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Abstract

In this paper, we set 7(G) to be the number of conjugacy classes of
maximal cyclic subgroups of a finite group G. We compute 7(G) for
all metacyclic p-groups. We show that if G is a metacyclic p-group of
order p” that is not dihedral, generalized quaternion, or semi-dihedral,
then 7(G) > n — 2, and we determine when equality holds.
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1 Introduction

Unless otherwise stated, all groups in this paper are finite, and we will follow
standard notation from [6]. As in [3] and [4], we set n(G) to be the number
of conjugacy classes of maximal cyclic subgroups of a group G. For p = 2, we
have that n(G) = 3 when G is a dihedral 2-group, a generalized quaternion
2-group, or a semi-dihedral group. In [I], the second and third authors along
with Yiftach Barnea and Mikhail Ershov have shown that for every prime
p > 5 there are infinitely many p-groups with n = p 4+ 2 and for p = 3 there
are infinitely many 3-groups with n = 9. This answers negatively Question
5.0.9 from [9] which asked whether 7n(G) grows with the order of G when G
is a p-group and p is odd.

On the other hand, it is rare for this to occur. Indeed, the only 2-groups
(in fact the only p-groups) that have n = 3 are the Klein 4-group, the dihedral
groups, the generalized quaternion groups, and the semi-dihedral groups. To
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see this, we know that n(G) > n(G/G’) (see [3]), and for p-groups n(G/G") >
p+ 1 when G/G’ is not cyclic (see [4]). Thus, n = 3 can only occur when
p = 2. Also, in [4], we show that n(G/G’") = 3 if and only if G/G" = Cy x Cs.
It is well known that if G is a 2-group of order at least 8 and |G : G'| = 4, then
G is either dihedral, generalized quaternion, or semi-dihedral. (See Problem
6B.8 of [6].)

Now, dihedral groups, generalized quaternion groups, and semi-dihedral
groups are examples of metacyclic groups. l.e., groups G with a normal
subgroup N so that N and G/N are both cyclic groups. This motivated us
to investigate the invariant 7 for all metacyclic p-groups. Indeed this project
began before the results of [1] were known and we were originally curious as
to whether we would find another family of metacyclic p-groups with fixed
1. However, we prove the following:

Theorem 1.1 Let G be a metacyclic p-group of order p" that is not a di-
hedral group, generalized quaternion group, or semi-dihedral group. Then
n(G) >n—2.

In fact, we compute 1n(G) for every metacyclic p-group G. Thus, we list
the metacyclic p-groups where equality occurs in Theorem [[LIl King in [7]
gave a description of all metacyclic p-groups. We will give this description
of these groups in Section Bl In particular, King divided the metacyclic p-
groups into two families of groups which he called positive type and negative
type. The negative type groups only occur when p = 2, so if p is an odd
prime, then all of the metacyclic p-groups are of positive type. We have the
following result for the metacyclic groups of positive type.

Theorem 1.2 Let G be a metacyclic group of positive type. Then n(G) =
n(G/G).

We note that Rogério in [8] has a formula to compute n(A) for an abelian
group A. His formula involves the Euler ¢-function and a second number
theoretic function. When G is a metacyclic abelian p-group, we prove in [4]
a formula for n(G) that is only in terms of the sizes of the direct factors of
G. Notice in Theorem that G/G" will be a metacyclic abelian p-group,
and so, our formula will compute n(G/G’) and hence, n(G).

When G is a metacyclic p-group of negative type, it is not usually the case
that n(G) and n(G/G") are equal. However, we will find that there usually



is a proper quotient whose value of 1 equals n(G). We will also see for most
metacyclic groups of negative type that the formula for n is dependent on
the formula for n that we found for the metacyclic abelian p-groups.

The authors would like to thank Emanuele Pacifici for a number of helpful
conversations while working on this paper.

2 Preliminaries

In our preprint [3], we prove two results that we need in this paper. The first
is a criteria for determining when the quotient of a p-group G has the same
value for 1 as 7(G). Given a prime p, we set GIP} = {gP | g € G}. Le., GI?}
is the set of p-th powers in G.

Theorem 2.1 Let N be a normal subgroup of the p-group G. Thenn(G/N) <
n(G). Furthermore, n(G/N) = n(G) if and only if N C G and for all
r € G\G} every element of xN is conjugate to a generator of (x). In partic-
ular, if n(G/N) = n(G), then GP} is a union of N-cosets and GIPY N = Gir},

This second Proposition relates 7(G) to the number of G-orbits of maxi-
mal cyclic subgroups of a normal subgroup.

Proposition 2.2 Let N be a normal subgroup of a group G and let n*(N)
be the number of G-orbits on the N-conjugacy classes of mazximal cyclic sub-
groups of N. Then n(G) > n*(N). In particular,

(1) if N is central in G, then n(G) > n(N).
(ii) if |G : N| =k, then n(G) > n(N)/k.

Let p be a prime, and let a and b be positive integers. We take k =
max(a, b) and | = min(a,b). We set g,(a,b) = p=V((k —D(p—1)+p+1).
In [4], we prove the following lemma.

Lemma 2.3 If p is a prime and a and b are positive integers so that G =
Cpe x Cpp, then g,(a,b) = n(G).

We close this section with an easy lemma that computes g, for small
values and gives a lower bound for larger values. We remark that when
p = 2, this function is much easier to work with.
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Lemma 2.4 Suppose k > 1. Then the following hold:

1 Ifl=1, then go(k,1) = k + 2.

2. Ifl =2, then go(k,2) =2(k+1).
3. If 1 = 3, then go(k,3) = 4k.

b If 1> 4, then ga(k, 1) > 4k + 2.

