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Abstract

Electron-positron pair production is investigated in spatial inhomogeneous electric fields with high or/and

low central frequency as well as sinusoidal phase modulation. It is found that the momentum spectrum (the

reduced particle number) is more sensitive to the modulated amplitude (modulated frequency) of the phase.

The stronger the modulation parameters are applied, the more remarkable the interference effect in mo-

mentum spectrum occur. In particular, for high central frequency field, an extremely good symmetry in

momentum spectrum is found while it is destroyed severely when the modulated amplitude becomes large.

The reduced particle number can be also enhanced greatly at about a few times or/and one order by the

modulation parameters. Moreover, the effect of spatial scales on the reduced particle number are examined

carefully and found that it increases rapidly at small spatial scales, while it tends to be a constant at large

spatial scales. Two interesting features are revealed for the reduced particle number, i.e., the optimal mod-

ulation parameters are found and the same particle number can be got through different set of modulation

parameters. The latter findings is important because one can choose different ways of phase modulation to

realize the required pair number even if for the optimal pair production.
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I. INTRODUCTION

Electron-positron (e−e+) pair production from vacuum in strong background fields, the Sauter-

Schwinger effect, is one of the well-known nonperturbative predictions of quantum electrody-

namics (QED) [1–3]. It has not been verified experimentally due to the current laser intensity

∼ 1022 W/cm2 is far less than the critical laser intensity ∼ 1029 W/cm2 (the corresponding critical

electric field strength is Ecr = m2
ec3/e~ ≈ 1.3 × 1016 V/cm, where me denotes the electron mass

and e is magnitude of electron charge) [4, 5]. Multiphoton pair production is another important

mechanism for e−e+ pair creation, which has been detected in a laboratory [6]. Moreover, the pair

production can be observed even in the laser field with intensities one or two orders of magnitude

lower than the critical value due to the proposed dynamically assisted Schwinger mechanism that

combines two laser fields with a low frequency strong field and a high frequency weak field [7, 8].

Fortunately, with the advance of the high-intensity laser technology, the Extreme Light Infrastruc-

ture (ELI) [9] and the x-ray free electron laser (XFEL) may achieve subcritical laser intensity,

which greatly improves the hope to observe the pair production in the laboratory.

Theoretically, several field configurations have been applied to the study of vacuum pair pro-

duction, such as the alternating electric field with N-pulse [10], time delay electric field [11], the

combination of cosine with Gaussian or super-Gaussian pulse external field [12–14], and so on.

Recent studies suggest that the fields with frequency chirp are crucial to the e−e+ pair produc-

tion. It can not only enhance significantly the total particle number but also realize experimental

verification by applying the chirped pulse amplification (CPA) technique [16]. At present, the

asymmetrical [17–20] and symmetrical [21, 22] frequency chirp have been studied on pair pro-

duction in both of spatially homogeneous and inhomogeneous fields. Moreover, the sinusoidal

frequency modulation has been used to the investigation of pair production only in homogeneous

electric field, and indicated that the momentum distribution and the number density of created

particles are sensitive to modulation parameters [23].

On the other hand, the previous investigations show that the spatial inhomogeneity of external

fields plays an important role on e−e+ pair production, which has displayed some novel features

[24–28]. For example, the self-bunching effect of particles is identified in Schwinger pair pro-

duction under the electric field with finite spatial scales [26]. The ponderomotive force effect is

reported in multiphoton process for the small spatial scales of oscillating field [27]. The spin-field

interaction is found in Schwinger pair production for spatially inhomogeneous external fields [28].
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However, the sinusoidal frequency modulation has not been considered on e−e+ pair production in

spatially inhomogeneous fields.

In this work, we investigate the e−e+ pair production in spatially inhomogeneous electric fields

with sinusoidal phase modulation by using the real-time Dirac-Heisenberg-Wigner (DHW) for-

malism. The momentum spectrum and the reduced particle number are studied in both high- and

low-frequency fields and are found depending strongly on the amplitude and frequency of the

modulated phase. It is found that the interference effect and symmetry of momentum spectrum

change obviously when the different modulation parameters are applied. The reduced particle

number can be also enhanced significantly by the modulated amplitude, while it has different vari-

ation by the modulated frequency for different spatial scales. It is evident that in the case of high

frequency field, comparable to the small scale where the enhanced particle number is got by the

large modulated frequency, however, at the large scale, it is got by the small frequency. Moreover,

when modulation parameters are fixed, the effect of spatial scale on the reduced particle number

are studied. We obtain the optimal modulation parameters for the particle number in high fre-

quency field and find that the same particle number can be got through different set of modulation

parameters. Finally, the corresponding results that we obtained are discussed qualitatively by the

semiclassical Wentzel-Kramers-Brillouin (WKB) approach [29–31] and the view point from the

action of worldline instanton [32, 33]. Note that the natural units ~ = c = 1 are applied and all

quantities are presented in terms of the electron mass m. For example, the spatial and temporal

scales of the electric field are in units of 1/m, and the field frequency is in units of m.

The paper is structured as follows. In Sec. II, we review the DHW formalism and the semi-

classical WKB approximation method briefly, and introduce the background field to be considered

in our work. In Sec. III, we show the numerical results for high frequency field with different

modulation parameters. In Sec. IV the numerical results of the low frequency field with different

modulation parameters are presented. Sec. V is discussion. In Sec. VI, we give a brief conclusion

and outlook.

II. THEORETICAL FORMALISM AND FIELD MODLE
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A. The DHW formalism

The DHW formalism is a relativistic phase-space method that has been widely used to inves-

tigate vacuum pair creation within arbitrary electromagnetic fields. Since the complete derivation

of DHW formalism has been obtained in Refs. [26, 34, 35], we only present key points of this

method.

