towards using nonadaptive
error-correction by embedding a computation in an error cor-
rection code have been made (Fujii, 2016; Kapourniotis and
Datta, 2019) and, indeed, if experimental errors remain within
the specific error model considered, sampling hardness re-
mains. However, robustness may be lost since the distribution
for which an approximate average-case hardness conjecture
for the outcome probabilities holds has significantly changed
compared to the non-error-corrected distribution.

2. Relation to analogue quantum simulation

Aside from the largely technical open questions discussed
so far, another avenue for making progress en route to larger-
scale implementations of quantum random sampling, is to
connect it to the setting of analog quantum simulators. Such
devices offer a limited amount of control, but often a large
number of coherently and highly accurately controlled quan-
tum degrees of freedom, which in several instances cannot be
simulated by the best classical algorithms (Braun et al., 2015;
Choi et al., 2016; Debnath et al., 2016; Ebadi et al., 2021;
Trotzky et al., 2012).

Along these lines a reasonable goal would be to prove a rig-
orous complexity-theoretic separation for a task that is natural
in a physics mindset in general, and quantum simulations in
particular. Quantities that first come to mind here are mea-
surements of k-point correlation functions of the type 〈b†i bj〉.
First steps towards this have been taken by Novo et al. (2021)
who have shown that one can run a Stockmeyer argument for
the task of reproducing the statistics of an energy measure-
ment of a local Hamiltonian. Deviating from the mindset of
quantum random sampling Baez et al. (2020) have shown a
quantum advantage for the estimation of dynamical structure
factors, bringing the insight that performing measurements on
quantum states arising from time evolution under local Hamil-
tonians is BQP-complete (Nagaj, 2012; Nagaj and Wocjan,
2008; Vollbrecht and Cirac, 2008) closer to experimental re-
ality.

These works are simply based on the assumption that quan-
tum computers are more powerful than classical comput-
ers and therefore do not offer independent evidence for this
separation. In technical terms, they show a much weaker
complexity-theoretic consequence than a collapse of the poly-
nomial hierarchy, namely, that BPP = BQP. Coming from a
complexity-theoretical perspective, they are thus begging the
question as, from this perspective, one would like to precisely
collect evidence that BPP 6= BQP. Accepting this, it remains
not obvious whether one expects average-case hardness of the
respective tasks for problems in BQP. Coming from a more
practically minded perspective, accepting BQP ( BPP is a
fair assumption. Such ideas may thus help to demonstrate
quantum advantages for tasks that are more useful than sam-

pling alone. From a technological perspective, it is interesting
to see whether one can reach the regime in which quantum
advantages in this sense are conceivable.

Another interesting perspective that has been considered in
this context is the relation of sampling hardness to physical
phenomena. For instance, phase transitions in sampling com-
plexity of two-dimensional bosonic lattice systems have been
considered by Deshpande et al. (2018) and Maskara et al.
(2019). Here, the idea is to vary a physical parameter of the
system, in this case, the spacing between bosons in the initial
state and consider the complexity as a function of time when
evolving the system. In a similar vein, Ehrenberg et al. (2022)
study transitions in the complexity of sampling from the out-
put distribution of many-body-localizing time evolution. In
such approaches, the hope is to narrow down and better un-
derstand the physical mechanisms underlying sampling com-
plexity.

C. Towards applications of quantum random sampling

What is next? On the road towards practically useful quan-
tum computers, quantum random sampling schemes are an
important stepping stone. But quantum random sampling
has been conceived as a proof-of-principle task to show that
quantum devices have the capability to computationally out-
perform classical computers and nothing more. It is there-
fore not set up to realize practically interesting applications
in their own right. It goes without saying, however, that a
natural next question is whether one can exploit the prov-
able speedup over classical sampling algorithms on the spe-
cific random sampling task for relevant practically motivated
applications. Here, we discuss some of those first steps at
identifying applications of quantum random sampling.

Roughly speaking, these applications of quantum random
sampling fall into two categories. On the one hand, there are
applications that exploit the intrinsic quantum randomness of
typical quantum circuits. Such applications make use of the
fact that the output distributions of random quantum circuits
are highly unstructured or, in technical terms, have a high min-
entropy, as explained in detail in Section V.A. On the other
hand, there are applications that take programmable quantum
random sampling devices as their starting point and ask the
question: What applications can those devices be used for? In
such applications, structure of the output distributions is ex-
plicitly exploited to solve a computational task, or serve as a
subroutine in an algorithm solving such a task. In the follow-
ing we explain some of the ideas in this mindset with the goal
of giving the reader a concrete idea about potentially interest-
ing directions of study.