Proof. We have gy(a,b) = ga(k,1) = 271 (k — I + 3). Conclusions (1),
(2), and (3) are immediate. We focus on (4). Begin with ¢2(4,4) = 24; so
the result holds for go(4,4). Next, go(l,1) — 61 = 3 -2=1 — 6l is clearly
increasing when [ > 3. Thus, we have go(l,1) > 4l + 2] when [ > 3.
Let kK = [+ m for m > 0. Then gy(k,1) = g2(I + m,m) = 2=Y(m + 3)
and 4k + 21 = 4(I + m) + 2] = 6] + 4m. Fixing | > 4, we note that
2= (m + 3) — 61 — 4m will be an increasing function in m. We conclude
that go(k,1) > 4k + 20 for [ > 4. O

3 Metacyclic p-Groups

For the rest of the paper, we will focus on metacyclic p-groups. A finite
metacyclic p-group can be described as follows. This description is taken
from [7],

a—e€

Gp(aaﬁaeaéai):<$,y|xpa:]_,ypﬁzxp ’xy:xr>

where r = p*~° 4 1 (positive type) or r = p*~% — 1 (negative type). The
integers «, (3, 9, € satisfy a, 8 > 0 and J, e nonnegative, furthermore § <
min{a — 1,8} and § + ¢ < a. When G has negative type, only € = 0 or 1
occur. For p odd

G =Gyla, b€ d,+).

In other words, the negative type only occurs when p = 2; when p is odd,
only the positive type occurs. Metacyclic 2-groups can be of either positive
type or negative type. We note that dihedral, semi-dihedral and generalized
quaternion groups are all of negative type.

If p = 2, then in addition o« — ¢ > 1 and

G = Gy(a, B,€6,0,+) or G = Go(a, B,€,0,—).
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Note, the above presentation does not guarantee nonisomorphic groups for
different parameters (see [2]). However, the parameters do determine some
structural information about G. For example, |G| = p*t# and G/ = (a7 ")
if G is of positive type and G’ = (2?) if G is of negative type. All elements
of G can be written as y’z? for some integers a and b. Also if G is of positive
type then Z(G) = (2%, y?") and |Z(G)| = p*#=2 if G is of negative type
Z(G) = (227", 2", |2, Prop. 2.5]. Note that if G is of positive type
and 0 = 0, then G will be abelian.

As we mentioned above, the dihedral groups, the generalized quaternion
groups, and the semi-dihedral groups are the only p-groups G that satisfy
n(G) = 3. These are also precisely the 2-groups of maximal class. We
have also mentioned that they are metacyclic. In terms of our notation, the
dihedral groups are Gs(a, 1,0,0,—), the generalized quaternion groups are
Go(a,1,1,0,—), and the semi-dihedral groups are Gy(«, 1,0, 1, —).

For Lemmas B Iland B3] we are writing G, (v, 8, €,0, £) as G, (o, B, €,0,7)
where we take v = + when G is of positive type and v = — when G is of
negative type. We consider quotients of G. Note that this lemma would not
be well defined if 6 = 0 and would not say anything if 6 = 1.

Lemma 3.1 Suppose G is Gy(c, 5, €,8,7) with § > 2. Then N = (z"~"*")
is a normal subgroup of G and G /N is isomorphic to

Gpla—=0+1,5,(e—d+1)",1,7)

where (e =0+ 1)* =e¢—0+1 when e > 6 —1 and (¢ — d + 1)* = 0 when
e<o—1.

Proof. Set Z = (z7"") < Z(G). We first prove that G/Z is isomorphic
to Gp(a—1,8,e —1,6 — 1,7v) when € > 1 and G,(a — 1,3,0,6 — 1,7) when
e = 0. We know that G/Z = (xZ,yZ) where xZ has order p*~!. Observe
that (yZ)*" = y?’Z = 27" °Z. When € > 1, we have

a—e (a—1)—(e—1)
¥ Z=aP Z
and when € = 0, we have
a—€ (e%
r Z=axP Z =7

Also,
a—§ (a—1)—(6—1)
(@2 =2V 7 = o G = P g
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Hence, G/Z satisfies the hypotheses for G, (a—1,5,e—1,6—1,7v) when e > 1
and Gp(a —1,8,0,0 —1,7) when € = 0.

We know that X = (z) is a cyclic, normal subgroup of G. Observe
that N is contained in X and so is characteristic. This implies that N
is normal in G. Observe that Z < N and we have shown that G/Z =
Gpla—1,8,e—1,0—1,7) or G,(a—1,5,0,0 —1,7). If § =2, then N = Z,
and we have the desired result. Otherwise, we have § > 3. Using induction,
we have G/N = (G/Z)/(N/Z) is isomorphic to either

Gp((a—1)—(0—1)+1,8,(e—1)—(6—1)+1,1,7) = G,( a—d+1, 5,e—=d+1,1,7)
or

Gpla—1)—(0—1)4+1,5,0,1,7) =2 Gy(a—6+1,6,0,1,v). O

We consider the metacyclic groups of positive type and use Theorem 2.1
and Lemma Thus, we first analyze G/G’.

Lemma 3.2 Suppose G = G,(o, B,€,0,+).
(i) If 6 > e or§d <€ and a > B+ €, then G/G" = Cpa—s X Cpp.
(ii) If 6 < e and a < f+¢€, then G/G" = Cpa—e X Cppre-s.

Proof. Now G’ = (27"°), so |G'| = p°. Also |G| = p**?, s0 |G : G| =
pa+ﬁ—5.

If § > ¢, then (y) NG = (2" °) = (z) N (y). We see that G’ has order
p*°, and yG’ has order p® and G/G’ = (xG') x (yG') yielding the desired
result.

Now suppose § < e. In this case, we see that G’ < (27" ) = (z) N (y). We
see that G’ has order p*~ and yG’ has order p®T<=?. Since G’ < (z) N (y),
we do not have that G/G’ is a direct product of (zG’) and (yG’'). We see
that G/G’ is abelian and generated by *G’ and yG’, so every element of G/G’
has order < max{p®~°,p?* %} Ifa > fB+e thena—6 > B+e—46. In
this case, *G’ has the largest order of any element in G/G’, and so we get
G/G" = Cpa—s x Cys since |G/G'| = p**P7%. On the other hand, if « < B+,
then o —§ < S+ ¢ — 9. In this case, yG’ has the largest order of any element



in G/G" and we get G/G" = Cpa—e X Cppre—s. O

Given an element g € G, we write cl(g) to denote the conjugacy class of
g in G.

Lemma 3.3 Let G = G,(a, B,¢,6,7). If g = yPFx™ for integers I, m, and
a so that a € {1,...,p— 1}, then cl(g) = gG".

Proof. We first claim that G = (z, g). We know that G = (z,y). Obviously,
(x,g9) < G. Observe that yP!™@ = gx=™ € (x,g). Since the order of y is
a power of p, this implies that y € (z,g). We conclude that G = (z,y) <
(x,g) < G. This proves the claim.