We start with the gauge-covariant density operator which is composed of two commutative

Dirac field operators, i.e.,

Ĉαβ (r, s) = U (A, r, s)
[
ψ̄β (r − s/2) , ψα (r + s/2)

]
, (1)

where r = (r1 + r2)/2 denotes the center-of-mass coordinate and s = s1 − s2 represents the relative

coordinate. The Wilson line factor

U (A, r, s) = exp
(
i e s

∫ 1/2

−1/2
dξ A (r + ξs)

)
, (2)

can be used to guarantee the invariant of the density operator. The covariant Wigner operator is

obtained via the Fourier transform of Eq. (1)

Ŵαβ (r, p) =
1
2

∫
d4s eips Ĉαβ (r, s) . (3)

We can define the covariant Wigner function by taking the vacuum expectation value of Eq. (3) as

W (r, p) = 〈Φ|Ŵ (r, p) |Φ〉. (4)

Being a Dirac-matrix valued quantity, the Wigner function can be expanded in terms of 16 covari-

ant Wigner coefficients

W =
1
4

(
1S + iγ5P + γµVµ + γµγ5Aµ + σµνTµν

)
. (5)

Since we are dealing with the e−e+ pair production, and we want to describe it as an initial value

problem, the equal-time Wigner function can be obtained by taking the energy average of the

covariant Wigner function

w (x,p, t) =

∫
dp0

2π
W (r, p) . (6)

When the e−e+ pair production in time dependent field with spatial inhomogeneity of x-axis

(1 + 1 dimensional time-space) is investigated, the complete DHW equations of motion can be
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reduced to the following form

Dts − 2pxp = 0, (7)

Dtv0 + ∂xv1 = 0, (8)

Dtv1 + ∂xv0 = −2mp, (9)

Dtp + 2pxs = 2mv1, (10)

with the pseudodifferential operator

Dt = ∂t + e
∫ 1/2

−1/2
dξ Ex

(
x + iξ∂px , t

)
∂px . (11)

The corresponding vacuum initial conditions are

w0 vac = −
2m
Ω

, w2 vac = −
2px

Ω
, (12)

where Ω represents the one-particle energy, which can be expressed as Ω =
√

p2
x + m2. By sub-

tracting these vacuum terms, the modified Wigner component can be written as

wv
k (x, px, t) = wk (x, px, t) −wk vac (px) , (13)

here wk is the Wigner component in Eqs. (7)-(10), and we define w0 = s, w1 = v0, w2 = v1 and

w3 = p. The wk vac denotes the corresponding vacuum initial condition in Eq. (12). The particle

number density can be expressed as

n (x, px, t) =
msv (x, px, t) + pxv

v
1 (x, px, t)

Ω (px)
. (14)

We can obtain the particle number density of momentum space via integrating Eq. (14) with

respect to x,

n (px, t) =

∫
dx n (x, px, t) . (15)

Consequently, the total particle yield of the whole phase space can be written as

N (t) =

∫
dx dpxn (x, px, t) . (16)

Moreover, in order to extract the nontrivial effect of spatial scale λ, we calculate the reduced

quantities n̄ (px, t) ≡ n (px, t) /λ and N̄ (t → ∞) ≡ N (t → ∞) /λ.
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B. Semiclassical WKB approximation

To further discuss the momentum spectrum and the particle number of the created particles,

the semiclassical WKB approximation method is introduced. The pair production from vacuum is

similar to the over-the-barrier scattering problem in quantum mechanics, meanwhile, the physical

picture can be reflected in the typical turning point structure. The approximate expression of the

particle creation rate can be described as

N ≈
∑

ti

e−2Ki −
∑
ti,t j

2 cos(2θ(i, j))e−Ki−K j , (17)

with

Ki =

∣∣∣∣∣∣
∫ ti

t∗i

ωp(t)dt

∣∣∣∣∣∣ ,
and

θ(i, j) =

∫ Re(t j)

Re(ti)
ωp(t)dt,

where ti and t j are the solutions of equation ωp(t) =
√

m2 + p2
⊥ + (px − eA(t))2 = 0, which denote

the different turning points. θ(i, j) represents the phase accumulated between different pairs of

turning points, which is also called interference term. It is noticed that the turning points closest to

the real t axis dominate the number of created particles, while the distances of turning points along

the real-axis direction dominate the interference effect in the momentum spectrum. The detailed

explanation of the turning point structure to the momentum spectrum and the particle number will

be analyzed and discussed in Sec. V.

C. Model for the external field

We investigate pair production in 1 + 1 dimensional spatially inhomogeneous electric field with

the sinusoidal phase modulation, where the field model can be described as [23]

E (x, t) = E0 f (x) g (t)

= E0 exp
(
−

x2

2λ2

)
exp

(
−

t2

2τ2

)
cos(ωt + b sin(ωmt)),

(18)

where E0 denotes the field strength, λ is the spatial scale, τ is the pulse duration, ω represents the

central frequency, b and ωm are the amplitude and frequency of the phase modulation, respectively.

The nonzero modulated frequency ωm and modulated amplitude b lead to the time-dependent
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effective frequencyωeff(t) = ω+bωm cos(ωmt). In order to keep the modulation within a reasonable

range, we set |bωm cos(ωmt)| ≤ αω with 0 < α < 1. Because of |bωm cos(ωmt)|max = bωm,

the inequality bωm ≤ αω can be derived. We can further obtain the relationship b ≤ αω/ωm,

which also indicates that the upper and lower limits of the modulated amplitude can be obtained.