1. Exploiting randomness

One of the most promising near-term applications of quan-
tum devices is the generation of certified random numbers.
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In the classical world, bits that are perfectly random in
that they are unpredictable not only to the user of the de-
vice, but to any observer, cannot be realized in principle
because the laws of classical physics are deterministic. In
practice one has to therefore rely on—albeit possibly ex-
tremely weak and plausible—hypotheses to design pseudo-
random-number generators. Going beyond this, so-called
true random-number generators exploit physical processes
from the realm of classical physics that are hard to predict.
Quantum random-number generators make use of the intrinsic
randomness offered by quantum mechanics. The possibility
of harnessing this randomness makes quantum technologies
attractive as a means to generate certified random numbers
(Acín and Masanes, 2016) that cannot be predicted by any ad-
versary.

Given that the output distributions of random quantum cir-
cuits have a high min-entropy, statistically verified quantum
random sampling would naturally give rise to a large number
of intrinsically random bits. In the absence of such statisti-
cal tests, Aaronson (2018, 2019) proposed protocols for cer-
tified randomness that use universal circuit sampling and the
XEB benchmark. The proof of security of the proposed proto-
cols is based on a strong and highly nonstandard complexity-
theoretic conjecture on the hardness of what Aaronson (2019)
calls the long list quantum sample verification (LLQSV) prob-
lem. This problem asks to distinguish exponentially many
output bit strings from a quantum random sampler, given by
an oracle, from uniformly random numbers. More specifi-
cally, the conjecture is that LLQSV is not in a complexity
class called QCAM which contains AM and BQP and more.

Bassirian et al. (2021) provides complexity-theoretic evi-
dence in support of the classical intractability of this problem.
This support lives to the same standard as the evidence for
computational hardness of achieving a high XEB score via
XHOG and HOG. They prove two statements regarding the
hardness of LLQSV, or in other words, the hardness of distin-
guishing the high min-entropy samples from the quantum de-
vice from uniformly random samples. They do so in the black-
box model in which query access to a random Boolean func-
tion is granted, instead of a random circuit. First, Bassirian
et al. (2021) prove an average-case linear min-entropy bound
for quantum algorithms that pass an XEB-like test. Second,
they show that no BQP or PH algorithm can solve the LLQSV
problem, thereby individually showing separations from ma-
jor classes contained in QCAM. To do so, they reduce it to
a variant of the so-called forrelation problem introduced by
Aaronson (2010). These results imply that if one believes
that quantum circuits viewed as random functions are suffi-
ciently unstructured, then quantum random sampling can gen-
erate random samples that are certified by an XEB-like test.

In a different vein, the fact that quantum states prepared by
random quantum circuits are highly entangled might be use-
ful in quantum metrology. In this context, it is less the flat-
ness of the classical output distribution that is exploited, but
rather the full quantum state. Along these lines, Oszmaniec
et al. (2016) study how useful random bosonic states are for

quantum metrology. They indeed find that a close to optimal
(Heisenberg) scaling is typically achieved. Valido and García-
Ripoll (2021) explores the phase sensitivity of generic linear
interferometric schemes using Gaussian resources and mea-
surements, in what could be called boson-sampling-inspired
strategies. Multimode metrology via a variant of Gaussian
boson sampling was studied byGuanzon et al. (2021). Finally,
it has been suggested that the high min-entropy of the output
distributions can be exploited to devise cryptographic schemes
(Huang et al., 2021b,c; Nikolopoulos, 2019).

2. Exploiting structure

Rather than exploiting the randomness of quantum random
samplers, one may alternatively also program such devices
in a bespoke way in order to solve computational problems.
Such applications make use of structure in the output proba-
bility distributions, an idea which has to date been most de-
veloped for variants of Gaussian boson sampling. Let us give
two examples that argue along these lines. While the first ex-
ample makes specific use of samples, the second example uses
samples in order to estimate probabilities.

a. Using samples to solve graph problems. A natural class of
problems that can be studied in the context of Gaussian boson
sampling are graph problems. This is because the Hafnian
(49) of an adjacency matrix of a graph equals the number of
perfect matchings of that graph, that is, the number of disjoint
sets of edges in which every vertex of the graph is connected
to exactly one edge.

As an example, consider the so-called densest k-subgraph
problem (Arrazola and Bromley, 2018). This problem asks,
given a graph G with n vertices to find the subgraph with k <
n vertices that has the largest number of edges. Recall that
the probability PGbs,U (S) (47) of obtaining a collision-free
output pattern S in Gaussian boson sampling is determined by
the Hafnian of a submatrixMS of a certain matrixM (48) that
depends on the covariance matrix of the input state. Given the
adjacency matrix A ∈ {0, 1}m×m of G we can now choose
the squeezing parameters and linear-optical unitary in order to
“program” that matrix to be

M = c(A⊕A), (203)

where c < λ−1 and λ is the largest eigenvalue of A. It turns
out that the corresponding Gaussian state is pure and hence
a valid state that can be prepared in Gaussian boson sam-
pling. The output probabilities postselected on the collision-
free subspace will then be proportional to |Haf(AS)|2, where
AS is a submatrix of A determined by the outcome S, or
equivalently, the adjacency matrix of a subgraph of G with
vertices selected by S. Since the Hafnian of an adjacency
matrix equals the number of perfect matchings of the corre-
sponding graph, the larger the number of perfect matchings in
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a subgraph, the more likely its corresponding sample is ob-
tained as an output in Gaussian boson sampling.