Because (z) is normal in G, we obtain G = (x)(g). Observe that (g) <
Ce(g). By Dedekind’s lemma (see Lemma X.3 on page 328 of [6]), it follows
that Cq(g) = (Ca(g) N (x))(9) = Czy(g)(g). Since = centralizes 2™, we have

Cray(9) = Clay (P F%2™) = Clay (yP179) = Clay () = (2P,

where t = 0 if y = + and t = a—1 when v = —. We see that Cg(g) = (g, 27°).
We deduce that

G 2 Calg)] = |(z) : (@) = p' = |&].
Since cl(g) C gG’, we conclude that cl(g) = ¢G'. O

Given a group G and a prime p, we define G? = (GP}). Te., GP is the
subgroup generated by G{P*. In a similar fashion, we define G* = (¢* | g €
G). Following the literature, we say that a finite p-group G is powerful if (i)
G' < G? when p is odd and (ii) G’ < G* when p = 2. If G is a powerful
p-group, then it is known that G? = G} i.e. the set of p-powers of elements
of G is equal to the subgroup the p-powers generate. (See Section 2 of [5]
and in particular Propostion 2.6 of that citation.)

We claim that metacyclic p-groups of positive type are powerful. Let G
be Gp(a, 5,€,6,4+), then G' = <xpa76). As a — > 1 it follows immediately
that G is powerful when p is odd. For p = 2, we note that a —d > 2 so again
we have that G is powerful.

When G is of positive type, we extend Lemma

Lemma 3.4 Let G = Gy(a,B,¢,0,+) and g € G\ G}, Then cl(g) = gG'.
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Proof. Let g € G then g = y"x™ for some integers n and m. As G is
powerful, it follows that if ¢ € G\ G}, then g ¢ GP, and thus, one of n
and m is not divisible by p. When n is not divisible by p, we obtain the
conclusion by Lemma 3.3

We now suppose that g = y"2™ where m is not divisible by p. We want
to prove that cl(g) = gG’. We know that cl(g) C gG’. It suffices to prove
that |cl(g)| > |¢G’| = |G'| = p°. On the other hand, we know that y acts
as an automorphism of order p° on (x), so = has p° distinct images under
powers of y. Thus, if 1 < a,b < p°, then z¥* = 2¥" if and only if a = b. Since
m is coprime to p, we see that (z¥")™ = (z¥")™ if and only if a = b. Hence,
we have that ¢¥" = ¢¢" if and only if (yram)Y" = (y”xm)yb and this occurs if
and only if @ = b. We deduce that ¢ has at least p° distinct conjugates under
() and so |cl(g)| > p° as desired. This proves the lemma. O

We now prove that if G is metacyclic of positive type, then n(G) =
n(G/G"). Combining this fact with Lemmas 23] and B2, we are able to
compute 7(G) for all primes p.

Corollary 3.5 Suppose G is G,(c, B,€,0,+). Then n(G) =n(G/G").

Proof. As G is powerful, by Theorem 2.1l we need to show that for all
g € G\ GIP} every element of gG’ is conjugate to a generator of (g), this
follows from Lemma 3.4 O

For the record, we explicitly record the value of n(G) when G is a meta-
cyclic group of positive type.

Corollary 3.6 Suppose G is Gy(a, B,€,0,+).
(i) If 6 > € or§ < e and a >+ ¢, then n(G) = g,(av — 0, ).

(a) If f < a—0, thenn(G) =p"((a=d—-B)(p—1)+p+1).
(b) If B>a—6, thenn(G)=p* " H(B—a+8)(p—1)+p+1).

(ii) If § < € and a < B+, then n(G) = g,(a —€,8+€—08) = p* (B —
a+2e—06)(p—1)+p+1).

Proof. Using Corollary B.5] we have n(G) = n(G/G"). If § > e or § < ¢
and o > 3 + ¢, then in view of Lemma [3.2] we see that G/G" = Cpa-s x Cps
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and 7(G) = gy(o — 0, ). The remainder of (i) follows from the definition
of g,. Suppose 6 < € and o < 8 + €. Applying Lemma [3.2] we see that
G/G" = Cpa—c X Cppre-s. Observe that @ < B+eyieldsa—e < < f+e—0
as we are assuming d < e. In light of the definition of g,, we obtain conclusion
(ii). O

When G is metacyclic of positive type, we show that n(G) > o + 5.

Corollary 3.7 If G is Gy(a, B,€,0,+), then n(G) > a+ 5.

Proof. We consider separately the cases given in Corollary 3.6l We use the
fact that 261 > 8 for 3 a positive integer. First, (i)(a), where o — & > 3,

n(G) = p"Na=d-p)p—1)+p+1)
> 2" Ha—6—-B+3)
> a—0—p+30
> a+f

since 8 > 0.
Now, case (i)(b), so a — § < f. First assume o — ¢ > 1, then

n(G) = p " HB-—a+d)p-1)+p+1)
207013 — a4+ 6 + 3)
2(—a+6)+3(a—19)

26+ (a—9)

B+a+(8-9)

B+ a

v v

vV v

since > 6. f a—d=1thenp>3,alsonote a =1+ <1+ . So, we
have
nG)>2B-—a+d)+4=28+2>pF+a.

Case (ii) follows similarly to (i)(a), we have « — e < f + € — 0,

nG) = p “HB—-—a+2e=6)(p—1)+p+1)

> 2B —a+2—0+3)
> f—a+2—0+3(a—c¢)
= B+a+(a—e—9)

> f+a



since o > 6 + e.O

4 Metacyclic Groups of Negative Type

The goal of this section is to compute n when G is a metacyclic group of
negative type. We begin by looking at quotients of G. We begin with a
preliminary lemma that is useful in understanding the quotients.

Using the notation of Section [3 and applying Theorem 2.1l we have that
if G = Gs(a, B,€,6,—) with § > 1 and N = (22 ""), then n(G) > n(G/N).
We now show that in fact this is an equality. We remind the reader that
a— 0 > 2 when p = 2.

We now prove the promised equality between n(G) and n(G/N).