Without losing the generality, we select the regime of 0 ≤ α ≤ 0.9 and the modulated frequency

ωm ≈ (1/5 ∼ 1/10)ω, meanwhile, it is noted that when we choose the maximum modulated

amplitude, the minimum value of modulated frequency is considered, i.e., ωm = 1/10ω. For

high frequency field, the field parameters are set to E0 = 0.3Ecr, ω = 0.5, τ = 100, therefore

the corresponding maximum values of modulated amplitude and frequency can be selected as

b = 0.9ω/ωm = 9 andωm = 1/5ω = 0.1 , respectively. For low frequency field, we set E0 = 0.5Ecr,

ω = 0.1, τ = 25, and the corresponding maximum values of modulated amplitude and frequency

are chosen as b = 0.9ω/ωm = 9 and ωm = 1/5ω = 0.02, respectively.

The model in Eq. (18) may be viewed as a field generated in the antinode of the standing-wave

mode. Since the particles are mainly produced in the x-axis direction of the electric field, p⊥ = 0

can be assumed.

III. HIGH FREQUENCY FIELD

In this section, we investigate the effects of sinusoidal phase modulation on the momentum

spectrum and the reduced particle number of the created particles in high frequency inhomoge-

neous field. In this case, the field parameters are set to E0 = 0.3Ecr, ω = 0.5, τ = 100, which

corresponds to the multiphoton-dominant pair production process.

A. Momentum spectrum

We first study the influence of the modulated amplitude and frequency on the momentum spec-

trum for various spatial scales, respectively.

1. Modulated amplitude

When the modulated frequency is fixed ωm = 0.1ω = 0.05, the momentum spectrum for dif-

ferent spatial scales with various modulated amplitude b is shown in Fig. 1. At the large spatial
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scale λ = 1000, when b = 0, there is a weak oscillation on the momentum spectrum, but we

observed the spectrum symmetry, as shown in Fig. 1(a). Since in the quasihomogeneous limit, i.e.,

λ = 1000, the electric field model proposed in Eq. (18) can be written as an even function of only

time dependent as E(x, t) ≈ E(t) = E(−t), which leads to the symmetry of the momentum spec-

trum. Actually this symmetry is due to the fact that the DHW equations for getting the momentum

distribution function are invariant under time reversal. Under time reversal, the time t and the mo-

mentum px change sign, the x does not change sign. Because Ω(−px) =
√

(−px)2 + m2 = Ω(px),

we can know from Eq. (12) that sv(x, px, t) = sv(x,−px,−t) and v1
v(x, px, t) = −v1

v(x,−px,−t).

At the same time, the odd/even property of other physical quantities that affect the momentum

distribution function can be obtained by Eq. (11) and Eqs. (7)-(10), as shown in Table I. Finally,

it is found that the form of the DHW equations stays invariant under time reversal, which ensures

the symmetry of the momentum spectrum.

TABLE I: The odd/even property, i.e., −/+ sign presentation, of the physical quantity under time reversal.

physical quantity (t, px, x,Ω, E) (∂t, ∂px , ∂x,Dt) (s,v1,p,v0)

−/+ (−,−,+,+,+) (−,−,+,−) (+,−,+,+)

For small modulated amplitude, the momentum spectrum is approximately symmetrical and

presents obvious oscillation, as shown in Fig. 1(b). Since the effective frequency of external field

ωeff(t) = ω + bωm cos(ωmt) is increased significantly as modulated amplitude increases, resulting

in the enhancement of oscillation. It implies that there are remarkable interference effect on the

momentum spectrum. For large modulated amplitude, one can see that the obvious oscillation and

the mergence of two dominant peaks on the momentum spectrum, as shown in Figs. 1(c) and (d).

Meanwhile, the symmetry of momentum spectra is destroyed severely. Since when modulated

amplitude is large, electric field presents the highly amplitude oscillation so that the degree of

spatial quasihomogeneous is reduced, i.e., the validity of E(x, t) ≈ E(t) is lost more and more,

which results in the symmetry destroy of the momentum spectrum.

When the spatial scale decreases to λ = 10, there is no pronounced oscillation in the momentum

spectrum for b = 0, but it is approximately symmetrical, while the symmetry is destroyed for small

modulated amplitude, as shown in Figs. 1(a) and (b). Because the finite spatial scale of electric

field prevents particle production from being dominated by the temporal pulse structure, which

leads to the asymmetry of the momentum spectrum. For large modulated amplitude, we can ob-
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serve that the momentum spectra show strong oscillation and obvious asymmetry in Figs. 1(c) and

(d), meanwhile, the momentum distribution range is broadened. Since the finite laser pulse seems

to prevent the coherent superposition of the particle trajectory, and the corresponding interference

pattern is disturbed, which further leads to a broadening of the momentum distribution.

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6
x 10

−3

(a) b = 0

p[m]

n̄
(p
,t

→
∞
)

λ = 1000m−1

λ = 10m−1

λ = 2.5m−1

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.005

0.01

0.015
(b) b = 3

p[m]
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∞
)
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λ = 10m−1
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−1.8 −1.2 −0.6 0 0.6 1.2 1.8
0

0.007

0.014

0.021

0.028
(c) b = 6

p[m]

n̄
(p
,t

→
∞
)

λ = 1000m−1

λ = 10m−1

λ = 2.5m−1
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0

0.005

0.01
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(d) b = 9

p[m]

n̄
(p
,t

→
∞
)

λ = 1000m−1

λ = 10m−1

λ = 2.5m−1

FIG. 1: (color online). Reduced momentum spectrum for various modulated amplitude values in high

frequency field with different spatial scales when modulated frequency is ωm = 0.05. The modulated

amplitude values are b = 0, 3, 6 and 9, respectively. Other field parameters are E0 = 0.3Ecr, ω = 0.5,

τ = 100.