The next step is to establish a connection between the num-
ber of perfect matchings in a graph and its density. On an
intuitive level, the number of perfect matchings corresponds
to the density of a graph since a graph with many perfect
matchings will have many edges. Indeed, the number of per-
fect matchings provides a lower bound to the number of edges
in the graph (Aaghabali et al., 2015). Consequently, by pro-
gramming the quantum device in an appropriate way, one can
sample from a distribution that has a bias in favor of dense
subgraphs. For this reason, stochastic algorithms (Lee et al.,
2010) for the densest k-subgraph problem that make use of
uniform randomness can be enhanced by having access to
samples drawn from the output distribution of Gaussian boson
sampling. In a proof-of-principle experiment using time-bin
encoded GBS, this has been demonstrated recently (Sempere-
Llagostera et al., 2022).

Arrazola et al. (2018) follow a similar line of thought by in-
troducing an NP-hard problem referred to as Max-Haf. They
show that access to samples from the Gaussian boson sam-
pling distribution defined by the probabilities PGbs,U (S) of
obtaining the output pattern S can enhance classical stochas-
tic algorithms for this problem. This work not only presents
the idea and compares the performance of this algorithm with
classical algorithms based on uniform randomness, but also
numerical data from use cases. Brádler et al. (2018) discuss
the problem of actually finding perfect matchings of arbitrary
graphs enhanced by having access to samples from Gaussian
boson sampling.

Coming from a perspective of quantum machine learning,
Jahangiri et al. (2020) propose an application of quantum ran-
dom sampling to statistical modelling. Havlícek et al. (2019)
show how minimally enhanced IQP circuits might be used to
enhance the feature space of machine-learning algorithms for
supervised-learning. More concretely, samples from Gaus-
sian boson samplers can be made use of to construct feature
vectors of graphs that give rise a natural measure of similar-
ity between graphs (Schuld et al., 2020). The connection to
quantum-enhanced machine learning is made even more ex-
plicit by Banchi et al. (2020b), who show how Gaussian bo-
son sampling devices can be trained in the following sense:
Analytical gradient formulae for the GBS distribution can be
exploited when training devices using gradient-descent based
methods. Finally, Chabaud et al. (2021c) study supervised
learning using minimal extensions of Fock boson sampling.

b. Estimating physical quantities using Gaussian boson samplers.
Using the samples from a quantum device in order to estimate
outcome probabilities is the basis of a line of thought initiated
by Huh et al. (2015). As it turns out, when preparing dis-
placed squeezed states at the input of a linear optical device,
the output probabilities of a Gaussian boson sampler can be
used to estimate so-called Franck-Condon factors, which rep-
resent the transition frequencies of molecular vibronic spec-

tra. This is a problem for which no efficient classical algo-
rithm is currently known. In this way, Franck-Condon fac-
tors can be estimated from Gaussian boson sampling data.
Following up on this, Jnane et al. (2021) suggest an analog
quantum simulation of molecular vibronic spectra based on
boson-sampling like schemes, incorporating the non-Condon
scattering operation with a quadratically small truncation er-
ror. Pursuing a similar aim, molecular docking is studied by
Banchi et al. (2020a), who suggest that Gaussian boson sam-
plers provide insights into molecular docking configurations,
which are spatial orientations that molecules assume when
they bind to larger proteins. Connecting these ideas to the
(loop) Hafnian picture of the output probabilities, Quesada
(2019) suggests to estimate Franck-Condon factors by count-
ing perfect matchings of graphs with loops. To this end, he
shows that the Franck-Condon factor associated with a tran-
sition between initial and final vibrational states in two dif-
ferent potential energy surfaces can be reduced to the number
of perfect matchings of a suitable weighted graph with loops.
Clements et al. (2018) explores the impact of experimental
imperfections on the performance of the protocol of Huh et al.
(2015) for performing quantum simulations of vibronic spec-
troscopy, providing stringent benchmarks that have to be met
by experiments. This work also discusses practically mean-
ingful examples such as Franck-Condon factors for vibronic
transitions in molecules such as tropolone. Departing from
the above prescriptions in a different way, Wang et al. (2020)
implement a small-scale instance of the protocol of Huh et al.
(2015) in a two-mode superconducting device.