Theorem 4.1 Let G = Go(a, B, €,6,—) where 6 > 1. Then n(G) = n(G/N)
where N = (227",

Proof. Note that N does not make sense if 6 = 0; so that it is why we
assume § > 1. Also, if § = 1, then N = 1; so the conclusion is trivial in this
case. Hence, we will assume 0 > 2.

We first prove that 7(G) = n(G/Z) where Z = (2**"). Recall from
Theorem 1] that to prove n(G) = n(G/Z), we need to prove that Z C G{%
and if g € G\ G1#, then every element of gZ is conjugate to a generator of
(g). Observe that Z C G}, Since 22*" is the only nonidentity element of
Z, it suffices to prove that if ¢ & G, then (g) and (g2>*') are conjugate.
We know from [2] that G' = (x?).

We prove the claim by working by induction on §. We begin with the
case that § = 2. We know that ¥ = 2" "L, It follows that

(IZ)y _ (xy)2 _ (zza*2—1)2 — 22 (55_2)9:2%1.
Observe that this yields that (z72)Y = 2222° . Using this fact and the
observation that z2° " is central, we then have

_21’2a71)y_ 2 2&71 2a71 2

(%)Y = (x =z = z°.

It follows that z? and y? commute. Let A = (2% y?), and observe that
G' < A, so A is a normal, abelian subgroup of G.
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We know that every element of G has the form y*2™ where 0 < k < 28 —1
and 0 < m < 2%—1 are integers. Notice that if 4 divides both k and m, then
g € A% C G Also, 22,4% € G2,

If g = 2™ for integers [ and m, then we can appeal to Lemma 3.3 to
see that ¢ is conjugate to gz2* ' and so, (g) and (gz2* ') are conjugate, as
desired.

Since 2v = 22" ", we have 2¥° =z . Since § > 2, we know
that o > 4 (this is using the fact that a — 5 > 2), so 2a — 4 > «. Hence,
we have z¥° = z=2° '*1, In addition, 22° ' has order 2, so z 207l et
Thus, we have shown xy = 277+

Suppose now that g = y?2?"*! for integers [ and h. From above, we have

22a74_2a71 +1

2 2 a—1 a—1 a—1
gy (y2ll,2h+1)y _ y2l(£L’y )2h+1 — ’y2l(l’2 +1)2h+1 — y21z2h+1x2 — 91'2 )
We deduce that (g) and ( ail) are conjugate, as desired

We have shown that z¢° = a:x . This implies that 1y =2z = 22" 'y 2.
Inverting, we obtain (%) = y?x** 1. Now, suppose that g = y?2?". We can
assume from above that either [ is odd or h is odd. Assume first that [ is

odd. We have
T T a—1 a—1 o _
¢* = (y2lx2h) ((y2) )ll’2h — (y2x2 )ll’2h — y21x2hx2 — 91'2 1.

We obtain (g) and (gz2* ') are conjugate, as desired.

We are left with the case that ¢ = y*2?®"*1) for integers h and . We
claim that ¢ € G2}, Notice that there is an integer k so that (g) = (y**2?)
and that ¢ € G1# if and only if y*2? € G#. We show that y*2? € G},
We have 2v* = 222" . Tt follows that zy? = y2zz2" " and

(y%x) _ y xy ko — y2ky2kxx2a*1kx _ y4kx2x2“ 'k
When k is even, we see that (y**7)? = y*22. Now assume that k is odd. We
have

a—2 a—2 -2 a—1 a—2
(y2kl’$2 )2 _ ’y2kl'l’2 y%xzc —y2ky2kx:£2 kl’l’2 2

_ y4kx2x2a H(k+1) _ y4kx2.
Note that we are using the fact that 22°° commutes with both z and y?
here. Thus, this yields g € G2}, We conclude for all elements g € G\ G{%
that ¢ and gz2* " are conjugate and we have proved that 1(G) = n(G/Z)
when ¢ = 2.
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We now assume that § > 2. Let M = (22, y). Since ¥ = 22" ~1, we see
that (22)Y = (2" 7" 71)2 = (£2)2°7"77V -1 Also, y?° = 227" = (22)2°7V7"
Observe that (z2)2°7 "™ = 22*7". We conclude that M = Go(ar— 1, 8,¢,6 —
1,—). Let g € G\G{#. If g € M, then g € M\ M{?}. By induction, we have
that ¢ is conjugate to g(22)2° """, and so, g and gz*~" are conjugate. Thus,
we may assume that g & M. This implies that g = y'2?™*! for integers [ and
m. We know that y induces an automorphism of (z) of order 2°. It follows
that y2 " induces an automorphism of (z) of order 2. Since § > 3, we know
that this automorphism is a square. It is not difficult to see that z — 222"
is the unique automorphism of (x) that has order 2 and is a square. Hence,

2&71 5—1

- s—1 —
we see that zv° = 222", We conclude that ¢ = (ylxzr’"“rl)y2

20—1 a—1 a—1 a—1 .
yl(av™ )2l = gyl )2l = glp2m 12 — 922" This completes

the proof of the claim that n(G) = n(G/Z).

We now work to prove n(G) = n(G/N). We work by induction on §. If § =
2, then N = Z, and the above claim yields the result. We assume that 6 > 3.
We have that n(G) = n(G/Z). By induction, n(G/Z) = n((G/Z)/(N/Z)),
and the First Isomorphism Theorem implies that G/N = (G/Z)/(N/Z), so
n(G/N)=n((G/Z)/(N/Z)), and we have the desired equality. O

In light of Theorem [4.1] and Lemma [3.1] we see that if we can compute 7
for Ga(a, 5,€,0,—) when § = 0,1, then we can compute 7 for all metacyclic
2-groups of negative type. There are a number of cases to consider when
0 = 0 or 1, and then using these cases, we will compute n when § > 2.
Recall that the dihedral 2-groups are the groups of the form Gy(«, 1,0,0, —),
the generalized quaternion 2-groups are of the form Gy(a,1,1,0,—), and
the semi-dihedral groups are of the form Gs(a,1,0,1, —). Also, it is known
that Ga(«, 5,1,0,—) and Gy(«, 5,1,1,—) are isomorphic for all « > 3 and
B > 2. Since 6 < (3, it follows that dihedral, generalized quaternion, and
semi-dihedral are the only groups of negative type where 5 = 1.