At the extremely small spatial scale λ = 2.5, when b = 0, the weak oscillation occurs on

the momentum spectrum, meanwhile, an approximate symmetry can be observed, as shown in

Fig. 1(a). The influence of electric field focusing on the small spatial scale is so small that the

Eq. (11) can be written as Dt ≈ ∂t. Meanwhile, it is found that the odd/even property of physical

quantities that affect the momentum spectrum under time reversal are the same as those in Table I.

Therefore, the form of the DHW equations still stays invariant, which leads to an approximate

symmetry of the momentum spectrum. With modulated amplitude increases, one can see that

the symmetry is destroyed gradually because the validity of Dt ≈ ∂t is lost more and more. On

the other hand, however, the obvious oscillation appears in the momentum spectrum, as shown in

Figs. 1(b), (c) and (d).
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2. Modulated frequency

When the modulated amplitude is fixed b = 0.1ω/ωm = 1, the momentum spectrum for dif-

ferent spatial scales with various modulated frequency ωm is displayed in Fig. 2. It is noted that

the result of ωm = 0 is the same as that in Fig. 1(a) with b = 0, which indicates the electric field

without modulation. At the large spatial scale λ = 1000, the weak oscillation can be observed

even for small modulated frequency, as shown in Figs. 2(a) and (b), which may be viewed as the

interference effect between the created particles. Compared with the case of ωm = 0, the maxi-

mum peak values of the momentum spectra are increased about 5 times. Since we take the Fourier

transform of E (t) = E0 exp
(
− t2

2τ2

)
cos(ωt + b sin(ωmt)) and find that for ωm = 0, only one domi-

nant frequency occurs on the Fourier spectrum, while for ωm = 0.05 and 0.07, there are not only

one primary frequency but also three pairs of symmetrical subfrequencies, which provides a great

contribution to the external field frequency and leads to more energy to produce more particles.

Particularly, some frequency spectrum structures can play a dynamically assisted role, which can

enhance significantly the number of created particles. For large modulated frequency, one can see

that strong oscillation appears, while compared with the case of small modulated frequency, there

are no significant increase of the maximum peak values, as shown in Figs. 2(c) and (d). On the

other hand, compared with the Fig. 1, it is found that there is a good symmetry on the momentum

spectrum with modulated frequency, while it is destroyed severely when the modulated amplitude

becomes large. It indicates that the momentum spectrum is more sensitive to modulated amplitude.

When the spatial scale reduces to λ = 10 and λ = 2.5, for small modulated frequency, there is

no oscillation but one can see that the momentum spectrum presents an approximate symmetry, see

Figs. 2(a) and (b). For large modulated frequency, we observed weak oscillation but the symmetry

of momentum spectrum is destroyed, as shown in Figs. 2(c) and (d). Moreover, there are some

different phenomena on the momentum spectrum at λ = 10 and λ = 2.5. For λ = 10, compared

to the case of λ = 1000, the dominant peaks of all the momentum spectra in Fig. 2 are shifted to

the direction of large momentum, which can be explained by ponderomotive force [27]. Since the

ponderomotive force is inversely proportional to the size of spatial scale, i.e., the smaller the spatial

scale, the stronger the ponderomotive force is. Therefore, the dominant peaks of the momentum

spectra at spatial scale λ = 10 are further pushed away from the center compared with the case of

λ = 1000. For λ = 2.5, compared to the case of λ = 10, the momentum peaks are not pushed away

from the center in Fig. 2. Since the highly inhomogeneous oscillation caused by the increasing of
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modulated frequency decreases the corresponding effect of ponderomotive force, which leads to

that the particles are not pushed towards the regions of low field strength.
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FIG. 2: (color online). Reduced momentum spectrum for various modulated frequency values in high

frequency field with different spatial scales when modulated amplitude is b = 1. The modulated frequency

values are ωm = 0.05, 0.07, 0.08 and 0.1, respectively. Other field parameters are the same as in Fig. 1.

B. Reduced particle number

In this subsection, we study the effect of modulation parameters on the reduced particle number

for various spatial scales, in the different cases, such as modulating only in amplitude, modulating

only in frequency and modulating in both amplitude and frequency.

Figures 3(a) and (b) show the reduced particle number dependence on spatial scales for various

modulated amplitude and frequency, respectively. It can be seen that when the modulation param-

eters (either the modulated amplitude or frequency) are fixed, with increasing spatial scale, the

reduced particle number is increased rapidly at small spatial scales, while it tends to be a constant

at large spatial scales. Because at small spatial scales, the electric field strength becomes large

with spatial scale, more particles are created in the whole range of the electric field. It is noted

that for certain modulated frequency ωm = 0.07 and ωm = 0.1, the particle number is enhanced in
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the range of 1.6 < λ < 7, while it is decreased in the range of 7 < λ < 9, as shown in Fig. 3(b). It

means that the reduced particle number is more sensitive to modulated frequency, this reason will

be discussed separately in the following section.

(a) (b)

FIG. 3: (color online). Reduced particle number dependence on spatial scales for different modulated

frequency and amplitude parameters in high frequency field. Panel (a): The plot is for the change of

modulated amplitude with ωm = 0.05. Panel (b): The plot is for the change of modulated frequency with

b = 1. Other field parameters are the same as in Fig. 1.