Known classical simulation methods for boson sampling
with sparse outputs as they have been presented by Oh et al.
(2022a) and Roga and Takeoka (2020) have challenged these
results, in that they argue that the instances considered when
sampling from Franck-Condon factors are often sparse in the
appropriate sense. Technically, this work demonstrates that
the computationally costly support detection step, i.e., the lo-
calization of the largest element from a long list, can be re-
duced to solving an Ising model that can be solved in polyno-
mial time under suitable conditions. Oh et al. (2022b) have
followed up on this line of thought by presenting a quantum-
inspired classical algorithm for molecular vibronic spectra.
Technically, they find an exact solution of the Fourier compo-
nents of molecular vibronic spectra at zero temperature using
a positive P -representation method. The resulting algorithm
resembles that of Baiardi et al. (2013).

Both of the just discussed lines of work are contributions
that show the potential of achieving computational advantages
in practically motivated problems by using Gaussian boson
sampling devices. At the same time, as the classical algo-
rithms by Oh et al. (2022a,b); and Roga and Takeoka (2020)
show, it may be possible to find classical algorithms that
are efficient for those instances of Gaussian boson sampling
that are used to solve a specific computational problem. For
these instances there is certainly no complexity-theoretic rea-
son analogous to the polynomial hierarchy collapse to believe
in a quantum speedup. Rather, now we are moving into the



75

realm of comparing quantum algorithms with the best classi-
cal algorithm for specific problems—as one would also expect
when considering practically relevant problems.

D. Concluding thoughts

In this review, we have aspired to provide a comprehen-
sive overview of the efforts aimed at understanding in theory
and demonstrating in practice the computational advantage of
quantum random sampling over classical computation. Quan-
tum random sampling schemes are particularly attractive as
they are extremely simple conceptually and come along with
comparably small experimental desiderata. On the highest
level, there seem to be two main lessons that can be drawn
from the exciting research efforts that are the focus of this re-
view.

One of those lessons is of a foundational nature. Ulti-
mately, the questions asked in endeavours to show quantum
advantages with quantum random sampling schemes follow
up on the thoughts of Turing about the intertwinement of the
complexity of processes in nature and what can be computed
using the mechanisms allowed by natural laws. Boldly stated,
the question on the desk is: What is, after all, the computa-
tional nature of Nature? Put in more elaborate words: Can all
naturally feasible computations be efficiently described within
a classical Turing machine model? The extended Church-
Turing thesis asserts that this is indeed the case, but it is chal-
lenged by the onset of physical quantum computers. We have
walked a long route along this path, starting from theoretical
arguments against the validity of the extended Church-Turing
thesis to the question of how to verify those claims experi-
mentally. Further efforts on realizing sampling schemes will
shine light onto this matter.

The other lesson relates to technological issues. The
present efforts towards realizing quantum advantage schemes
can hardly be underestimated in their importance of provid-
ing guidance for the next steps to be taken in the develop-
ment of quantum technologies. The experimental demonstra-
tion of quantum random sampling schemes provide impetus
for achieving unprecedented control in experiments, of pursu-
ing large scale quantum computations. Next natural steps are
to pursue practically motivated quantum algorithms on such
quantum devices, a process that is well under way. Some
schemes can be seen as variations of quantum random sam-
pling schemes, addressing pragmatically motivated questions.
This applies, e.g., to photonic experiments that explore vi-
bronic spectra (Clements et al., 2018; Wang et al., 2020), im-
plement variational schemes (Peruzzo et al., 2014), or quan-
tum simulations of processes in statistical physics (Somhorst
et al., 2022). Then, the layout of the superconducting quan-
tum advantage experiment of Arute et al. (2019) has been
made to be forward compatible with realizing the surface code
(Satzinger et al., 2021). Indeed, arguably the most substantial
next step will be to achieve fault tolerance in quantum com-
puting, a step that may still be relatively far away. The efforts

on quantum random sampling schemes can be seen as a first
milestone along this way.

In a similar way, the questions of “what next” apply to the-
oretical research. Steps have been taken towards developing
protocols that show a more practically minded quantum ad-
vantage. Quantum approximate optimization algorithms in
their various variants suggest to address questions of combina-
toric optimization (Farhi et al., 2014; Zhou et al., 2020a), vari-
ational quantum eigensolvers may solve variational principles
beyond the capabilities of classical efficient variational meth-
ods (McClean et al., 2016). These applications are thought
to be pursued without quantum error correction—but the key
question remains open of what noise levels quantum devices
may ultimately tolerate while maintaining a quantum advan-
tage (Stilck França and García-Patrón, 2021). The efforts to-
wards achieving quantum advantages can be seen as a first
stepping stone en route to building useful quantum computers
and an invitation to master the next hurdle along that route.
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