Thus, we need to analyze the negative metacyclic 2-groups of type

GQ(a7 5) €, 5) _)

with 8 > 2. We recall a few facts about the classification of such groups.
In particular, for negative type € is either 0 or 1 only. Also the parameters
satisfy: a« >0+ 2 and >0 whene=0and § > + 1 when e = 1.

When 6 = 0 or 1, there is a particular abelian normal subgroup M of G.
For this subgroup M, we determine which maximal cyclic subgroups of M
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are maximal in G and how many maximal cyclic subgroups of G lie outside
of M. This yields the following result. Recall that n*(M) is the number of
G-orbits on the M-conjugacy classes of maximal cyclic subgroups of M.

Proposition 4.2 Suppose G is Go(a, 3, €,0,—) where 6 =0 or 1 and > 2.
Let M = (x,y*). Then M is a normal abelian subgroup of G and the following
holds:

(i) If 6 = 0, then n(G) = n*(M) + 1 and every mazimal cyclic subgroup of
M is mazimal cyclic in G except (y?).

(1) If 6 = 1, then n(G) = n*(M) and every mazimal cyclic subgroup of M
is mazimal cyclic in G except (y2) and (y?z>* ).

Proof. As M is a subgroup of index 2 in G it follows that M is normal in G.
Let Y = (y%). Observe that y? centralizes () and is obviously central in (y);
so Y = (y?) is central in G. Now, M is central-by-cyclic, so M is abelian.

We now prove that there are exactly two conjugacy classes of maximal
cyclic subgroups of G outside of M. Since (z) is normal in G and G =
(@)(y) = (z)(zy), we see that Cu((y)) = Ci((W))(y) = (= ")(y) and
Co((zy)) = (22 ) (ay). Tt follows that both (y) and (zy) lie in conjugacy
classes of size |(x) : (2" ")| = 2271, Tt is not difficult to see now that every
cyclic subgroup of G outside of M is conjugate to either (y) or (zy).

(1) For 6 = 0 we show that every maximal cyclic subgroup of M is a
maximal cyclic subgroup of G' except (y?) which lies in exactly 2 different
conjugacy classes of maximal cyclic subgroups of G, namely (y) and (zy).

Observe that yY acts on M/Y inverting every element. Thus, M/Y is
a cyclic subgroup of index 2 in G/Y. We have (yY)? =Y, so G/Y is a
dihedral group. It follows that if g € G\ M, then (gY)? =Y and so, > € Y.
Hence, Y is the only maximal cyclic subgroup of M that is not maximal
cyclic in G. Notice that Y < (y). Also, we know that (yY) and (zyY) are
in different conjugacy classes of subgroups of G/Y, so (y) and (xy) are in
different conjugacy classes of G. Since 2¥ = 7!, so 2y = yax~!. It follows
that (yz)* = yryr = y(yaz =)z = y>.

(17) For § = 1 we show that the only maximal cyclic subgroups of M
that are not maximal in G are (y?) and (y?2z>" ). Again there are exactly 2
different conjugacy classes of maximal cyclic subgroups outside of M given
by (y) and (zy). Note that (y) contains (y2) and (zy) contains (322" ).

13



Note that M/Y is cyclic in G/Y of order 2%. Also, (yY)? = Y and
(Y)Y = 2277y = (2Y)2 L It follows that G/Y is isomorphic to a
semi-dihedral group. Let Z = (z2"',Y), and observe that Z/Y = Z(G/Y).
Notice that if g € G\ M, then (¢Y)? € Z/Y. This implies that g*> € Z. Ob-
serve that (y2) and (y222" ") are central (and hence normal) in G. It follows
that the square of any conjugate of y will be 2. Since § = 1, we have 2¥ =
2271 s0 xy = ya®™ 1 We have (y2)? = yayz = y(ya® Hz = 222"
This implies that the square of any conjugate of xy will be y2x2a71. Hence,
any other subgroup of M that is maximal cyclic in M will be maximal cyclic

in G. O

We now work to compute 7 for the groups with negative type and ¢ equal
to 0 or 1. We will first handle the case when ¢ = 0 and § = 2. For the
following lemma recall that o > 6 + 2 when p = 2, so when § = 1 we must
have o > 3.

Lemma 4.3 Suppose G is Go(a,2,0,9, —). Then
(i) N(G)=a+3ifd=0 and
(i) n(G) =a+2 if 6 =1.

Proof. Following Proposition £.2], we take M = (z,y?); so M is abelian. We
have M = Cya x Cy and n(M) = o+ 2 by Lemma 2.3 We claim that all
subgroups of M are normal in GG. To see this, note that if K is a subgroup
of M then (1) K is a subgroup of (z), (2) K = (z%,y?) for some integer 1 <
a<2*—1or (3) K= (z? for some integer 1 < a < 2% —1. When ¢ = 0,
we know that 2¥ = 271, so (%)Y = (2%)~! and (2%?)? = (z%?)~* for every
integer a. When ¢ = 1, we have ()Y = 22" =D, The observation is that
<xa> _ <Ia(2a*1—1)>’ <$a’y2> _ <aja(2a*1—1)’y2>’ and <Iay2> _ <xa(2“*1—1)y2>.
This proves the claim. Therefore n*(M) = n(M) and the result follows from
Proposition 2. O.

We continue with the case where e = 0. We now consider the case that
B > 3. Recall that g,(a,b) = p"V((k —1)(p — 1) + p+ 1) where p a prime,
a and b are positive integers, and we take k = max(a,b) and [ = min(a, b).
Recall also that g,(a,b) = n(Cpa x Cpp). The following can be viewed as an
improvement on Proposition 22(ii).
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Theorem 4.4 Suppose G is Gy(«, 3,0,d,—) with 5 > 3. As previously let
M = {z,y?). Then the following hold:

1. If6 =1, then n(G) = n(M)/2 4+ 2 = go(cv, B — 1)/2 + 2.
2. If 6 =0, then n(G) = n(M)/2 + 3 = gy(a, 3 —1)/2 + 3.

Proof. Note that we are assuming ¢ is 0 or 1. As in Proposition E.2], we
let M = (x,9%); so it follows that M is abelian. In particular, since we are
assuming that e = 0, we have M = (x) x (y?) = Coa X Cys-1. Using Lemma
23 we obtain n(M) = gs(a, f — 1). Let k be the maximum of o and § — 1
and let [ be the minimum of o and § — 1; so that n(M) = gs(er, 5 — 1) =
2!=1(k —143). We now work to prove that n*(M) = g»(a, 3—1)/2+2. Once
this is done, then we will have the conclusion via Proposition [£.2l

It is not difficult to see that (z), (y2), and (y222" ') are maximal cyclic
subgroups of M that are normal in G. We claim that (y*2° )z) is a max-
imal cyclic subgroup of M that is normal in G. It is easy to see that it is
maximal cyclic. When § = 0, we see that ((y2@" z))v = (522" )1 =
(422°2)1) and when § = 1, we have ((y2@" z))y = (y2277)42"-1) =
((y*2°"*)2)2*~1) . This proves that it is normal in G.