When the spatial scale is fixed, the reduced particle number is enhanced significantly for vari-

ous modulated amplitude and frequency. At large spatial scales, compared to the case of electric

field without modulation, the particle number is increased rapidly at about one order of magnitude

by either the large modulated amplitude or small modulated frequency, as shown in Fig. 3. At

small spatial scales, the enhancement of the particle number for various modulated amplitude and

frequency is different. With modulated amplitude, the particle number can be increased at about

one order of magnitude, as shown in Fig. 3(a), while for modulated frequency, it is enhanced about

5 times, as shown in Fig. 3(b). Therefore, it indicates that the change of modulated amplitude is

beneficial for the pair production. Meanwhile, when spatial scale is small, for small modulated

amplitude, the particle number is enhanced rapidly with spatial scale, while there is no significant

increase for large modulated amplitude, as shown in Fig. 3(a). Since when modulated ampli-

tude is large, the particle production process is dominated by multiphoton absorption that is less

influenced by the spatial scale.
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FIG. 4: (color online). Contour plots of the reduced particle number versus the modulated frequency and

amplitude at spatial scale λ = 100. Other field parameters are E0 = 0.3Ecr, ω = 0.5, τ = 100. Note that the

blank area separated by the purple solid line is beyond the modulation range of α = bωm/ω < 1.

In order to study the effect of modulated frequency and amplitude on the reduced particle

number more comprehensively, we present the contour plot as shown in Fig. 4. Due to limited

computational resources, we select an intermediate spatial scale λ = 100 to study. One can see

that there are several different regions on the diagram, which are divided by three typical curves,

where these curves represent b = 0.06ω/ωm, b = 0.18ω/ωm and b = 0.36ω/ωm, respectively.

It is found that in the modulation range of b ≤ 0.06ω/ωm, the reduced particle number is not

sensitive to the modulation parameters, while it presents an obvious variation in the modulation

range of 0.06ω/ωm < b ≤ 0.18ω/ωm. Since when b ≤ 0.06ω/ωm, the maximum value of effective

frequency isω+0.06ω, which has less distinction to the original center frequency. We also observe

that when the modulation range is 0.18ω/ωm < b < 0.36ω/ωm, there is no pronounced change

for the particle number, while it presents a significant variation in the range of b ≥ 0.36ω/ωm.

Moreover, the significant maximum (wine dot) and minimum (white dot) values of the reduced

particle number on the different regions can be obtained, as shown in Table II. It is found that when

the modulation range are 0.06ω/ωm < b ≤ 0.18ω/ωm and b ≥ 0.36ω/ωm, the reduced particle
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number is enhanced significantly. Particularly, in the range of b ≥ 0.36ω/ωm, the maximum value

of particle number is about 70 times larger than that without modulation. Interestingly, we find

that the same reduced particle number can be got through different set of modulation parameters.

TABLE II: The maximum and minimum values of the reduced particle number in different modulation

ranges marked in Fig. 4.

modulation range modulation parameters (ωm, b) reduced particle number

b ≤ 0.06ω/ωm A(0, 1) 6.30 × 10−4

B(0.005, 5) 5.19 × 10−3

0.06ω/ωm < b ≤ 0.18ω/ωm C(0.035, 1) 4.88 × 10−3

D(0.005, 9) 3.42 × 10−2

0.18ω/ωm < b < 0.36ω/ωm E(0.015, 8) 1.98 × 10−3

F(0.035, 5) 7.85 × 10−3

b ≥ 0.36ω/ωm G(0.055, 5) 7.07 × 10−3

H(0.025, 9) 4.54 × 10−2

To study whether there are optimal modulation parameters for e−e+ pair production in high

frequency field with sinusoidal phase modulation, we further explore the variation of the reduced

particle number in the following two cases at the spatial scale λ = 100, as shown in Fig. 5(a).

One case is that the electric field does not have any modulation, only the central frequency ω. The

other case is that the electric field has both central frequency and modulation, where the central

frequency is ω = 0.5, and the modulation is that when the modulated frequency is fixed ωm = 0.01,

but the modulated amplitude b changes. It is found that the trends of the results in the above two

cases are almost identical. Since in the second case, we perform the Fourier transform of the

time-dependent electric field and regard the frequency with the largest amplitude on the frequency

spectrum as the original center frequency of the electric field without modulation, which makes the

trends almost identical. Moreover, in the first case, it is found that the reduced particle number is

extremely sensitive to the central frequency of the external field and presents an obvious nonlinear

variation. In particular, when the central frequency is ω = 0.69, the particle number reaches the

maximum value, i.e., N̄ = 0.1331, and it is enhanced significantly by more than two orders of

magnitude compared to the case without modulation, i.e., ω = 0.5. In the second case, we can also

observe the sensitivity of the reduced particle number to the modulated amplitude and find that
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when modulated frequency ωm = 0.01 and modulated amplitude b = 20.7, the reduced particle

number reaches the maximum value, i,e., N̄ = 0.1367, which is almost the same as the maximum

value in the first case.
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FIG. 5: (color online). (a) Reduced particle number as a function of the central frequency of the external

field (black line) when b = 0 and the modulated amplitude (red line) when ωm = 0.01 is fixed, respectively.

Other field parameters are the same as in Fig. 1. (b) The ratio of N̄(b = 0)/N̄(ω = 0.5, b = 0), N̄(ωm =

0.01)/N̄(ω = 0.5, b = 0) as a function of the central frequency (black line) and the modulated amplitude

(red line), respectively.