We will prove that all the other maximal cyclic subgroups of M will be
in conjugacy classes of size 2 in G. Thus, n*(M) = (n(M) —4)/2+ 4 =
n(M)/2 =2+4 = go(a, B —1)/2+ 2.

Let C be a maximal cyclic subgroup of M. It is not difficult to see that
C will be generated by an element of the form y*x or one of the form y%z!.
When 6 = 0, we have that (y?z)¥ = y* 271 and (y?2')Y = y?2~'. For C to
be normal, we need this conjugate to be in C. When the generator is y?x,
we need y2a~! = (y¥a)k = y**2k for some integer k. This implies that
y? =2k — 2F+1 Since € = 0, we have that y? 2% = z*+1 = 1. We see that we
must have 2% dividing k + 1 and 2° must divide 2{(1 — k). Thus, there is an
integer r so that k + 1 = 2%, and thus, k = 2°r — 1. We obtain that 2°~!
must divide [(1—(2%r—1)) = 1(2—2%) = 2[(1—2>"'r). Since we know that
> 2, this implies that 2°~2 must divide . It follows that (z) and (y*"'z)
are the only two maximal cyclic subgroups of M that are normal in G that
are generated by an element of the form y*z when 6 = 0.

When the generator is y2z!, we need y?r~" = (y22')* = y*z'* for some
integer k. This implies that y?>~2* = x/**! = 1. This implies that 27 divides
2(1 — k) and so, 2°7! divides 1 — k. Hence, there is an integer r so that
1 —k=1r2°"1 and hence, k = 1 — r2°~1. We see that 2% divides I(1 + k) =
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I(1+(1—=r28-1)) = [(2—7r2°~1) = 21(1—r2°72). Since 8 > 3, we deduce that
291 must divide 1. Tt follows that (y2) and (y2z2" ') are the only maximal
cyclic subgroups of M that are normal in GG that are generated by an element
of the form y2x! when 6 = 0. This proves the result when 6 = 0.

Now we suppose that 6 = 1. Recall that o > § + 2, so o > 3. We have
that (y2z)? = yZ22" 1 and (y22)Y = 322! "= For C to be normal,
we need this conjugate to be in C. Suppose the generator is y*z. We
need 42zt = (y¥x)* = y¥*z* for some integer k. This implies that
Y22k — k=271 — 1 We deduce that 2* must divide k — 21 +1, and so,
there is an integer r so that k—2%"'+1 = 2% . We obtain k = 2% 42971 1.
We have that 27 divides 21(1 — k) = 21(1 — 2% — 2°71 + 1). It follows that
26-2 divides I(1 — 2% 1y —2%72). Since a > 3, we see that 2°72 divides [. We
conclude that (z) and (42" 'z) are the only two maximal cyclic subgroups of
M that are normal in G that are generated by an element of the form y?z
when § = 1.

When the generator is y2a!, we need y2!@* =D = (y2¢h)k = 42!k for
some integer k. We see that y2=2F = zh=1@*'=1) — 1. Tt follows that 2°
divides 2(1 — k), and so, 2°~1 divides 1 — k. There is an integer 7 so that
1 —k = 271 which yields k = 1 —2°"1r. We now determine that 2% divides
I(k—2"1+1) =1(1—-2°"1r =207 +-1) = 21(1 — 2572 —2°72). Since o > 3
and 8 > 3, we have that 22! divides I. We conclude that (y2) and (222" ")
are the only maximal cyclic subgroups of M that are normal in G that are
generated by an element of the form y?z! when 6 = 1. This proves the result
when 0 = 1. O

In this next corollary, recall that § < [, so when [ = 2, we must have
0 = 2. We are able to use Theorem [4.4] to compute 7 for groups of negative
type where § > 2.

Corollary 4.5 Suppose G is Gy(«, B, €,6,—) with 6 > 2, then
LG =a-0+3=a+1ifB=2.
2. n1(G)=gla—d+1,8—-1)/2+2if 3> 3.

Proof. By Theorem EL1], we have that 5(G) = 7(G/N) where N = (22 """},
Applying Lemma Bl we see that G/N = Gy(a — d 4+ 1,3,0,1,—). Using
Lemma 4.3, we see that n(G/N) = a—d+1+2 = a+3—39 when § = 2. Since
2 <0< B =2, wesee that 6 =2, and so, 7(G) = o+ 1. When § > 3, we
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apply Theorem [£.4]to see that n(G) = n(G/N) = go(a—d+1,5—1)/2+2. O

We now compute 7 for groups of negative type with 6 =0 and e = 1. We
first handle the case where g = 2.

Lemma 4.6 Suppose G is Go(«,2,1,0,—) then n(G) = a + 2.

Proof. Define M = (x,y?). By Proposition L2l we know that M is a normal
abelian subgroup of G. First note that (22* "¢2)? = 22 'yt = 22" 22" =
22" = 1. Thus, M = (z) x (2*" "9?) = Cha x Cy and n(M) = o+ 2. Con-
sideration of the maximal cyclic subgroups of M shows that all are normal
except (1,22 "y?)) and (22", 22" "y?)) which are conjugate in G via y.
To see that these two subgroups are conjugate, observe that M has three
subgroups of order 2 and that (z2"~') = (y2°) is central in G and that Z(G)
is cyclic. Either y normalizes both of the other two subgroups of order 2
or it permutes them. However, if y were to normalize them, they would be
normal in G and since they have order 2, that would imply that they would
be central in G. This however would contradict the fact that the center of G

is cyclic. Thus n*(M) = a+ 1. The result follows from Proposition O

We continue with the groups of negative type where § =0 and ¢ = 1. We
next consider g > 3 and a = 2.

Lemma 4.7 Suppose G is G5(2,,1,0,—) with > 3. Then n(G) = + 2.

Proof. Define M = (x,y?). By Proposition L2} we know that M is a normal
abelian subgroup of G. Note that (zy2" )% = 22y?" = 2222 = 2 = 1. So
M = (zy® ") x (y2) = Cyx Cys and (M) = S+2. Consideration of the max-
imal cyclic subgroups of M shows that all are normal except for ((zy2’ ', 1))
and ((zy2” ™", 4?")) which are conjugate in G via y. The proof that these two
subgroups are conjugate is similar to the proof of Lemma In particular,
Z(@G) is cyclic, M has three subgroups of order 2, and if y normalized these
two subgroups, then it would centralize them and contradict the fact that
Z(G) is cyclic. Thus n*(M) = g + 1. The result follows from Proposition
O

We conclude by computing n when 6 =0, e =1, a > 3, and 5 > 3. Note
this also covers the cases 6 =1, e =1 and «a, 8 > 3.
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Theorem 4.8 Suppose G is Go(a, 5,1,0,—) with « > 3 and f > 3. Let
M = (z,y?).

1. Ifa> B, then n(G) =n(M)/2+3 = go(a, f — 1)/2 + 3.
2. Ifa < B3, then n(G) = n(M)/2+3 = ga(a — 1,5) /2 + 3.

Proof. As in Proposition 2] we let M = (z,y?); so it follows that M is
abelian. We know that |M| = 2°t#~1 that x has order 2% and y? has order
2%, Suppose a > B3, then M = Cya X Cos-1, and so n(M) = go(a, B — 1).
Let w = 322" ", Observe that w? * = (y222°")?"" = ¥ 22 & (x)
and w? ™ = (y22 )T = 272 = 227227 = 1. It follows that
M = (z) x (w).

If 8> a+1, then M = Cy-1 x Cys, and so n(M) = g12(oz - 1,0).

B—a a— B—a a— 8 o—
Lot u = g™ Wo compute v = (120" = g e g ()
and v*" = (y? r)* = y¥ 2 =2 2* = 1. We deduce that
M = (u) < (y).

In both cases, we will show that n*(M) = n(M)/2 + 2, and we obtain
the conclusion by applying Proposition [4.2. Notice that a maximal cyclic
subgroup of M will be generated either by an element of the form y?z for
some integer [ or by an element of the form 3%z! for some integer I. Observe
that (z) and (y?) are maximal cyclic subgroups of M that are normal in G.

We next show that (y2 ') and (y222°"") are normal subgroups in G.
Since M is abelian and has index 2 in G, it suffices to show that y normalizes
these subgroups. We compute (y2 ')V = y*" 27! = (42" '2)~'. Since y

conjugates the generator of (42’ 'z) to its inverse, this implies that (y** ' z)
is normal in G.
We now turn to (y2x2a72). We begin with the observation that (yz:ﬁa*2 )=

y®. Since f > 3, we see that 22°" = 2" € (y%22"°). Conjugating
yields (y%2>" 7)Y = y?22"". Note that 72" = 22" 2>, We have
(22> )W = 222 2. Since both 322" and 22 lie in (y222" ),
we conclude that (y2z2"°) lies in (y222" 7). We deduce that (y222" ") is
normal in G.

We prove that the remaining maximal cyclic subgroups of M lie in orbits
of size 2. We have noted that a maximal cyclic subgroup C' of M will have
a generator of the form y*x or of the form y%z! for some integer I. If C' has
a generator of the form y*z, then for C' to be normal we need (y?z)¥ =
y# 2~ € C. This implies that y*z~! = (y*z)* for some integer k. We have
Y22 — gkt — g e (2) N (y?) = ("), Hence, u is either 1 or 22" . If
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u = 1, then 2% divides k+1 and 2°*! divides 2/(1—k). We see that there is an
integer r so that k+1 = 2°r, and hence, k = 2% — 1. This implies that 26+!
divides 2/(1—k) = 21(1—2%+1) = 41(1-2%"1r). Since o > 2, this yields 2771
divides I. When u = 22, we obtain that k + 1 = 2*~' (mod 2%). Hence,
there is an integer r so that k +1 = 2971 + 2% and so, k = 2% + 2% — 1.
We see that 21(1 — k) = 2° (mod 2°*!). This implies that 2°*! divides
21 —k)—2° =21(1 =271 —r22+1) = 28 = 4](1 — 272 — y2271) — 26 We
deduce that 26-2 divides . We conclude that (z) and (y2° 'z) are the only
maximal cyclic subgroups of M having the form (y?'z) that are normal in G.

We now suppose that C' has a generator of the form y?z!. We need
(y22')Y = y?2~! € C. Hence, we have that y?z~! = (y%2))* = y?*2'* for some
integer k. We have y>~% = z!**+! = 4. As in the previous paragraph, we see
that u is either 1 or 22* . If u = 1, then we have that 2%+ divides 2(1 — k),
and so, there is an integer r so that 1—k = 2°r. We determine that 2* divides
I(k+1) =1(1-2%+1) = 21(1 —2°~1r). Tt follows that 2>~1 divides [. Now,
suppose that u = 22 . We must have that 2(1 — k) = 2% (mod 2°*1) and
I(k+1) = 2> (mod 2%). Hence, there is an integer r so that 2(1—k) = 2° +
2641y This implies that k = 1 — 2°~1 — 2°r. We then obtain that 2 divides
I(k+1) =207t =](1 =201 =20p+1) - 2071 = 2(](1 — 2772 = 26~ 1p) — 2272,
This implies that 2°~% divides [(1 — 2772 — 20=1y) — 272 Hence, there is
an integer s so that [(1 — 2872 — 26-1p) — 2972 = 29715 This leads to
[(1—2672—20"1p) = 20715 4 2972 = 2972(25 + 1). This yields 2272 divides
I. Observe that 22"~ = 42", and so, (y222°") = (y2). We deduce that (y2)
and (y2x2a72) are the only maximal cyclic subgroups of M having the form
(y?2') that are normal in G,

We now see that the number of G-orbits of maximal cyclic subgroups of
Mis (n(M)—-4)/24+4=n(M)/2 -2+ 4=n(M)+ 2, which completes the
proof of the result. O

We close by proving that when G is metacyclic of minus type that is not
dihedral, generalized quaternion, or semi-dihedral, then n(G) > a + § — 2
and we determine when equality occurs. We first handle when 0 equals 0 or
1. In this case, we have n(G) > o + f.