Figure 5(b) shows the change in the ratio of the reduced particle number in the above two cases

and the particle number under the electric field without modulation. In the first case, one can see

that when the central frequency of the external field is ω = 0.69, the ratio reaches the maximum

value, i.e., N̄(b = 0)/N̄(ω = 0.5, b = 0) ≈ 211, while in the second case, when modulated

frequency ωm = 0.01 and modulated amplitude b = 20.7, the maximum value of the ratio is

N̄(ωm = 0.01)/N̄(ω = 0.5, b = 0) ≈ 217. It indicates that in the two case, the reduced particle

numbers are enhanced significantly about 200 times compared to the case without modulation, i.e.,

ω = 0.5. Therefore, we can obtain that ω = 0.69 is the optimal value of the central frequency of

the external field to get the largest reduced particle number, meanwhile, ωm = 0.01 and b = 20.7

are the optimal values of the modulated frequency and the modulated amplitude to get the largest

reduced particle number.
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IV. LOW FREQUENCY FIELD

In this section, the influence of sinusoidal phase modulation on the momentum spectrum and

the reduced particle number of the created particles in low frequency inhomogeneous field is stud-

ied. In this case, we set E0 = 0.5Ecr, ω = 0.1, τ = 25, which corresponds to the tunneling-

dominated pair production process.

A. Momentum spectrum

We study the effect of the modulated amplitude and frequency on the momentum spectrum for

various spatial scales, respectively.

1. Modulated amplitude

When the modulated frequency is fixed ωm = 1/10ω = 0.01, the momentum spectrum for

different spatial scales with various modulated amplitude b is shown in Fig. 6. At the large spatial

scale λ = 500, when b = 0, one can see that the bell-shaped momentum spectrum presents a weak

oscillatory structure, as shown in Fig. 7(a). The result is consistent with the case of b = 0 in

Fig. 6(a) of Ref. [19]. With modulated amplitude, there are obvious oscillation on the momentum

spectrum, meanwhile, the maximum peak values of the momentum spectra are increased signif-

icantly, as shown in Figs. 6(b), (c) and (d). Since in the quasihomogeneous limit (λ = 500), we

know from the Fourier transform of E (t) = E0 exp
(
− t2

2τ2

)
cos(ωt + b sin(ωmt)) that the dominant

frequency on the frequency spectrum is enhanced with modulated amplitude, which leads that

the corresponding Keldysh adiabaticity parameter γ = mω/eE becomes larger. It indicates that

the pair production process tends to the multiphoton absorbtion region, resulting in a significant

enhancement of the maximum peak value of the momentum spectrum.

When the spatial scale is reduced to λ = 10, there is no oscillation on the momentum spectrum

for b = 0, but it shifts to the larger momentum values, see Fig. 6(a). Because the small spatial

scale causes the electric field strength to decrease rapidly, so the created particles with large mo-

mentum can escape from the field region more easily. For small modulated amplitude, we observe

weak oscillation on the momentum spectrum and find a distinct small peak near the vanishing

momentum p = 0, see Fig. 6(b). For large modulated amplitude, there is an obvious oscillation on

the momentum spectrum, meanwhile, it is found that the peak near the p = 0 is enhanced signifi-
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FIG. 6: (color online). Reduced momentum spectra for various modulated amplitude values in low fre-

quency field with different spatial scales when modulated frequency ωm = 0.01. The modulated amplitude

values are b = 0, 3, 6 and 9, respectively. Other field parameters are E0 = 0.5Ecr, ω = 0.1, τ = 25.

cantly, which is larger than the momentum peak of λ = 500, see Figs. 6(c) and (d). It means that

the strong nonlinear tunneling effect occurs on the pair creation. We also find that the symmetry

of the momentum spectra in Fig. 6 is destroyed by the finite spatial scales of the electric field.

When the spatial scale is further decreased to λ = 2, there is no obvious oscillation on the

momentum spectrum for b = 0, but it is approximately symmetrical, as shown in Fig. 6(a). With

modulated amplitude, the weak oscillation can be observed and the symmetry of momentum spec-

trum is destroyed, as shown in Figs. 6(b), (c), and (d). Moreover, when λ = 2, compared with the

case of λ = 10, the range of momentum distribution is reduced significantly in Fig. 6. Since the

work done by the external field is very small at extremely narrow spatial scale, which leads to a

significant decrease of the particles created.

2. Modulated frequency

When the modulated amplitude is fixed b = 0.9ω/ωm = 9, the momentum spectrum for dif-

ferent spatial scales with various modulated frequency ωm is shown in Fig. 7. For small modu-
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FIG. 7: (color online). Reduced momentum spectrum for various modulated frequency values in low fre-

quency field with different spatial scales when modulated amplitude is b = 9. The modulated frequency

values are ωm = 0.01, 0.015, 0.018 and 0.02. Other field parameters are the same as in Fig. 6.

lated frequency, one can see that there is an obvious oscillation on the momentum spectrum, see

Fig. 7(a). The complex oscillation may be understood as interference effect of pair creation by

opposite signed large peaks and a series of small peaks in the low frequency field. With modu-

lated frequency, the oscillation becomes more and more dispersive, but the maximum peak value

of the momentum spectrum is enhanced greatly, as shown in Figs. 7(b), (c) and (d). Interestingly,

compared with the Fig. 6, we find that there are different oscillatory structures on the momentum

spectrum. When modulated frequency increases, the momentum spectrum shows dispersive os-

cillation, as shown in Fig. 7, while with modulated amplitude, it presents intensive oscillation, as

shown in Fig. 6, which is related to the frequency spectrum structure. It is well known that the

modulated amplitude dominates the amplitude of the frequency spectrum, while the modulated

frequency determines the width of the spectrum.

When the spatial scale is reduced to λ = 10 and λ = 2, for small modulated frequency, one

can see that the momentum spectrum presents obvious oscillation, but it is asymmetric, as shown

in Fig. 7(a). With modulated frequency, it shows an approximate symmetry and appears complex
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oscillation, as shown in Figs. 7(b), (c) and (d), which is caused by the interference of produced

particles from opposite field peaks. Moreover, compared with the case of ωm = 0, the momen-

tum distribution extends into the negative field region. Since the created particles with a certain

momentum leave the external field region and miss the deceleration of the negative field peak.