Proposition 4.9 Suppose G = Go(a, B,€,0,—) with 6 =0 or 1 and § > 2.
Then n(G) > a + .

Proof. (i) Suppose € = 0. Denote | = min(«, f — 1) and k = max(«a, 5 — 1).
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First, consider [ > 3. Then § > 4 and by Theorem [4.4] and Lemma 2.4
n(G) > ga(a, B—1)/2+2>2k+2>a+ .

Next, assume [ = 2. So § > 3 and by Theorem 4.4l and Lemma [2.4]
n(G) > ga(a, B—1)/2+2=k+3>a+ 3.

Finally, set [ = 1. As o > 2, we have = 2. The result follows from
Lemma [4.3]

(ii)) Now suppose € = 1. Assume « > (3, then [ = min(«o, 5 — 1) = — 1
and £k = max(a,f — 1) = a. If [ > 3, then > 4 and a > 4, so we can
assume 0 = 0. Applying Theorem [4.§ and Lemma 2.4 yields

n(G) =ga(e, —1)/2+3>2k+3>a+p.
If | = 2, then 8 = 3, and we again appeal to Theorem 4.8 to obtain
N(G) = ga(a, B —=1)/24+3 = g2(k,2)/2+3=k+4>a+p.

Ifl =1, then g =2. If « =2 then § =0 and if @ > 3 we can assume ¢ = 0.
Thus we apply Lemma
Finally, suppose € = 1 and a < 8. We set | = min(aw — 1, ) = a — 1 and
k =max(a—1,0) = . When [ > 3, we apply Theorem .8 and Lemma 2.4]
to get
n(G)=g(a—1,0)/24+3>2k+3>a+p.

If | =2, then @ = 3 and 8 > 3. Apply Theorem [£.8 with Lemma 2.4 to give
(G) = g2(6,2)/2+3=F+4=a+p.
If I =1, then a = 2 and § = 0, the result follows from Lemma 4.7, O
We now have the case where § > 2.
Proposition 4.10 Suppose G = Gy(«, B,¢€,d,—) with § > 2. Then n(G) >

a+ B — 2. Equality holds if and only if f = & and either (1) p = 3 or (ii)
B>4and a—=2.
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Proof. Set | = min(a —d+ 1,8 —1) and k = max(a — 0+ 1,5 —1). We
consider various cases according to the value of [.
First, suppose [ > 4. Then by Corollary and Lemma [2.4]

nG) = gpla—0+1,6—-1)/2+2
Ga(k, 1)/24+2> 2k +1+2
(k+1)+k+2
a—0+pB+p8—-1+2
a+pB+1

(A\VARVS

since 0 < f3.
Now consider [ = 3. We use Corollary and Lemma [2.4] to find an
exact value for n(G).

N(G)=ga(la—0+1,8—1)/2+2 = gs(k,3)/2 4+ 2 = 2k + 2.
fa—0+1>pF—-1=3, then 6 <4 and
nG)=2a-d+1)+2=a+(@-0+2)+(-0+2)>a+3 -2

On the other hand, when 8 —1 > a— 0 +1 = 3, we obtain § > 4 and
a—0=2,%0a—2<and

n(G)=28-1)+2=202>2F+a-2

with equality if and only if g = 6.
Next suppose | = 2. Since « —d +1 > 2+ 1 = 3, we must have g = 3.
Applying Corollary L5 and Lemma [24]

nG) = gpla—0+1,8-1)/24+2=g(k,2)/2+2
= k+3=a-0+4
> a+l=a+p-2

with equality if and only if 6 =3 = j.
Lastly consider [ = 1. In this case f = 2 and the result follows from
Corollary 4.5 O

21



References

1]

8]

[9]

Y. Barnea, R. D. Camina, M. Ershov, M. L. Lewis, On groups that can
be covered by conjugates of finitely many cyclic or procyclic subgroups,
Preprint.

J. R. Beuerle, An elementary classification of finite metacyclic p-groups
of class at least 3, Algebra Colloquium 12:4 (2005) 553-562.

M. Bianchi, R. D. Camina, M. L. Lewis, E. Pacifici, Conjugacy classes of
maximal cyclic subgroups, submitted for publication, arXiv:2201.05637.

M. Bianchi, R. D. Camina, M. L. Lewis, Conjugacy classes of maximal
cyclic subgroups and nilpotence class of p-groups, to appear in Bull.
Aust. Math. Soc., doi:10.1017/S0004972722000211. arXiv:2201.05642.

J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic pro-p-
groups, London Mathematical Society Lecture Note Series, 157. Cam-
bridge University Press, Cambridge, 1991.

I. M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics,
Volume 92, American Mathematical Society, Providence, Rhode Island,
2008.

B. King, Presentations of metacyclic groups, Bull. Austral. Math. Soc.
8 (1973) 103-131.

J. R. Rogério, A note on maximal coverings of groups, Comm. Algebra
42(10) (2014), 4498-4508.

T. W. von Puttkamer, On the Finiteness of the Classifying Space for
Virtually Cyclic Subgroups, PhD thesis.

Mariagrazia Bianchi: Dipartimento di Matematica F. Enriques, Universita
degli Studi di Milano, via Saldini 50, 20133 Milano, Italy.
mariagrazia.bianchi@unimi.it

Rachel Camina: Fitzwilliam College, Cambridge, CB3 0DG, UK.
rdc26@cam.ac.uk

Mark L. Lewis: Department of Mathematical Sciences, Kent State Univer-
sity, Kent, Ohio, 44242 USA.

22


http://arxiv.org/abs/2201.05637
http://arxiv.org/abs/2201.05642

lewis@math.kent.edu

23



	1 Introduction
	2 Preliminaries
	3 Metacyclic p-Groups
	4 Metacyclic Groups of Negative Type