B. Reduced particle number

In this subsection, we investigate the effect of modulated frequency and amplitude on the re-

duced particle number for different spatial scales, as shown in Fig. 8.

(b)(a)

FIG. 8: (color online). Reduced particle number dependence on spatial scales for different modulated fre-

quency and amplitude parameters in low frequency field. Panel (a): The plot is for the change of modulated

amplitude when ωm = 0.01. Panel (b): The plot is for the change of modulated frequency when b = 9.

Other field parameters are the same as in Fig. 6.

It can be seen from the Fig. 8 that when modulation parameters (either the modulated amplitude

or frequency) are fixed, with spatial scale, the reduced particle number is enhanced significantly at

small spatial scales, while it is almost unchangeable at large spatial scales. Interestingly, at small

spatial scales, when the modulated frequency are ωm = 0.015 and ωm = 0.02, the reduced particle

number shows a clear nonlinear variation, as shown in Fig. 8(b). When spatial scale is fixed, both

large modulated amplitude and large modulated frequency are beneficial to the increase of reduced

particle number at small spatial scales. Compared to the case of electric field without modulation,

in the case of modulated amplitude, the particle number is enhanced about 9 times, see Fig. 8(a),

while in the case of modulated frequency, it is increased about 3 times, see Fig. 8(b). At large
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spatial scales, the reduced particle number is insensitive to modulated amplitude, while for the

modulation frequency, it is enhanced by a small amount.

V. DISCUSSION

In this section, we employ the semiclassical WKB approach to qualitatively discuss the inter-

ference effect of the momentum spectrum. The nonlinear effect of the reduced particle number is

discussed qualitatively by using the view point from the action of worldline instanton, meanwhile,

it is analyzed briefly by the position distribution.

A. Interference effect of the momentum spectrum

According to the semiclassical WKB approach in the previous section, the interference effect

of the momentum spectrum can be understood qualitatively by the location of turning points in the

complex t plane. Figure 9 shows the turning points distribution corresponding to the maximum

peak values of the momentum spectrum for various modulated frequency. It can be seen from

the Fig. 9(a), when ωm = 0, there are two pairs of turning points closest to the real t axis, while

for small modulated frequency, we observed five pairs of turning points are closest to the real t

axis, see Fig. 9(b). Since the more pairs of turning point closest to the real t axis means that the

remarkable interference effect will appear in the momentum spectrum. Therefore, there is weak

interference on the momentum spectrum in Fig. 1(a), while it presents an obvious interference

effect in Fig. 2(a). With modulated frequency, one can see that the neighbouring distance of turn-

ing points is shorter and shorter, which depends on the modulated frequency, therefore, it leads

to the more turning points near the real t axis, as shown in Figs. 9(c) and (d). Correspondingly,

the interference effect of the momentum spectra becomes more and more remarkable, as shown in

Figs. 2(b) and (d). Compared with the case of Fig. 9(a), the turning points in Figs. 9(b), (c) and

(d) present the closer distance to the real t axis, which implies that the particles production rate in

the modulating case is larger than that without modulation. Moreover, all the turning point struc-

tures in Fig. 9 are approximately symmetrical, which results in a symmetry of the corresponding

momentum spectrum.
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FIG. 9: (color online). Turning points where ωp(t) = 0 by the contour plots of |ωp(t)|2 in the complex

t plane. Note that the plotting is got just for the time-dependent field where the spatial-dependent part

is dropped, which can be regarded as the limit of large λ. Four sets of the momentum value are chosen,

px = 0.664, 0.190, 0.288 and 0.405, respectively, corresponding to the maximum peak of the momentum

spectrum as in the cases of λ = 1000 in Fig. 1(a) when b = 0 and Figs. 2[(a),(b) and (d)] when b = 1, for

the plotting from (a) to (d).

B. Nonlinear effects on the reduced particle number

In order to see why the reduced particle number appears obvious nonlinear effects on spatial

scale when ωm = 0.07 and ωm = 0.1 in Fig. 3(b), we employ the view point from the action of

worldline instanton and the corresponding position distribution to make some discussions on this
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results, respectively.

It is known from Ref. [33] that the pair production rate can be written as Pe+e− ∼ e−S , where

S denotes the action of worldline instanton. In the time-dependent oscillation electric field E(t) =

E0g(ωt), the Keldysh adiabatic parameter is γω = mω/eE0, where ω denotes the frequency of

electric field. The well known result is that the corresponding S ω decreases monotonically with

γω [32], therefore, it leads to a monotonically increasing of the pair production rate Pe+e− . In

contrary, if the field is only space-dependent oscillation as E(x) = E0 f (kx), the corresponding

adiabatic parameter is expressed as γk = mk/eE, where k represents wave number, and S k increases

monotonically with γk [32]. Therefore, the Pe+e− decreases monotonically. Now it is noted that our

electric field model, Eq.(18), is composed by the space and time dependence, therefore, it should

exhibit a complicated behavior due to the competition between the pair number increasing by the

larger frequency and the pair number decreasing by the higher wave number.

Indeed, in Fig. 3(b), it can be seen that when ωm = 0.07 or ωm = 0.1, the particle number

appears an obvious nonlinear variation with spatial scale λ, i.e., there is a transition point at λ =

7. It is noticed that the left and right sides of the transition point correspond to λ = 5 and 9,

respectively. According to the description of the space-dependent field above, the particle number

should enhance monotonously as spatial scale λ increases (the corresponding k decreases), but it

increases nonlinearly, which is caused by the competitive relationship between the effect of the

temporal part of the field on the particle number and the effect of the spatial part on the particle

number. In the case of ωm = 0.07, when the spatial scale λ changes from 5 to 7, the effect of the

temporal part of the field should be greater than that of the spatial part, which leads to a net effect

of the increasing of the particle number. However, when the spatial scale varies from 7 to 9, the

situation is vice versa, i.e., the effect of the temporal part of the field is smaller than the spatial

part, resulting in a net effect of the decreasing of the particle number. Therefore, the particle

number presents an obvious nonlinear variation with spatial scale. The discussion about the case

of ωm = 0.1 is similar to that of ωm = 0.07.

On the other hand, the result can be understood by the position distributions for ωm = 0.07 and

0.1 in Fig. 10. It can be seen from the Fig. 10(a), for ωm = 0.07, the position distribution presents

the largest peak and the broadest distribution at λ = 7 compared with the case of λ = 5 and 9,

which indicates that the more particles can be created in the position space. The phenomenon and

discussion of Fig. 10(b) is similar to the case of Fig. 10(a). Moreover, for ωm = 0.07, we can also

read the maximum peak values of the momentum spectra at λ = 5, 7 and 9, as shown in the upper
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part of Table III. For λ = 7, the corresponding maximum values are 0.0277 and 0.0292, which are

larger than the case of λ = 5 and 9. Therefore, the corresponding reduced particle number is also

the largest, i.e., N̄ = 0.0129. When ωm = 0.1, the maximum peak values of the momentum spectra

at λ = 5, 7 and 9 are shown in the lower part of Table III, where the result is similar to the case of

ωm = 0.07.

(a) (b)

FIG. 10: (color online). The position distribution for various spatial scales in high frequency field with

different modulated frequency values. They are ωm = 0.07 for (a) and ωm = 0.1 for (b), respectively. Other

field parameters are the same as in Fig. 3(b).

TABLE III: The maximum peak values of the momentum spectrum and the reduced particle number for

various spatial scales in high frequency field with different modulated frequency parameters. The modulated

frequency is ωm = 0.07 for the upper part of table and the modulated frequency is ωm = 0.1 for the lower

part of table. Other field parameters are ε = 0.3Ecr, ω = 0.5, b = 1 and τ = 100.

λ (p∗, n̄(p∗, t → ∞)max)le f t (p∗, n̄(p∗, t → ∞)max)right N̄

5m−1 (−0.449, 0.0145) (0.488, 0.0142) 0.00816

7m−1 (−0.474, 0.0277) (0.483, 0.0292) 0.0129

9m−1 (−0.479, 0.0215) (0.479, 0.0229) 0.0120

λ (p∗, n̄(p∗, t → ∞)max)le f t (p∗, n̄(p∗, t → ∞)max)right N̄

5m−1 (−0.376, 0.00681) (0.508, 0.00545) 0.00503

7m−1 (−0.454, 0.0105) (0.547, 0.00983) 0.00690

9m−1 (−0.459, 0.00814) (0.562, 0.00763) 0.00536
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VI. CONCLUSION AND OUTLOOK

In conclusion, with the DHW formalism, we have investigated the sinusoidal phase modulation

on the momentum spectrum and the reduced particle number in both high- and low-frequency

inhomogeneous fields. The effect of spatial scale of the external field on the pair production is

further examined. Furthermore, we give a qualitative discussion of some results that we obtained

by using the semiclassical WKB approximation and the view point from the action of worldline

instanton.

For high frequency field, the increasing of either modulated frequency or amplitude leads to

significant interference effect on the momentum spectrum, but with modulated amplitude, the

symmetry of the momentum spectrum is destroyed severely, while momentum spectrum shows a

good symmetry with modulated frequency. The reduced particle number is enhanced significantly

by the variation of modulation parameters for different spatial scales. At small spatial scales, the

particle number is enhanced by more than one order of magnitude with modulated amplitude,

while it is increased about 5 times with modulated frequency. At large spatial scales, compared

with the case without modulation, the particle number is increased by more than one order of

magnitude for either large modulated amplitude or small modulated frequency. Moreover, two

interesting features are revealed for the reduced particle number, the optimal modulation param-

eters are obtained and the same particle number can be got through different set of modulation

parameters.

For low frequency field, the nonlinear effects lead to the more and more complicated momen-

tum peaks with modulated amplitude. The reduced particle number is enhanced greatly with either

modulated amplitude or frequency even at extremely small spatial scale. Specifically, for modu-

lated amplitude, the particle number is increased about 3 times, while it is enhanced about 9 times

for modulated frequency. Moreover, we examined the effect of spatial scale on the particle num-

ber. When modulation parameters are fixed, the reduced particle number increases rapidly at small

spatial scales, while it tends to be a constant at large spatial scales. Meanwhile, the particle num-

ber presents an obvious nonlinear variation for the certain modulated frequencies at small spatial

scale. Finally, we found that the momentum spectrum is more sensitive to modulated amplitude,

while the reduced particle number is more sensitive to modulated frequency.

Our study indicates that the sinusoidal phase modulation plays a crucial role on e−e+ pair pro-

duction in spatially inhomogeneous electric fields, meanwhile, it also provides the theoretical basis
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of broader parameter ranges for future experiments. In this paper, we have only considered the

influence of modulation parameters at various spatial scales on the pair production. For the fur-

ther investigation, the carrier phase effect and dynamically assisted effect, which are caused by

the combined field with sinusoidal phase modulation, should be considered on the e−e+ pair pro-

duction. Furthermore, provided that the computational resources are sufficient, one can consider

the e−e+ pair production in multidimensional spatially inhomogeneous external fields with the

sinusoidal phase modulation.
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